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Abstract. We study the configurational probability distribution of a mono-atomic

gas with a finite number of particles N in the micro-canonical ensemble. We give two

arguments why the thermodynamic entropy of the configurational subsystem involves

Rényi’s entropy function rather than that of Tsallis. The first argument is that the

temperature of the configurational subsystem is equal to that of the kinetic subsystem.

The second argument is that the instability of the pendulum, which occurs for energies

close to the rotation threshold, is correctly reproduced.

1. Introduction

The recent interest in the micro-canonical ensemble [1, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11] is

driven by the awareness that this ensemble is the cornerstone of statistical mechanics.

Of particular interest is the occurrence of thermodynamic instabilities in closed systems

and their relation with phase transitions. The latter are usually studied in the context

of the canonical ensemble.

The present paper focuses on the configurational probability distribution of a mono-

atomic gas with N interacting particles within a non-quantum-mechanical description.

Recently [12], it was proved that this distribution belongs to the q-exponential family

[13, 14, 15], with q = 1 − 2/(3N − 2). In the thermodynamic limit N → ∞ it

converges to the Boltzmann-Gibbs distribution. This observation places the statistical

physics of real gases into the realm of Tsallis’ non-extensive thermostatistics [16, 17].

In the Tsallis community the belief reigns that the Tsallis entropy function is more

appropriate than that of Rényi, although both are maximised by the same probability

distributions. In favour of this point of view is the Lesche stability [18, 19, 20] of

the Tsallis entropy function. Moreover it has been proved that this entropy function is

uniquely associated with the q-exponential family (up to a multiplicative and an additive

constant). However, it was argued in [12] that for the calculation of thermodynamic

quantities the Rényi entropy function is more appropriate. This statement is elaborated

in the present work. In addition, it is shown by means of the example of the pendulum

http://arxiv.org/abs/1009.1787v1
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that the stability of the Tsallis entropy function makes it inappropriate to describe

instabilities of closed systems.

The pendulum is an interesting example because it has two distinct types of orbits:

librational motion at low energy and rotational motion at high energy. The density of

states ω(U) can be calculated analytically (see for instance [21]). It has a logarithmic

singularity at the energy Uc, which is the minimum value needed to allow rotational

motion — see the Figure 1.
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Figure 1. Density of states of the pendulum in reduced units

The thermodynamic quantity central to the micro-canonical ensemble is the entropy

S(U) as a function of the total energy U . Therefore, we start with it in the next Section.

Sections 3 to 6 discuss the configurational probability distribution and its properties.

Section 7 considers the ideal gas as a special case. Section 8 deals with the example of

the pendulum. Finally, Section 9 draws some conclusions. The short Appendix clarifies

certain calculations.

2. Micro-canonical entropies

The entropy S(U), which is most often used for a gas of point particles in the classical

micro-canonical ensemble, is

S(U) = kB lnω(U), (1)

where ω(U) is the N -particle density of states. It is given by

ω(U) = cN

∫

R3N

dp1 · · ·dpN

∫

R3N

dq1 · · ·dqN δ(U −H(q,p)). (2)

Here, qj is the position of the j-th particle and pj is the conjugated momentum,

H(q,p) is the Hamiltonian. The constant cN equals 1/N !h3N . The constant h has

the same dimension as Planck’s constant. It is inserted for dimensional reasons. This

definition goes back to Boltzmann’s idea of equal probability of the micro-canonical

states and the corresponding well-known formula S = kB lnW , where W is the number
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of micro-canonical states. However, the choice (1) of the definition of entropy has some

drawbacks. For instance, for the pendulum the entropy S(U) as a function of internal

energy U is a piecewise convex function instead of a concave function [21]. The lack

of concavity can be interpreted as a micro-canonical instability [1, 4]. But there is no

physical reason why the pendulum should be classified as being unstable at all energies.

The shortcomings of Boltzmann’s entropy have been noticed long ago. A slightly

different definition of entropy is [22, 23] (see also in [24] the reference to the work of A.

Schlüter )

S(U) = kB ln Ω(U), (3)

where Ω(U) is the integral of ω(U) and is given by

Ω(U) = cN

∫

R3N

dp1 · · ·dpN

∫

R3N

dq1 · · ·dqN Θ(U −H(q,p)). (4)

Here, Θ(x) is Heaviside’s function. An immediate advantage of (3) is that the resulting

expression for the temperature T , defined by the thermodynamic formula

1

T
=

dS

dU
, (5)

coincides with the experimentally used notion of temperature. Indeed, there follows

immediately

kBT =
Ω(U)

ω(U)
. (6)

It is well-known that for classical mono-atomic gases the r.h.s. of (6) coincides with

twice the average kinetic energy per degree of freedom. Hence, the choice of (3) as the

thermodynamic entropy has the advantage that the equipartition theorem, assigning

kBT/2 to each degree of freedom, does hold for the kinetic energy also in the micro-

canonical ensemble. Quite often the average kinetic energy per degree of freedom

is experimentally accessible and provides a unique way to measure accurately the

temperature of the system.

3. The configurational subsystem

The micro-canonical ensemble is described by the singular probability density function

fU(q,p) =
1

ω(U)
δ(U −H(q,p)), (7)

where δ(x) is Dirac’s delta function. The normalization is so that

1 = cN

∫

R3N

dp1 · · ·dpN

∫

R3N

dq1 · · ·dqNfU(q,p). (8)

For simplicity, we take only one conserved quantity into account, namely the total

energy. Its value is fixed to U .

In the simplest case the Hamiltonian is of the form

H(q,p) =
1

2m

N
∑

j=1

|pj|2 + V(q), (9)
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where V(q) is the potential energy due to interaction among the particles and between

the particles and the walls of the system. It is then possible to integrate out the

momenta. This leads to the configurational probability distribution, which is given

by

f conf
U (q) =

(a

h

)3N
∫

R3N

dp1 · · ·dpN fU(q,p). (10)

The normalization is so that

1 =
1

N !a3N

∫

R3N

dq1 · · ·dqNf
conf
U (q). (11)

The constant a has been introduced for dimensional reasons‡. In the limit of an

infinitely large system, this configurational system is described by a Boltzmann-Gibbs

distribution. However, here we are interested in small systems where an exact evaluation

of (10) is necessary. A straightforward calculation yields

f conf
U (q) =

[U − V(q)]3N/2−1

+

ǫ3N/2ω(U)Γ(3N/2)
, (12)

with ǫ = h2/2πma2.

4. The variational principle

It was shown in [12] that the configurational probability distribution f conf
U (q) belongs to

the q-exponential family, with q = 1− 2

3N−2
. This implies [13, 14, 15] that it maximizes

the expression

I(f)− θU conf (f) (13)

for some value of θ, where

I(f) = − 1

1 − q

1

N !a3N

∫

R3N

dq1 · · ·dqN f(q)
[

(f(q))1−q − 1
]

(14)

with

U conf(f) =
1

N !a3N

∫

R3N

dq1 · · ·dqN f(q)V(q). (15)

This is called the variational principle. Note that I(f) is the Tsallis entropy function

[16] up to one modification (replacement of the parameter q by 2 − q). The parameter

θ turns out to be given by

θ =
2− q

1− q

1

ǫ2−q[Γ(3N/2)ω(U)]1−q
. (16)

The maximisation of (13) is equivalent to the minimisation of the free energy (using

I(f) as the entropy function appearing in the definition of the free energy). Replacing

the Boltzmann-Gibbs-Shannon (BGS) entropy function by I(f) is necessary — the

configurational probability distribution f conf
U (q) does not maximize the BGS entropy

function as a consequence of finite size effects.

‡ Note that the normalisation here differs from that in [12]
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Note that in [14] the definition (14) of the entropy function contains an extra factor

1/(2 − q) to fix its normalisation and to make it unique within a class of properly

normalised entropy functions. This normalisation factor is not wanted in the present

paper because it becomes negative when we use q = 3 in the example.

5. Rényi’s entropy function

It is tempting to identify the parameter θ of the previous Section with the inverse

temperature β = 1/kBT and to interpret (13) as the maximisation of the entropy

function I(f) under the constraint that the average energy U conf (f) equals the given

value U conf . However, in [12] an example was given showing that this identification of

θ with β cannot be correct in general. It was noted that replacing the Tsallis entropy

function by that of Rényi gives a more satisfactory result. This argument is now repeated

in a more general setting.

In the present context, Rényi’s entropy function of order α is defined by

Iα(f) =
1

1− α
ln

[

1

N !a3N

∫

R3N

dq1 · · ·dqN f(q)α
]

. (17)

Let α = 2− q. Then (17) is linked to (14) by

Iα(f) = ξ(I(f)) (18)

with

ξ(u) =
1

q − 1
ln[1 + (q − 1)u]. (19)

Note that

dξ

du
=

1

1 + (q − 1)u
. (20)

This derivative is strictly positive on the domain of definition of ξ(u). Hence, ξ(u)

is a monotonically increasing function. Therefore, the density f(q) is a maximizer

of I(f) if and only if it maximizes Iα(f). This means that from the point of view

of the maximum entropy principle it does not make any difference whether one uses

the Rényi entropy function or that of Tsallis. However, for the variational principle

discussed in the previous Section, and for the definition of the temperature T via the

thermodynamic formula (5) the function ξ(u) makes a difference. In the example of

the pendulum, discussed further on, the variational principle is not satisfied when using

Rényi’s entropy function, while it is satisfied when using I(f). Also, the derivation

which follows below shows that, when Rényi’s entropy function is used, the temperature

of the configurational subsystem equals the temperature T of the kinetic subsystem.
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6. Configurational thermodynamics

Let us now calculate the value of Rényi’s entropy function for the configurational

probability distribution (10). One has

Iα(f conf
U ) =

1

q − 1
ln

[

1

N !a3N

∫

R3N

dq1 · · ·dqN

(

f conf
U (q)

)2−q
]

. (21)

Use now that (see (12))

(

f conf
U (q)

)1−q
=

U − V(q)
ǫ[Γ(3N/2)ǫω(U)]1−q

. (22)

Then (21) simplifies to

Iα(f conf
U ) = ln Γ

(

3N

2

)

ǫω(U)−
(

3N

2
− 1

)

ln
Ukin

ǫ
. (23)

The claim is now that (23), when multiplied with kB, is the thermodynamic entropy

Sconf(U) of the configurational subsystem. Note that ǫ = h2/2πma2 is an arbitrary unit

of energy. Note also that, using Stirling’s approximation and Ukin = 3NΩ(U)/2ω(U),

(23) simplifies to

1

kB
Sconf(U) ≃ ln ǫω(U)−

(

3N

2
− 1

)

ln
Ω(U)

ǫω(U)

+

(

3N

2
− 1

)

ln

(

3N

2
− 1

)

− 3N

2
+

1

2
ln 3πN. (24)

To support our claim, let us calculate its prediction for the temperature of the

configurational subsystem. One finds

1

T conf
≡ dSconf

dU conf
= kB

[

ω′

ω
−
(

3N

2
− 1

)

1

Ukin

]

dU

dU conf

+ kB

(

3N

2
− 1

)

1

Ukin
.

(25)

Using (see (26) of [12])

dU conf

dU
= 1− 3N

2
+

ω′

ω
Ukin (26)

this becomes
1

T conf
= kB

3N

2Ukin
= kB

ω

Ω
=

1

T
. (27)

This shows that the configurational temperature, calculated starting from Rényi’s

entropy function, coincides with the temperature T defined by means of the modified

Boltzmann entropy (3) and with the temperature of the kinetic subsystem. One

concludes that the natural choice of entropy function for the configurational subsystem

is Rényi’s with α = 2− q = 3N/(3N − 2).

Finally, let us define a configurational heat capacity by

Cconf =
dU conf

dT
= T

dSconf

dT
. (28)
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Then one has in a trivial way

C =
dU

dT
=

d

dT

[

3

2
NkBT + U conf

]

=
3

2
NkB + Cconf . (29)

7. The ideal gas

Let us verify that the expression (23) makes sense even for an ideal gas. In this case

the density of states is

ω(U) =
cN

Γ(3N/2)
V N (2πm)3N/2 U3N/2−1. (30)

Evaluation of (23) with Ukin = U then gives

Sconf = kBN ln
V

Na3
+ kB ln

NN

N !
≃ kBN ln

eV

Na3
. (31)

The configurational entropy of an ideal gas does not depend on the total energy or on

the mass of the particles, as expected. The total entropy is

S = kB ln Ω(U)

= kBN lnV +
3

2
NkB ln 2πmU

+ kB ln cN − kB ln Γ(3N/2 + 1). (32)

Using Stirling’s approximation, (32) simplifies to

S ≃ kBN

(

ln
eV

Na3
+

3

2
ln 2π

U

Nǫ
+ constant

)

. (33)

This expression coincides with the Sackur-Tetrode equation [25] for an appropriate

choice of the constant term. The first term of (33) is the configurational entropy

contribution (31), the second term is the kinetic energy contribution.

8. The pendulum

Let us now consider the example of the pendulum. The Hamiltonian reads

H =
1

2I
p2 − κ2I cos(φ). (34)

For low energy −κ2I < U < κ2I the motion is oscillatory. At large energy U > κ2I it

rotates in one of the two possible directions. The density of states ω(U) can be written

as

ω(U) =
d

dU

2
√
2I

h

∫

dφ
√

U + Iκ2 cosφ

=
4π

√
2

hκ
ω0(U/κ

2I). (35)

with ω0(u) given by

ω0(u) =
1

2π

∫ 1

0

dx
1√
x

1√
1− x

1
√

1− u+ (1 + u)x
if − 1 < u < 1,
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ω0(u) =
1

2π

∫

1

−1

dx
1√

1− x2

1√
x+ u

if 1 < u. (36)

See the Figure 1. Note that the integrals appearing in (36) are complete elliptic integrals

of the first kind. For simplicity we chose now units in which κ2I = 1 holds. We also fix

h = 4/κ.

Figure 2. Kinetic energy U
kin as a function of energy U

Using the analytic expressions (36), and the expression (6), it is straightforward to

make a plot of the temperature T as a function of the energy U . See the Figure 2. Note

that it is not a strictly increasing function. Due to the divergence of ω0(u) at u = 1 the

temperature T has to vanish at both u = −1 and u = +1. Hence it has a maximum

in between. As a consequence, the free energy F , which is the Legendre transform of

U(S),

F (T ) = U − TS (37)

is a multi-valued function, when calculated by substituting U(T ) in (37). See the Figure

3.

When a fast rotating pendulum slows down due to friction then its energy decreases

slowly. The average kinetic energy, which is the temperature 1

2
kBT , tends to zero when

the threshold Uc is approached. In the Figure 3, the continuous curve is followed. The

pendulum goes from a stable into a metastable rotational state. then it switches to

an unstable librating state, characterised by a negative heat capacity. Finally it goes

through the metastable and stable librational states. The first order phase transition

cannot take place because in a nearly closed system the pendulum cannot get rid of the

latent heat. Neither can it stay at the phase transition point because a coexistence of

the two phases cannot be realised.
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Figure 3. Free energy of the pendulum

9. The configurational free energy of the pendulum

For the example of the pendulum the number of degrees of freedom 3N in the expression

for the non-extensivity parameter q has to be replaced by 1, so that q = 3 results. This is

an anomalous value because 0 < q < 1 has been assumed in the main part of the paper.

See the Appendix for a discussion of the modifications needed to treat this situation.

It remains true that the configurational probability distribution f conf
U (φ) maximizes

the Rényi entropy with α = 2 − q = −1 within the set of all probability distributions

having the same average potential energy U conf . Next, using

1

T conf
≡ dSconf

dU conf
(38)

as the definition of the temperature T of the configurational subsystem, one can plot

the configurational free energy as a function of T . See the Figure 4.

One observes the same behaviour as in the Figure 3. The main difference is that in

the rotational phase the configurational free energy is a convex rather than a concave

function of the temperature T . This implies that the configurational entropy Sconf is a

decreasing function of T and that the heat capacity Cconf = T (dSconf/dT ) is negative.

This is not in contradiction with the physical intuition that the fluctuations in potential

energy decrease with increasing energy U . The instability of the configurational

subsystem in the rotational phase is more than compensated by the stability of the

kinetic subsystem, so that the free energy F (T ) of the total system is concave.
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Figure 4. Configurational free energy of the pendulum

10. Conclusions

In a previous paper [12] we have shown that the configurational probability distribution

f conf
U (q) of a real mono-atomic gas with N particles always belongs to the q-exponential

family, with q = 1− 2

3N−2
. In the same paper it was argued, based on one example, that

for the definition of the configurational temperature T the entropy function of Rényi is

better suited than that of Tsallis. Here we show in the Section 6 that the same result

holds for any real gas with a Hamiltonian of the usual form (9).

It is well-known that Rényi’s entropy function and that of Tsallis are related because

each of them is a monotone function of the other. Hence, from the point of view of the

maximum entropy principle the two entropy functions are equivalent. However, from

the point of view of the variational principle (this is, the statement that the free energy

is minimal in equilibrium) the two are not equivalent. This raises the need to distinguish

between them. The result of the Section 6 then suggests that from a thermodynamic

point of view Rényi’s entropy function is the preferred choice.

A further indication in the same direction comes from stability considerations.

In the literature of non-extensive thermostatistics one studies the notion of Lesche

stability [18, 19, 20]. Tsallis’ entropy function is Lesche-stable while Rényi’s is not. The

present paper focusses on thermodynamic stability, by which one usually understands

the positivity of the heat capacity.

A well-known property of the Boltzmann-Gibbs distribution is that it automatically

leads to a positive heat capacity and that instabilities such as phase transitions are only

possible in the thermodynamic limit. The entropy function which is maximised by

the Boltzmann-Gibbs distribution is that of Boltzmann-Gibbs-Shannon (BGS). The

Boltzmann-Gibbs distribution is known in statistics as the exponential family. Its
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generalisation, needed here, is the q-exponential family. Both Tsallis’ entropy function

and that of Rényi are maximised by members of the q-exponential family. However,

only Tsallis’ entropy function shares with the BGS entropy function the property that

the heat capacity is always positive — this has been proved in a very general context in

[13]. For this reason, one can say that the Tsallis’ entropy function is a stable entropy

function. We have shown in the present paper with the explicit example of the pendulum

that Rényi’s entropy function is not stable in the above sense.

The example of the pendulum was chosen because it exhibits two thermodynamic

phases. At low energy the pendulum librates around its position of minimal energy.

At high energy it rotates in one of the two possible directions. In an intermediate

energy range the time-averaged kinetic energy drops when the total energy increases.

If the kinetic energy is taken as a measure for the temperature then the pendulum is a

simple example of a system with negative heat capacity. Hence, it is not such a surprise

that, if we look for an instability, that we find it in this system. But this also means

that Rényi’s entropy function is able to describe the instability of the pendulum, while

Tsallis’ entropy function is not suited for this task. This is again an indication that

Rényi’s entropy function is an appropriate candidate for a statistical definition of the

thermodynamic entropy of small systems.

Appendix

The configurational probability distribution of the pendulum is given by

f conf
U (φ) =

a
√

I/2

hω(U)
√

U + Iκ2 cosφ
. (A.1)

It maximizes Rényi’s entropy function with α = −1. The maximal value equals

Sconf(U) =
1

2
kB ln

1

a

∫

dφ
1

f conf
U (φ)

=
1

2
kB ln

hω(U)

a2
√

I/2

∫

dφ
√

U + Iκ2 cosφ

=
1

2
kB ln

h2

Ia2
ω(U)Ω(U). (A.2)

Therefore the inverse of the configurational temperature is given by

1

T conf
=

dSconf

dU conf

= kB
ω(U)2 + ω′(U)Ω(U)

2ω(U)Ω(U)

dU

dU conf
. (A.3)

But note that

dU conf

dU
=

d

dU

(

U − Ω(U)

2ω(U)

)

=
ω′(U)Ω(U) + ω2(U)

2ω2(U)
. (A.4)
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Hence (A.3) becomes

1

T conf
= kB

ω(U)

Ω(U)
. (A.5)

This shows that the temperature of the configurational subsystem coincides with that

of the kinetic subsystem — see (6).

It is now straightforward to make the parametric plot of Figure 4 by plotting T as

a function of U on the horizontal axis, and F = U − TS on the vertical axis.
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[22] A. Schlüter, Zur Statistik klassischer Gesamtheiten, Z. Naturforschg. 3a 350–360 (1948).

[23] E. M. Pearson, T. Halicioglu, W. A. Tiller, Laplace-transform technique for deriving



On the thermodynamics of classical micro-canonical systems 13

thermodynamic equations from the classical microcanonical ensemble, Phys. Rev. A 32, 3030–

3039 (1985).

[24] R. B. Shirts, S. R. Burt, A. M. Johnson, Periodic boundary condition induced breakdown of

the equipartition principle and other kinetic eects of nite sample size in classical hard-sphere

molecular dynamics simulation, J. Chem. Phys. 125, 164102 (2006).

[25] D. A. McQuarrie, Statistical Mechanics (University Science Books, California, 2000)


	1 Introduction
	2 Micro-canonical entropies
	3 The configurational subsystem
	4 The variational principle
	5 Rényi's entropy function
	6 Configurational thermodynamics
	7 The ideal gas
	8 The pendulum
	9 The configurational free energy of the pendulum
	10 Conclusions

