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A generic quantum channel can be represented in terms of a unitary interaction between the information-
carrying system and a noisy environment. Here, the minimal number of quantum Gaussian environmental
modes required to provide a unitary dilation of a multi-modebosonic Gaussian channel is analyzed both for
mixed and pure environment corresponding to the Stinespring representation. In particular, for the case of pure
environment we compute this quantity and present an explicit unitary dilation for arbitrary bosonic Gaussian
channel. These results considerably simplify the characterization of these continuous-variable maps and can be
applied to address some open issues concerning the transmission of information encoded in bosonic systems.
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I. INTRODUCTION

Bosonic Gaussian channels (BGCs) are an important spe-
cial class of transformations that act on a collection of bosonic
modes preserving the Gaussian character of any Gaussian in-
put quantum state [1]. The set of BGCs is singled out from
a theoretical perspective [2], but most significantly also from
the perspective of practical implementations, since it emerges
naturally as the fundamental noise model in several experi-
mental contexts. In the vast majority of physical implemen-
tations of quantum transmission lines quantum information
is almost invariably sent using photons — through optical
fibers [3], in free space [4], or via superconducting transmis-
sion lines [5]) — physical situations for which BGCs provide
extraordinarily good models. What is more, BGCs play a ma-
jor role in characterizing the open quantum system dynamics
of various setups which use collective degrees of freedom to
store and manipulate quantum information, including systems
from cavity QED, nano-mechanical harmonic oscillators [6],
or clouds of cold atomic gases [7].

Unsurprisingly, therefore, the study of Gaussian or quasi-
free quantum channels has a long tradition [1, 2, 8]. Intense
recent research has mostly been focusing on properties of
BGCs with respect to their ability to preserve and transmit
quantum information (for a review see, e.g., Ref. [9] and ref-
erences therein). Recent contributions include the computa-
tion of the quantum capacity [10] of a large subset of single
mode BGCs [11], a characterization in terms of the notion of
degradability — introduced in Ref. [12] — that allows one to
identify a zero-quantum capacity subset of BGCs, and a nec-
essary and sufficient condition for BGCs being entanglement-
breaking [13]. A general unitary dilation theorem for BGCs
was proven in Ref. [14]: It shows that each BGCΦ acting on a
systemA formed byn input bosonic modes admits a unitary
dilation in terms of a bosonic environmentE composed of
ℓ 6 2n modes, the initial statêρE of which is Gaussian, with
a Gaussian unitary couplinĝUA,E corresponding to a Hamil-
tonian that is quadratic in the canonical coordinates,

Φ(ρ̂) = TrE [ÛA,E(ρ̂⊗ ρ̂E)Û
†
A,E] . (1)

Here,ρ̂ is the input quantum state of the systemA and TrE de-

notes the partial trace over the degrees of freedom associated
with E.

The fact that the number of environmental modesℓ enter-
ing in the unitary dilation can be bounded from above by2n
may be viewed as the continuous-variable counterpart of the
upper bound on the minimal dilation set by the Stinespring
theorem [16] for finite dimensional quantum channels: It in-
dicates that any quantum channel can be described by using
an environment which is no more than twice the size of the
input system. An important open question is the characteriza-
tion of the minimal value ofℓ(Φ) that is needed to represent
a given BGC, specifically the minimal valueℓ(Φ)

pure in case of a
pure unitary dilation. Similarly to the quantum capacity, this
quantity may be used to induce a partial ordering in the set of
BGCs since, as a general rule of thumb, one expects that the
larger it is, the noisier and the less efficient in preservingthe
initial state will be the associated channel. Furthermore,an
exact estimation of such number will allow one to consider-
ably simplify the degradability analysis of BGCs by minimiz-
ing the number of degrees of freedom of the corresponding
complementary channel.

The main result of this work is to explicitly identify this
minimal valueℓ(Φ)

pure — so the minimum number of environ-
mental modes initially in a pure Gaussian stateρ̂E in a unitary
dilation (1) (related to the Stinespring dilation [17]) — and to
construct the corresponding dilation. To simplify terminol-
ogy, in this case we speak of Eq. (1) as of the Stinespring rep-
resentation. This is accomplished by first determining a lower
bound forℓ(Φ)

pure in terms of the minimum numberq(Φ)
min of ancil-

lary modes which are needed to construct a Gaussian purifica-
tion of a (generalized) Choi-Jamiolkowski (CJ) Gaussian state
of Φ. This is motivated by the fact that any Gaussian Stine-
spring representation (1) naturally induces a Gaussian purifi-
cation of the CJ states of the channel. Then, we show that this
lower bound can be exactly achieved by explicitly construct-
ing a Gaussian Stinespring dilation withq(Φ)

min modes. In the
second part of the paper we finally address the case of unitary
dilations (1) in which the environment stateρE is not neces-
sarily pure, and provide an estimation for the minimalℓwhich
improves the one presented in Ref. [14].
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The paper is organized as follows: In Sec. II we recall some
basic definitions and set the notation. The notion of a gener-
alized CJ state of a BGC and the lower boundq(Φ)

min for ℓ(Φ)
pure

are presented in Sec. III. Then, in Sec. IV, we present an
explicit recipe to construct such minimal dilation. The case
of dilations involving not necessarily pure environments is fi-
nally addressed in Sec. V, while conclusions are presented in
Sec. VI. This work includes also some technical appendixes.

II. BOSONIC GAUSSIAN CHANNELS

Consider a systemA composed ofn bosonic quantum me-
chanical modes described by the canonical coordinatesR̂ :=

(Q̂1, · · · , Q̂n; P̂1, · · · , P̂n) and by theWeyl (or displacement)
operators

V̂ (z) := eiR̂z, (2)

with z := (x1, · · · , xn, y1, · · · , yn)
T ∈ R2 being a column

vector [1]. To simplify notation, we choose units in which
~ = 1. A BGCΦ acting onA is completely determined by
assigning a real vectorv ∈ R2n and two2n × 2n real ma-
tricesY,X ∈ Gl(2n,R) satisfying the complete positivity
condition

Y > iΣ with Σ := σ2n −XTσ2nX , (3)

whereσ2n is the matrix defining thesymplectic formcapturing
the canonical commutation relations ofn modes, i.e.,

σ2n :=

[

0 11n

−11n 0

]

, (4)

with 11n indicating then× n identity matrix. More precisely,
the mapΦ is defined as the linear mapping which, for allz
complex, induces the following transformation

φ(ρ̂; z) 7→ φ(Φ(ρ̂); z) := φ(ρ̂;Xz)e−
1
4 z

TY z+ivT z ,

where

φ(ρ̂; z) := Tr[ ρ̂ V̂ (z) ] , (5)

is the symmetrically orderedcharacteristic functionof the
stateρ̂. A state is calledGaussianif its characteristic func-
tion is a Gaussian function in phase space [1, 15]. AGaus-
sian mapis a completely positive map that maps all unknown
Gaussian states onto Gaussian states and aGaussian unitary
a unitary generated by a quadratic polynomial in the canoni-
cal coordinates, reflected by asymplectic transformationfrom
Sp(2n,R) on the level of canonical coordinates.

In the construction of the Gaussian unitary representa-
tions (1) ofΦ, the vectorv plays a marginal role since it can
be eliminated via a unitary rotation acting on the output state,
see, e.g., Ref. [14]. In contrast, the matrices in Eq. (3) are
of fundamental importance — in particular, we shall see that
the value ofℓ(Φ)

pure, and of our estimation ofℓ(Φ)
mix , depend upon

the ranks ofY , Σ, andY − iΣ. It is thus worth anticipating

some relevant facts that concern these matrices. First of all we
notice that the inequality (3) implies the following relations

ker[Σ] ∩ ker[Y − iΣ] ⊆ ker[Y ] ⊆ ker[Y − iΣ] , (6)

ker[Y ] ⊆ ker[Σ] , (7)

where throughout the paper, given a generic (possibly real)
d × d matrix M , we denote its kernel (null subspace) with
ker[M ] :=

{

w ∈ Cd :Mw = 0
}

[20]. The first inclusion
in Eq. (6) follows from the definition, the remaining one and
the inclusion of Eq. (7) are derived from the observation that
w†Y w = 0 ⇒ w†(iΣ)w = 0 ⇒ w†(Y − iΣ)w = 0 ⇒
(Y − iΣ)w = 0 ⇒ Σw = 0. Putting these identities together
we also find that

ker[Y ] = ker[Σ] ∩ ker[Y − iΣ]. (8)

Other useful properties are the identities

2 rank[Y − iΣ] = rank[Y ] + rank[Y − ΣY ⊖1 ΣT ] , (9)

and the inequalities

rank[Y ] > rank[Σ] > rank[Y ]− rank[Y − ΣY ⊖1 ΣT ] > 0 ,
(10)

where rank[M ] stands for the rank of the matrixM (i.e. the
dimension over the complex field of the complement toCd of
the matrix ker[M ]), andY ⊖1 is the Moore-Penrose (MP) in-
verse ofY [21]. The explicit proof of these relations is rather
technical and thus we postpone it to Appendix A. Here we
rather point out that the first inequality of Eq. (10) is a conse-
quence of the fact that ker[Y ] is included in ker[Σ], while the
last inequality is an immediate consequence of the fact that
ΣY ⊖1 ΣT is positive semi-definite.

In Ref. [14], an upper bound forℓ(Φ)
pure was set by showing

that one can construct a Stinespring dilation ofΦ that involves
ℓ = 2n− r′/2 environmental modes with

r′ := rank[Y ]− rank[Y − ΣY ⊖1ΣT ]. (11)

In what follows we will strengthen this result by showing that
the minimum number of modes necessary to build a Gaussian
Stinespring unitary dilation forΦ is given by

ℓ(Φ)
pure= rank[Y ]− r′/2 = rank[Y − iΣ] , (12)

where we used Eq. (9) when formulating the second identity.
SinceY is a2n× 2n matrix, we have2n− k > 0, and so the
optimal bound we prove here leads to a significant improve-
ment compared to the results of Ref. [14]. In particular, for
those BGCs which represent unitary transformations of then
input modes (i.e.,Y = 0 andX ∈ Sp(2n,R) symplectic [1])

the optimal bound (12) yieldsℓ(Φ)
pure = 0 — no environment is

required to construct the dilation — while Ref. [14] had this
value equal to2n. To prove Eq. (12) we shall first show that
the quantity rank[Y −iΣ] provides a lower bound forℓ(Φ)

pure(see
Sec. III) and then construct an explicit Stinespring dilation (1)
for Φ which attains such bound (see Sec. IV).
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III. LOWER BOUND ON ℓ
(Φ)
pure VIA GENERALIZED

CJ-STATES OF BGCS

In this section we review the notion of generalized Choi-
Jamiolkowski (CJ) state for a multi-mode BGC (see also
Ref. [18] and compare Refs. [19]), and use it to show that the
term on the rhs. of Eq. (12) provides a lower bound forℓ

(Φ)
pure.

Consider a state vector|ΨΛ̂〉A,B providing a purification of a
quantum statêΛ =

∑∞
j=1 λj(|j〉〈j|)A of the system labeled

A which has full rank (e.g., a Gibbs state ofnmodes). That is
to say,

|ΨΛ̂〉A,B =

∞
∑

j=0

√

λj |j〉A ⊗ |j〉B

= (Λ̂1/2 ⊗ 11)
∞
∑

j=0

|j〉A ⊗ |j〉B ,

withA indicating the input space of the channelΦ,B being an
ancillary system isomorphic toA, and{|j〉 : j = 0, · · · ,∞}
denoting an orthonormal complete basis. A generalized CJ
state of the channelΦ is now obtained as

ρ̂A,B(Φ) = (Φ⊗ I) (|ΨΛ̂〉〈ΨΛ̂|)A,B , (13)

with I being the identity map. The statêρA,B(Φ) provides a
complete representation of the channel via the inversion for-
mula,

Φ(ρ̂) = TrB [(11A ⊗ Λ̂
−1/2
B ρ̂TBΛ̂

−1/2
B )ρ̂A,B(Φ)] , (14)

whereρ̂B andΛ̂B are copies of the stateŝρ andΛ̂ onB, re-
spectively, whileρ̂TB is its transpose with respect to the or-
thonormal basis introduced above. We will suppress an index
labeling both the chosen basis and the reference state.

For finite-dimensional system̂ρA,B(Φ) provides a standard
CJ state representation whenΛ̂ is taken to be the maximally
mixed state (compare Refs. [19]). In the infinite-dimensional
case such limit in general is well defined only in the context
of positive forms, see Ref. [18]. However, Eq. (14) shows
that we do not need to approach such a limit in order to build
a proper representation of the channel: It is defined for any
state diagonal in the distinguished basis of full rank. Further-
more, it is easy to verify that it is always possible to work with
CJ stateŝρA,B(Φ) which are Gaussian: To do so simply take
(|ΨΛ̂〉〈ΨΛ̂|)A,B to be Gaussian and use the fact that the Gaus-
sian mapΦ ⊗ I maps Gaussian states into Gaussian states.
In the following we choose to take such Gaussian reference
states. In particular, we will assume(|ΨΛ̂〉〈ΨΛ̂|)A,B to be a
Gaussian purification of a multi-mode Gibbs (thermal) state
of quantum mechanical oscillators.

An important observation concerning the generalized CJ
representation is that, given a Stinespring representation of Φ
involving an environmental systemE, one can construct a pu-
rification of ρ̂A,B(Φ) that usesE as ancillary system. Indeed,
assuming that̂UA,E and(|0〉〈0|)E give rise to a Stinespring
representation forΦ, we have that the pure state with state
vector

|χ〉A,B,E = ÛA,E|ΨΛ̂〉A,B ⊗ |0〉E (15)

is a purification ofρ̂A,B(Φ). Furthermore, ifρ̂A,B(Φ) is
Gaussian andE represents a collection ofℓ environmental
bosonic modes with|0〉E being a Gaussian state vector and
UA,E being a Gaussian unitary, it follows that also|χ〉A,B,E

will define a Gaussian purification of̂ρA,B(Φ). Putting these
facts together it follows that a lower bound for the minimal
numberℓ(Φ)

pure of environmental modes that are needed to build
a Gaussian Stinespring representation ofΦ is provided by the
minimal numberq(Φ)

min of Gaussian ancillary modes that are re-
quired to purify a generalized Gaussian CJ stateρ̂A,B(Φ) of
Φ, i.e., we have that

ℓ(Φ)
pure> q

(Φ)
min . (16)

To computeq(Φ)
min we first make a specific choice for|ΨΛ̂〉A,B.

In particular, sinceA is composed byn bosonic modes, we
can take|ΨΛ̂〉A,B to be a product ofn identical two-mode
state vectors of the form

|ΨΛ̂〉A,B =

n
⊗

i=1

|ψ〉Ai,Bi
(17)

where|ψ〉AiBi
reflects a purification of a Gibbs state of the

i-th modeAi of A built by coupling it with the correspond-
ing ancillary systemBi: This is nothing but what is usually
referred to as atwo-mode squeezed state[15]. The resulting
state is of course Gaussian and it is fully characterized by its
covariance matrix. To express it in a compact form note that
the kernel of the natural symplectic form for the2n modes of
A,B is given by

σA,B :=

[

σ2n 0

0 σ2n

]

, (18)

where the upper-left and lower-right block matrices represent
the symplectic forms of thenmodes ofA andB, respectively,
defined as in Eq. (4). With this choice the covariance matrix
γ of (|ΨΛ̂〉A,B〈ΨΛ̂|) is given by the followingGl(4n,R) ma-
trix,

γ =

[

α δ

δT β

]

, (19)

whereα, β ∈ Gl(2n,R) are the covariance matrices of theA
andB modes, respectively, withδ, δT ∈ Gl(2n,R) being the
cross-correlation terms. Explicitly, they are given by

α =

[

θ11n 0

0 θ11n

]

= β , δ =

[

0 f(θ)11n
f(θ)11n 0

]

= δT ,

with θ > 1 and

f(θ) := −(θ2 − 1)1/2. (20)

The parameterθ determines thetemperatureof the Gibbs
states we used to build the vector|ΨΛ̂〉A,B, or equivalently,
thetwo-mode squeezing parameterof the purification. In par-
ticular, the caseθ = 1 corresponds to the limit in which all
the modes ofA andB are prepared into the vacuum state: In
this case the statêΛ no longer has maximum support and thus
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does not provide a proper starting point to build a CJ state. For
θ → ∞, in contrast, the state|ΨΛ̂〉A,B approaches a purifica-
tion of a maximally mixed state for the modes (for details see
Ref. [18]). Equivalently, it corresponds to the limit of large
squeezing in the two-mode squeezed state of the purification.
Notice also that by construction, for all values ofθ > 1, γ
satisfies the conditionγ > iσA,B, as it indeed represents a
physical pure state.

The generalized CJ statêρA,B(Φ) for a Gaussian channel
characterized by matricesY andX as in Eq. (3) is now com-
puted as in Eq. (13). The resulting state is still Gaussian and
has the covariance matrixγ′ ∈ Gl(4n,R) given by

γ′ =

[

XTαX + Y XT δ

δTX β

]

=

[

θXTX + Y f(θ)XT σx

f(θ)σxX θ112n

]

,

where

σx :=

[

0 11n

11n 0

]

. (21)

In general it will be a mixed state and we are interested in the
minimum numberq(Φ)

min of ancillary modesq that is needed to
construct a Gaussian purification of it. As discussed in Ap-
pendix B, this is given by the quantity

q
(Φ)
min = rank[γ′ − iσA,B]− 2n

= 2n− dim ker[γ′ − iσA,B] , (22)

(note that in this caseγ′, σA,B ∈ Gl(4n × 4n,R)). In what
follows we will compute this quantity, showing that it coin-
cides with the right hand side of Eq. (12). To do so, we first
notice that the dimension of the kernel ofγ′ − iσA,B can be
expressed as

dim ker[γ′−iσA,B] = dim ker

[

θXTX + Y − iσ f(θ)XT

f(θ)X θ112n + iσ

]

,

(23)
where the second identity was obtained by rotatingγ′−iσA,B

with the transformation

T :=

[

112n 0

0 σx

]

. (24)

As for any positive semi-definite matrixM , the kernel in
Eq. (23) can be computed as the set of vectorsw ∈ C

d

which satisfy the conditionw†Mw = 0 [20]. Writing w =
(wA, wB), we arrive at the condition

θ
(

w∗
AX

TXwA − w∗
AX

TwB − w∗
BXwA + w∗

BwB

)

+ w∗
A (Y − iσ)wA + w∗

BiσwB

+ O(1/θ)
(

w∗
AX

TwB + w∗
BXwA

)

= 0, (25)

where in the first and second line we have collected all terms
which are linear and constant inθ, respectively. Forθ > 1
sufficiently large this requires the following conditions,

w∗
AX

TXwA − w∗
AX

TwB − w∗
BXwA

+w∗
BwB = 0 , (26)

w∗
A (Y − iσ)wA + w∗

BiσwB = 0 . (27)

The first equation meansXwA = wB, whereas the second
readsw∗

A (Y − iσ)wA + w∗
AiX

TσXwA = 0, that is

w∗
A[Y − iΣ]wA = 0. (28)

There is one-to-one correspondence between solutionswA of
Eq. (28) andw = (wA, XwA) of Eq. (25), hence

dim ker[γ′ − iσA,B] = dim ker[Y − iΣ].

Replacing this into Eq. (22) we finally get

q
(Φ)
min = 2n− dim ker[Y − iΣ] = rank[Y − iΣ] , (29)

where in the last identity we used the fact thatY − iΣ is a
2n× 2n matrix.

IV. OPTIMAL BOUND AND EXPLICIT CONSTRUCTION

In this section we explicitly construct a Gaussian unitary
dilation with q(Φ)

min = rank[Y − iΣ] environmental modes. In
this way, we demonstrate that the lower bound derived in the
previous section is tight, concluding the derivation of Eq.(12).
To do so, let us assume that the number of modes which define
the statêρE in Eq. (1) areq(Φ)

min. Without loss of generality, we
write the kernel of the form corresponding to the commutation
relations of ourn+ q

(Φ)
min modes in block structure

σ := σ2n ⊕ σE

2q
(Φ)
min

=

[

σ2n 0

0 σE

2q
(Φ)
min

]

, (30)

whereσ2n andσE

2q
(Φ)
min

are2n × 2n and2q(Φ)
min × 2q

(Φ)
min ma-

trices associated with the system and environment, respec-
tively. Whileσ2n is defined as in Eq. (3), forσE

2q
(Φ)
min

we do not

make any assumption at this point, leaving open the possibil-
ity of defining it later on. Accordingly, the Gaussian unitary
ÛA,E of Eq. (1) will be determined by a symplectic matrix

S ∈ Sp(2(n+ q
(Φ)
min),R) of block form

S :=

[

s1 s2

s3 s4

]

(31)

satisfying the conditionSσST = σ. In the above expressions,
s1 ands4 are2n×2n and2q(Φ)

min×2q
(Φ)
min real square matrices,

while s2 andsT3 are2n× 2q
(Φ)
min real rectangular matrices. As

noticed in Ref. [14], the possibility of realizing the unitary
dilation (1) can now be proven by simply taking

s1 = XT (32)

and findings2 and aq(Φ)
min-mode covariance matrix [1]γE >

iσE

2q
(Φ)
min

satisfying the conditions

s2 σ
E

2q
(Φ)
min

sT2 = Σ , s2 γE s
T
2 = Y , (33)

with γE being the covariance matrix of the Gaussian stateρ̂E
of Eq. (1).
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First, let us consider the case in whichq(Φ)
min is an even num-

ber. To identify valids2 andγE which solve Eq. (33), it is
useful to transformY andΣ as in Eq. (A7) and (A8) of Ap-
pendix A (takeA = T , B = Σ, m = 2n, a = k, and
b = r = rank[Σ]). Actually, applying an extra orthogonal
matrix,Y ′ is still like in (A7), whileΣ′ can be written as

Σ′ := CΣCT =













0
µ 0

0 0
0

−µ 0

0 0
0 0

0 0 0













} r/2

} (q
(Φ)
min − r)/2

} r/2

} (q
(Φ)
min − r)/2

} 2n− q
(Φ)
min,

(34)

whereC ∈ Gl(2n,R) andµ = diag(µ1, · · · , µr/2) is the
r/2 × r/2 diagonal matrix formed by the strictly positive
eigenvalues of|Σ′| (satisfying11r/2 > µ as in Appendix A).
Introducing thens′2 := C s2 the conditions of Eqs. (33) can
be equivalently written as

s′2 σ
E

2q
(Φ)
min

(s′2)
T = Σ′ , s′2 γE (s′2)

T = Y ′ . (35)

The explicit expressions for correspondingγE ands2 are ob-
tained in the following way. We take the environmental sym-
plectic form to be

σE

2q
(Φ)
min

= σk ⊕ σk−r′ (36)

where we have setk := rank[Y ]. A unitary dilation with
q
(Φ)
min = k − r′/2 environmental modes in a pure state is ob-

tained by choosing the2n× 2q
(Φ)
min rectangular matrixs′2 as

s′2 =

[

K̃−1 A

0 0

]

, (37)

with K̃ being thek × k symmetric matrix defined by

K̃ :=









µ−1/2 0

0 11(k−r)/2

0

0
µ−1/2 0

0 11(k−r)/2









(38)

andA being a rectangular matrixk × (k − r′) of the form

A :=

















0

0 0

0 0

0 11(k−r)/2

0 0

0 0

0 11(k−r)/2

0

















} r′/2

} (r − r′)/2

} k/2− r/2

} r′/2

} (r − r′)/2

} k/2− r/2.

(39)

By direct substitution one can easily verify that the first con-
dition of Eq. (35) is indeed satisfied. Vice versa, expressing
the(2k − r′)× (2k − r′) covariance matrix of̂ρE as

γE =

[

α δ

δT β

]

, (40)

the second condition of Eq. (35) yields the following equation

α+AδT + δ AT +Aβ AT = K̃2 . (41)

A solution can be easily derived by taking thek × k blockα
as

α =









µ−1 0

0 5
4
11(k−r)/2

0

0
µ−1 0

0 5
4
11(k−r)/2









(42)

while β andδ are, respectively,(k − r′) × (k − r′) andk ×
(k − r′) real matrices defined as follows:

β :=









µ−1
o 0

0 5
4
11(k−r)/2

0

0
µ−1
o 0

0 5
4
11(k−r)/2









, (43)

δ :=

















0

0 0

f(µ−1
o ) 0

0 − 3
4
11(k−r)/2

0 0

f(µ−1
o ) 0

0 − 3
4
11(k−r)/2

0

















,(44)

with µo is the(r− r′)/2× (r− r′)/2 diagonal matrix formed
by the elements ofµ which are strictly smaller than1, and
with f(θ) defined as in Sec. III. Notice that the parameterr′

(defined above) corresponds also to the number of eigenvalues
having modulus1 of the matrixΣ′, i.e.,

r′ = 2n− rank[112n − Σ′(Σ′)T ], (45)

as can be easily shown by using Eq. (A18) withA = Y and
B = Σ. With the choice we made on the commutation matrix
σE

2q
(Φ)
min

, the matrixα is ak × k covariance matrix for a set of

independentk/2 bosonic modes, the matrixβ is a(k − r′) ×
(k− r′) covariance matrix for a set of independent(k− r′)/2
modes, and the matricesδ andδT represent cross-correlation
terms among such sets. For all diagonal matricesµ compatible
with the constraint

11r/2 > µ , (46)

the solutionγE satisfies also the uncertainty relationγE >

iσE

2q
(Φ)
min

. Furthermore, since it has

Det[γE ] = 1, (47)

this is also a minimal uncertainty state, i.e., a pure Gaussian
state ofq(Φ)

min modes [1]. By a close inspection of the covari-
ance matrixγE derived above, one realizes that it is composed
of three independent pieces. The first one describes a collec-
tion of r′/2 vacuum states. The second one, in turn, describes
(r − r′)/2 thermal states characterized by the matricesµ−1

o

which have been purified by adding further(r− r′)/2 modes.
The third one, finally, reflects a collection ofk− r modes pre-
pared in a pure state formed byk/2 − r/2 independent pairs
of modes which are entangled. Let us point out again that
this covariance matrix is indeed formed byq(Φ)

min modes. The

whole derivation can be trivially extended forq(Φ)
min odd, by

adding to the previous covariance matrix a single mode in the
vacuum state.
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V. DILATIONS WITH MIXED ENVIRONMENTS

In Ref. [14] it was shown that for arbitrary (not necessar-
ily Stinespring) dilations one can consider an environmentof
only ℓ = 2n− r/2 modes — observe thatr is larger than the
quantityr′ introduced in Sec. II because of Eq. (10). Here,
we will strengthen this bound by showing that it is possible to
construct a unitary dilation using just

ℓ
(Φ)
mix = k − r/2 = rank[Y ]− rank[Σ]/2 , (48)

environmental modes which are prepared in a Gaussian, but
not necessarily pure, state. Note that the term on the rhs. is
nonnegative due to the first of the inequalities in Eq. (10), and
that it is explicitly smaller than the one provided in Ref. [14]
due to the fact thatY is a2n× 2nmatrix. It is worth stressing
however that differently from the pure dilation case, we are
not able to determine whether Eq. (48) is indeed the optimal
bound (we believe it is).

For the sake of simplicity, again we will treat explicitly only
the case ofk even (the analysis however can be easily ex-
tended to the odd case). Because of the structure ofA given in
Eq. (39), the(k − r) environmental modes prepared in a pure
state (see the end of Sec. IV) enter explicitly in the identity in
Eq. (41): consequently, if we wish to satisfy such relation,we
cannot remove any of these modes without changingA. Vice
versa we can drop some of the auxiliary modes which were
introduced only for purifying the environmental state. Since
they are(r− r′)/2, we can reduce the number of modes from

ℓ
(Φ)
pure to

ℓ
(Φ)
mix = ℓ(Φ)

pure− (r − r′)/2 = k − r/2. (49)

To see this explicitly, take

σE

2ℓ
(Φ)
mix

= σk ⊕ σk−r . (50)

The matrixs′2 can be still expressed as above but withA being
a rectangular matrixk × (k − r) of the form

A :=









0
0

11(k−r)/2

0

11(k−r)/2

0









. (51)

Similarly, β andδ entering in the definition ofγE become,
respectively, the following(k − r)× (k − r) andk× (k − r)

real matrices:

β :=

[

5
4
11(k−r)/2 0

0 5
4
11(k−r)/2

]

(52)

and

δ :=









0 0

0 − 3
4
11(k−r)/2

0 0

− 3
4
11(k−r)/2 0









. (53)

This covariance matrix now consists of two independent parts:
the first one describes a collection ofr/2 thermal states de-
scribed by the matricesµ−1. The second one reflects a col-
lection of k − r modes prepared in a pure state formed by
k/2−r/2 independent couples of modes which are entangled.

VI. CONCLUSIONS

We have analytically computed the minimum number of en-
vironmental modes necessary for a Gaussian unitary dilation
of a generic multi-mode bosonic Gaussian channel. Moreover,
we have also explicitly demonstrated how to construct such
a Gaussian dilation in terms of the covariance matrix of the
noisy environment and the symplectic transformation associ-
ated to the unitary system-environment interaction. Thesere-
sults may allow one to introduce a classification of the bosonic
Gaussian channels in terms of the corresponding noise in-
duced by these maps, which is somehow related to the mini-
mum number of environemntal modes to represent such chan-
nels. Moreover, constructing a dilation with a minimal num-
ber of auxiliary modes may be useful to minimize the size of
the corresponding complementary channel and then to sim-
plify the degradability analysis, which is extremely useful in
the calculation of the quantum capacity of these continuous-
variable quantum maps.
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Appendix A: An important identity

In this Appendix, we prove the important identity (9) and
the inequality (10), by the following more general lemma.

Lemma 1 LetA,B ∈ Gl(m,R) bem×m real matrices with
B being skew-symmetric, which satisfy the inequality

A > iB . (A1)

Then givenA⊖1 the MP inverse [21] ofA, the following iden-
tity holds

2 rank[A− iB] = rank[A] + rank[A−BA⊖1 BT ] .(A2)

Furthermore the following inequality applies

rank[B] > rank[A]− rank[A−BA⊖1BT ] . (A3)

Proof: Let us start by reviewing some general properties of
A andB. Because of Eq. (A1) the matrixA must be positive
semi-definite, and its support must contain the support ofB.
Consequently indicating witha = rank[A] andb = rank[B]
the ranks of the two matrices, we must havea > bwith b even.

Furthermore, definingΠ ∈ Gl(m,R) to be the projector on
the support ofA, it will commute withA andB and hence
satisfy the following identity

Π A = A Π = A , Π B = B Π = B . (A4)

Consider then the invertible matrix

Ā := A+ (11m −Π) . (A5)

The MP inverse [22] ofA is defined by

A⊖1 := ΠĀ−1Π . (A6)

To prove the validity of Eq. (A2) we note that it is possible
to identify a congruent transformationA 7→ A′ = CACT ,
B 7→ B′ = CBCT , with C ∈ Gl(m,R) invertible such that,

A′ =

[

11a 0

0 0

]

} a

}m− a ,
(A7)

and

B′ =









0 µ

−µ 0
0

0 0

0

0 0









} b/2

} b/2

} a− b

}m− a ,

, (A8)

with µ = diag(µ1, µ2, · · · , µb/2) being theb/2 × b/2 diago-
nal matrix formed by the strictly positive eigenvalues of|B′|
(by construction they satisfy1 > µj > 0). The matrixC can
be explicitly constructed as follows. First we identify theor-
thogonal matrixO ∈ Gl(m,R) which diagonalizesA andΠ
puts them in the following block forms:

OAOT =

[

A′′ 0

0 0

]

} a

}m− a
, (A9)

O Π OT =

[

11a 0

0 0

]

} a

}m − a
, (A10)

with A′′ ∈ Gl(a,R) being aa × a positive definite diag-
onal matrix. Then we construct the invertible matrixK ∈
Gl(m,R) defined as

K =

[

A′′−1/2 0

0 11m−a

]

} a

}m− a
, (A11)

(notice that the matrixA′′−1/2 ∈ Gl(a,R) is well defined
sinceA′′ ∈ Gl(a,R) is invertible). Finally, we takeO′ ∈
Gl(a,R) to be an orthogonala × a matrix and defineC as
follows

C =

[

O′ 0

0 11m−a

]

KO =

[

O′A′′−1/2 0

0 11m−a

]

O .(A12)

By construction we have that for all the choices ofO′ the
resulting matrix is invertible and Eq. (A7) is satisfied. Vice
versa, Eq. (A8) can be satisfied by noticing that, since the sup-
port ofB is included into the support ofA, we must have

KO B OTKT =

[

B′′ 0

0 0

]

} a

}m − a
, (A13)

http://arxiv.org/abs/quant-ph/0505151
http://arxiv.org/abs/0802.0235
http://arxiv.org/abs/1004.0196
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with B′′ ∈ Gl(a,R) skew-symmetric and having the same
rank asB. By using a theorem from linear algebra one can
then find an orthhogonalO′ ∈ Gl(a,R) such that

O′ B′′ O′T =





0 µ

−µ 0
0

0 0



 , (A14)

with µ being a positive diagonal matrix of dimension equal to
the rank ofB′′ (the elements±iµj are its not null eigenval-
ues). Using such anO′ in order to buildC as in Eq. (A12) we
can then satisfy Eq. (A8).

Now we notice that, since any congruent transformation
preserves the rank of a matrix, the following identity holds:

rank[A− iB] = rank[C(A − iB)CT ]

= rank









11b/2 −iµ

iµ 11b/2

0

0 11a−b

0

0 0









= a−#1(µ) ,

where#1(µ) counts the number of eigenvalues of the matrix
µwhich are equal to1. The last identity follows from counting
the non-zero eigenvalue of the matrix on the left-hand-sideof
the second line. This can be easily done by observing that its
spectrum containsm − a explicit zeros (these are the terms
in the zero block diagonal term),a − b ones (these are the
ones on the diagonals of the first block) and1± µj with µj ∈
[1, 0] being the eigenvalues ofµ. Consequently, the non-zero
eigenvalues are obtained by subtracting fromk (rank of the
first block) the number#1(µ) of eigenvalues ofµ which are
equal to1. To compute the latter quantity we note that

B′B′T =









µ2 0

0 µ2
0

0 0

0

0 0









} b

} b

} a− b

}m− a ,

, (A15)

which yields

rank[11m −B′B′T ] = m− 2 #1(µ) . (A16)

Using the fact thatC is invertible, one has

rank[11m −B′B′T ] = rank[11m − CBCTCBTCT ]

= rank[C−1C−T −BCTCBT ] .

SinceO′ andO are orthogonal, we notice thatC−1C−T is
composed of two terms that span orthogonal supports. Specif-
ically we can rewrite it as

C−1C−T = OTKO = OT

[

A′′ 0

0 11m−a

]

O

= A+OT

[

0 0

0 11m−a

]

O = A+ (11m −Π) = Ā ,

where Eqs. (A9) and (A11) have been used. Similarly,
BCTCBT is only supported on the support ofA. Indeed,
we have

BCTCBT = (Π B Π) [C−1C−T ]−1 (Π BT Π)

= (Π B Π) Ā−1 (Π BT Π) = (Π B Π2) Ā−1 (Π2 BT Π)

= (Π B Π)(Π Ā−1 Π)(Π BT Π)

= (Π B Π)A⊖1 (Π BT Π) = B A⊖1BT . (A17)

Using these identities, we can then rewrite Eq. (A17) as

rank[11m −B′B′T ] = rank[Ā−BA⊖1 BT ]

= rank[11m −Π] + rank[A−BA⊖1BT ]

= m− a+ rank[A−BA⊖1 BT ] . (A18)

Thanks to Eq. (A16) the above identity finally yields

#1(µ) =
rank[A]− rank[A−BA⊖1 BT ]

2
, (A19)

which gives Eq. (A2) when inserted into Eq. (A16). The in-
equality (A3) can finally be proven by noticing that because
of the invertibility of C, one has rank[B] = rank[B′] = b
which, by construction, is larger than2#1(µ). The result then
follows simply by applying Eq. (A19).�

Appendix B: Gaussian purifications

Here, we emphasize the minimal number of ancillary
modes which are necessary to construct a Gaussian purifica-
tion (i.e., a purification which is joint pure Gaussian stateof
the system and of the ancillary modes) of a generic multi-
mode Gaussian statêρ. Of course, the Gaussian requirement
on the purification is fundamental for our purposes: Since any
number of modes can always be embedded in a single one, by
dropping it the minimal number of modes is always smaller
than or equal to one.

1. Minimal Gaussian purifications of Gaussian mixed states

Let γ ∈ Gl(2n,R) the covariance matrix of a Gaussian
stateρ̂ of a systemA formed byn bosonic modes. We know
that it must satisfy the following inequality

γ > iσ2n , (B1)

with σ2n ∈ Gl(2n,R) being the skew-symmetric matrix
in Eq. (4) representing the symplectic form of the modes.
Thanks to the Williamson’s theorem [23] we know that there
exists a symplectic transformationS ∈ Gl(2n,R) which al-
lows us to diagonalizeγ in the following form

γ 7→ SγST =

[

D 0

0 D

]

, (B2)

with D ∈ Gl(n,R) being the diagonal matrix formed by
the symplectic eigenvaluesDj of γ which satisfy the con-
dition Dj > 1 as follows from Eq. (B1). The values{Dj}
are thesymplectic eigenvaluesof γ [1, 15], so the positive
square roots of the eigenvalues of the matrix−σ2nγσ2nγ ∈
Gl(2n,R). The transformationγ 7→ SγST corresponds to
appling a Gaussian unitary to the state which transforms it
into a product state of then modes, in fact a product of Gibbs
states of unit harmonic oscillators. Hence, it does not restrict
generality to assume thatγ is of the form of the rhs. of Eq.
(B2) in the first place.

Now, let Γ be the covariance matrix of the minimum pu-
rification ofγ, viewed as being defined on a bi-partite system
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labeledA — the original system — andB. Since the spec-
trum of the reduced state with respect toB is identical to the
spectrum of the reduced state ofA, also the symplectic spectra
of the two reductions are the same. Hence, it does not restrict
generality to takeΓ to be of the form

Γ =









D 0

0 D
C

CT D 0

0 D









, (B3)

with suitableC ∈ Gl(2n,R) such that the symplectic spec-
trum of Γ consists of1 only, with respect to the symplectic
form in the convention as in Eq. (18). Now, by taking

C =

[

0 η

η 0

]

, (B4)

with η = diag(f(D1), · · · , f(Dn)), one clearly arrives at
the covariance matrix of a valid purification. This purifica-
tion essentially involves as many modes as there are symplec-
tic eigenvalues different from1 — those modes associated

with unit symplectic eigenvalues correspond to pure Gaus-
sian states already. Denoting the number of unit values inD
by#1(D), this purification hence involvesn−#1(D) many
modes. Invoking the definition of the symplectic spectrum,
one finds that

#1(D) = n− rank[γ − σ2nγ
−1σT

2n]/2 . (B5)

It is also easy to see, however, that no purification can involve
fewer modes than that. Consequently we have

qmin = n−#1(D). (B6)

The covariance matrix of the reduced Gaussian state of the
purification with respect toB is necessarily given by the
rhs. of Eq. (B2), up to local symplectic transformationsS ∈
Sp(2n,R). Hence, any Gaussian purification must involve at
least involven−#1(D) modes, as so many symplectic eigen-
values are different from1. Needless to say, if one gives up
the property of requiring a Gaussian purification, one can al-
ways embed the purification in a single mode, if the state is
mixed, while no additional mode being required if the state is
already pure.


