Very stable extensions on arithmetic surfaces

Christophe Soulé

Received: date / Accepted: date

Abstract

Given a line bundle L on a smooth projective curve over the complex numbers, we show that a general extension E of L by the trivial line bundle is very stable: line bundles contained in E have degree much less than half the degree of E . From this result we deduce new inequalities for the successive minima of the euclidean lattice $H^{1}\left(X, L^{-1}\right)$, where L is an hermitian line bundle on the arithmetic surface X .

Keywords Projective curve • Semi-stable bundle • Secant variety • Arithmetic surface - Successive minima

Mathematics Subject Classification (2000) MSC 14H60 • MSC 14G40

1 Introduction

Let X be an arithmetic surface and \bar{N} an hermitian line bundle on X. The lattice

$$
\Lambda=H^{1}\left(X, N^{-1}\right)
$$

is equipped with the L^{2}-metric. In this paper we keep on studying the successive minima of this euclidean lattice; see [2], [3] and [4] for previous results. When the degree of N is large enough we get a lower bound for the k-th minimum of Λ, when $k>\frac{\operatorname{deg}(N)}{2}+g$, where g is the generic genus of X; cf. Theorem 2 for a precise statement.

As in op. cit., we get this inequality by considering the extension

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow N \rightarrow 0
$$

[^0]defined by a class $e \in \Lambda$. If $a \geq 0$ is an integer, we say that e is a-stable when the restriction of E to the geometric generic fiber C of X does not contain any line bundle L with
$$
\operatorname{deg}(L)>\frac{\operatorname{deg}(E)-a}{2}
$$

The main ingredient in the proof of Theorem 2 is the assertion that any $V \subset$ $H^{1}\left(C, N^{-1}\right)$ contains a class e which is a-stable when $\operatorname{dim}(V)$ is large enough (Theorem 1). This is proved by induction, the case $a=0$ being Proposition 2 in (4).

The paper is organized as follows. In Section 1 we introduce the notion of a-stability for a rank two vector bundle on C. The Lemma 1 relates a-stability and semi-stability when E is an extension of line bundles. In Lemma 2 we introduce secant varieties. Sections 1.4 to 1.9 are then devoted to the proof of Theorem 1. In Section 2 we let \bar{N} be an hermitian line bundle on some arithmetic surface X. Proposition 2 gives a lower bound for the L^{2} - norm of $e \in \Lambda$ if its restriction to C is a-stable. Theorem 2 follows by arguments similar to those in [2], 3] and [4].

I thank Y. Miyaoka for suggesting to look at very stable bundles, and C. Voisin for her comments on a first draft of this article.

2 Very stable extensions on curves

2.1

Let k be an algebraically closed field of characteristic zero and C a smooth projective curve of genus g over k. Let $a \geq 0$ be an integer. A rank two vector bundle E over C is said to be a-stable when, for every line bundle L contained in E, the following inequality holds:

$$
\operatorname{deg}(L) \leq \frac{\operatorname{deg}(E)-a}{2}
$$

So, E is semi-stable (resp. stable) iff it is 0-stable (resp. 1-stable).

2.2

Let M and L be two line bundles on C and

$$
0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0
$$

an extension of M by L. Let A be an effective line bundle of degree a on C and $s: \mathcal{O}_{C} \rightarrow A$ a non trivial global section of A on C. If A^{-1} is the dual
of A and $M A^{-1}$ its tensor product with M, the section s defines an injective morphism

$$
i: M A^{-1} \rightarrow M
$$

If we pull-back the extension E by i we get a commutative diagram

for some rank two vector bundle E^{\prime} on C.
Lemma 1. If E is a-stable, E^{\prime} is semi-stable.
Proof. The morphism $E^{\prime} \rightarrow E$ is injective, therefore any line bundle N contained in E^{\prime} is also contained in E. Hence

$$
\operatorname{deg}(N) \leq \frac{\operatorname{deg}(E)-a}{2}=\frac{\operatorname{deg}\left(E^{\prime}\right)}{2}
$$

and E^{\prime} is semi-stable.

2.3

Let N be a line bundle of degree $n \geq 3$ on C. Each cohomology class

$$
e \in H^{1}\left(C, N^{-1}\right)=\operatorname{Ext}\left(N, \mathcal{O}_{C}\right)
$$

classifies an extension

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow E \rightarrow N \rightarrow 0
$$

of N by the trivial line bundle. We say that e is a-stable (resp. semi-stable) if E is a-stable (resp. semi-stable).

Let

$$
\mathbb{P}=\mathbb{P}\left(H^{1}\left(C, N^{-1}\right)\right)
$$

be the projective space of lines in $H^{1}\left(C, N^{-1}\right)$. If ω is the sheaf of differentials on C, Serre duality implies that $H^{1}\left(C, N^{-1}\right) \simeq H^{0}(C, \omega \otimes N)^{*}$ and we get a canonical immersion $C \rightarrow \mathbb{P}$. If D is an effective divisor on C we let $\langle D\rangle \subset \mathbb{P}$ be the linear span of D, and $|D|$ be the support of D. For every integer $d \geq 0$ we consider the secant variety

$$
\Sigma_{d}=\bigcup_{\operatorname{deg}(D)=d}\langle D\rangle
$$

Lemma 2. The extension class e is a-stable iff its image \bar{e} in \mathbb{P} does not belong to Σ_{d} when $d<\frac{n+a}{2}$.

Proof. This follows from the arguments discussed in [1] p. 451, 3] §1.6 or 4] §2.4.2.
2.4

We keep the notation of the previous paragraph.
Theorem 1. Assume that $n \geq a+3$ and let $V \subset H^{1}\left(C, N^{-1}\right)$ be a k-vector space of dimension

$$
\begin{equation*}
\operatorname{dim}(V) \geq \frac{n+a}{2}+g \tag{1}
\end{equation*}
$$

Then there exists a class $e \in V$ which is a-stable.
In view of Lemma 2, Theorem 1 can be rephrased as follows. Let $\delta=$ $(n+a) / 2$. Assume that $n \geq \delta+2$. When $d<\delta$ the secant variety Σ_{d} does not contain any linear subspace $\mathbb{P}(V)$ with $\operatorname{dim}(V) \geq \delta+g$.

2.5

To prove Theorem 1 we can assume that $n+a$ is even. Indeed, if $n+a$ is odd the condition (11) is equivalent to

$$
\operatorname{dim}(V) \geq \frac{n+a+1}{2}+g
$$

and, if e is $(a+1)$-stable, it is also a-stable.
When $n+a$ is even, we proceed by induction on a. When $a=0$ (and n is even) Theorem 1 is Proposition 2 in [4.

Assume Theorem 1 has been proved for $a-1$. If $P \in C(k)$ is a point on C we let

$$
X_{P}=\bigcup_{\substack{P \in|D| \\ \operatorname{deg}(D)<\frac{n+a}{2}}}\langle D\rangle,
$$

and we consider a linear subspace $V \subset H^{1}\left(C, N^{-1}\right)$ of dimension at least $\frac{n+a}{2}+g$. Assume that P does not lie in the projective space $\mathbb{P}(V) \subset \mathbb{P}$.

Lemma 3. The intersection $X_{P} \cap \mathbb{P}(V)$ is a proper closed subset of $\mathbb{P}(V)$.

2.6

To prove Lemma 3, let $N^{-1} P$ be the tensor product of N^{-1} with the line bundle $\mathcal{O}(P)$ and

$$
\pi: H^{1}\left(C, N^{-1}\right) \rightarrow H^{1}\left(C, N^{-1} P\right)
$$

the corestriction morphism. Let

$$
\mathbb{P}^{\prime}=\mathbb{P}\left(H^{1}\left(C, N^{-1} P\right)\right)
$$

and let

$$
p: \mathbb{P}-\{P\} \rightarrow \mathbb{P}^{\prime}
$$

be the linear projection defined by π. Since P is not in $\mathbb{P}(V)$, we have $\pi(V)=$ V^{\prime}, where V^{\prime} has the same dimension as V, and p induces an isomorphism

$$
\mathbb{P}(V) \xrightarrow{\sim} \mathbb{P}\left(V^{\prime}\right)
$$

If D is a divisor on C such that $P \in|D|, p(\langle D\rangle)$ is the linear span $\langle D-P\rangle^{\prime}$ of $D-P$ in \mathbb{P}^{\prime}. The secant variety

$$
\Sigma=\bigcup_{\operatorname{deg}(D)<\frac{n+a}{2}-1}\langle D\rangle^{\prime}
$$

is a closed subset of \mathbb{P}^{\prime}, hence its inverse image

$$
X_{P}-\{P\}=p^{-1}(\Sigma)
$$

is a closed subset of $\mathbb{P}-\{P\}$.
If $\mathbb{P}(V)$ was contained in $X_{P}, \mathbb{P}\left(V^{\prime}\right)$ would be contained in Σ. But

$$
\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}(V) \geq \frac{n+a}{2}+g>\frac{(n-1)+(a-1)}{2}+g
$$

hence, by the induction hypothesis, $\mathbb{P}\left(V^{\prime}\right)$ contains a point \bar{e}^{\prime} such that e^{\prime} is ($a-1$)-stable. Since

$$
\frac{n+a}{2}-1=\frac{(n-1)+(a-1)}{2}
$$

\bar{e}^{\prime} does not lie in Σ (Lemma 2). This proves Lemma 3.

2.7

To prove Theorem 1 we can assume that $\operatorname{dim}(V)=\frac{n+a}{2}+g$. Since $H^{1}\left(C, N^{-1}\right)$ has dimension $n+g-1$ and $n \geq 3, V$ is a proper subspace of $H^{1}\left(C, N^{-1}\right)$, and $\mathbb{P}(V)$ does not contain C. Let P_{1}, \ldots, P_{a} be a distinct points of $C \backslash \mathbb{P}(V)$ and A the divisor

$$
A=P_{1}+\cdots+P_{a} .
$$

¿From Lemma 3 we conclude that

$$
U=\mathbb{P}(V)-\bigcup_{\substack{|A| \cap|D| \neq \emptyset \\ \operatorname{deg}(D)<\frac{n+a}{2}}}\langle D\rangle
$$

is a nonempty open subset of $\mathbb{P}(V)$. Let $N^{-1} A^{-1}$ be the tensor product of N^{-1} with $\mathcal{O}(-A)$ and

$$
\pi: H^{1}\left(C, N^{-1} A^{-1}\right) \rightarrow H^{1}\left(C, N^{-1}\right)
$$

the corestriction map. Let $\mathbb{P}^{\prime}=\mathbb{P}\left(H^{1}\left(C, N^{-1} A^{-1}\right)\right)$ and

$$
p: \mathbb{P}^{\prime}-\langle A\rangle^{\prime} \rightarrow \mathbb{P}
$$

the projection induced by π.
By Proposition 1 below, applied to $N A$ instead of N and to $W=\pi^{-1}(V)$, there exists a non trivial class $e \in V$ such that $\bar{e} \in U$ and each $e^{\prime} \in H^{1}\left(C, N^{-1}\right.$ A^{-1}) such that $\pi\left(e^{\prime}\right)=e$ is semi-stable. Assume \bar{e} lies in $\langle D\rangle$, for some effective divisor D on C. Then, either $\operatorname{deg}(D) \geq \frac{n+a}{2}$ or $|A| \cap|D|=\emptyset$ and $\operatorname{deg}(D)<\frac{n+a}{2}$. In the latter case, since

$$
\operatorname{deg}(N A \omega)=(2 g-2)+n+a>2 g-2+\operatorname{deg}(A)+\operatorname{deg}(D)
$$

we have

$$
\langle A\rangle \cap\langle D\rangle=\langle A \cap D\rangle=\emptyset
$$

([1] p. 434) and there exists $\bar{e}^{\prime} \in\langle D\rangle^{\prime}$ such that $p\left(\bar{e}^{\prime}\right)=\bar{e}$. Since e^{\prime} is semi-stable and $\operatorname{deg}(N A)=n+a$, Lemma 2 implies that

$$
\operatorname{deg}(D) \geq \frac{n+a}{2}
$$

Applying Lemma 2 again, we conclude that e is a-stable.

2.8

Let N be a line bundle of even positive degree n on C. Let

$$
K \subset W \subset H^{1}\left(C, N^{-1}\right)
$$

be linear subspaces. We assume that $V=W / K$ is not zero and we let $U \subset$ $\mathbb{P}(V)$ be a nonempty open subset. Let $\pi: W \rightarrow V$ be the projection and $a=\operatorname{dim}(K)$.

Proposition 1. If $\operatorname{dim}(V) \geq \frac{n}{2}+g$ there exists $\varepsilon \in V$ such that $\bar{\varepsilon} \in U$ and any $e \in W$ such that $\pi(e)=\varepsilon$ is semi-stable.
2.9

To prove Proposition 1, we first note, as in 4 p. 288, that there exist two line bundles L and M on C such that $L M=\omega$ and $M L^{-1}=N$. Any class $e \in H^{1}\left(C, N^{-1}\right)$ defines an extension

$$
0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0
$$

and a boundary map

$$
\partial_{e}: H^{0}(C, M) \rightarrow H^{1}(C, L) .
$$

The bundle E is semi-stable iff ∂_{e} is an isomorphism. We now adapt to our situation the argument of C. Voisin in [4] 2.2. Let

$$
\mu: H^{0}(C, M)^{\otimes 2} \rightarrow W^{*}
$$

be the composite of the cup-product with the projection

$$
H^{0}\left(C, M^{2}\right)=H^{1}\left(C, N^{-1}\right)^{*} \rightarrow W^{*}
$$

Any vector $e \in W$ defines, via μ, a quadric q_{e} in the projective space $\mathbb{P}\left(H^{0}(C, M)\right)$. The boundary map ∂_{e} is an isomorphism iff q_{e} is non singular.

Arguing by contradiction, we assume that, for every $\varepsilon \in V$ such that $\bar{\varepsilon} \in U$, there exists $e \in W$ such that $\pi(e)=\varepsilon$ and q_{e} is singular. When $r \geq 1$ is a positive integer, we let $U_{r} \subset U$ be the set of those $\bar{\varepsilon}$ such that there exist $e \in W$ with $\pi(e)=\varepsilon$ and the singular locus of q_{e} has dimension r. We have

$$
U=\bigcup_{r \geq 1} U_{r}
$$

and each set U_{r} is constructible. Therefore there exists r_{0} such that $U_{r_{0}}$ contains a dense open subset of $\mathbb{P}(V)$. Consider the Zariski closure $B \subset$ $\mathbb{P}\left(H^{0}(C, M)\right)$ of the union of the singular loci of the quadrics with singular locus of dimension r_{0}, and let b be the dimension of B.

Let $\sigma \in H^{0}(C, M)$ be a representative of a generic point $\bar{\sigma} \in B$. We claim that the map

$$
\mu_{\sigma}: H^{0}(C, M) \rightarrow W^{*}
$$

sending τ to $\mu(\sigma \otimes \tau)$ has rank at most $a+b$. Indeed $q \in W$ is singular at τ iff it lies in the subspace $Q_{\tau} \subset W$ orthogonal to the image of μ_{τ}. The union of all the vector spaces $Q_{\tau}, \bar{\tau} \in B$, maps onto $U_{r_{0}}$. Therefore the dimension of Q_{σ} is at least $\operatorname{dim}(V)-b$ and the rank of μ_{σ} is at most $\operatorname{dim}(W)-(\operatorname{dim}(V)-b)=a+b$, as claimed.

It follows that the kernel H_{σ} of μ_{σ} has dimension $c \geq m-a-b$, where $m=\operatorname{dim} H^{0}(C, M)$. Arguing as in op. cit., p. 290, we find that the subspace $W^{\perp} \subset H^{0}\left(C, M^{2}\right)$ orthogonal to W has dimension at least

$$
b+c \geq m-a
$$

Therefore, since $H^{1}\left(C, N^{-1}\right)$ has dimension $n+g-1, W$ has dimension at most $n+a+g-m-1$. By Riemann-Roch and the fact that $2 \operatorname{deg}(M)=2 g-2+n$, we know that

$$
n-m+g \leq \frac{n}{2}+g .
$$

Since $\operatorname{dim}(V)=\operatorname{dim}(W)-a$, we get

$$
\operatorname{dim}(V) \leq \frac{n}{2}+g-1
$$

contradicting our hypothesis.

3 Arithmetic surfaces

3.1

Let F be a number field, \mathcal{O}_{F} its ring of integers and $S=\operatorname{Spec}\left(\mathcal{O}_{F}\right)$. Consider a proper flat curve X over S such that X is regular and the generic fiber X_{F} is geometrically irreducible of genus g. Let

$$
\operatorname{deg}: \operatorname{Pic}(X) \rightarrow \mathbb{Z}
$$

be the morphism which sends the class of a line bundle over X to the degree of its restriction to X_{F}.

Let $\bar{N}=(N, h)$ be an hermitian line bundle on X. The cohomology group

$$
\Lambda=H^{1}\left(X, N^{-1}\right)
$$

is a finitely generated module over \mathcal{O}_{F}. It can be endowed as follows with an hermitian norm. For every complex embedding $\sigma: F \rightarrow \mathbb{C}$, we let $X_{\sigma}=X \underset{\mathcal{O}_{F}}{\otimes} \mathbb{C}$ be the corresponding complex curve. The cohomology group

$$
\Lambda_{\sigma}=\Lambda \otimes \mathbb{C}=H^{1}\left(X_{\sigma}, N_{\mathbb{C}}^{-1}\right)
$$

is canonically isomorphic to the complex vector space $\mathcal{H}^{01}\left(X_{\sigma}, N_{\mathbb{C}}^{-1}\right)$ of harmonic differential forms of type $(0,1)$ with coefficients in the restriction $N_{\mathbb{C}}^{-1}$ of N^{-1} to X_{σ}. Given $\alpha \in \mathcal{H}^{01}\left(X_{\sigma}, N_{\mathbb{C}}^{-1}\right)$ we let α^{*} be its transposed conjugate (the definition of which involves h), and we define

$$
\|\alpha\|_{L^{2}}^{2}=\frac{i}{2 \pi} \int_{X_{\sigma}} \alpha^{*} \alpha
$$

Given $e \in \Lambda$ we let

$$
\|e\|=\operatorname{Sup}_{\sigma}\|\sigma(e)\|_{L^{2}}
$$

where σ runs over all complex embeddings of F.
Let $a \geq 0$ be an integer and n the degree of N. We assume that $n \geq a+3$. Let \bar{A} be an hermitian line bundle on X of degree $\operatorname{deg}(A)=a$, and $s: \mathcal{O}_{X} \rightarrow A$ a non zero global section of A. Define

$$
\|s\|_{\text {sup }}=\operatorname{Sup}_{x \in X(\mathbb{C})}\|s(x)\|
$$

where $X(\mathbb{C})=\coprod_{\sigma} X_{\sigma}$ is the set of complex points of X.
Any class $e \in \Lambda$ defines an extension

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow N \rightarrow 0
$$

on X. If \bar{F} is a fixed algebraic closure of F, we let $E_{\bar{F}}$ be the restriction of E to $X_{F} \otimes \bar{F}$. Denote by $r=[F: \mathbb{Q}]$ the absolute degree of F.

Proposition 2. Assume $E_{\bar{F}}$ is a-stable. Then the following inequality holds

$$
\log \|e\| \geq \frac{(\bar{N}-\bar{A})^{2}}{2(n-a) r}-\log \|s\|_{\sup }-1
$$

where $(\bar{N}-\bar{A})^{2} \in \mathbb{R}$ denotes the arithmetic self-intersection of the first Chern class $\hat{c}_{1}\left(\bar{N} \bar{A}^{-1}\right) \in \widehat{C H}^{1}(X)$.

3.2

To prove Proposition 2 we consider the extension

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E^{\prime} \rightarrow N A^{-1} \rightarrow 0
$$

obtained by pulling back $e \in H^{1}\left(X, N^{-1}\right)$ to $e^{\prime} \in H^{1}\left(X, N^{-1} A\right)$. Since the restriction of E^{\prime} to $X_{\bar{F}}$ is semi-stable (Lemma 1) we have

$$
\begin{equation*}
\log \left\|e^{\prime}\right\| \geq \frac{(\bar{N}-\bar{A})^{2}}{2(n-a) r}-1 \tag{2}
\end{equation*}
$$

(see [2] or [4] pp. 294-295). So we are left with comparing $\|e\|$ and $\left\|e^{\prime}\right\|$.
We have a commutative diagram:

Any C^{∞} splitting $E_{\mathbb{C}} \rightarrow \mathbb{C}$ of the top extension defines, by restriction, a C^{∞} splitting $E_{\mathbb{C}}^{\prime} \rightarrow \mathbb{C}$. The Cauchy-Riemann operators $\bar{\partial}_{E}$ and $\bar{\partial}_{E^{\prime}}$ can then be written as matrices

$$
\bar{\partial}_{E}=\left(\begin{array}{cc}
\bar{\partial}_{\mathbb{C}} & \alpha \\
0 & \bar{\partial}_{N}
\end{array}\right)
$$

and

$$
\bar{\partial}_{E^{\prime}}=\left(\begin{array}{cc}
\bar{\partial}_{\mathbb{C}} & \alpha^{\prime} \\
0 & \bar{\partial}_{N A^{-1}}
\end{array}\right)
$$

where α is a linear map $C^{\infty}\left(N_{\mathbb{C}}\right) \rightarrow A^{01}(\mathbb{C})$, and $\alpha^{\prime}: C^{\infty}\left(N A_{\mathbb{C}}^{-1}\right) \rightarrow A^{01}(\mathbb{C})$ is the restriction of α to $N A_{\mathbb{C}}^{-1}$.

For any $\sigma: F \rightarrow \mathbb{C}$, choose a local chart z of X_{σ} and local trivializations of $N_{\mathbb{C}}$ and $A_{\mathbb{C}}$. We have

$$
\alpha=\varphi d \bar{z}
$$

where φ is a smooth function and

$$
\alpha^{\prime}=\varphi u d \bar{z}
$$

where u is the local section of A defined by s. The transposed conjugates are

$$
\alpha^{*}=\frac{\bar{\varphi}}{h_{N}(1,1)} d z
$$

and

$$
\alpha^{\prime *}=\frac{h_{A}(1,1) \bar{\varphi} \bar{u} d z}{h_{N}(1,1)},
$$

where $h_{N}(1,1)$ (resp. $\left.h_{A}(1,1)\right)$ is the squared norm of the local generator of N (resp. A). It follows that

$$
\alpha^{\prime *} \alpha^{\prime}=h_{A}(1,1) u \bar{u} \alpha^{*} \alpha=\|s\|^{2} \alpha^{*} \alpha,
$$

and

$$
\left\|\alpha^{\prime}\right\|_{L^{2}}^{2}=\frac{i}{2 \pi^{\prime}} \int_{X_{\sigma}} \alpha^{\prime *} \alpha^{\prime} \leq\|s\|_{\text {sup }}^{2}\|\alpha\|_{L^{2}}^{2} .
$$

Assume that the splitting $E_{\mathbb{C}} \rightarrow \mathbb{C}$ has been chosen such that α is harmonic. Then we get

$$
\left\|\alpha^{\prime}\right\|_{L^{2}} \leq\|s\|_{\sup }\|\sigma(e)\|_{L^{2}}
$$

Since $\left\|\sigma\left(e^{\prime}\right)\right\|_{L^{2}}$ is the smallest value of $\left\|\alpha^{\prime}\right\|_{L^{2}}$ when α^{\prime} runs over all representatives of e^{\prime} in $A^{01}\left(X_{\sigma}, N^{-1} A_{\mathbb{C}}\right)$, we get

$$
\left\|\sigma\left(e^{\prime}\right)\right\|_{L^{2}} \leq\|s\|_{\text {sup }}\|\sigma(e)\|_{L^{2}}
$$

hence

$$
\left\|e^{\prime}\right\| \leq\|s\|_{\text {sup }}\|e\|
$$

This inequality and (2) imply Proposition 2.
3.3

We keep the notation of $\S 2.1$ and we consider the (logarithms of the) successive minima of the euclidean lattice $(\Lambda,\|\cdot\|)$. When $k \leq r k(\Lambda), \mu_{k}$ is the infimum of all real numbers μ such that there exists k elements e_{1}, \ldots, e_{k} in Λ which are linearly independent in $\Lambda \otimes F$ and such that

$$
\left\|e_{i}\right\| \leq \exp (\mu) \quad \text { for all } \quad i=1, \ldots, k
$$

Theorem 2. Assume that

$$
\frac{n+a}{2}+g \leq k<n+g-1
$$

Then

$$
\mu_{k} \geq \frac{(\bar{N}-\bar{A})^{2}}{2(n-a) r}-\log \|s\|_{\mathrm{sup}}-C
$$

where $C=1+\log (d(n, a) k)$, and $d(n, a)$ is bounded as in (3) below.

3.4

To prove Theorem 2 we let

$$
V \subset H^{1}\left(X_{\bar{F}}, N^{-1}\right)=\Lambda \otimes \bar{F}
$$

be the linear space spanned by e_{1}, \ldots, e_{k}. Since $k<n+g-1, V$ is a proper subspace of $\Lambda \otimes \bar{F}$. From Theorem 1 we know that there exists $e \in V$ such that the corresponding extension E of N by \mathcal{O}_{C} on $C=X_{\bar{F}}$ is a-stable. More precisely E is a-stable when \bar{e} does not belong to $\mathbb{P}(V) \cap H(n, a)$, where $H(n, a)$ is an hypersurface defined as follows. When $n+a$ is odd we let $H(n, a)=$ $H(n, a+1)$. When $n+a$ is even, $H(n, a)$ is defined by induction on a. We choose $A=P_{1}+\ldots+P_{a}$ as in 1.7. The class \bar{e} is a-stable when it satisfies the following two conditions. First, for any $P \in|A|$, the projection of \bar{e} into $\mathbb{P}\left(H^{1}\left(C, N^{-1} P\right)\right)$ should not lie in $H(n-1, a-1)$. Second, let L and M be line bundles on C such that $L M=\omega$ and $M L^{-1}=N A$; then, any class $\bar{e}^{\prime} \in \mathbb{P}\left(H^{1}\left(C, N^{-1} A^{-1}\right)\right)$ which maps to $\bar{e} \in \mathbb{P}\left(H^{1}\left(C, N^{-1}\right)\right)$ should be such that the boundary map

$$
\partial_{e^{\prime}}: H^{0}(C, M) \rightarrow H^{1}(C, L)
$$

is an isomorphism. Let m be the dimension of $H^{0}(C, M), \sigma_{1}, \ldots, \sigma_{m}$ a basis of $H^{0}(C, M)$, and $\tau_{1}, \ldots, \tau_{m}$ a basis of $H^{1}(C, L)^{*}$. Then $\partial_{e^{\prime}}$ is injective as soon as it satisfies the inequation

$$
\left(\partial_{e^{\prime}}\left(\sigma_{1}\right) \wedge \ldots \wedge \partial_{e^{\prime}}\left(\sigma_{m}\right), \tau_{1} \wedge \ldots \wedge \tau_{m}\right) \neq 0
$$

which is of degree $m \leq \frac{n+a}{2}$ in e^{\prime}. It follows from the proof of Theorem 1 that \bar{e} is a-stable as soon as it satisfies these two conditions, which is the case when $\bar{e} \notin H(n, a)$, where $H(n, a)$ is an hypersurface of degree $d(n, a)$ with

$$
d(n, a) \leq \frac{n+a}{2}+a d(n-1, a-1)
$$

and

$$
d(n, 0) \leq \frac{n}{2}
$$

Therefore we get

$$
\begin{align*}
d(n, a) \leq & p+a(p-1)+a(a-1)(p-2)+a(a-1)(a-2)(p-3) \\
& +\ldots+a!(p-a), \quad \text { when } n+a=2 p \text { or } 2 p-1 . \tag{3}
\end{align*}
$$

Therefore, as in [3] Prop. 5 , there exist k integers n_{1}, \ldots, n_{k}, with $\left|n_{i}\right| \leq d(n, a)$ for all i, such that

$$
e=n_{1} e_{1}+\ldots+n_{k} e_{k}
$$

does not lie in $H(n, a)$. The extension E defined by e on X is then a-stable, and Proposition 2 implies that

$$
\log \|e\| \geq \frac{(\bar{N}-\bar{A})^{2}}{2(n-a) r}-\log \|s\|_{\text {sup }}-1
$$

Since

$$
\|e\| \leq k d(n, a) \exp \left(\mu_{k}\right)
$$

Theorem 2 follows.

References

1. A. Bertram, Moduli of rank 2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Diff. Geom., 35, 429-469 (1992)
2. C. Soulé, A vanishing theorem on arithmetic surfaces, Invent. Math., 116, 577-599 (1994)
3. C. Soulé, Secant varieties and successive minima, J. Algebraic Geom., 13, no. 2, 323-341 (2004)
4. C. Soulé, Semi-stable extensions on arithmetic surfaces, in " Moduli Spaces and Arithmetic Geometry " (Kyoto 2004), Advanced Studies in Pure Maths., 45, 283-295 (2006)

[^0]: C. Soulé

 IHÉS, 35 route de Chartres, 91440 Bures-sur-Yvette, France
 E-mail: soule@ihes.fr

