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TOWARD A SALMON CONJECTURE

LUKE OEDING AND DANIEL J. BATES

Abstract. By using a result from the numerical algebraic geometry package Bertini we
show that (with extremely high probability) a set of degree 6 and degree 9 polynomials cut
out the secant variety σ4(P

2 × P2 × P3). This, combined with an argument provided by
Landsberg and Manivel, implies set-theoretic defining equations in degrees 5, 6 and 9 for a
much larger set of secant varieties, including σ4(P

3 ×P3×P3) which is of particular interest
in light of the salmon prize offered by E. Allman for the ideal-theoretic defining equations.

1. Introduction

In 2007, E. Allman offered a prize of Alaskan salmon to anyone who finds the defining
ideal of

σ4
(

P
3 × P

3 × P
3
)

,

the Zariski closure of all points on secant P3’s to the Segre product Seg(P3×P3×P3), [All10].
The ideal-theoretic question is still open. Our main result is Theorem 3.10 in which we
give a geometric argument (relying on results of Landsberg and Manivel) combined with a
calculation using numerical algebraic geometry to show that with extremely high probability,
σ4 (P

3 × P3 × P3) is cut out set-theoretically by 1728 equations in degree 5, 1000 equations
in degree 6 and 8000 equations in degree 9. Even though these dimensions are large, we
show that in each degree, the large space of polynomials can be constructed from a small
number of representatives via simple substitutions (see Remarks 3.2, 2.2 and 3.5). Theorem
3.10 gives evidence that Theorem 3.10 may also hold ideal-theoretically.

One practical interest of the secant variety σ4 (P
3 × P3 × P3) is in phylogenetics, where the

secant variety is associated to the statistical model for evolution called the mixture model
of independence models [AR08]. The main motivation to study this particular model is that
Allman and Rhodes showed in [AR08, Theorem 11] that finding the polynomial invariants
for this small evolutionary tree would provide all polynomial invariants for the statistical
model for any binary evolutionary tree with any number of states.

Note that while Allman asks for the generators of the defining ideal of the secant variety,
a collection of set-theoretic defining equations provides a necessary and sufficient test for
membership on the model. Very recently Friedland [Fri10] has proved (without a computer)
that a set of polynomials in degrees 5, 9 and 16 define σ4 (P

3 × P3 × P3) set-theoretically.
Indeed, Friedland’s set of polynomials do (in theory) allow one to test whether a given set of
data fits the model. Because it uses polynomials in smaller degree, Theorem 3.10 provides
a more efficient practical membership test for the model. Please consult [CF09] for more
practical issues regarding phylogenetic tree construction using algebraic methods.

The first author was supported by National Science Foundation grant Award No. 0853000: International
Research Fellowship Program (IRFP).

The second author was partially supported by NSF grant DMS–0914674.
1

http://arxiv.org/abs/1009.6181v1


Our equations in degree 6 are not in the ideal of the equations in degree 5, thus they
are non-trivial generators in the ideal, and Friedland’s result cannot be a set of minimal
generators of the ideal. We have not found any such obstructions to our result holding
ideal-theoretically and this leads to a salmon conjecture that the ideal-theoretic version of
Theorem 3.10 also holds.

This work was initiated in October 2008 when Bernd Sturmfels asked for a Macaulay2
readable file of the degree 6 polynomials in the ideal of σ4(P

2 × P2 × P3). Proposition
2.1 is a representation theoretic description of these polynomials and corrects minor errors
in [LM04, Proposition 6.3], and [LM08, Remark 5.7]. In Section 2 we give a brief overview
of how these polynomials were constructed from their representation theoretic description.
These equations and other supplementary materials for this paper are available online at
http://web.math.unifi.it/users/oeding/salmon materials

At the December 2008 MSRI workshop on Algebraic Statistics, the first author presented
Conjecture 3.8 which, when combined with an argument of Landsberg and Manivel, implies
our main result. This argument is discussed in Section 3. The missing ingredient for the
conjecture was to understand the zero-set of the degree 6 polynomials. Shortly after this
workshop, the first author asked for help from the Bertini Team, including the second author.

The two authors worked together to get the correct mixture of initial input and computing
strategies in order to find a computation that would finish in a reasonable amount of time.
Finally on July 12, 2010, a computation that had taken approximately 2 weeks on 8 pro-
cessors (two 2.66 GHz quad-core Xeon 5410s set up as one head processor and seven worker
processors) finished, providing a numerical proof to Conjecture 3.8. Because our calculations
use numerical approximations, we say that the proof holds with extremely high probability.
In Section 4 we discuss our computational methods and the reliability of this result.

2. Symmetry and the equations in degree 6

In this section we recall well-known facts about the variety we are studying. The main
purpose is to set up notation. The reader who is unfamiliar with these concepts may consult
[FH91], or for a more detailed account related to secant varieties see [LM04,LM08,LW07] or
the upcoming [Lan10].

Let A,B,C be vector spaces of dimensions a, b, c respectively. The symmetry group of
σr (PA× PB × PC) is the change of coordinates in each factor GL(A) × GL(B) × GL(C)
(or GL(A)×GL(B)×GL(C)⋊S3 when A ∼= B ∼= C). When a large group acts we can use
tools from representation theory to aid in our search for defining equations. Since much of
this work has already been done, we only describe the equations relevant for our application.

The module Sd(A∗ ⊗ B∗ ⊗ C∗) of degree d homogeneous polynomials on A⊗ B ⊗ C has
an isotypic decomposition (see [LM04, Proposition 4.1])

Sd(A∗ ⊗B∗ ⊗ C∗) =
⊕

|π1|=|π2|=|π3|=d

(Sπ1
A∗ ⊗ Sπ2

B∗ ⊗ Sπ3
C∗)⊕Mπ1,π2,π3 ,

where the πi are partitions of d and the multiplicity Mπ1,π2,π3
is the dimension of the highest

weight space which can be computed via characters. The modules

(Sπ1
A∗ ⊗ Sπ2

B∗ ⊗ Sπ3
C∗)Mπ1,π2,π2

are called isotypic components, and the individual modules Sπ1
A∗ ⊗ Sπ2

B∗ ⊗ Sπ3
C∗ are

irreducible GL(A)×GL(B)×GL(C)-modules sometimes called Schur modules.
2
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The ideal of any GL(A)×GL(B)×GL(C)-invariant variety in P(A⊗B ⊗C) consists of
a subset of the modules occurring in the isotypic decomposition.

IfX is a projective variety, let Is(X) denote the ideal of homogeneous degree s polynomials
in the ideal of X . In general, if X is any variety, Is(σk(X)) = 0 for s ≤ k, and in particular,
Is(σ4(PA×PB× PC)) = 0 for s ≤ 4. Also, one can calculate (by checking every irreducible
module of degree 5 polynomials) that

I5

(

σ4
(

P
2 × P

2 × P
3
))

= 0.

Proposition 2.1. Let A ∼= B ∼= C
3 and C ∼= C

4. Then I6 (σ4 (PA× PB × PC)) is the
GL(A)×GL(B)×GL(C)-module

M6 := S2,2,2A
∗ ⊗ S2,2,2B

∗ ⊗ S3,1,1,1C
∗.

Proof. This was found by following the ideal membership test described in [LM04]. We
first decomposed S6(A∗ ⊗ B∗ ⊗ C∗) into its isotypic decomposition. Next we computed a
basis of the highest weight space for each isotypic component. Then we checked to see if
any linear subspace of the highest weight space of an isotypic component vanished on the
variety. The only module which passed this test was M6, which occurs with multiplicity one
in S6(A∗⊗B∗⊗C∗). We used Maple to carry out this procedure, and a copy of our code with
some examples can be found on the website for supplementary materials listed above. �

Note that S2,2,2C
3 is one-dimensional and as a vector space, the module S3,1,1,1C

4 is iso-
morphic to S2

C
4, which is 10-dimensional. There is a correspondence between the 10 basis

elements of the module and the 10 semi-standard fillings (strictly increasing in the columns
and non-decreasing in the rows) of the tableau of shape (3, 1, 1, 1) with the numbers 1, 2, 3, 4.
We list these fillings below. The basis of polynomials is available at the URL mentioned
above, or may be obtained from the first author.

Here is a brief overview of an algorithm to construct the polynomials in Sπ1
A∗ ⊗ Sπ2

B∗ ⊗
Sπ3

C∗. More details can be found in [Lan10,Oed09a,Oed09b] for example.
For concreteness, we fix the degree d = 6. The input to the algorithm is the fillings of

the tableau of shapes π1, π2, π3. The first step is to construct a highest weight vector in
A⊗6 ⊗B⊗6 ⊗C⊗6. For this we work one vector space at a time. Suppose a1, a2, a3 is a basis
of A∗. Then a1⊗a1⊗a2⊗a2⊗a3⊗a3 is a pre-highest weight vector. The Young symmetrizer

Yπ1
: A∗ ⊗ A∗ ⊗ A∗ ⊗A∗ ⊗ A∗ ⊗ A∗ → A∗ ⊗ A∗ ⊗A∗ ⊗ A∗ ⊗ A∗ ⊗A∗

is the map that skew symmetrizes the vector spaces A∗ in positions corresponding to the
columns of the filling associated to π1 and then symmetrizes the vector spaces corresponding
to the rows of the filling associated to π1. The result is a highest weight vector of Sπ1

A in
(A∗)⊗6. We perform the analogous construction in the B∗ and C∗ factors and take the tensor
product of the resulting highest weight vectors.

The resulting vector we have constructed is in Sπ1
A∗ ⊗ Sπ2

B∗ ⊗ Sπ3
C∗, however it is em-

bedded in (A∗)⊗6⊗(B∗)⊗6⊗(C∗)⊗6. The final step is to perform the re-ordering isomorphism
(A∗)⊗6 ⊗ (B∗)⊗6 ⊗ (C∗)⊗6 → (A∗ ⊗B∗ ⊗C∗)⊗6, and then symmetrize the result to arrive at
a polynomial in S6(A∗ ⊗ B∗ ⊗ C∗).
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We computed the 10 polynomials in S2,2,2A
∗ ⊗ S2,2,2B

∗ ⊗ S3,1,1,1C
∗ using the fixed fillings

1 2
3 4
5 6 ,

1 4
2 5
3 6

for π1 and π2 respectively with each of the following fillings for π3

1 1 1
2
3
4 ,

1 1 2
2
3
4 ,

1 1 3
2
3
4 ,

1 1 4
2
3
4 ,

1 2 2
2
3
4 ,

1 2 3
2
3
4 ,

1 2 4
2
3
4 ,

1 3 3
2
3
4 ,

1 3 4
2
3
4 ,

1 4 4
2
3
4 .

Notice that up to re-naming the numbers, the fillings for π3 can be divided into two classes,
depending on whether the last two numbers in the first row are equal. The four fillings of
the first class (with the last two numbers in the first row equal) correspond to polynomials
with 936 terms, whereas the six fillings of the second class correspond to polynomials with
576 terms. Moreover, a simple substitution pi,j,k 7→ pi,j,k′ takes one polynomial to another
in the same class. Here the indices satisfy 1 ≤ i, j ≤ 3 and 1 ≤ k, k′ ≤ 4. This additional
symmetry is useful for the Bertini computation below.

These fillings produce homogeneous polynomials that are, moreover, homogeneous in
multi-degree. In general, the multi-degree of a monomial is a collection of vectors [[lA1 , l

A
2 , l

A
3 ],

[lB1 , l
B
2 , l

B
3 ], [l

C
1 , l

C
2 , l

C
3 , l

C
4 ]], and is defined on a single variable xi,j,k by lAi′ is 0 (respectively 1)

for xi,j,k if i 6= i′ (respectively i = i′) (lBj′ and l
C
k′ are defined similarly) and the multi-degree is

defined for monomials by declaring it to be additive over products of variables. For example,
the following is a sampling of terms in the highest weight polynomial corresponding to the

filling

1 1 1
2
3
4 ,

· · · − x321x113x211x221x134x332 − x321x122x
2
231x313x114 + x211x312x131x121x334x223 . . .

and one finds that this polynomial has multi-degree [[2, 2, 2], [2, 2, 2], [3, 1, 1, 1]].

Remark 2.2. Note that when a = b = 3 and c = 4, S2,2,2A
∗ ⊗ S2,2,2B

∗ ⊗ S3,1,1,1C
∗ is

10-dimensional. When a = b = c = 4, the dimension of S2,2,2A
∗ ⊗ S2,2,2B

∗ ⊗ S3,1,1,1C
∗

increases to 1000, however the basis of this larger space can still be constructed from the
two polynomials that have 576 and 936 monomials via the substitutions pi,j,k 7→ pi′,j′,k′ with
1 ≤ i, i′, j, j′, k, k′ ≤ 4.

3. Geometric techniques for secant varieties

Suppose A′ ⊂ A, B′ ⊂ B and C ′ ⊂ C. Landsberg and Manivel have shown how to take
equations on σr(PA

′×PB′×PC ′) to equations on σr(PA×PB×PC) and call this procedure
inheritance [LM04, Proposition 4.4].
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Subspace varieties contain tensors that can be written using fewer variables. More specif-
ically,

Suba′,b′,c′(A⊗B ⊗ C) :=
{

[T ] ∈ P(A⊗ B ⊗ C) | ∃Ca′ ⊆ A,

C
b′ ⊆ B,Cc′ ⊆ C, with [T ] ∈ P(Ca′ ⊗ C

b′ ⊗ C
c′)
}

.

Landsberg and Weyman have shown that Suba′,b′,c′(A ⊗ B ⊗ C) is normal with rational
singularities, and the ideal is generated by minors of flattenings [LW07, Theorem 3.1]. Recall
that a flattening of a 3-tensor in A⊗B⊗C is the choice to view it as a matrix in A⊗(B⊗C),
B ⊗ (A⊗ C) or (A⊗B)⊗ C).

The subspace varieties are important in light of equations because of the fact that Subr,r,r(A⊗
B⊗C) ⊇ σr(PA×PB×PC), and therefore when non-trivial, the ideal of Subr,r,r gives equa-
tions of σr. There is an easy test for a module to be in the ideal of a subspace variety, namely
Sπ1

A∗ ⊗ Sπ2
B∗ ⊗ Sπ3

C∗ is in the ideal of Suba′,b′,c′(A⊗B ⊗ C) if and only if at least one of
the following holds; #(π1) > a′, #(π2) > b′ or #(π3) > c′, where #(·) is the number of parts
of the partition.

Landsberg and Manivel made an important reduction for the salmon problem, which we
record here. Let a, b, c respectively denote the dimensions of A,B,C.

Theorem 3.1 (Landsberg-Manivel ’08 Corollary 5.6). As sets, for a, b, c ≥ 3,
σ4

(

Pa−1 × Pb−1 × Pc−1
)

is the zero-set of the union of:

(1) Strassen’s commutation conditions,

M5 := S(3,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕S(2,1,1,1)A
∗ ⊗ S(3,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕S(2,1,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(3,1,1)C
∗,

(2) Equations inherited from σ4 (P
2 × P2 × P3), and

(3) Modules in S5(A∗ ⊗B∗ ⊗ C∗) containing a
∧5, i.e. equations for Sub4,4,4.

Note that when a = b = c = 4, the third set of equations is trivial. The key point is that
we will have a complete description of the set-theoretic defining equations of σ4(P

3×P3×P3)
as soon as we have the equations of σ4(P

2 × P2 × P3).

Remark 3.2. The equations in degrees 5 and 9 were found by Strassen [Str83] and were
described in terms of certain commutation conditions. Later, Landsberg and Manivel [LM08]
reinterpreted these conditions from the geometric and representation theoretic point of view
and provided generalizations in this language. In [Stu09] one finds a nice description of these
equations requiring only basic linear algebra. Analogous to our description of the equations
in degree 6, here we give the representation theoretic description of the polynomials of degree
5.

Note also that when a = b = c = 4, M5 is a 1728-dimensional irreducible G-module, for
G = GL(4)×GL(4)×GL(4)×S3. A natural basis ofM5 can be constructed as in the previous
section. For this we need to give the fillings for the triple of Young diagrams corresponding
to the partitions (2, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1). We note that up to permutation, there is
just one equivalence class for the fillings of the diagram for (2, 1, 1, 1) with representative
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1 1
2
3
4 . There are three equivalence classes for the fillings of the diagram for (3, 1, 1) with

representatives

1 1 1
2
3 ,

1 1 2
2
3 and

1 1 2
3
4 .

Therefore to construct representatives for a basis of S(2,1,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(3,1,1)C
∗,

we fix the representative filling for (2, 1, 1, 1) in both instances, and we let the filling for
(3, 1, 1) vary over the three representatives. Thus we construct three polynomials, one for
each representative filling of the diagram for (3, 1, 1) and respectively, these polynomials
have 180, 360 and 540 monomials. After constructing these three polynomials, the rest of the
polynomials in the basis ofM5 can be constructed by the simple substitutions pi,j,k 7→ pi′,j′,k′.

Another important result for the salmon problem is from Strassen, which has been rein-
terpreted in representation theoretic language in [LM08].

Theorem 3.3 ( [Str83]). The ideal of the hypersurface σ4(P
2 × P2 × P2) ⊂ P26 is generated

in degree 9 by a nonzero vector in the 1-dimensional module

S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
3.

Inheritance implies that M9 := S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
4 ∈ I(σ4(P

2 × P2 × P3)).

Remark 3.4. Suppose [T ] ∈ P(A⊗B⊗C), with dim(A) = 3. Then write T = a1⊗T1+ a2⊗
T2 + a3 ⊗ T3, where the Ti are b× c matrices in B ⊗ C and the ai are a basis of A.

Strassen described his equation in degree 9 as follows. On an open set one may assume
that T1 is invertible. Then consider the polynomial

det(T1)
2 det(T2T

−1
1 T3 − T3T

−1
1 T2).

Strassen showed that this polynomial is irreducible, of degree 9, and vanishes on σ4(PA ×
PB × PC).

A useful reformulation by Ottaviani of Strassen’s equation is the following. As before
write T = a1 ⊗ T1 + a2 ⊗ T2 + a3 ⊗ T3. Here one does not require any of the slices T1, T2, T3
to be invertible. Construct the block matrix

(1) ψT =





0 T3 −T2
−T3 0 T1
T2 −T1 0



 .

One checks that ψT is linear in T , and that if [T ] ∈ Seg(PA×PB×PC) then Rank(ψT ) = 2.
Therefore if [T ] is a general point in σk(Seg(PA × PB × PC)) it can be written as the
sum of k points on Seg(PA × PB × PC) so Rank(ψT ) ≤ 2k. In particular, in the case
dim(A) = dim(B) = dim(C) = 3, the 9×9 determinant det(ψT ) gives a non-trivial equation
for σ4(Seg(PA× PB × PC)), which is also Strassen’s equation. This polynomial has 9, 216
monomials.

Remark 3.5. In the case that a = b = 3 and c = 4, as a vector space, M9 is isomorphic to
S3C4 so dim(M9) = 20. When the highest weight vector of a module has a determinantal
representation (as in the case of M9), it is typically much faster to compute a basis of the
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module from the highest weight vector using lowering operators. Using this method, we
found that the natural basis of M9 consists of polynomials with 9, 216 or 25, 488 or 43, 668
monomials. As in Remarks 3.2 and 2.2, these polynomials can be associated to representative
polynomials, depending on fillings. In the A and B-factors, the diagram for (3, 3, 3) can only

have one semi-standard filling, namely

1 1 1
2 2 2
3 3 3 . In the C-factor, there are three classes

of fillings, namely

1 1 1
2 2 2
3 3 3 ,

1 1 1
2 2 2
3 3 4 and

1 1 1
2 2 3
3 4 4 . These fillings yield the representative

polynomials consisting of 9, 216 or 25, 488 or 43, 668 monomials respectively. The rest of the
polynomials in a basis of M9 can be constructed by the substitution pi,j,k 7→ pi,j,k′.

Alternately, a basis ofM9 can be constructed via Ottaviani’s formulation. They are derived
from the condition that the now 9×12 matrix appearing in (1) have rank 8 or less. However,
the space of 9× 9 minors of ψT is no longer irreducible when a = b = 3 and c = 4. Namely
the space of 9× 9 minors of the 9× 12 matrix ψT is the following representation

S3,3,3A
∗ ⊗ S3,3,3B

∗ ⊗ S3,3,3C
∗

⊕S4,3,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,3,2,1C
∗

⊕S5,2,2A
∗ ⊗ S3,3,3B

∗ ⊗ S3,2,2,2C
∗.

There are three equivalence classes of maximal minors of ψT depending only on the column
index I of the maximal minor of ∆I(ψT ). Let P = (P1, P2, P3) be the partition of the set
{1, . . . , 12} into three sets P1 = {1, 2, 3, 4}, P2 = {5, 6, 7, 8}, P3 = {9, 10, 11, 12}. The
representation S3,3,3A

∗ ⊗ S3,3,3B
∗ ⊗ S3,3,3C

∗ is associated to the minors ∆I(ψT ) such that
I ∩ Pi = 3 for i = 1, 2, 3. This condition precisely forces the minor of ψT to be constructed
with 3 × 3 submatrices of T1, T2 and T3. The representation S4,3,2A

∗ ⊗ S3,3,3B
∗ ⊗ S3,3,2,1C

∗

is associated to the minors ∆I(ψT ) such that I ∩ P1 = 4, I ∩ P2 = 3, I ∩ P3 = 2. The
representation S5,2,2A

∗ ⊗ S3,3,3B
∗ ⊗ S3,2,2,2C

∗ is associated to the minors ∆I(ψT ) such that
I ∩ P1 = 4, I ∩ P2 = 4, I ∩ P3 = 1.

Note that symmetry in the A and B factors implies that we may reverse the roles of A and
B to find two more modules in the ideal, namely the two modules S3,3,3A

∗⊗S4,3,2B
∗⊗S3,3,2,1C

∗

and S3,3,3A
∗ ⊗ S5,2,2B

∗ ⊗ S3,2,2,2C
∗ must also vanish on σ4(PA× PB × PC).

While we have described five modules of degree 9 equations which vanish on σ4(PA ×
PB × PC), we only use the module M9 = S3,3,3A

∗ ⊗ S3,3,3B
∗ ⊗ S3,3,3C

∗ along with M6

described above for our set-theoretic defining equations. We can conclude that 〈M9〉 6⊂ 〈M6〉
by analyzing the shapes of the partitions involved. More specifically, in the C-factor the
partition (3, 3, 3) only has 3 parts, but if Sπ1

A∗ ⊗ Sπ2
B∗ ⊗ Sπ3

C∗ is a module in the ideal
generated by M6 then π3 must have at least 4 parts. However this argument fails for the
other four degree 9 modules so it is possible that these equations are in the ideal generated
by M6. Moreover our set-theoretic result implies that it must be the case that the other
degree 9 modules are in the ideal generated by M6 (with very high probability).

Example 3.6 ( [Fri10]). Friedland has shown that the equations in degree 9 are not sufficient
to define σ4(PA × PB × PC) set-theoretically. We thank J.M. Landsberg for the following
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clarification of Friedland’s example. Consider the point

P = (a1⊗b1+a2⊗b2)⊗c1+(a1⊗b1+a2⊗b3)⊗c2+(a1⊗b1+a3⊗b2)⊗c3+(a1⊗b1+a3⊗b3)⊗c4.

The span of {a1, a2, a3} and the span of {b1, b2, b3} are both no more than 3-dimensional,
so P is a zero of M5. One finds that ψT (P ) has rank 8 and therefore P is a zero of M9.
However P is not a point of σ4(PA×PB×PC). This geometric argument implies that more
polynomials are needed than just the degree 5 and 9 equations. For this, Friedland produces
equations of degree 16 which do not vanish on P .

On the other hand, P is not in the zero set of M6, so M6 is sufficient to rule out the
possibility of points of the same form as P to have border rank 4.

Remark 3.7. To construct a basis of the 8000 dimensional space S(3,3,3)C
4 ⊗ S(3,3,3)C

4 ⊗
S(3,3,3)C

4, one can repeat the lowering operator procedure. Since these polynomials are
very complicated, our experience is that, in practice, one should use the degree 9 equations
in their determinantal form. To check if a point z vanishes on all of the polynomials in
S(3,3,3)C

4 ⊗ S(3,3,3)C
4 ⊗ S(3,3,3)C

4, it is more efficient to first construct the matrix in (1) for
the point z and check that the determinant vanishes. Then repeat this test for all allowable
changes of coordinates, in other words, for every g ∈ GL(4)×GL(4)×GL(4) construct the
matrix in (1) for g.z and check that the determinant still vanishes. If one only wants a quick
check that z is in the zero-set with high probability, it suffices to check that g.z is in the
zero-set for a random g.

Since (2, 2, 2) has 3 parts, and (3, 1, 1, 1) has 4 parts, M6 must vanish on the subspace
varieties Sub2,3,4∪ Sub3,2,4 ∪ Sub3,3,3. Also, note that two of these subspace varieties are al-
ready contained in the secant variety, namely σ4 (P

2 × P2 × P3) ⊃ Sub2,3,4 ∪ Sub3,2,4. Indeed,
if x ∈ Sub2,3,4, there exists A′ ⊂ A such that dim(A′) = 2 and x ∈ P(A′ ⊗ B ⊗ C). But in
this case P(A′ ⊗ B ⊗ C) = σ4(PA

′ × PB × PC) ⊂ σ4(PA× PB × PC). The same argument
is repeated for Sub3,2,4.

Based on this evidence, we make the conjecture

Conjecture 3.8. As sets,

V(S(2,2,2)C
3 ⊗ S(2,2,2)C

3 ⊗ S(3,1,1,1)C
4) = σ4

(

P
2 × P

2 × P
3
)

∪ Sub3,3,3 .

Theorem 4.1 below implies that Conjecture 3.8 is true with extremely high probability.

Corollary 3.9 (Corollary to Theorem 4.1). Let A ∼= C3, B ∼= C3, C ∼= C4. The secant
variety σ4 (PA× PB × PC) is defined set-theoretically by

M6 = S(2,2,2)A
∗ ⊗ S(2,2,2)B

∗ ⊗ S(3,1,1,1)C
∗

M9 = S(3,3,3)A
∗ ⊗ S(3,3,3)B

∗ ⊗ S(3,3,3)C
∗.

Proof. By Proposition 2.1 and by Strassen’s Theorem 3.3 combined with inheritance we
know that both M6 and M9 are in the ideal of σ4 (PA

∗ × PB∗ × PC∗). So we know that
σ4 (PA× PB × PC) ⊂ V(M6 ⊕M9).

For the other inclusion, select a point z in the common zero locus of M6 and M9. Since
z ∈ V(M6), Conjecture 3.8 says that either z is on the secant variety, in which case we are
done, or z is on the subspace variety. In the latter case, let C ′ ⊂ C be a 3-dimensional vector
space so that z ∈ P(A⊗B⊗C ′). Then z is a zero ofM9 = S(3,3,3)A

∗⊗S(3,3,3)B
∗⊗S(3,3,3)C

∗, and
8



therefore is also a zero of the polynomials in the restriction S(3,3,3)A
∗⊗S(3,3,3)B

∗⊗S(3,3,3)C
′∗.

So by Strassen’s Theorem 3.3,

z ∈ σ4(PA× PB × PC ′).

We conclude because we have the obvious inclusion

σ4(PA× PB × PC ′) ⊂ σ4(PA× PB × PC).

�

We used numerical algebraic geometry, specifically Bertini, to compute the decomposition
of the zero set V(M6) into irreducible varieties. In particular Theorem 4.1 verifies Conjec-
ture 3.8 with extremely high probability. For completeness, we restate the combination of
Landsberg and Manivel’s result with our computations as follows:

Theorem 3.10. As sets, for a, b, c ≥ 3, with extremely high probability, σ4
(

Pa−1 × Pb−1 × Pc−1
)

,
is the zero-set of:

(1) Strassen’s commutation conditions,

M5 := S(3,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕S(2,1,1,1)A
∗ ⊗ S(3,1,1)B

∗ ⊗ S(2,1,1,1)C
∗

⊕S(2,1,1,1)A
∗ ⊗ S(2,1,1,1)B

∗ ⊗ S(3,1,1)C
∗,

(2) equations inherited from σ4 (P
2 × P

2 × P
3),

M6 = S(2,2,2)A
∗ ⊗ S(2,2,2)B

∗ ⊗ S(3,1,1,1)C
∗

M9 = S(3,3,3)A
∗ ⊗ S(3,3,3)B

∗ ⊗ S(3,3,3)C
∗,

(3) and modules in S5(A∗ ⊗ B∗ ⊗ C∗) containing a
∧5, i.e. equations for Sub4,4,4.

4. Results using numerical algebraic geometry

In this section, we provide a very brief overview of the basic methods of numerical algebraic
geometry; references for further details are provided. We then describe the results of the run
establishing the main result of this article and conclude with a short discussion regarding the
reliability of numerical algebraic geometry methods and, more to the point, the reliability of
this result.

4.1. Brief overview of numerical algebraic geometry methods. Given generators
of an ideal of C[x1, . . . , xN ], the methods of numerical algebraic geometry will produce a
numerical irreducible decomposition for the associated variety X ⊂ CN . In particular, for
each irreducible component Z of X , these methods will produce, with probability one, degZ
numerical approximations (to any number of digits) of generic points on Z. The end result
is a catalog of all irreducible components of X , each indicated by a set of witness points on
the component (together referred to as a witness set for the component), its dimension, and
its degree.

The core method of numerical algebraic geometry is homotopy continuation, a method for
approximating the complex zero-dimensional solution set of a polynomial system. The basic
idea of homotopy continuation is to cast the given polynomial system F as a member of
a parameterized family of polynomial systems, one of which, G, has known solutions or is
otherwise easily solved. If done correctly, the solutions of G will vary continuously to those
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of F as the parameters are varied appropriately. By tracking these paths numerically (using
predictor-corrector methods), one will arrive at numerical approximations of all complex
zero-dimensional solutions of F . There have been many technical advances in this area
that contribute heavily to the reliability of these methods. Please refer to [SW05,Li03] as
general references and [BHSW08,BHSW09] regarding the use of adaptive precision methods
for added reliability.

Pairing homotopy continuation with the use of hyperplane sections, monodromy, and a
few other methods described fully in [SW05] yields the numerical irreducible decomposition.
Briefly, a d-dimensional irreducible algebraic set in CN will intersect a generic codimension
d linear space in a set of points. This statement about genericity (along with similar as-
sumptions of genericity throughout numerical algebraic geometry) is the reason for referring
to these methods as probability-one methods, as described further below.

The computation of a numerical irreducible decomposition begins by searching for codi-
mension one irreducible components (by adding N−1 linear polynomials to the set of gener-
ators and solving for zero-dimensional components via homotopy continuation), followed by
codimension two components, etc. Once this sweep through all possible dimensions has been
completed, we have a superset of the desired numerical irreducible decomposition, since a lin-
ear variety of codimension d will intersect any component of dimension d or higher. Sommese,
Verschelde, and Wampler (and others) have developed methods for removing points in the
“wrong dimension,” i.e., those discovered while searching for components in dimension d

which actually lie on higher-dimensional components, called junk points. They have also
developed algorithms for performing pure-dimensional decompositions to yield witness sets
on each irreducible component (instead of the initially-found witness sets for the union of
all equidimensional irreducible components). Since this is intended as a very brief overview,
please refer to [SW05] for further details.

There are three main software packages in this field: Bertini [BHSW10b], HOM4PS-
2.0 [LLT10], and PHCpack [Ver10]. Each package has various benefits over the others [BHSW10a].
Since Bertini is typically the most efficient package for large, parallel, positive-dimensional
problems as well as the package with the most reliability and precision features, we used
Bertini in our computations for this article. In fairness, it should also be noted that the
second author is a Bertini developer.

4.2. Numerical results for the Salmon Problem.

Theorem 4.1. With extremely high probability, the zero-set of the 10 polynomials in a basis
of M6 (defined above) has precisely two irreducible components. One, in dimension 31, has
degree 345. The other, in dimension 29, has degree 84.

Indeed, it can be checked that σ4 (P
2 × P2 × P3) is non-defective and has dimension 31

[BCS97, p. 5]. It is also straightforward to check that Sub3,3,3 has dimension 29, and by the
pigeon-hole principle, these must be our components in the zero-set of M6. Though these
dimensions are sufficient information to identify our varieties, as additional information, we
find that this secant variety has degree 345 and the subspace variety has degree 84.

Proof. The conclusion comes from the results of a calculation on Bertini [BHSW10b] using
approximately 2 weeks of computing time on 8 processors, using tight controls including
small tracking and final tolerances (10−10 or smaller), adaptive precision numerical methods,
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and a variety of checks and error controls built into Bertini (such as checking at t = 0.1 that
no paths have crossed). �

4.3. Reliability of this result. Can the result of the previous section be accepted as
absolute proof? No, unfortunately, it may not. However, this numerical computation gives
extremely strong evidence that Theorem 4.1 is indeed true even without the statement “with
extremely high probability”.

4.3.1. Theoretical results with extremely high probability. Many of the methods of numerical
algebraic geometry are probability-one algorithms, meaning that the method will provide the
desired result unless some random choices are degenerate. In particular, the success of these
methods depends on the choice of random numbers from a Zariski open, dense set S of some
parameter space rather than choosing some set of points in the complement of S. Since
the complement of S is an algebraic set, we know that it must have positive codimension,
making it a set of measure zero for any reasonable choice of measure. Thus, the methods
will succeed with probability (measure) one.

This does not imply that these methods are untrustworthy, but it must be understood
that these methods cannot provide complete certainty for this reason. In the case of the
Salmon Problem, the parameter space from which random numbers are chosen is of very
high dimension, so the likelihood of having chosen “bad” random numbers (particularly since
Bertini chooses random numbers with some fixed level of precision, meaning any irrational
number would be missed) is extremely low. While it is feasible to actually compute the
algebraic set of “bad” choices, for example when choosing a linear space with which to slice
some potential irreducible components, such computations are much more time-consuming
than solving the original problem and, themselves, include the need to locate some further
“bad” algebraic set, etc., ad infinitum. Thus, certainty cannot be attained by computing the
set of bad choices. Methods for certifying path tracking are under development but are not
yet available.

4.3.2. Numerical concerns and thoughts about this particular computation. The choice of
“bad” random numbers (as in the previous discussion) or numbers very close to “bad”
random numbers will typically lead to ill-conditioning during path-tracking. Bertini has
been developed with reliability as the paramount concern, so paths experiencing significant
numerical ill-conditioning (significant enough to overwhelm adaptive precision methods) will
be recorded as “failed paths,” i.e., paths for which tracking from the initial parameter value
to the final parameter value is not possible are said to have failed. It is not uncommon
to complete a Bertini run with some path failures, meaning that tolerances must be made
tighter (paths must be tracked more carefully, new random numbers must be chosen, etc.)
to avoid this ill-conditioning.

The run for this article used a special equation-by-equation algorithm called regenera-
tion [HSWar] and required the following of more than 200,000 paths. There were absolutely
no path failures and no crossed paths detected among these 200,000 paths. The second
author is a developer of Bertini and has worked in this field for several years. To have such
a run end with no numerical warnings is very encouraging; this was a very “clean” run.

In the case of positive-dimensional tracking, there is an extra layer of reliability. In this
case, suppose there is a component of dimension 28 that Bertini somehow missed while
searching for components in dimension 28, in addition to the components of dimensions 29
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and 31 found by Bertini (as stated in the theorem above). This would mean that (a) the linear
variety of codimension 28 used when searching for 28-dimensional components was degenerate
(in the “bad” algebraic set in the appropriate parameter space) and, far more importantly,
(b) this component was also missed when searching for all lower-dimensional components.
Indeed, while moving through the cascade of dimensions, junk points (see above) would,
with extremely high probability, be found at each dimension below 28. Thus, given the large
number of variables in this problem and the complete dearth of such extraneous junk points,
it is very unlikely that Bertini missed a component.

Furthermore, when using monodromy (see [SW05]) to decompose the pure-dimensional
components in dimensions 29 and 31, monodromy loops indicated directly that all witness
points in each dimension fell on the same component. While this is not absolute proof that
there is a unique component in dimension 29 and one in dimension 31, this again provides
very strong numerical evidence. Indeed, if the breakup in dimensions 29 and 31 is incorrect,
e.g., if there are actually two components in dimension 29 rather than just one, then the
monodromy action used to carry out the equidimensional decomposition in these dimensions
would not have sent points from one component into those of another, again, with extremely
high probability.

Similarly, the trace test (see [SW05]) used to certify (with extremely high probability) the
completeness of a witness set would fail if even a single witness point were missing. The
trace test for each of the two components succeeded.

In summary, we cannot conclude with unquestionable certainty that Theorem 4.1 holds
unconditionally, but we can state with an extremely high level of confidence that it is correct.
Motivated by this result, we hope to find a direct argument to prove Conjecture 3.8.

4.3.3. Numerical vs. symbolic computation. Finally, one might wonder why we chose to use
numerical methods to test this conjecture rather than symbolic methods that will provide
certainty. The main reasons are simple: time and space. Regarding time we expect that
without additional ideas to reduce the difficulty of computation, a related calculation using
symbolic methods should take at least eight times as long as the calculation in Bertini because
Gröbner basis algorithms are not parallelizable. In fact, based on the timings from an ongoing
benchmarking project between the Bertini and Singular [DGPS10] development teams, we
suspect that any symbolic computation will actually take far more than eight times as long.
Regarding the issue of space we must consider data storage at intermediate stages. While the
initial input and final result may be relatively small, Gröbner basis algorithms typically must
store large intermediate results for subsequent calculations. On the other hand, homotopy
continuation algorithms require a trivial amount of extra data in intermediate stages. Indeed,
the amount of memory used grows linearly with the number of paths tracked (simply because
the final point on each path must be stored). Bertini is thus much less likely to fail due to
memory constraints.
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