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A POLYNOMIAL BRACKET FOR THE
DUBROVIN-ZHANG HIERARCHIES

A. BURYAK, H. POSTHUMA, AND S. SHADRIN

ABSTRACT. We define a hierarchy of Hamiltonian PDEs associ-
ated to an arbitrary tau-function in the semi-simple orbit of the
Givental group action on genus expansions of Frobenius manifolds.
We prove that the equations, the Hamiltonians, and the bracket
are weighted-homogeneous polynomials in the derivatives of the
dependent variables with respect to the space variable.

In the particular case of a conformal (homogeneous) Frobenius
structure, our hierarchy coincides with the Dubrovin-Zhang hier-
archy that is canonically associated to the underlying Frobenius
structure. Therefore, our approach allows to prove the polynomi-
ality of the equations, Hamiltonians and one of the Poisson brackets
of these hierarchies, as conjectured by Dubrovin and Zhang.
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1. INTRODUCTION

In this paper, we translate some basic notions of the fundamental
work of Dubrovin and Zhang [4] on bi-Hamiltonian integrable hierar-
chies associated to Frobenius manifolds [4] into the language of coho-
mological field theories, Givental theory, and the related topology of
the moduli space of curves. From this point of view, Givental’s group
action on cohomological field theories gives us a new tool to study
Dubrovin-Zhang hierarchies, and we use it to establish one of the key
properties of the hierarchies conjectured by Dubrovin and Zhang: the
polynomiality of one of the Hamiltonian structures.

We refer to the papers of Dubrovin and Zhang [3, 4] (see also the
expositions of some parts of their theory in [8] and [20]) and to a number
of papers on Givental’s theory [6, 9, 10, 12, 13, 14, 21] for the necessary
general background that we will be able to recall only briefly in this

paper.

1.1. Dubrovin-Zhang construction and polynomiality. Let us
explain the main problem that we address in this paper. Dubrovin
and Zhang [3, 4] were working on a classifications project for a special
class of 141 hierarchies that would conjecturally include many inter-
esting hierarchies of this type. Their approach is based on a number
of conjectures (in some cases, proved) identifying Gromov-Witten po-
tentials of some target varieties as tau-functions of some hierarchies of
KdV-type.

The construction of Dubrovin and Zhang consists of several steps.
First, there is a canonical relation between dispersionless bi-Hamiltonian
tau-symmetric hierarchies of hydrodynamic type and semi-simple con-
formal Frobenius manifolds (that is, semi-simple Frobenius manifolds
equipped with an Euler vector field). Second, imposing the Virasoro
constrains as an axiom, Dubrovin and Zhang find a unique quasi-Miura
transformation that turns the dispersionless hierarchy into a disper-
sive one. The tau-cover of the resulting dispersive hierarchy has a
distinguished solution called topological that is conjectured to be the
Gromov-Witten potential’ of some target variety X in the case we
have started with the Frobenius manifold structure determined by the
quantum cohomology of X.

The term “quasi-Miura transformation” refers to a Miura-type trans-
formation that is not necessarily a polynomial in the derivatives of
the dependent variables, but rather a rational function. Exactly this
non-polynomiality is the source of problems in the Dubrovin-Zhang

LGromov-Witten theory serves us as just one of the motivating examples, where
the objects that we consider do arise in a natural way. Therefore we systematically
ignore throughout the paper the subtlety related to the fact that Gromov-Witten
potential take values in the Novikov ring rather than in C.
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construction. The dispersionless hierarchy is polynomial in the deriva-
tives, namely, all its Hamiltonians, equations, and both Poisson brack-
ets are polynomials. On the other hand, all ingredients of the resulting
dispersive hierarchy appear to be merely rational functions. In some
sense, the canonical nature of the Dubrovin-Zhang construction, in
particular, the fact that the quasi-Miura transformation is determined
unambiguously by the axiom of Virasoro constraints, allows to control
completely the resulting hierarchy. In particular, Dubrovin and Zhang
conjectured that the Hamiltonians, the equations, and the brackets are
polynomials in the derivatives. In fact, the paper [4] contains a proof
of the polynomiality of the Hamiltonians and the equations, but Boris
Dubrovin has recently informed us that, unfortunately, there is a gap
in their argument.

1.2. Givental theory. There is another canonical genus expansion of
a semi-simple conformal Frobenius manifold. It was given by Givental
in terms of the quantization of a group action on the space of Frobe-
nius manifolds [9, 10, 11]. Dubrovin and Zhang proved in [4] that
the topological tau-function that they constructed coincides with the
Givental formula. On the other hand, a result of Teleman [23] on the
classification of semi-simple weighted homogeneous cohomological field
theories implies the following: if the quantum cohomology of a target
variety determines an analytic semi-simple Frobenius structure, then
the full descendant Gromov-Witten potential must coincide with the
Givental formula. Therefore, in this setting the conjecture of Dubrovin
and Zhang that the topological tau-function of their hierarchy coin-
cides with the corresponding full descendant Gromov-Witten potential
is true.

We restrict our attention to a full descendant Gromov-Witten poten-
tial, or, more generally, any formal power series in the semi-simple orbit
of the quantized Givental group action. If we forget about homogeneity
and therefore the Euler vector field, we lose the bi-Hamiltonian struc-
ture associated to the underlying Frobenius manifold. However, we still
can define some pieces of the structure of the hierarchy purely in terms
of this formal power series. This includes the Hamiltonians, equations,
and one Poisson bracket of the dispersionless hierarchy, together with a
weakened version of a quasi-Miura transformation. With this transfor-
mation we can therefore define the Hamiltonians, equations, and one
bracket of the full dispersive hierarchy. A weak quasi-Miura transfor-
mation simply means that in the non-homogeneous case we have no
control on non-polynomial nature of the transformation that we con-
struct, and we only know, by the result of Dubrovin—Zhang, that it
turns into a rational function in the points where an Euler vector field
can be introduced.
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1.3. Group action on ingredients of the hierarchy. We see that
by dropping the homogeneity condition, we loose a part of the struc-
ture. However, we gain a new tool — the quantized action of the
Givental group. It acts on some special kind of formal power series
and its action can be translated into the action on those ingredients of
the hierarchy that can be reconstructed from topological tau-functions
without a usage of the Euler vector field.

Of course, we cannot say anything about weak quasi-Miura transfor-
mations, since it is even not clear in which class of functions we have
to look for its deformations, but we still can compute the infinitesimal
action of the Givental group on Hamiltonians, equations, and a bracket
of the full dispersive hierarchy associated to a particular point in the
semi-simple orbit of the Givental group. It is an amazing computa-
tion, quite difficult in many places, and it has a remarkable outcome:
the deformation formulas imply that if Hamiltonians, equations, and a
bracket that we deform are polynomials at one point in the orbit, they
remain to be polynomials in the whole orbit.

There is indeed one point in the orbit of the Givental group, where
everything can be computed explicitly and the polynomiality of all key
structures is clear. It is the Gromov-Witten potential of n points, or,
in other words, the product of n copies of the topological tau-function
of the KdV hierarchy.

In this way we generalize the conjecture of Dubrovin and Zhang on
polynomiality of the Hamiltonians, the equations, and one of the brack-
ets to the case of non-homogeneous Frobenius structures, and we prove
it in the more general settings of non-homogeneous Frobenius struc-
tures. However, we have to mention that the second bracket is so far
completely out of reach for our methods since its definition heavily uses
the Euler vector field, which is not well compatible with the Givental
group action.

1.4. Organization of the paper. In Section 2 we recall the key for-
mulas for the Givental group action on the space of tame partition
functions associated to Frobenius manifolds. In Section 3 we explain
how to write down the principal and the full hierarchy associated to
an arbitrary tame partition function. In the homogeneous case, it is
simply an explanation how to reproduce different ingredients of the
Dubrovin-Zhang construction starting from a topological tau-function.

The equations and the Hamiltonians of the full Dubrovin-Zhang hi-
erarchy are expressed in terms of functions (1, .3, that are, roughly
speaking, the second derivatives of the logarithm of the partition func-
tion we have started with. In Section 4 we compute the formulas for
the infinitesimal deformation of €2, .5, With respect to the Lie algebra
of the Givental group.
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The main property of the Poisson bracket is that it turns Hamilto-
nians into the equations. This allows us to compute an infinitesimal
deformation formula for the bracket in Section 5. It is the most com-
plicated computation in the paper. In Section 6 we state a uniqueness
result that implies that we indeed have deformed the Dubrovin-Zhang
canonical bracket (rather than that we have found a new one).

Though the formulas for the infinitesimal deformations that we ob-
tains are fairly complicated, it is enough to look into their structure in
order to conclude that they preserve the homogeneous polynomiality of
the deformed objects. We discuss that in Section 7, and, together with
deformations formulas themselves, it is the main result of our paper.

1.5. Acknowledgements. We thank G. Carlet, B. Dubrovin, S. Igo-
nin, J. van de Leur, and D. Zvonkine for helpful remarks and discus-
sions.

2. THE ACTION OF THE GIVENTAL GROUP

In this section we briefly recall the definition of the Givental group
and its action on the so-called tame partition functions.

2.1. Tame partition functions. Let V' be a vector space of dimen-
sion s equipped with a scalar product (, ). We fix an orthonormal
basis ey, & = 1,...,s and write 1 for the element > °_, e, in V. Next
we consider the vector space V @ Clz] and write t = Y | to xeq2® for
a generic element of it.

We shall consider partition functions in the variables h and t,,
a=1,...,5, k=0,1,..., of the form

(1) Z(to,tl, .. ) = exXp (i hg_ng(to,tl, .. )) .

Here we assume that hlog Z is an analytic function in the variables
to = {t10,...,ts0} and a formal power series in hand t,,, @ =1,...,s,
k > 1. An example of such a partition function is the generating
function of Gromov-Witten invariants of a target variety, or, more
generally, the partition function of a cohomological field theory (modulo
some convergence issues that are still important in these cases, since
we need to check the analyticity).
For such a partition function, we define

o . 0K

2 Q =0
(2) PBA T Ot Oty



6 A. BURYAK, H. POSTHUMA, AND S. SHADRIN

and introduce recursively the formal vector fields

0
3 Oqp = ,
( ) 70 ata()
Oa k= atak - E > Q500851 k> 1.

i=0 B

An important regularity condition on the partition functions is given
by tameness. In Gromov-Witten theory this property expresses the
fact that by the factorization property the potential satisfies an infinite
number of equations by pulling back high enough powers of 1-classes on
moduli spaces of stable curves, which vanish for dimensional reasons,
cf. [5, 8, 10]. We express this property as follows:

Definition 1. A partition function Z is said to be tame if
0?F,

4 Owti | =——=—

4) * (ata,patg,q

(5) Ou (Fy) =0, g>1,k>3g—2,a=1,...,s

):O, kE>0,a=1,...,s;

For example, the topological recursion relation for the ¢ = 0 poten-
tial (TRR-0) is equivalent to the equation (4) for £ > 0 in the defi-
nition above. In the framework of Frobenius manifolds, it implies the
associativity of the multiplication on V' and can be used to introduce
descendants starting from a prepotential on the small phase space.

Besides these relations, we shall assume that F,, g > 0, satisfies the
string equation:

OF, F, | 50
(6) Aty =D tukrgr s at Zt

V7

In the case of ¢ = 0, this equation is related to the existence of a unit
vector field on the underlying Frobenius manifold.

2.1.1. Genus 0. In genus 0, some geometrical meaning of the tameness
condition is given by the following proposition.

Proposition 2. For a tame potential Fyy, the vector fields Oy, k > 1,
a=1,...,s, are in involution: [Ou, O] = 0.

Proof. Indeed, the coefficients of the vector fields O, x, Og,; are polyno-
mials in Q, .5, Equation (4) implies that the derivatives of coefficient
of O, with respect to Og; (and vice versa) are equal to zero. There-
fore, the commutator is also equal to zero. O

It follows that the vector fields O, for k > 1 define a foliation of

codimension s = dim(V'). By condition (4) the functions QLP 5.q Are

constant along the leaves and can be written as functions of s variables
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in coordinates adapted to the foliation. This can be done explicitly by
the coordinate transformation ¢, o — v,(t), where

D vl = Lol tin) = (g1, ..
a . 0,0;1,0\%05 t15 - - - atohoat]ho 0501y «--)-
Differentiating the string equation (6), one finds that
(8) Vo = ta,O + Z tV7k+1Q[o?,}0;u,k’
v,k

Proposition 3. We have:
(9) O (o, by, .. ) =0 (0,0,0,...).

a,p,B.q a,p;fB.q
Proof. Indeed, by the previous equation both sides agree when ¢, = 0,
k > 1, and are constant in the direction of the vector fields O, ,
kE>1. O

2.1.2. Higher genera. An analogue of equation (9) exists for any g > 1
and is called the 3g — 2 property [5, 4, 8, 10].

Let us fix ¢ > 1. The vector fields O, for k& > 3g — 1 define a
foliation of codimension s(3g — 2). By condition (5) the function Fj, is
constant along the leaves and can be written as functions of s(3g — 2)
variables in coordinates adapted to the foliation. This can be done
explicitly by the coordinate transformation ¢, — v (%), k < 3g — 2,
where
ok ok
10 Vai(t) = =2 = ——Q%

( ) ,k( ) at’fl,O 8t1ﬁ70 ,0;1,0

Differentiating further equation (8) and using the string equation (6),
one finds that

(11) ’Uan = 5];;71 + ta,k + ZtVyk'f‘m‘l'lQ[o?,}O;l/,m + O(t2)

v,m

(to, t1,...).

In these coordinates we have the following description of F.

Proposition 4. There exist functions P, . .. ngg]_Q of 3g— 1 variables
such that

(12) F,(to.tr,...)
= Fg (Po[g](vo, P ,’Ugg_g), .. .,P?EZ}_2(’U0, P ,Ugg_g),o,o, .. ) .

Proof. First of all, we observe that tameness in genus 0 implies that
OakVgm = 0 for k > m+1. Therefore, both the left hand side and the
right hand side of equation (12) are constant along O, k > 3g — 1.

Let us choose functions Pi[g], 1 =20,...,3g — 2 to be the inverse map
to {tak fe<sg—2 > {Vak tr<3g—2 given by equation (11) restricted to the
subspace t,; = 0, k > 3¢9 — 1. Since the foliation spanned by O,
k > 3g—1, is transversal to this subspace, we obtain the equation (12)
on the whole space of variables. O
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2.2. The Givental group and Lie algebra. In [10], Givental intro-
duced the action of the twisted loop group LG L(V) on the space of
tame partition functions.?. Here we shall use, following [12, 6], the in-
finitesimal action of its Lie algebra on the space of tame partition func-
tions satisfying the string equation (6). For this we use the Birkhoff
factorization of the loop group and introduce the Lie algebras

(13) g+ := {u(z) = Zukzik, up, € End(V), u(—2)" +u(z) = 0} .
k>0

In general we shall write ¢ for a generic element of g, which is tradi-

tionally called the upper triangular subalgebra, and s for an element in

g_, the lower triangular subalgebra.

Concretely, the upper triangular subalgebra is given by formal power
series t = >, tz" € End(V)][[2]], where v, is selfadjoint for k odd
and skew-selfadjoint for k& even. Such an element acts on a partition
function by the second order differential operator computed in [12]:

. 0
(14) t::—Z( ﬂat + Z (ve)s, Vdat
21 w1 420,01 pod+t
52
+ 3 Z (i)
bt Ot,,.i0t,,
v

For s = 2521 s,27%, an element of the lower triangular subalgebra, we
have the first order differential operator computed in [12]:

. 1 1
(15) §:i=— %(53)1,1 ts ;(5d+2)1,utu7d
z
1 7
+ o 2 (=1 (Sij41) pwtuite
,j>0
w,v

— (51 ) 1 0 + 55 l/ A+, 0
p Oty.d
)u‘7

ot
B0 >0 0>1

The geometrical meaning of the actions of these two parts of the
Givental group is quite different: the upper triangular part correspond-
ing to g, deforms the structure of the underlying Frobenius manifold,
whereas the lower triangular part doesn’t: it only changes the calibra-
tion of the Frobenius manifold as well as shifts the point around which
one expands the potential F', see [6].

In fact, here we abuse a little bit the terminology. The twisted loop group
action includes a translation of variables g o, see [6] for a detailed discussion. So,
in general, to a particular partition function one can only apply a group element in
a small enough neighborhood of the unit.
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2.2.1. Convention on signs. We have fixed from the very beginning
that we work with the metric given by the unit matrix in our choice of
coordinates. In order to make clear the signs in the formula for t and
5, we use the following conventions for the shifts of indices:

(te)o = (v0)*, (50)s = (s0)*°
(te)as = (=1) (x5, (50)ap = (=1)"(s0)3-

We use this convention throughout the rest of the paper, in all compu-
tations.

3. THE HIERARCHY ASSOCIATED TO A POTENTIAL

In this section we describe the integrable hierarchy associated to
a formal partition function. At first we shall be concerned with a
formal neighbourhood of a non-homogeneous Frobenius manifold (that
is, a Frobenius manifold without an Euler vector field). This is given
by a tame g = 0 potential Fj, i.e., satisfying the genus 0 topological
recursion relation (equivalent to the Equation (4) given in Definition 1)
and the string equation (6).

3.1. The principal hierarchy.

3.1.1. Notations for the calculus of variations. The principal hierarchy
associated to a Frobenius manifold is a system of partial differential
equations in the variational bicomplex of functionals on the formal
loop space of maps from S!' to V. Explicitly, this means that if we
denote the global coordinate on S* by z and let v,, @ =1,...,5 be a
basis of V', a formal loop in V' is parametrized by the jet coordinates
Vot i= 0", /0x*, k > 0. On this formal loop space, we consider local
functionals of the form

(16) Fv) = /f(x,vo, o v)de,

where f(z,vp,...,vx) is a differential polynomial, i.e., depends analyt-
ically on = and v, and is a polynomial in the higher variables v, ,
k > 1. The total derivative acting on such differential polynomials is
given by

_9f of
(17) 8wf = o + ; ava’kva,k-i-h

so that [0,fdx = 0. Remark that with this definition one indeed
has that vg 41 = OyVa k. As a functional, the variational derivative is
defined as

(18) of Z(—Usasa—f.

Vg, — 7
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(Here we abuse a little bit the standard notations, where one used to
write the variational derivative above applied to functionals [ f du.)
For a detailed account of the variational bicomplex associated to the
formal loop space, one should consult [4, §2.2.].

For the construction of the principal hierarchy, we shall use the co-
ordinates v, defined in (7). First we introduce an z-dependence by
shifting along the ¢y o, and define

0*F,
Ota,00t1 0

With this shift we clearly have 0,v,(z,t) = v, (z,t)/0ty o and there-
fore

(20) Va (2, t) =

(19) (ZIZ' t) (ZL’—I—t]LQ,tl,tg,...).

ak+2F

m(tﬂp + l’,tl,tg, e )

3.1.2. The equations of the hierarchy. Clearly, v,(x,t) is a solution of
the system of equations

v,
8tﬁ7q_8x< aoﬁq(v,0,0...)), g=1,...,8, q¢=>0,
since the left and right hand sides are equal to the same triple deriv-
ative of Fy. This system of equations is called the principal hierarchy
associated to the Frobenius manifold. More specifically, if we deal with
a conformal Frobenius structure, i. e., if we have an Euler vector field,
this system of equations is a dispersionless bi-Hamiltonian hierarchy
with 7-symmetry.

Without an Euler vector field, we have only one Hamiltonian struc-
ture that we are going to describe. We first introduce the following
Poisson bracket on the formal loop space'

(22) (F.G} = / Z 59 S

where f and g are the polynomial densities of the functionals F' and G.

(21)

Next we define the densities of higher Hamiltonians H, ,, a =1,...,s,
p=>0:
(23) ha7p('U) = Qn7o;a7p+1(v, 0, 0... )

With respect to the Poisson bracket above, we have the following
Proposition 5. The Hamiltonians H, , = f hapdx Poisson commute:
{Hap, Hpq} = 0.

Proof. We need to show that

(24) Z Oy g o

507 5@7
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is 8 exact. In fact, we can prove that this expression is equal to

8,1

This is a straighforward computation using the topological

a.p+1;8,9°
recursion relations (4), which we write in the coordinates v, as
[0] (0]
(25) oS} apt+liBg _ Z Q[O} agﬁ,o;ﬁ,q
v, ap&0 Oy,
£
With this, we simply write out the Poisson bracket:
(26) Ohe ap g 5hﬁq _ Z aQap—i—l 1,0 5 896 g+1;1,0
51)7 v, ov, ’ v,
v

0] 0]
_ Z 0l aQ5,0;11,08 896 q+1;1,0
a,p;€,0 01}7 x 01}7
7€

0
_ Z Q Q[O 892710;1170
,;n“/O B,4;§,0 (9%
_ 0]
Z Q a,p;Y,0 8 Q’y 0,8,9

- 0 roerqu’

where in the last step one uses the fact that 9, = 0/0ty o because of the
shift of variables, together with the topological recursion relation (25)
once again. This completes the proof. O

Combining this proposition with the hierarchy (21) we find

v,
(27) {UOHHBQ} a Qa(]ﬁq atﬁ’q’
meaning that the Hamiltonian vector field associated to Hg, is given
by 8/(‘%5@.

In the presence of an Euler vector field, and, therefore, the second
Hamiltonian structure, it is proved in [4] that this set of Hamiltoni-
ans is complete, justifying the name integrable hierarchy. The solution
Vo (2, ) in (19) of equation (21) is called the topological solution. Other
solutions can be constructed using the hodographic method, cf. [4,
§3.7.4]: they are called monotone solutions and determined by an in-
vertible element u,1(0) € V.

3.2. The full hierarchy.

3.2.1. Change of coordinates. For the full, i.e., dispersive hierarchy, we
consider the formal extended loop space, meaning that we now consider
formal series

(28) f(l','on,wl, sy h) = thfk(xawmwb s aka)>
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where each f; is a differential polynomial in wy, ..., we, of degree 2k,
deg(w,,;) = i.> The natural group of coordinate transformations on
the extended loop space is the so-called Miura group of formal diffeo-
morphisms

(29) Wo > Wy 1= Z tha,k(w, Wi, - .., Way),

k=0
where G0, @ = 1,..., s is an invertible coordinate transformation and
G are differential polynomials in wy, ..., wq; with deg(Gax) = 2k.

When each G, is a rational function of degree 2k (and, therefore,
G, might depend on higher derivatives than wsqy, but still on a finite
number of them), such a coordinate change is called a quasi-Miura
transformation.

We now consider the full partition function (1), and introduce the
coordinates

0 (Lo hF,)

ollo, t1,...) 1=
(30) we(to, 1, - - - ) DtoroDtn o

(to,t1,ta,...).

Again we introduce the x-variable by shifting along the ¢y (-direction:
Wo(x,t) := wa(to + x, 11, t9, .. .), and therefore

0 (Lo no, )
1 ok =
(31) Wk 1ty 00ta o

(t(] +$,t1,t2,...).

Recall that Fj is a function of 3g—1 variables v, vy, ..., v34_2 as given
by Equation (12). Therefore, the second derivative of F, depends on
v, 01, ...,03, (here we have to use the principal hierarchy in order to
turn the derivatives in t-variables into the derivatives in z-variables).
So, the change of variables that we have here looks like

0°F,
8x8ta,0

(v,v1,...,039),

(32) Vg > Wo 1= Vg + Z h?
g=1

In the case of a conformal Frobenius structure, Dubrovin and Zhang
prove in [4] that it is a quasi-Miura transformation. In general case, we
have no control on how bad are the coefficients of the h-expansion of
this change of variables, though they still depend on a finite number of
the derivatives of the coordinates v,. We call such changes of variables
weak quasi-Miura transformations.

3This differs a little bit from the original conventions of Dubrovin and Zhang.
They consider series in € = vk, and the coefficient of €* is a weighted homogeneous
polynomial of degree k.
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3.2.2. Ingredients of the full hierarchy. Following the genus zero theory,
we now define

- O*F,
(33) Qa,p,ﬁ,q = Z hgatig
g

We see that w,(z,t) is a solution of the system of partial differential
equations

(34) = 01, (Qavo,qu(w, Wi, Wa, . .. )) .

Otsq

This system of partial differential equations is again a Hamiltonian
system obtained from the principle hierarchy by the weak quasi-Miura
transformation (32). This coordinate change transforms the Poisson
bracket (22) to another Poisson bracket given by the formula

(35) (F.G} —/Z of ZAaﬁas %9 .

where A = D e thaé is a formal power series in h whose coeffi-

cients are some functlons in w, wy, wsy, ... given by the formula
o
ow ow
36 AP = 900, 0 (=) 0 2.
( ) Z s T e 87]“,6 x z ( I) 8’0,/7]0
Ij7f

Is is not immediately obvious, but it is very easy to show (see Section 6
below) that A3” = 0.

Since we have no control on weak quasi-Miura transformations, we
can’t say anything about what kind of function Aaﬁ is. In the case
of a conformal Frobenius structure, when the coordmate change is a
quasi-Miura transformation, Dubrovin and Zhang conjecture that it is
a homogeneous polynomial in wy, ws, ... of degree 2g — s (we assume,
as usual, that degw; = 7). We prove this conjecture for an arbitrary
semi-simple Frobenius structure in Section 7.

In principle, under the coordinate change the Hamiltonians of the full
hierarchy should be simply recalculated in the new coordinates. How-
ever, there is still a freedom for the choice of densities of the Hamiltoni-
ans, since we can always add a 0,-exact term to them. It is, therefore,
natural to define the densities of the Hamiltonians equal to

(37) hop(w) = Qq pr1.10(w, w1, ws . .. )

_Zhgﬁtﬂoat (w, wy, wa, ... ),

a,p+1

which is simply the densities of the Hamiltonians (23) deformed by
003 oy WO, [t i)
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In the case of a conformal Frobenius structure, when the coordinate
change is a quasi-Miura transformation, Dubrovin and Zhang conjec-
tured and even attempted to prove that in the variables wq, wo, ... the
coefficient of hY of the h-expansion of any (2, ,., is a homogeneous
polynomial of degree 2g. As we have already mentioned above, un-
fortunately, Boris Dubrovin has informed us that they have found a
gap in their argument. We generalize their conjecture for an arbitrary
semi-simple Frobenius structure and prove it in Section 7.

Example 6 (The KdV hierarchy). The fundamental example of a prin-
cipal and full hierarchy associated to a tame partition function is given
by the KdV hierarchy. It is associated to the Gromov-Witten poten-
tial of the point, or, simple, the generating function of the intersection
number of 1-classes on the moduli space of curve,

(38) Zkav = exp Zhg_l Z i, Z B Hw;ﬂiitdi
g=0 1 Y a0 Man 520

2g—2+4n>0

This corresponds to a one-dimensional Frobenius manifold, that is,
dim(V) = 1, with prepotential Fy(v) = v3/6. The hierarchy can be
given very conveniently in Lax form. Writing out, the first few equa-
tions read

(39) Wyy = Wy,

Wy = WWy + Ewmpx

1, h h’

What is important for us, is that it is an example of a bi-Hamiltonian
hierarchy, as shown in [4], with the first Poisson bracket given by (22)
and the Hamiltonians given by

(40) h_l =w

wSCSCSCZC

h 2
— QW) + B2
+ — (Wi + 2wwy,) + 540

Y

Setting i = 0 one finds the dispersionless limit of KdV, also called the
Riemann hierarchy. It is proved in [4, §3.8.3] that the transformation
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from the Riemann hierarchy to the full KAV hierarchy given by

(41)

h v TV v3

| D hg rrzr zxUzax P hg
v vt 5 (og ) + (1152@ 192003 360v§)m +O(7),

is a quasi-Miura transformation.

It is a special feature of the KdV hierarchy that its Poisson bracket
remains undeformed when going from the dispersionless hierarchy to
the dispersive tail. It shows explicitly that the Poisson bracket is poly-
nomial, so we can use it in our argument as the basepoint under the
action of the Givental group.

4. DEFORMATION FORMULAS FOR €, .54

In this section, we obtain formulas for the infinitesimal deformations
of Qq 8,4 as a function of w,,, (defined in Section 3.2.2) by elements
of the Lie algebra of the Givental group (presented in Section 2.2). We
write v,2° € g, and s.2° € g_ for generic elements in the Lie algebra
of the Givental group. Their action on a (multiple derivative of a)
tame partition function is denoted by a lower dot. In (14) and (15),
this action is given in terms of the t-variables. When we consider the
resulting function in other coordinates, in this case w, ,, we write this
coordinate in square brackets behind the Lie algebra element.

Theorem 7. We have:
(42)

vt [w] Qap B = () Quprepe t Qam;uﬂ%(”)%

+Z(_ ZHQ ,pu,( ) VQlf,f—l—i;B,q

8Qa N 143 I
- Z Tp@q <(tz)ffax Qoo+ (0 4+ 1)y 0 (ve)y
v,n

/—1 n—1
+ ( ) H—lak—l—lQ% 7MZ(té),uua;z—k—lQmé—l_i;ﬂp
=0 k=0
/-1
+ ) (F1)TO (0, (v0)” Qué—l—z’;ﬂ@))
=0

-1
9*Q,, O Qappg ,
Q, -1 H—lan—HQ Ll ;u/am—i-lQV Cico
Z 8’(1]4/ naow ;( ) v 7,05k, ( Z) z £—1-14;¢,0
C m
Proof. Direct computation. One should just use the formula

—

89&7 ;67 n/\
(43) vz {w].Qapipq = tzz Qapipg — Z 8winq - 0pve2t[t].Q2 0,10,
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—

which is the change of coordinates from ¢ to w. Here t,2/[t].Qq .54
(and tp2[t].Q2, 0.1,0) s just

2 * _
E : 9e, 2t F
atavpatﬁ,q s [t] g(t)’

(44)

where t/g?[t].Fg(t) is given by the formulas of Y.-P. Lee [12, 6], cf. (14)
and (15). O

Remark 8. We can simplify the formula (42). We introduce a new
notation. If p < 0 or ¢ < 0, we set €2, .3, to be equal to (—1)P6a50p+4—1
if p is nonnegative and to (—1)%0,30p+4 —1 if ¢ is nonnegative. Then we
can rewrite equation (42) as

o0

(45) vt w] Quppg = > (—1)H (r)™

d=—00

8Qa p:8,q n n _|_ 1
— A aaQ . an_aQV o
; aw,y7n Z a T Vvoxuvd xT ,Z 1 d,]l70

Qo pipndSe-1-d;8,4

a=0
h 9%*Q,, p:8.q
— g — PR 8”“(2 ot Y1 )
2 aw'y naow 7 Dipund £=1=di¢,0

C7m

We obtain a similar formula for the s-action.

Theorem 9. We have:

2542 a.pifg = Z (80)a p—t:8,4 + Z Qavp;uvq—f(ﬁé)g

1<t<p 1<t<q

o5}
+ (=1)"(Sp+g+1)a,p — Z ’pﬁq

7]1'
811)7 0

Proof. The proof is again a straighforward computation of the same
kind as in the proof of Theorem 7. U

Remark 10. We can rewrite equation (46) as

(47) 2542 Qapipg = Z Z D Q0 i (50" Q1.4

(=1 it+j=—1-1
_} :89 a,p;fB.q 51
PY’
Ow.

Remark 11. In genus 0, the functions Qa p:f.q form a symmetric solu-
tion of a so-called master equation [22|, which is an extension of com-
mutativity equations [18, 19, 17]. There is a Givental-type theory of
deformations of solutions of commutativity equations developed in [19]
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and revisited in [22]. The deformation formulas there are given sim-
ply by the first three summands in Equations (42) and (46), and they
have a very nice interpretation in terms of multi-KP hierarchies [15, 7],
geometry of the Losev-Manin moduli spaces [17], and Givental-type
linear algebra of the loop space, see [22] for a detailed discussion.

5. DEFORMATION FORMULAS FOR A BRACKET

In this section we obtain a deformation formula for a Poission bracket
that gives one of the two Poisson structures for the Dubrovin-Zhang
hierarchies. The starting point for this calculation is the equations of
the hierarchy, written out using the Poisson bracket:

(48) {wﬁv ha,p} = 0:8ap;8,0-

Using the deformation formulas for the €2, ,3, of the previous sec-
tion, we obtain deformations of the densities of Hamiltonians h, , and
wg, as well as the right hand side of the equation above. In the case
of the t-action, we are therefore looking for a differential operator

> et (t/z; [w]. A% ) 02 such that
(49) & QZ pi,0 Z Z (tézé ABV) 8255 a,p 11,0

+ Z Z Am@‘* tgzé[ ] Qa,p+l;]l,0~

Equation (49) has a quite involved solution, so we first need to in-
troduce some new notations. In Section 6 we discuss the uniqueness of
this solution.

5.1. Some notations. In order to shorten some intermediate formu-
las, we introduce the following notations:

) > G )
(50) O == Fur = nZ:O(—ax) o P Oem = P
o = /n o ik 0
Ter = nZ::O <k)( %) ’ Owen

We use the agreement that (Z) =0ifn>0and k< 0or k> n.
The operators 7¢ . satisfy the following properties:

(51) Teo=106¢; Ter=0ifk <0; Tepo0, = Tep— for any k € Z.

Moreover, for any functions X,Y,

o0

(52)  G(XY) =S (TerX(=0.)"Y + (—0) X TerY)
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and, more generally, for any p > 0,

53) To0) =3 (1) (T X001 + (-0 X o)

k=0

(see [16] for more useful formulas of the same type).

Another notation that we are using is the following. We denote by
Dy, ki skas ks the triple derivative 0°(3°72  h9Fy) /Oty ky Ots, ky Oty iy
considered as a function of we,. It is a series in A, and the coefficient
at hY is a weighted homogeneous polynomial in the derivatives wg p,
n > 1, of degree 2g + 1. This follows from the following formula:

89% Kiiveske

o +1
(54) Q’YI sk13v2,k25v3,k3 E 89? Q’Yn’%;fﬂ
8w5,n

57”

for any choice of indices {¢, j, ¢} = {1,2,3}. We assume that {0y, 5.5 koivs.ks
is equal to 0 if some of the indices ki, ko, k3 is negative.

Remark 12. We make one final remark about the notation in which
the deformation formula is presented below. In order to reduce the
amount of brackets in the expressions, we write o for the composition
of differential operators. If a differential operator appears without com-
position to the right, it is to be applied to the expression immediate
on the right of it.

5.2. A formula for the operator of t-deformation.
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Theorem 13. Equation (49) has the following solution:

(55)
3 (t/g?[w].Afﬁ) o
s=1
= (_1)i+1(tz)uv Qnoy,zagm;ﬁ,oan i AVE€HS
»J awﬂyn S T
i+j=0—1 v,m ’ s>1,¢
n+1 DABE
-y Z ( )abmow&a wind D 5——0;
¥,n a+b=n s>1§ Wyn
DA D e Quwsd OZT wQpico(—02)""!
s>1,y fH+e=s—1
aQu,z,]l,O £qs
+QB70;V7J' 0w 0o Z AP08
y,n ’ s>1,6
v
+ > ADgio > ( )7§7v+19170;v7j(—5x)v_u9u,i;s,0(—5x)“+l
s>1,y 0<u<v u
By Qs v _'_1 v—u u+1
=Y AV e Y (=02)" ™" Q00,5 T o1 Q.0 (—0s)
s>1,y 0<u<v u
+ Y AT Y ( )a 85000507 0 Qe 00s
s>1y e+ f=s—1
_a QB,O V) — 122 ua'ymQu,z-l—l,]l,Oa OZAZga;
¥,m u=0 s=1
— 0, QB,OV,] 12 Z 8 ! A'yf(; QuH—lllO) af_l
v 2<f<s
950,
0, o Toobmivign o 3 ATE;
o (e X Py
s>1
+ > AP0 T Qe i (—0:)™
s>1y m=0
T Y )|
n=0 ¢ s>1 Owen *

Proof. The proof is based on an explicit computation of all terms in
the formula (45) applied to Q4 .50 and Q4 pr1,1,0. This computation is
performed in Sections 5.3-5.5 below. U
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5.3. Useful lemmas. There are two commutation relations that we
are going to use several times. Consider an operator Y >, 0¥ BO¢n,
where B is an arbitrary function.

Lemma 14. We have: [0, ) - 02 BO:»] =

Proof. Since [0y, O¢ n+1] = —0¢ 5, We have:
(56) :L‘a Z anBaC n] — Z an—HBaC,n - Z 8;‘3047”_1 = 0.
n=0 n=1

Lemma 15. For any function A, we have:

(57)  [AD;06,,>  0rBO)

n=0

= A9y 0 T5;B(=0:) 06 — Za“ 8506
§=0
Proof. Observe that
(58) Ady 08,0 By
n=0
[ele] s+m S—l—m
— A _1 m n+zB s+m—i m "
mzn;o( ) ;( Z )8 O 0 8, 0 O,

+ A0 0 Y Ty 0iB(=0,) 0 O
7,m=0
Since T, ; 0 0y = T, j_n, the last summand is equal to

o0

(59) Ad? o Z T, B(=0,) .

J=0

On the other hand,

(60) E:& B0 ADS 0 6, —2:8" " Cnasoa,y
s+m s+m
n—+1 s+m—1
+§ Ej( Z )a BA ™ 0 8y 0 Op .

mnO

We see that the difference of the expressions in (58) and (60) gives
exactly the statement of the lemma. U



DUBROVIN-ZHANG HIERARCHIES 21

5.4. The coefficient of h'. First, let us rewrite the A-term on the
righthand side of equation (45). Let i + j = — 1, we have:

Q)

8w,y n&wg m

(61)

n
C7m

= [Z a;HrlQ%O;u,ia%n © Z a;nJrlQV,j;QOaC,m

v,n ¢m

Qa,p;ﬁvq

- Z a?HQu,i;VJ;C,OaC,m

C7m

here we used the formula —2- = O s n 00~ ). Observe that
8t5 T,V

v,n T

since d¢ 0 d, = 0, we have:

(62) 0e > O 0iOvm Y O i 00 mQapriin o

v,n ¢m

= 0600 Q0 pr1pni = 0.
Also observe that

(63) Z aZHQ%O;Ma%n Z 8;’”1@,,7]-;4,08(%(2%1,;570

v,n Qm

Q.06
-3 sy 5 s

w.
8 o s>1.6

Using these observatlons, Lemma 14 and Lemma 15, we obtain the
following expression:

(64) 0, Z P agisn_gring

awpy n&wg‘ m x 'Y? sy

1
07 4o

0%Q
- Z A55555£ Z 2Pl 0anHQ%O;ma?HQV,j;QO

X
eyt 7 0wV nOWe m,

0p0 Yy 78 PAT oo N " A4S 0 0

Ows p,
v n s21,¢

+ Z Afga; © Z Z 727m8xQ470;u,i;V7j(_8x)m © 54

s>1,¢ m=0 ¢

D I Qi Y gjs 9 0 0¢ | Qapriin0-

n=0 ¢ s>1,6 0 6m

The sum of these expressions taken over 1+j = ¢—1 with the coefficient
(h/2)(xe)*(—1)""! is a part of the final formula for the operator of
deformation of the bracket.
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5.5. The coefficient of A°.

5.5.1. Observe that

(65)
n+1 aq) 8Qa :
SO DDl (LT S e

v,n a+b=n o

n+1 "

:_Z Z < a )aZQﬂ,O;V,jamQmi;%Oa%naanvp;B,O
¥,m a+b=n
0 p:

TL+1 avpvﬁvo
+ ; e R

The second summand in the right hand side of this formula is equal to

aQu,i;B 0

— Y an+1
(66> 91707117.]9#7210‘7;07570 - Q]l,(];lj,j 8ZB QQJL’Y’O
oW 1,

Pyin

0,580
= Quouy Y 22000 > " AV00eQa gt 0,
V?n

w.
Owyn s>1.6

which is a contribution to the final formula for the operator of defor-
mation. The first summand can be rewritten in the following way.

(67)
n+1
> > ( " )32911,0;u,j3§9u,m,03w > A6 Q0 pr1n0
v,n a+b=n s>1,¢
n+1 0ABE
=->_ > ( a )aﬁQﬂ,Ow,y’@gQumO > 0. a0 apiino
v,m a+b=n s>1,6 7
n+1
- Z Af’58;Z Z ( a )82911,O;V,jagQu,i;%oa%n(sfga,zﬂrl;11,0
82175 v, a+b=n
o0
- Z A§’€ Z (99{ (Qﬂvo;vvja;Zag“Qm;moa%néﬁgavpﬂ;ﬂvo) :
s>1,6 fte=s—1 v,m

Here the first summand is a contribution to the final formula. The
second summand will appear once again with the opposite sign, see
the comment after equation (74). The third summand can be rewritten
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using the following computation:

(68)
o
Z a;wrlQu,iw,oa%naﬁgaer;ll,O
n=0
o0 o0

= O iy 00y 0 Qapirm0 — ¢ D O iy 00y nQapr1i.0

n=0 n=0

o
= Z TenOpi,0(—02)" 0+ dapr 1,10,
n=0

Here we used Lemma 15 for the last equality and the first equality
comes from the observation

(69)
o0
0 Y O Qi 0050 Q0 p1:0.0 = 0 iapi 1.0 = 060rQpiiaprs = 0.
n=0

So, the third summand of the right hand side of Equation (67) is equal
to

(70)
Z Aﬁf Z af <Q]lOI/,]a 272710 QMWYO ) 5 Q vp"'l’]l’()) ’
s>1,¢ fHe=s—1

which is again a part of final formula.

5.5.2. We have:
(71) Oy (9670;%]'9#,%';04@) = axQB,O;V,jQu,i;avp
0,4 . s
+ QB,O;u,j #Mam Z Az’saméﬁga,p—l—l;ll,o-
'y,n

vn s>1,€

The second summand is a part of the final formula for the operator of
deformation. The first summand is considered in section 5.5.4.

5.5.3. We observe that

O pt1:
( ) 56 <8 QillOr/,Jaa w;%oﬂ)

0wy p,

k+1
= Z (_1)k+l < )72 Ic—i—la Q]l ,0; V,]aa+kQu,z oo Oaﬁa—y,nQa,pﬁ-l;]l,O

k,0>0

k+1 a
+ Z k+l ( )82+k91170;v7j727k+18x Q“’iw’oaﬁ&y’nga’p—ﬂ;mo

k>0

k+1
+ Z k+l ( )angkQ]l,O;u,jag+éQu7i;v70727k+la%"90lvp+1§11’0'

k>0
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Meanwhile,
(73) 55 (QH,O;V,jQu,i;aerl) = 5£Q11,0;V,j9u,i;a7p+1

+ Z(_l)n+17g,n+191,0;u,jag Z Oy 001 Q11,0

n>0 ¥,k
n
Y (=100 Temsr YO8 Qi 0056 Qapr1i1,0
n>0 ¥,k

(here we used that T¢ ;,+10, = T¢,,). Therefore, by a direct computation
of the combinatorial coefficients, we see that

(74)
n+1 . O i1
55 [Z Z ( a )a:?:QﬂvO;vvjame;%O#m - QLO;uJQm;a,pH
¥,n a+b=n v,m
v _u .
:Z Z ( )72,1)4-1(211,0;,,,]'(—895)” Qu,z’;%O(_a:c) +1579a7p+1;11,0
v 0<u<v u
v + 1 v—Uu
- Z Z ( ) 0n)"™" 0 000 Te 011 i 0 (—0)" 0, Qi 1sn 0
v 0<uv
u+v+1 " )
+ Z Z ( )(_8;3) Q]l’()?l’,j(_am) Q“7i;770727““"”_”8’*/,%904,1)-{-1;]l,()
v u,v,n=0

+ 55911,0;1/,]' (Z Z ag_uQu,i;fy,O(_ax)ua'y,nga,p—i-l;ll,o - Qu,i;a,p—i—l) .

v 0<un

We should apply the operator Y °° | A%92 to this expression. The first
and the second summand are parts of the final formula. The third
summand will turn into the second summand in the right hand side of
the equation (67) with the opposite sign, so they will cancel each other.
The fourth summand will be equal to the following:

(75)
ZAfﬁa; (5591170;143' (Z Z a;_ugu,iw,o(_ax)uav,nga,pﬂ;]lﬂ - Qu,i;a7p+1>>
s=1 v 0<u<ln
= Z AL 06 0,0, (Z > O Q0 (—02)" Oy Qaprrino — Qu,i;a,p+1>
= v 0<u<n
s
+ Z AP¢ Z Z (e) 0500507 (17,0000, Qe pi11,0) -

v et+f=s—1

Here the second summand is again a contribution to the final formula,
and the first summand is considered in the next section together with
the first summand in the right hand side of equation (71).
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5.5.4. In this section we collect all expressions that are not yet con-
verted into the contributions to the final formula. We have:

(76)
Z (_1)i+1a’cQB,0;u,j—l (Z Z ag_uQu,i;fy,O(_a:c)ua’y,nQa,p-i-l;]l,O

i+j=l—1 v 0<u<n

- Qu,i;a,p-ﬁ-l ) + Z (_1)i+1a$QB,O§V7jQM7i§avP

itj=l—1
_ i+1
= E (=) 0,926,001 X i
itj=1—1

where X, ; is equal to

(77)
_Q,u,i-l-l;a,p - Q,u,i;a,p+1 + Z Z 8;?_“9;1,,2';7,0(_am)uafy,nga,p-l-l;]l,O

v 0<u<n

We observe that

(78) Qu7i+1;a,p + Qu,i;a7p+1

o
= 0. ) Oen il Y AT 0(=00)" 00 pi1i00
y,m s=1

Eim

+ 9! Z oy (Z Azsai(_&c)m@g,mﬁu,iﬂ;n,o) OynQapt+1:1,0
v,n s=1
§7m

Here 0, ! is a formal left inverse to d,, whose main property is that for
any functions A and B

(79) 0, (0,A-B)=0,'(A-(-0,)B) + A- B.

Since Y o2, A99% is an operator that defines a Poisson structure on
the space of local functionals,

o0 o0

(80) DAY = =) (=0.)7 0 A

s=1 s=1
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Using this two observations, we can rewrite equation (78) in the fol-
lowing way:
(81)

Qittiap + Quiapti

o Z (Z a& mQu i+11 Oam_l_u Z Agfya;(_ar)nﬁ’y,nga,p+1;]l,0

s=1

+ Z (_ax)e_l (Ag’y(_ax)maﬁ,mgu,i-i-l;]l,o) a;_e(_ax)na'y,nga,p—i-l;]l,o

1<e<s

n—1 00
+y ot (Z Azsai(—8m)m35,m9u,i+1;n,o> (—3x)v3w,n9a,p+1;11,0> -
v=0

s=1

Therefore,

B e
s=1

&m u=0

_Z Z )+ f A&(SSQM +1110) 8f )57904,“1;1,0,

¢ 2<f<s

and 37, o 1 (=1)"10:Qp0.,-1 X, is a contribution to the final for-
mula.
This computation completes the proof of Theorem 13.

5.6. A formula for the operator of s-deformation. In this section
we prove a formula for the s-deformation.

Theorem 16. We have:
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Proof. This is a straightforward computation. We have:

(84)

Oy ngzg apB0 — Z Z APL03 ¢ Zﬁezg Qap+11,0

09,
— Z (5[)58;59“77,_[;5’ 8 Z au]viﬁo 1

1<t<p
_ 25: z; Asﬁ’fﬁg‘zé& (K; 1(55) wp+1—61,0 — Z aQaZ::lon 0 1)%]1)
s= p+
= Z(El)%ﬂ ( 0 © Z Z APEOE o 6 + Z Z APEE 0 0 00, 0) a,p+11,0
v

- _ZZ (Z (81)~,1 a;j ) 070¢82a,p1151,0-
7,0

Here we used that 35, 3707 AP4050: D p11-r10 18 equal to 9,5 r50
for1</¢<pandtoOforl=p+1. 0

6. UNIQUENESS OF THE BRACKET

Consider the infinitesimal deformations of the Poisson bracket (or
rather of the operator Y oo, A%¢9:) obtained in the previous section.
It gives us a system of vector fields on the space of all operators of that
type. Consider a flow line of one of these vector fields that starts at
a point corresponding to the weak quasi-Miura transformation w, =
vy 4302 WOPF, Ot 0ty o of the operator 6749, In principle, though
the whole flow line of operators satisfies the desired property

(85) Z Z AL 00 pi1:1.0 = 0Qappo, for all a, B, and p,
¢ s=1

we still have to prove that they do coincide with the corresponding
weak quasi-Miura transformations of §*¢9, at all points of the flow
line.

First, let us apply the inverse of the weak quasi-Miura transforma-
tion.

Lemma 17. The inverse weak quasi-Miura transformation, v, = w, —
D oasy WOPF, [0ty 0Oty 0, maps an operator Y 2| AJLD; into one that
also has no constant term, that is, into an operator Y .., BP0: where
B = .
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Proof. Indeed,

(86) ZBﬁfas =Y ;“5 9% o ZAW(‘)S (—0,) 0 2%

n,e w”v awyvf
v f

Therefore, BS* is equal to

(87) Z Op anAgvva;%
=1

ow,, . dw,

,€

Since wg —wvg is equal to 9,G g, where Gg = 322 | h9OF, /Otg g is a series
in A whose coefficients depend only on a finite number of derivatives
(both in coordinates v and w), dve/dw, = d¢,. Since 0%(d¢,) is equal
to 0 for any s > 1, we conclude that Bg’5 =0. O

Now we see that the following uniqueness in genus 0 is sufficient.

Proposition 18. Any operator of the form Z:il BP£93 such that

B.E s ,p-i—l,]l,O
(88) x a,pﬁ, ZZB ax 51)&

is equal to 6°40,.

Proof. We denote by Y- | C#49s the difference (3-o2 | BP495 — 6°40,).
Using the topological recursion relation in genus 0, we observe that

5Qo¢ +1;1,0 89[}?} +1;1,0 (0]
(89> 5p1)§ - 8pv§ - Qa,p;f,o
Therefore,
B:£ s ,+1,]1,0_ B, qs—1
(90) ZZC o’ ;Ug —ZZC’ 00,0 e o
£ s=1

-y G oSy e
€ s=1 ap € s=1 a,p

Since the change of variables ¢, ,, <+ v¢ 5 is non-degenerate, we conclude
that all coefficients C?¢ are equal to zero. U

7. ~-HOMOGENEITY IN THE ORBIT

In this section, we explain the polynomiality of €, .5, and the co-
efficient of the operator A%’9? (that determines the Poisson bracket of
the full hierarchy) considered as functions of wy, ws, .. ..
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Theorem 19. For any tame partition function in the Givental orbit
of Z%5,,, we have the following expansion:

(91) Qa,p;ﬁ,q = Z h’gQ([f}p;B,q(w7 Wy, W2, - - - )7
g=0
where Qf,]p;m is @ homogeneous polynomial in wy, ..., way of degree 2g

(here deg w; = 1i).

We call below the this kind of homogeneous polynomiality, that is,
homogeneous polynomiality in A-expansion, the h-homogeneity.

Proof. We have this property at one point in the orbit — for s copies
of the KdV hierarchy. See Example 6 above, and a full description of
the KdV hierarchy in [4].

Let us now look at the deformation formula, given by Equations (42)
and (46). It is easy to see that the right hand sides of both formulas
are h-homogeneous polynomials, if all 2, .5, are. Indeed, the product
of two h-homogeneous polynomials is again an A-homogeneous polyno-
mial, the derivatives 0/0,¢ ) decrease the degree of homogeneity by k,
the derivatives 0, increase the degree by 1. The last summand in the
right hand side of Equation (42) is multiplied by A, and simulteneously,
its homodeneous degree is shifted by 2.

In order to apply an element of the Givental group, that is, in order
to integrate the Lie algebra action, we are to solve an ODE, whose
right hand side is given by Equations (42) and (46). Then a standard
argument implies that if a solution of this ODE is an h-homogeneous
polynomial at one point, it remains to be an hA-homogeneous polynomial
at any other point. O

Theorem 20. For any tame partition function in the Givental orbit
of Z35.,, the operator that determines the Poisson bracket of the full
hierarchy,

it 8wa 8wﬁ
(92) APPs = 0% 00, 0(—0,) o )
; e 81}#@ 8rUI/,f
v, f
is h-homogeneous in wy,ws, . ... More precisely, AY? = 32 [ hI A2,
where A;‘g is a homogeneous polynomial in wy, . .., wy, of degree 2g—s.

Proof. The proof is the same as above. Proposition 18 imply that the
deformations formulas given in Theorems 13 and 16 are indeed the
deformation formulas for the weak quasi-Miura image of the operator
0, under the change of variables v, — w,. We know that for KdV,
this quasi-Miura image of 0, is again 0,, that is, it is indeed an h-
homogenenous polynomial in wy, ws, ... with the right degrees of homo-
geneity. Also we already know the h-homogeneity for €2, ,.5,. There-
fore, analyzing the deformation formulas in Theorems 13 and 16, we see
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that the right hand sides of these formulas are again A-homogeneous
polynomials of the right degree. Then the same ODE-solution argu-
ment as above implies that the bracket operator is A-homogeneous for
any point in the Givental orbit of Z55,,. O

The last thing that we would like to mention is that Dubrovin and
Zhang have proved that in the case of a conformal Frobenius struc-
ture, the topological tau-function of their full hierarchy always lie in
the Givental orbit of Z55,,. Therefore, in that case we always have a
polynomial Poisson bracket for their hierarchy.
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