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Abstract

We give a detailed study of the discrete Fourier transform (DFT) of r-even arithmetic functions,
which form a subspace of the space of r-periodic arithmetic functions. We consider the DFT of
sequences of r-even functions, their mean values and Dirichlet series. Our results generalize prop-
erties of the Ramanujan sum. We show that some known properties of r-even functions and of the
Ramanujan sum can be obtained in a simple manner via the DFT.
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1 Introduction

The discrete Fourier transform (DFT) of periodic functions is an important tool in various branches of
pure and applied mathematics. For instance, in number theory, the DFT of a Dirichlet character χ (mod
r) is the Gauss sum (character sum) given by

(1) G(χ, n) =
∑

k (mod r)

χ(k) exp(2πikn/r),

and if χ = χ0 is the principal character (mod r), then (1) reduces to the Ramanujan sum cr(n).
For the history, properties and various applications, including signal and image processing, of the

DFT see for example the books of Briggs and Henson [6], Broughton and Bryan [7], Sundararajan [25],
Terras [26]. For recent number theoretical papers concerning the DFT see [4, 13, 21].

It is the aim of the present paper to give a detailed study of the DFT of r-even arithmetic functions,
to be defined in Section 2, which form a subspace of the space of r-periodic arithmetic functions.

Some aspects of the DFT of r-even functions were given by Haukkanen [13], Lucht [15] and were
considered also by Samadi, Ahmad and Swamy [20] in the context of signal processing methods. Schramm
[21] investigated the DFT of certain special r-even functions, without referring to this notion.

Our results generalize and complete those of [13, 15, 20, 21]. Note that the Ramanujan sum cr(n) is
r-even and it is the DFT of χ0, which is also r-even. Therefore our results generalize properties of the
Ramanujan sum.
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The paper is organized as follows. Section 2 presents an overview of the basic notions and properties
needed throughout the paper. In Section 3 we give a new simple characterization of r-even functions.
Section 4 contains properties of the DFT of r-even functions, while in Sections 5 and 6 we consider
sequences of r-even functions and their DFT, respectively. Mean values and Dirichlet series of the DFT
of r-even functions and their sequences are investigated in Sections 7 and 8.

We also show that some known properties of r-even functions and of the Ramanujan sum can be
obtained in a simple manner via the DFT.

2 Preliminaries

In this section we recall some known properties of arithmetic functions, periodic arithmetic functions,
even functions, Ramanujan sums and the DFT. We also fix the notations, most of them being those used
in the book by Schwarz and Spilker [22].

2.1 Arithmetic functions

Consider the C-linear space F of arithmetic functions f : N = {1, 2, . . .} → C with the usual linear
operations. It is well known that with the Dirichlet convolution defined by

(2) (f ∗ g)(n) =
∑

d|n

f(d)g(n/d)

the space F forms a unital commutative C-algebra. The unity is the function ε given by ε(1) = 1 and
ε(n) = 0 for n > 1. The group of invertible functions is F∗ = {f ∈ F : f(1) 6= 0}. The Möbius function
µ is defined as the inverse of the function 1 ∈ F∗ (constant 1 function). The divisor function is τ = 1∗1,
Euler’s function is ϕ = µ ∗ id and σ = 1 ∗ id is the sum-of-divisors function, where id(n) = n (n ∈ N). A
function f ∈ F is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for any m,n ∈ N such that
gcd(m,n) = 1. The set M of multiplicative functions is a subgroup of F∗ with respect to the Dirichlet
convolution. Note that 1, id, µ, τ, σ, ϕ ∈ M. For an f ∈ F we will use the notation f ′ = µ ∗ f .

2.2 Periodic functions

A function f ∈ F is called r-periodic if f(n+ r) = f(n) for every n ∈ N, where r ∈ N is a fixed number
(this periodicity extends f to a function defined on Z). The set Dr of r-periodic functions forms an
r-dimensional subspace of F . A function f ∈ F is called periodic if f ∈

⋃
r∈N

Dr. The functions δk with
1 ≤ k ≤ r given by δk(n) = 1 for n ≡ k (mod r) and δk(n) = 0 for n 6≡ k (mod r) form a basis of Dr

(standard basis).
The functions ek with 1 ≤ k ≤ r defined by ek(n) = exp(2πikn/r) (additive characters) form another

basis of the space Dr. Therefore every r-periodic function f has a Fourier expansion of the form

(3) f(n) =
∑

k (mod r)

g(k) exp(2πikn/r) (n ∈ N),

where the Fourier coefficients g(k) are uniquely determined and are given by

(4) g(n) =
1

r

∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N)

and the function g is also r-periodic.
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For a function f ∈ Dr its discrete (finite) Fourier transform (DFT) is the function f̂ ∈ F defined by

(5) f̂(n) =
∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N),

where by (5) and (4) one has f̂ = rg.

For any r ∈ N the DFT is an automorphism of Dr satisfying ̂̂f = rf . The inverse discrete Fourier
transform (IDFT) is given by

(6) f(n) =
1

r

∑

k (mod r)

f̂(k) exp(2πikn/r) (n ∈ N).

If f ∈ Dr, then

(7)
r∑

n=1

|f̂(n)|2 = r
r∑

n=1

|f(n)|2,

which is a version of Parseval’s formula.
Let f, h ∈ Dr. The Cauchy convolution of f and h is given by

(8) (f ⊗ h)(n) =
∑

a (mod r)

f(a)h(n− a) (n ∈ N),

where (Dr,⊗) is a unital commutative semigroup, the unity being the function εr given by εr(n) = 1 for

r | n and εr(n) = 0 otherwise. Also, f̂ ⊗ h = f̂ ĥ and f̂ ⊗ ĥ = rf̂h.
For the proofs of the above statements and for further properties of r-periodic functions and the DFT

we refer to the books by Apostol [3, Ch. 8], Montgomery and Vaughan [17, Ch. 4], Schwarz and Spilker
[22].

2.3 Even functions

A function f ∈ F is said to be an r-even function if f(gcd(n, r)) = f(n) for all n ∈ N, where r ∈ N is
fixed. The set Br of r-even functions forms a τ(r) dimensional subspace of Dr, where τ(r) is the number
of positive divisors of r. A function f ∈ F is called even if f ∈ ⋃

r∈N
Br. The functions gd with d | r

given by gd(n) = 1 if gcd(n, r) = d and gd(n) = 0 if gcd(n, r) 6= d form a basis of Br. This basis can be
replaced by the following one. The functions cq with q | r form a basis of the subspace Br, where cq are
the Ramanujan sums, quoted in the Introduction, defined explicitly by

(9) cq(n) =
∑

k (mod q)
gcd(k,q)=1

exp(2πikn/q) (n, q ∈ N).

Consequently every r-even function f has a (Ramanujan-)Fourier expansion of the form

(10) f(n) =
∑

d|r

h(d)cd(n) (n ∈ N),

where the (Ramanujan-)Fourier coefficients h(d) are uniquely determined and are given by

(11) h(d) =
1

r

∑

e|r

f(e)cr/e(r/d) (d | r)
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and the function h is also r-even. Notation: h(d) = αf (d) (d | r). Note that (Br,⊗) is a subsemigroup of
(Dr,⊗) and αf⊗h(d) = rαf (d)αh(d) (d | r), cf. Application 4.

Recall the following properties of Ramanujan sums cr(n). They can be represented as

(12) cr(n) =
∑

d|gcd(n,r)

dµ(r/d) (n, r ∈ N),

and as

(13) cr(n) =
µ(m)ϕ(r)

ϕ(m)
, m = r/ gcd(n, r), (n, r ∈ N),

where (13) is Hölder’s identity. It follows that cr(n) = ϕ(r) for r | n and cr(n) = µ(r) for gcd(n, r) = 1.
Let ηr(n) = r if r | n and ηr(n) = 0 otherwise. For any fixed n ∈ N, c

.
(n) = µ ∗ η

.
(n) and r 7→ cr(n)

is a multiplicative function. On the other hand, n 7→ cr(n) is multiplicative if and only if µ(r) = 1.
As it was already mentioned, cr(.) is the DFT of the principal character (mod r) to be denoted in

what follows by ̺r and given explicitly by ̺r(n) = 1 if gcd(n, r) = 1 and ̺r(n) = 0 otherwise. Note that
̺r = g1 with the notation of above (for r fixed). Thus

(14) ̺̂r = cr, ĉr = r̺r.

The concept of r-even functions originates from Cohen [8] and was further studied by Cohen in
subsequent papers [9, 10, 11]. General accounts of r-even functions and of Ramanujan sums can be
found in the books by McCarthy [16], Schwarz and Spilker [22], Sivaramakrishnan [23], Montgomery and
Vaughan [17, Ch. 4]. See also the papers [12, 24, 27].

3 Characterization of r-even functions

For an r ∈ N let B′
r = {f ∈ F : f(n) = 0 for any n ∤ r}. We have

Proposition 1. Let f ∈ F and f ′ = µ ∗ f . Then the following assertions are equivalent:
i) f ∈ Br,
ii) f(n) =

∑
d|gcd(n,r) f

′(d) (n ∈ N),

iii) f ′ ∈ B′
r.

Proof. If f ′ ∈ B′
r, then for any n ∈ N,

f(n) =
∑

d|n

f ′(d) =
∑

d|n, d|r

f ′(d) =
∑

d|gcd(n,r)

f ′(d) = (f ′ ∗ 1)(gcd(n, r)) = f(gcd(n, r)).

This shows that iii) ⇒ ii) ⇒ i).
Now we show that i) ⇒ iii). Assume that f ∈ Br and f ′ 6∈ B′

r, i.e., f
′(n) 6= 0 for some n ∈ N with

n ∤ r. Consider the minimal n ∈ N with this property. Then all proper divisors d of n with f ′(d) 6= 0
divide r so that

f(n) =
∑

d|n

f ′(d) =
∑

d|gcd(n,r)

f ′(d) + f ′(n) = f(gcd(n, r)) + f ′(n) 6= f(gcd(n, r)),

which gives f 6∈ Br.

Remark 1. Let f ∈ Br. Assume that f(n) =
∑

d|gcd(n,r) g(d) (n ∈ N) for a function g ∈ F . Then

f = gε
.
(r) ∗ 1 and f = f ′ ∗ 1, by Proposition 1. Hence gε

.
(r) = f ′ and obtain that g(n) = f ′(n) for any

n | r.
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For f = cr (Ramanujan sum) we have by (12), Proposition 1 and Remark 1 the next identity, which
can be shown also directly.

Application 1. For any n, r ∈ N,

(15)
∑

d|n

cr(d)µ(n/d) =

{
nµ(r/n), n | r,
0, n ∤ r.

4 The DFT of r-even functions

We investigate in this section general properties of the DFT of r-even functions.

Proposition 2. For each r ∈ N the DFT is an automorphism of Br. For any f ∈ Br,

(16) f̂(n) =
∑

d|r

f(d)cr/d(n) (n ∈ N)

and the IDFT is given by

(17) f(n) =
1

r

∑

d|r

f̂(d)cr/d(n) (n ∈ N).

Proof. By the definition of r-even functions and grouping the terms according to the values d = gcd(k, r),

f̂(n) =
∑

d|r

f(d)
∑

1≤j≤r/d
gcd(j,r/d)=1

exp(−2πijn/(r/d)) =
∑

d|r

f(d)cr/d(n)

giving (16) and also that f̂ ∈ Br. Now applying (16) for f̂ (instead of f) and using that ̂̂f = rf we have
(17).

Proposition 2 is given by Lucht [15, Th. 4]. Formulas (16) and (17) are implicitly given by Haukkanen
[13, Th. 3.2 and Eq. (9)], Samadi, Ahmad and Swamy [20, Eq. (18)] for r-even functions, and by Schramm
[21] for functions n 7→ F (gcd(n, r)), where F ∈ F is arbitrary, without referring to the notion of even
functions.

Remark 2. By Proposition 2, for a function f ∈ Dr one has f ∈ Br if and only if f̂ ∈ Br. This can be
used to show that a given function is r-even, cf. Application 4. Furthermore, it follows that the Fourier
coefficients αf (d) of f ∈ Br can be represented as

(18) αf (d) =
1

r
f̂(r/d) (d | r).

Corollary 1. Let f ∈ Br. Then

(19) f̂(n) =
∑

d|r

f(d)ϕ(r/d) (r | n),

(20) f̂(n) =
∑

d|r

f(d)µ(r/d) (gcd(n, r) = 1).
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Corollary 2. If f is a real (integer) valued r-even function, then f̂ is also real (integer) valued.

Proof. Use that cr(n) ∈ Z for any n, r ∈ N.

Corollary 3. Let f be an r-even function. Then

(21) f̂(n) =
∑

d|gcd(n,r)

d f ′(r/d) (n ∈ N),

and (f̂)′(n) = nf ′(r/n) for any n | r and (f̂)′(n) = 0 otherwise.

Proof. Recall that c
.
(n) = µ ∗ η

.
(n), see (12). We obtain f̂(n) = (f ∗ c

.
(n))(r) = (f ∗ µ ∗ η

.
(n))(r)

= (f ′ ∗ η
.
(n))(r), and apply Remark 1.

Note that by (21) the DFT of any f ∈ Br can be written in the following forms:

(22) f̂(n) = (f ′ ∗ η
.
(n))(r),

and

(23) f̂ = h ∗ 1,

where h(n) = nf ′(r/n) for n | r and h(n) = 0 otherwise.

Proposition 3. Let f be an r-even function. Then

(24)
∑

d|n

f̂(d) =
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d) (n ∈ N).

Proof. Using (23),

∑

d|n

f̂(d) = (f̂ ∗ 1)(n) = (h ∗ 1 ∗ 1)(n) = (h ∗ τ)(n) =
∑

d|n

h(d)τ(n/d)

=
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d).

In the special case f = ̺r we reobtain (cf. [2, Th. 1] – where σ should be replaced by τ , [16, p. 91]),

(25)
∑

d|n

cr(d) =
∑

d|gcd(n,r)

dµ(r/d)τ(n/d) (n ∈ N).

The DFT can be used to obtain short direct proofs of certain known properties for Ramanujan sums
and special r-even functions. We give the following examples.

Application 2. By ̺̂r = cr, cf. (14), we obtain ̺̂̂r = r̺r . Therefore, by Proposition 2,

(26)
∑

d|r

cr(r/d)cd(n) =

{
r, gcd(n, r) = 1,

0, otherwise,

see [16, p. 94].
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Application 3. Let f(n) = (−1)n, which is r-even for any even number r. Its DFT is

(27) f̂(n) =

r∑

k=1

(−1)k exp(−2πikn/r) =

r∑

k=1

(− exp(−2πin/r))k,

which is r for n = r/2+mr (m ∈ Z) and 0 otherwise. Using Proposition 2 we obtain for any even number
r,

(28)
∑

d|r

(−1)dcr/d(n) =

{
r, n ≡ r/2 (mod r),

0, otherwise,

cf. [18, Th. IV], [16, p. 90].

Application 4. Let f, h ∈ Br. We show that their Cauchy product f⊗h ∈ Br and the Fourier coefficients
of f ⊗ h are given by αf⊗h(d) = rαf (d)αh(d) for any d | r, cf. Section 2.3.

To obtain this use that ̂(f ⊗ h)(n) = f̂(n)ĥ(n) (n ∈ N), valid for functions f, h ∈ Dr, cf. Section 2.2.
Hence for any n ∈ N,

̂(f ⊗ h)(gcd(n, r)) = f̂(gcd(n, r))ĥ(gcd(n, r)) = f̂(n, r)ĥ(n, r) = ̂(f ⊗ h)(n),

showing that f̂ ⊗ h is r-even. It follows that f ⊗ h is also r-even. Furthermore, by (18), for every d | r,

αf⊗h(d) =
1

r
(f̂ ⊗ h)(r/d) =

1

r
f̂(r/d)ĥ(r/d) = rαf (d)αh(d).

Application 5. Let Nr(n, k) denote the number of (incongruent) solutions (mod r) of the congruence
x1 + . . . + xk ≡ n (mod r) with gcd(x1, r) = . . . = gcd(xk, r) = 1. Then it is immediate from the
definitions that

(29) Nr(., k) = ̺r ⊗ · · · ⊗ ̺r︸ ︷︷ ︸
k

.

Therefore, N̂r(., k) = ( ̺̂r)k = (cr)
k. Now the IDFT formula (17) gives at once

(30) Nr(n, k) =
1

r

∑

d|r

((cr(r/d))
kcd(n) (n ∈ N),

formula which goes back to the work of H. Rademacher (1925) and A. Brauer (1926) and has been
recovered several times. See [16, Ch. 3], [22, p. 41], [24].

Application 6. We give a new proof of the following inversion formula of Cohen [9, Th. 3]: If f and g
are r-even functions and if f is defined by

(31) f(n) =
∑

d|r

g(d)cd(n) (n ∈ N),

then

(32) g(m) =
1

r

∑

d|r

f(r/d)cd(n), m = r/ gcd(n, r), (n ∈ N).
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To show this consider the function G(n) = g(r/ gcd(n, r)) which is also r-even. By Proposition 2,

(33) Ĝ(n) =
∑

d|r

G(r/d)cd(n) =
∑

d|r

g(d)cd(n) = f(n).

Hence

(34) rg(m) = rG(n) = ̂̂G(n) = f̂(n) =
∑

d|r

f(r/d)cd(n).

Application 7. Anderson and Apostol [1] and Apostol [2] investigated properties of r-even functions
Sg,h given by

(35) Sg,h(n) =
∑

d|gcd(n,r)

g(d)h(r/d) (n ∈ N),

where g, h ∈ F are arbitrary functions.
For f = Sg,h we have according to (21) and Remark 1, f ′(n) = g(n)h(r/n) (n | r) and obtain at once

(36) Ŝg,h(n) =
∑

d|gcd(n,r)

df ′(r/d) =
∑

d|gcd(n,r)

dg(r/d)h(d),

which is proved in [1, Th. 4] by other arguments.

Application 8. If f is any r-even function, then

(37)

r∑

n=1

|f̂(n)|2 = r
∑

d|r

|f(d)|2ϕ(r/d).

This follows by the Parseval formula (7) and grouping the terms of the right hand side according to
the values gcd(n, r). For f = ̺r we reobtain the familiar formula

(38)

r∑

n=1

(cr(n))
2 = rϕ(r) (r ∈ N).

5 Sequences of r-even functions

In this section we consider sequences of functions (fr)r∈N such that fr ∈ Br for any r ∈ N. Note that the
sequence (fr)r∈N can be viewed also as a function of two variables: f : N2 → C, f(n, r) = fr(n).

We recall here the following concept: A function f : N2 → C of two variables is said to be multiplicative
if f(mn, rs) = f(m, r)f(n, s) for every m,n, r, s ∈ N such that gcd(mr, ns) = 1. For example, the
Ramanujan sum c(n, r) = cr(n) is multiplicative viewed as a function of two variables.

The next result includes a generalization of this property of the Ramanujan sum.

Proposition 4. Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative as a function of two variables,
2) fr(m)fr(n) = fr(1)fr(mn) holds for any m,n, r ∈ N with gcd(m,n) = 1,
3) n 7→ fr(n) is multiplicative if and only if fr(1) = 1.

8



Proof. 1) For any m,n, r, s ∈ N such that gcd(mr, ns) = 1 we have by i) and ii),

frs(mn) = fr(mn)fs(mn) = fr(gcd(mn, r))fs(gcd(mn), s)

= fr(gcd(m, r))fs(gcd(n, s)) = fr(m)fs(n).

2) By the definition of multiplicative functions of two variables f : N2 → C it is immediate that
f(n, r) =

∏
p f(p

a, pb) for n =
∏

p p
a, r =

∏
p p

b, and the given quasi-multiplicative property is a direct
consequence of this equality.

3) Follows by 2).

Part 1) of Proposition 4 is given also in [14] and for parts 2) and 3) cf. [23, Th. 80].
We say that the sequence (fr)r∈N of functions is completely even if there exists a function F ∈ F of

a single variable such that fr(n) = F (gcd(n, r)) for any n, r ∈ N. This concept originates from Cohen [9]
(for a function of two integer variables f(n, r) satisfying f(n, r) = F (gcd(n, r)) for any n, r ∈ N he used
the term completely r-even function, which is ambiguous).

If the sequence (fr)r∈N is completely even, then fr ∈ Br for any r ∈ N, but the converse is not true.
For example, the Ramanujan sums cr(n) do not form a completely even sequence. To see this, assume
the contrary and let p be any prime. Then for n = r = p, F (p) = cp(p) = p − 1 and for n = p, r = p2,
F (p) = cp2(p) = −p, a contradiction.

If (fr)r∈N is completely even, then fr(n) = F (gcd(n, r)) =
∑

d|gcd(n,r) F
′(d) (n, r ∈ N) and by Remark

1 we have f ′
r(n) = F ′(n) for any n | r, where F ′ = µ ∗ F .

6 The DFT of sequences of r-even functions

First we consider multiplicative properties of the DFT of sequences of r-even functions

Proposition 5. Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function r 7→ f̂r(n) is multiplicative (n ∈ N),

2) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of two variables,

3) f̂r(m)f̂r(n) = f ′
r(r)f̂r(mn) holds for any m,n, r ∈ N with gcd(m,n) = 1,

4) n 7→ f̂r(n) is multiplicative if and only if f ′
r(r) = 1.

Proof. 1) Let r, s ∈ N, gcd(r, s) = 1. Then, for any fixed n ∈ N, by Proposition 2 and using that cr(n) is
multiplicative in r,

f̂rs(n) =
∑

d|rs

frs(d)crs/d(n) =
∑

a|r
b|s

frs(ab)c(r/a)(s/b)(n)

=
∑

a|r
b|s

fr(a)fs(b)cr/a(n)cs/b(n) =
∑

a|r

fr(a)cn,r/a(n)
∑

b|s

fs(b)cs/b(n)

= f̂r(n)f̂s(n).

2), 3), 4) If fr ∈ Br, then f̂r ∈ Br (r ∈ N) and by 1) we know that the function r 7→ f̂r(n) is

multiplicative (n ∈ N). Now apply Proposition 4 for the sequence (f̂r)r∈N and use that f̂r(1) = f ′
r(r).

9



Proposition 6. Let (fr)r∈N be a sequence of functions such that fr ∈ Br (r ∈ N). Then

(39)
∑

d|r

f̂d(n) =
∑

d|gcd(n,r)

d fr(r/d) (n, r ∈ N),

which is also r-even (r ∈ N). Furthermore,

(40)
∑

d|n

∑

e|r

f̂e(d) =
∑

d|gcd(n,r)

d fr(r/d)τ(n/d) (n, r ∈ N).

Proof. Similar to the proof of Proposition 3.

In the special case fr = ̺r we reobtain the following known identities for the Ramanujan sum:

∑

d|r

cd(n) =

{
r, r | n,
0, r ∤ n,

(41)

∑

d|n

∑

e|r

ce(d) =

{
r τ(n/r), r | n,
0, r ∤ n,

(42)

(41) being a familiar one and for (42) see [16, p. 91].
Consider in what follows the DFT of completely even sequences, defined in Section 5. Note that

formulae (16) and (17) for the DFT and IDFT, respectively of such sequences (that is, functions with
values F (gcd(n, r))) were given by Schramm [21]. He considered also special cases of F .

Corollary 4. Let (fr)r∈N be a sequence of functions. Assume that
i) (fr)r∈N is completely even with fr(n) = F (gcd(n, r)) (n, r ∈ N),
ii) F is multiplicative.
Then
1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative in both variables, with the other variable

fixed, and is multiplicative as a function of two variables,
2) the function r 7→ f̂r(n) is multiplicative (n ∈ N),

3) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of two variables.

4) n 7→ f̂r(n) is multiplicative if and only if F ′(r) = 1.

Proof. Follows from the definitions and from Proposition 5.

The results of Section 4 can be applied for completely even sequences.

Corollary 5. Let (fr)r∈N be a completely even sequence with fr(n) = F (gcd(n, r)) (n, r ∈ N). Then

(43) f̂r(n) =
∑

d|gcd(n,r)

dF ′(r/d) (n, r ∈ N),

(44)
∑

d|r

f̂r/d(d) =
∑

e2k=r

e F (k) (r ∈ N).

Proof. Here (43) follows at once by Corollary 3, while (44) is a simple consequence of it.
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In particular, for fr = ̺r (44) gives

(45)
∑

d|r

cr/d(d) =

{√
r, r is a square,

0, otherwise,

see [16, p. 91].
It follows from (43) that the DFT of a completely even sequence of functions is a special case of the

functions Sg,h defined by (35), investigated by Anderson and Apostol [1], Apostol [2].
The example of cr(n) shows that the DFT sequence of a completely even sequence is, in general, not

completely even (cr(n) = ̺̂r(n), where ̺r(n) = ε(gcd(n, r))).
Consider now the completely even sequence fr(n) = τ(gcd(n, r)). Then using (43),

(46) f̂r(n) =
∑

d|gcd(n,r)

d(µ ∗ τ)(r/d) =
∑

d|gcd(n,r)

d = σ(gcd(n, r))

is completely even.
Next we characterize the completely even sequences such that their DFT is also a completely even

sequence.

Proposition 7. Let (fr)r∈N be a completely even sequence of functions with fr(n) = F (gcd(n, r)).

Then the DFT sequence (f̂r)r∈N is completely even if and only if F = c τ , where c ∈ C. In this case

f̂r(n) = c σ(gcd(n, r)).

Proof. Assume that there is a function G ∈ F such that f̂r(n) =
∑

d|gcd(n,r) dF
′(r/d) = G(gcd(n, r)).

Then for any n = r ∈ N, G(r) = f̂r(r) =
∑

d|r dF
′(r/d) = (id ∗F ′)(r), hence G has to be G = id ∗F ′.

Now for n = 1 and any r ∈ N, G(1) = f̂r(1) = F ′(r). Denoting G(1) = c we obtain that F ′ is the
constant function c. Therefore, F = c1 ∗ 1 = c τ .

Conversely, for F = c τ we have F ′ = µ ∗ c τ = c1 and f̂r(n) = c
∑

d|gcd(n,r) d = c σ(gcd(n, r)).

We now give a Hölder-type identity, see (13), for the DFT of completely even sequences, which is
a special case of [1, Th. 2], adopted to our case. We recall that a function F ∈ F said to be strongly
multiplicative if F is multiplicative and F (pa) = F (p) for every prime p and every a ∈ N.

Proposition 8. Let (fr)r∈N be a completely even sequence with fr(n) = F (gcd(n, r)) (n, r ∈ N). Suppose
that

i) F is strongly multiplicative,
ii) F (p) 6= 1− p for any prime p.
Then

(47) f̂r(n) =
(F ∗ µ)(m)(F ∗ ϕ)(r)

(F ∗ ϕ)(m)
, m = r/ gcd(n, r), (n, r ∈ N).

Furthermore, for every prime power pa (a ∈ N),

(48) f̂pa(n) =





pa−1(p+ F (p)− 1), pa | n,
pa−1(F (p)− 1), pa−1 || n,
0, pa−1 ∤ n.

Proof. Here for any prime p, (F ∗ µ)(p) = F (p) − 1, (F ∗ µ)(pa) = 0 for any a ≥ 2 and (F ∗ ϕ)(pa) =

pa−1(F (p) + p− 1) for any a ≥ 1. The function F is multiplicative, thus f̂r(n) is multiplicative in r, cf.
Corollary 4. Therefore it is sufficient to verify the given identity for r = pa, a prime power. Consider
three cases: Case 1) pa | n, where gcd(n, pa) = pa; Case 2) pa || n, where gcd(n, pa) = pa−1; Case 3)
pa | n, where gcd(n, pa) = pδ with δ ≤ a− 2.

11



Recall that a function f ∈ F is said to be semi-multiplicative if f(m)f(n) = f(gcd(m,n))f(lcm[m,n])
for any m,n ∈ N. For example, r 7→ cr(n) is semi-multiplicative for any n ∈ N. As a generalization of
this property we have:

Corollary 6. Let (fr)r∈N be a completely even sequence with fr(n) = F (gcd(n, r)) (n, r ∈ N) satisfying

conditions i) and ii) of Proposition 8. Then r 7→ f̂r(n) is semi-multiplicative for any n ∈ N.

Proof. If g ∈ F is multiplicative, then it is known that for any constant C and any r ∈ N, the function
n 7→ C g(r/ gcd(n, r)) is semi-multiplicative, cf. [19], and apply (13).

7 Mean values of the DFT of r-even functions

The mean value of a function f ∈ F is m(f) = limx→∞
1
x

∑
n≤x f(n) if this limit exists. It is known

that
∑

n≤x cr(n) = O(1) for any r > 1. It follows from (10) that the mean value of any r-even function

f exists and is given by m(f) = αf (1) =
1
r f̂(r) =

1
r (f ∗ ϕ)(r), using (18), (19) (see also [27, Prop. 1]).

Therefore, if f is r-even, then the mean value of f̂ exists and is given by m(f̂) = 1
r
̂̂f(r) = f(r). This

follows also by Proposition 2. More exactly, we have

Proposition 9. Let f ∈ Br (with r ∈ N fixed).
i) If x ∈ N and r | x, then

(49)
x∑

n=1

f̂(n) = f(r)x.

ii) For any real x ≥ 1,

(50)
∑

n≤x

f̂(n) = f(r)x+ Tf (x), |Tf(x)| ≤
∑

d|r

d|f ′(r/d)|.

iii) The mean value of the DFT function f̂ is f(r).

Proof. For any x ≥ 1, by Corollary 3,

∑

n≤x

f̂(n) =
∑

n≤x
d|gcd(n,r)

d f ′(r/d) =
∑

d|r

d f ′(r/d)[x/d] =
∑

d|r

d f ′(r/d)(x/d − {x/d})

= x
∑

d|r

f ′(r/d)−
∑

d|r

d f ′(r/d){x/d} = xf(r) + Tf(x),

where Tf(x) is identically zero for x ∈ N, r | x. Furthermore, Tf (x) = O(1) for x → ∞.

Now we generalize Ramanujan’s formula

(51)

∞∑

n=1

cr(n)

n
= −Λ(r) (r > 1),

where Λ is the von Mangoldt function.
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Proposition 10. Let f be an r-even function (r ∈ N).
i) Then uniformly for x and r,

(52)
∑

n≤x

f̂(n)

n
= f(r)(log x+ C)− (f ∗ Λ)(r) +O

(
x−1Vf (x)

)
, Vf (x) =

∑

d|r

d |f ′(r/d)|,

where C is Euler’s constant.
ii) If f(r) = 0, then

(53)

∞∑

n=1

f̂(n)

n
= −(f ∗ Λ)(r).

Proof. i) By Corollary 3,

∑

n≤x

f̂(n)

n
=

∑

n≤x

1

n

∑

d|(n,r)

d f ′(r/d) =
∑

d|r

f ′(r/d)
∑

j≤x/d

1

j

=
∑

d|r

f ′(r/d)
(
log(x/d) + C +O(d/x)

)

= (log x+ C)
∑

d|r

f ′(r/d) −
∑

d|r

f ′(r/d) log d+O
(
x−1

∑

d|r

d|f ′(r/d)|
)

= (log x+ C)f(r) − (f ∗ µ ∗ log)(r) +O
(
x−1

∑

d|r

d|f ′(r/d)|
)
.

ii) Part ii) follows from i) with x → ∞.

Remark 3. There is no simple general formula for
∑

r≤x f̂r(n), where n ∈ N is fixed and (fr)r∈N is
a sequence of r-even functions (for example, cr(0) = ϕ(r) and cr(1) = µ(r) have different asymptotic
behaviors). For asymptotic formulae concerning special functions of type

∑n
k=1 F (gcd(k, n)) see the

recent papers [5, 28].

8 Dirichlet series of the DFT of sequences of r-even functions

We consider the Dirichlet series of the DFT of sequences (fr)r∈N such that fr ∈ Br for any r ∈ N. By

f̂r(n) = (η
.
(n) ∗ µ ∗ fr)(r), cf. (22), we have formally,

∞∑

r=1

f̂r(n)

rs
=

∞∑

r=1

ηr(n)

rs

∞∑

r=1

(fr ∗ µ)(r)
rs

=
σs−1(n)

ns−1

∞∑

r=1

1

rs

∑

kℓ=r

µ(k)fr(ℓ)(54)

=
σs−1(n)

ns−1

∞∑

k=1

µ(k)

ks

∞∑

ℓ=1

fkℓ(ℓ)

ℓs
,

where σk(n) =
∑

d|n d
k. This can be written in a simpler form by considering the DFT of completely

even sequences of functions.

Proposition 11. Let (fr)r∈N be a completely even sequence of functions with fr(n) = F (gcd(n, r)) and
let aF denote the absolute convergence abscissa of the Dirichlet series of F . Then

(55)

∞∑

r=1

f̂r(n)

rs
=

σs−1(n)

ns−1ζ(s)

∞∑

r=1

F (r)

rs

13



for any n ∈ N, absolutely convergent for Re s > max{1, aF},

(56)

∞∑

n=1

f̂r(n)

ns
= ζ(s)(F ∗ φ1−s)(r)

for any r ∈ N, absolutely convergent for Re s > 1, where φk(r) =
∑

d|r d
kµ(r/d) is a generalized Euler

function,

(57)

∞∑

n=1

∞∑

r=1

f̂r(n)

nsrt
=

ζ(s)ζ(s + t− 1)

ζ(t)

∞∑

n=1

F (n)

nt

absolutely convergent for Re s > 1, Re t > max{1, aF}.

Proof. Apply (22) and (23).

For F = ε we reobtain the known formulae for the Ramanujan sum.
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References

[1] D. R. Anderson and T. M. Apostol, The evaluation of Ramanujan’s sums and generalizations,
Duke Math. J. 20 (1953), 211–216.

[2] T. M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41

(1972), 281–293.

[3] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.

[4] M. Beck and M. Halloran, Finite trigonometric character sums via discrete Fourier analysis, Int.
J. Number Theory 6 (2010), 51–67.

[5] O. Bordellès, The composition of the gcd and certain arithmetic functions, J. Integer Sequences
13 (2010), Article 10.7.1, 22 pp.

[6] W. L. Briggs and V. E. Henson, The DFT – An Owner’s Manual for the Discrete Fourier
Transform, Society for Industrial and Applied Mathematics (SIAM), 1995.

[7] S. A. Broughton and K. Bryan, Discrete Fourier Analysis and Wavelets – Applications to Signal
and Image Processing, John Wiley & Sons, 2009.

[8] E. Cohen, A class of arithmetical functions, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 939–944.

[9] E. Cohen, Representations of even functions (mod r), I. Arithmetical identities, Duke Math. J. 25
(1958), 401–421.

[10] E. Cohen, Representations of even functions (mod r), II. Cauchy products, Duke Math. J. 26

(1959), 165–182.

[11] E. Cohen, Representations of even functions (mod r), III. Special topics, Duke Math. J. 26 (1959),
491–500.

[12] P. Haukkanen, An elementary linear algebraic approach to even functions (mod r), Nieuw Arch.
Wiskd. (5) 2 (2001), 29–31.

14



[13] P. Haukkanen, Discrete Ramanujan-Fourier transform of even functions (mod r), Indian J. Math.
Math. Sci. 3 (2007), 75–80.
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