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Abstract. The structure of the algebra K[M ] of the Chinese monoidM over a field
K is studied. The minimal prime ideals are described. They are determined by certain
homogeneous congruences on M and they are in a one to one correspondence with
diagrams of certain special type. There are finitely many such ideals. It is also shown
that the prime radical B(K[M ]) of K[M ] coincides with the Jacobson radical and the
monoid M embeds into the algebra K[M ]/B(K[M ]). A new representation of M as
a submonoid of the product Bd × Z

e for some natural numbers d, e, where B stands
for the bicyclic monoid, is derived. Consequently, M satisfies a nontrivial identity.
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Introduction

For a positive integer n we consider the monoid M = 〈a1, . . . , an〉 defined by the
relations

(1) ajaiak = ajakai = akajai for i ≤ k ≤ j.

It is called the Chinese monoid of rank n. It is known that every element of M has a
unique presentation of the form

(2) x = b1b2 · · · bn,

where

b1 = ak111

b2 = (a2a1)
k21ak222

b3 = (a3a1)
k31(a3a2)

k32ak333

· · ·

bn = (ana1)
kn1(ana2)

kn2 · · · (anan−1)
kn(n−1)aknn

n ,

with all exponents nonnegative [2]. We call it the canonical form of the element x ∈M .
In particular,M has polynomial growth of degree n(n−1)/2, [13]. The Chinese monoid
is related to the so called plactic monoid, introduced and studied in [16, 17]. Both con-
structions are strongly related to Young tableaux, and therefore to representation theory
and algebraic combinatorics. The latter construction has already been established as a
classical and powerful tool of the respective theories [6]. The Chinese monoid appeared
in the classification of classes of monoids with the growth function coinciding with that
of the plactic monoid [5]. Combinatorial properties of M were studied in detail in [2].
In case n = 2, the Chinese and the plactic monoids coincide. The monoid algebra K[M ]
over a field K is the unital algebra defined by the algebra presentation determined by
relations (1). It is called the Chinese algebra of rank n. If n = 2, the structure of
K[M ] is described in [3]. In particular, this algebra is prime and semiprimitive, it is
not noetherian and it does not satisfy any polynomial identity. For n = 3, some in-
formation on K[M ] was obtained in [8]. In particular the Jacobson radical of K[M ] is
nonzero but it is nilpotent and the prime spectrum of K[M ] is pretty well understood.
One of the motivations for a study of the Chinese monoid is based on an expectation
that it can play a similar role as the plactic monoid in several aspects of representation
theory, quantum algebras, and in algebraic combinatorics. Another motivation stems
from difficult open problems concerning the radical of finitely presented algebras.
The results of this paper contribute to the general program of studying finitely pre-
sented algebras defined by homogeneous semigroup presentations. We say that an
algebra A with unity is defined by homogeneous semigroup relations if it is given by a
presentation A = 〈X : R〉, where X is a set of free generators of a free algebra over K
and R is a set of relations of the form u = w, where u, w are words of equal lengths
in the generators from X. In this case A may be identified with the semigroup algebra
K[S], where S is the monoid defined by the same presentation, [18]. Notice that there
is a natural length function on the underlying monoid S. Certain important classes of
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such algebras, and of the underlying monoids, have been recently considered, in partic-
ular see [3, 7, 11]. Clearly, the Chinese algebra K[M ] is of this type. Also, the plactic
algebra is defined by semigroup relations of degree 3. Algebras corresponding to the
set theoretic solutions of the Yang-Baxter equation are defined by quadratic semigroup
relations [11].
For certain important constructions of algebras defined by homogeneous semigroup
relations it was shown that the minimal prime ideals have a very special form, which
proved to have far reaching consequences for the properties of the algebra, [10, 11].
One might expect that this is a more general phenomenon occurring in this class of
algebras. Our aim is to consider problems of this type for the class of Chinese algebras.
We establish a remarkable form of minimal prime ideals of the algebra K[M ] and derive
several consequences.
By J(K[S]), B(K[S]) we denote the Jacobson and the prime radical of K[S], respec-
tively. If η is a congruence on a semigroup S then Iη stands for the ideal ofK[S] spanned
as a vector space over K by the set {s− t : s, t ∈ S, (s, t) ∈ η}. So K[S]/Iη = K[S/η].
If φ : S → T is a semigroup homomorphism, then by ker(φ) we mean the congruence
on S determined by φ.
The paper is organized as follows. First, certain basic equalities of the form αK[M ]β =

0 for α, β ∈ K[M ] are established. They are used to introduce two finite families of
ideals of K[M ] such that every prime ideal P of K[M ] contains one of these ideals.
Each of these ideals is of the form Iρ for a congruence ρ on M . It is also shown that
ρ is a homogeneous congruence on M , which means that (s, t) ∈ ρ implies that s, t
have equal length. A more involved construction allows us to continue this process by
showing that every prime P contains an ideal of the form Iρ2 for some homogeneous
congruence ρ2 containing ρ. Proceeding this way, we construct a finite tree D whose
vertices correspond to certain homogeneous congruences on M and such that ρ ⊆ ρ′ if
the vertex in D corresponding to ρ is above that corresponding to ρ′. Moreover, ideals
corresponding to vertices lying in different branches of the tree D are incomparable
under inclusion. It turns out that the leaves of this tree correspond to prime ideals of
K[M ]. This is used to prove the main result of the paper, asserting that the leaves of D
are in a one to one correspondence with the minimal prime ideals of K[M ]. The proof
provides us with a procedure to construct every such prime P . In particular, every
minimal prime P has a remarkable form P = IρP , where ρP is the congruence on M
defined by ρP = {(s, t) ∈ M ×M : s − t ∈ P}. Consequently, K[M ]/P ≃ K[M/ρP ],
so K[M ]/P inherits the natural Z-gradation and therefore this algebra is again defined
by a homogeneous semigroup presentation.
Moreover, our construction implies that everyM/ρP is contained in a product B

i×Z
j

for some i, j, where B = 〈p, q : qp = 1〉 is the bicyclic monoid. The latter plays an
important role in ring theory and in semigroup theory, [4, 15]. We then show that
M embeds into the product

∏
P K[M ]/P , where P runs over the set of all minimal

primes in K[M ]. Hence M embeds into some Bd × Z
e. However, the algebra K[M ]

is not semiprime if n ≥ 3. This entirely new representation of the Chinese monoid M
implies in particular that M satisfies certain explicitly given semigroup identity. Since
the leaves of D correspond to diagrams of certain special type, one can enumerate the
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minimal primes of K[M ]. It turns out that their number is equal to the so called n-th
Tribonacci number. Moreover, the description of minimal primes P of K[M ] allows us
to prove that every K[M ]/P is semiprimitive. In particular, the prime radical of K[M ]
coincides with the Jacobson radical.

1. Special types of ideals and congruences

In this Section, two families of ideals of K[M ] are defined in Part 1.1. They will play
a crucial role in the approach developed in the paper. Basic properties of these ideals
are then presented in Part 1.2. Throughout, M stands for a Chinese monoid of rank
n ≥ 3.

1.1. Ideals of ♥ and ♦ type.
We start with describing certain relations that hold in K[M ].

1.1.1 Theorem. The following equalities hold in K[M ]:

(aiaj − ajai)K[M ](akal − alak) = 0 for i > j ≥ k > l(3)

(aiaj − ajai)K[M ](aj+1al − alaj+1)am = 0 for i ≥ j + 1 > j ≥ m > l(4)

am(aiaj − ajai)K[M ](aj+1al − alaj+1) = 0 for i > m ≥ j + 1 > j ≥ l(5)

Proof. We use the canonical form (2) of elements of M . To shorten the notation, we
write only i instead of ai. Also, we write each exponent as ∗ if it may be equal 0 and
as + if it is positive. Thus, the canonical form of an element w ∈M is

w = (1)∗ (21)∗(2)∗ (31)∗(32)∗(3)∗ . . . (n1)∗(n2)∗ . . . (n)∗

and the desired equalities may be written as

(ij − ji) w (kl − lk) = 0 for i > j ≥ k > l(3)

(ij − ji) w (kl − lk)m = 0 for i ≥ k = j + 1 > j ≥ m > l(4)

m(ij − ji) w (kl − lk) = 0 for i > m ≥ k = j + 1 > j ≥ l(5)

Notice that all three equalities are of the form αwβ = 0. We proceed by induction
on the length of w. If w has length 0, so it is the unity of M , by using the defining
relations and bringing the involved elements of M to the canonical form we get

(ij − ji)(kl − lk) = (ijk)l − (ijl)k − j(ikl) + j(ilk) =

= j(ikl)− j(il)k − j(il)k + (jk)(il) = (jk)(il)− (jk)(il)− (jk)(il) + (jk)(il) = 0,

and similarly

(ij − ji)(kl − lk)m = (ijk)lm− (ijl)(km)− j(ikl)m+ j(il)(km) =

= j(ikl)m− (il)j(km)− j(km)(il) + j(km)(il) = j(km)(il)− j(km)(il) = 0,

m(ij − ji)(kl − lk) = m(ijk)l − (mj)(ikl)−m(ijl)k + (mj)(ilk) =

= mk(ijl)− k(mj)(il)− (mj)k(il) + k(mj)(il) = k(mj)(il)− k(mj)(il) = 0.
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So, assume the length of w is positive and assume the equalities hold for all w′ ∈ M
shorter than w. The following regularities hold in all three cases being considered.
If y is the last letter of w and y ≥ k, then y(kl − lk) = k(yl) − k(yl) = 0, which
completes the proof. So assume that y < k. Two possibilities can occur.
1) If

w = (1)∗ (21)∗(2)∗ (31)∗(32)∗(3)∗ . . . (y1)∗(y2)∗ . . . (y)+

then all letters of the word w are smaller than k, so not greater then j, in particular this
applies to the first letter — we denote it by x. Therefore, (ij−ji)x = j(ix)−j(ix) = 0,
which proves the assertion.
2) We now assume that for some x > y

w = (1)∗ (21)∗(2)∗ (31)∗(32)∗(3)∗ . . . (x1)∗(x2)∗ . . . (xy)+.

If x < k then again the first letter of w is smaller than k, so not greater then j. As
above, we obtain (ij − ji)x = j(ix)− j(ix) = 0, as desired. Hence, assume that x ≥ k.
We know that k > l and k > y. Two possibilities arise.
2a) l ≥ y, so x ≥ k > l ≥ y. Let w′ be the initial subword of the word w such
that w = w′(xy). Then w′ is shorter than w, so by the induction hypothesis αw′β = 0.
Moreover, in all three equalities αwβ = 0 considered above, xy commutes with β,
because xy commutes with all letters of z such that x > z > y. Thus we get

αwβ = α(w′(xy))β = (αw′β)(xy) = 0 · (xy) = 0,

which completes the proof in this case.
2b) l < y, so x ≥ k > y > l. Then

(xy)(kl − lk) = (xyk)l − (xyl)k = (kxy)l − (yxl)k = k(xyl)− y(xlk) =

= k(yxl)− y(kxl) = ky(xl)− yk(xl) = (ky − yk)(xl),

and xl also commutes with all m such that x > m > l. Therefore, (xy)β = β ′(xl),
where β ′ is of the same form as β, but has an y instead of the l.
Thus the following equality holds:

αwβ = αw′(xy)β = αw′β ′(xl).

If y < m, the indices i, j, k, y,m in α, β ′ satisfy the inequalities mentioned in hypotheses
of the theorem. Then αwβ = αw′β ′(xl) = 0 holds by the induction hypothesis, because
w′ is shorter than w. This completes the proof in this case.
If y ≥ m (this can occur in the case of equality (4)), we have β ′ = (ky − yk)m =

y(km) − y(km) = 0. Therefore in this case the desired equality holds as well. This
completes the proof. �

1.1.2 Notation. Pairs of elements α, β ∈ K[M ] satisfying αK[M ]β = 0 and of
a form as in Theorem 1.1.1 will be called pairs of type ⊞. We denote by ⊞ =
{(αi, βi) : i ∈ I} the set of all such pairs; I is a finite set of indices.

If P is a prime ideal of K[M ], then for each of the equalities αK[M ]β = 0 in Theorem
1.1.1 one of the elements α or β must belong to P . So P must contain a set of the
form {γi : ∀i∈I (γi = αi or γi = βi)}. In this manner we obtain a number of different
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sets X1, X2, . . .. We shall use indices γi,j for the elements of the set Xj . By (Xj) we
denote the ideal generated by the set Xj in K[M ]. So, let

Pj = (Xj) =
∑

γi,j∈Xj

K[M ]γi,jK[M ] ⊳ K[M ].

Since every element γi is of the form li − pi for some li, pi ∈ M , it follows that
Pj = Iρj , where ρj is a congruence generated by the pairs (li, pi) for i ∈ I.

1.1.3 Definition. An ideal of ♥ type, for s = 2, 3, . . . , n− 1, is the ideal of K[M ]
generated by the elements:

amai − aiam for s ≤ m, i,(♥)

alam − amal for l, m ≤ s.

Notice that, modulo such an ideal, the corresponding element as is central.
An ideal of ♦ type, for s = 2, 3, . . . , n, is the ideal generated by the elements:

amai − aiam, aias−1am − amas−1ai for s ≤ m, i,(♦)

alam − amal, alasam − amasal for l, m ≤ s− 1.

Notice that, modulo such an ideal, the corresponding element asas−1 is central.
We say a congruence ρ on M is of ♥ or ♦ type if the ideal Iρ o K[M ] generated by

ρ is of ♥ or ♦ type, respectively. We write Mρ =M/ρ in this case.

If I is an ideal of a ring R then w denotes the image of the element w ∈ R in R/I.
Sometimes, to simplify notation, we shall write w instead of w if from the context it is
clear that we mean the image in R/I.

1.1.4 Theorem. Every prime ideal P in K[M ] contains one of the above mentioned
2n− 3 ideals Iρ of ♥ or ♦ type.

Proof. If all elements ai in K[M ] commute modulo P , then K[M ]/P satisfies all
equalities (3)-(5) of Theorem 1.1.1. Hence P contains all ideals of ♥ and ♦ type.
Hence, we will assume that for some u > v the element auav − avau does not belong
to the ideal P . Since P is prime, for each equality of the type αK[M ]β = 0 either
α ∈ P or β ∈ P holds. In particular, for an equality of type (3), all elements akal−alak
for v ≥ k > l and all aiaj − ajai for i > j ≥ u must belong to P .
Therefore, in K[M ]/P , the elements a1, a2, . . . , av commute and au, au+1, . . . , an also
commute. Let s be the smallest index greater than v and such that in K[M ]/P the
element as does not commute with an element ai for some i ∈ {1, 2, . . . , s − 1}. Such
an s exists and s ≤ u, because for s = u the elements as = au and av by assumption
do not commute in K[M ]/P . Since s is minimal, the elements a1, a2, . . . , as−1 commute
in K[M ]/P .
Since as and ai do not commute in K[M ]/P , in the equalities of (3) type, in which

β = aias−asai, we obtain α ∈ P . Therefore, the elements as, as+1, . . . , an must commute
in K[M ]/P . Thus, we have found such an s > 1 that the elements a1, a2, . . . , as−1

commute in K[M ]/P and the elements as, as+1, . . . , an also commute in K[M ]/P , so P
contains α or β for each equality of (3) type.
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The prime ideal P must also contain α or β for each equality of (4) and (5) type.
We know that P does not contain the element auav − avau, so elements au, av do not
commute in K[M ]/P .
Assume that in K[M ]/P the element as−1 commutes with each of as, as+1, . . . , an
(so, in view of the earlier assumptions, as−1 is central in K[M ]/P ) or as commutes
in K[M ]/P with all elements a1, a2, . . . , as−1 (so, similarly as is central in K[M ]/P ).
If in some equality (3)-(5) in one of the parentheses there is a noncommuting pair
(so their difference is not in P ), then the pairs in the other parentheses must com-
mute in K[M ]/P . Therefore, if elements a1, a2, . . . , as−1 commute in K[M ]/P , the
elements as, as+1, . . . , an commute in K[M ]/P and one of the elements as−1, as is cen-
tral in K[M ]/P , then P contains an element α or β from each equality of (3)-(5) type.
The properties described above lead to the conclusion that P contains some ideal of
♥ type. There are n− 2 such ideals (because 1 < s < n).
Assume now that in K[M ]/P an element as−1 does not commute with an element ai
for some i ∈ {s, s + 1, . . . , n} and as does not commute with an element al for some
l ∈ {1, 2, . . . , s− 1}.
Consider an equality of (4) type. The ideal P is prime, so it must contain α or β from
that equality. This condition is of course fulfilled, if P contains the expression from
one of the parentheses. However, if j = s− 1 (so j + 1 = s), by our assumption, there
exists an i such that ai, aj do not commute in K[M ]/P and there exists an l such that
aj+1, al do not commute in K[M ]/P . Therefore, both expressions in the parentheses in
our equality may not belong to P . Then, if P is to satisfy the above condition for such
i ≥ j + 1 = s > s − 1 = j ≥ m > l, it must contain (aj+1al − alaj+1)am. This means
that in K[M ]/P the following equality holds:

asalam = alasam(6)

for every al not commuting with aj+1 = as and every m such that l < m ≤ s − 1.
Notice that if al, as commute in K[M ]/P , this equality is of course also satisfied. So,
we may rewrite condition (6) in a more general form (using the relations in M):

amasal = alasam for l, m such that l, m < s.(7)

Similarly, for equalities of (5) type we obtain

amas−1ai = aias−1am for i,m such that s− 1 < m, i.(8)

Therefore, in this case P must contain all elements amasal − alasam for l, m such that
l, m < s and amas−1ai−aias−1am for i,m such that s−1 < m, i, as well as the previously
mentioned elements amai − aiam for s ≤ m, i and alam − amal for l, m ≤ s − 1. This
means that P contains an ideal of ♦ type. Notice that there are n − 1 such ideals
(because 1 < s ≤ n). Moreover, the element asas−1 is central modulo such an ideal (so
also modulo P ). Namely, by (7) for m = s − 1, it commutes in K[M ]/P with al for
l < s − 1, similarly by (8) for m = s, it commutes in K[M ]/P with ai for i > s, an
finally, by the equalities in M , it commutes with as−1, as.
We have considered all the possible cases. The result follows. �
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1.2. The form of Mρ for ρ of ♥ type and Mρ〈(asas−1)
−1〉 for ρ of ♦ type.

1.2.1 Notation. For a congruence ρ of type ♥ or ♦, let ψ be the natural homo-
morphism M → Mρ = M/ρ. We also denote by ψ its natural extension to a map
K[M ] → K[Mρ]. The image of an element x ∈ K[M ] under ψ will be also denoted
by x. Since ρ is a homogeneous congruence, in Mρ we still have a natural Z-gradation
given by the lengths of words, so we may consider the degrees of elements of Mρ.
For ρ of ♥ or ♦ type, we denote the homomorphism ψ by ψ♥ or ψ♦, respectively.
If ρ is of ♥ type with the distinguished generator as then by M

s
n−1 we denote the

Chinese monoid with generators a1, . . . , as−1, as+1, . . . , an and by M
s
n−1 its image under

ψ|Ms
n−1
. Then it is easy to see that

Ms
n−1 = ψ|Ms

n−1
(Ms

n−1) =Ms
n−1

/(
ρ|Ms

n−1

)
=Ms

n−1

/(
a1,...,as−1 commute
as+1,...,an commute

).

If ρ is of ♦ type with the distinguished generators as, as−1, by M
s−1,s
n−2 we denote

the Chinese monoid with generators a1, . . . , as−2, as+1, . . . , an and by M
s−1,s
n−2 its image

under ψ|Ms−1,s
n−2
. Then, using Definition 1.1.3, it is easy to see that

Ms−1,s
n−2 = ψ|Ms−1,s

n−2
(Ms−1,s

n−2 ) =Ms−1,s
n−2

/(
ρ|Ms−1,s

n−2

)
=Ms−1,s

n−2

/(
a1,...,as−2 commute
as+1,...,an commute

).

1.2.2 Remark. By Definition 1.1.3, we know that as is central in K[Mρ] for the
congruence ρ of ♥ type with the distinguished generator as.

1.2.3 Lemma. If the congruence ρ is of ♥ type with the distinguished generator as,
then the element as is regular in K[Mρ]. Moreover, Mρ ≃Ms

n−1 × 〈as〉 ≃Ms
n−1 ×N.

Proof. An easy degree argument shows that the element as is non-zero in K[Mρ].
By Remark 1.2.3, as is central in Mρ and every element w ∈ Mρ is of the form

w = w0 · as
k, where w0 ∈Ms

n−1 and k ∈ N. Therefore Mρ =Ms
n−1 · 〈as〉.

We now introduce in Mρ a new relation as = 1. Then the corresponding image of
the whole Mρ coincides with Ms

n−1 and w0 is the image of w. If w = w0 · as
k is equal

to some w′ = w′
0 · as

k′ for w′
0 ∈ Ms

n−1, then their images after introducing the relation
as = 1 are also equal. Therefore w0 = w′

0.
Moreover, if the elements w,w′ are equal in Mρ, then the exponents, with which as
appears in them, must also be equal (by a degree argument). Therefore the equality
k = k′ also holds. So the product Mρ =Ms

n−1 · 〈as〉 is direct:

Mρ ≃Ms
n−1 × 〈as〉 ≃Ms

n−1 ×N.

In particular as is a regular element in K[Mρ]. �

For the future convenience, we reformulate the above lemma, introducing an addi-
tional notation.
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1.2.4 Corollary. Let ψ̂♥ : M →Ms
n−1 × 〈as〉 be the homomorphism defined by:

{
ψ̂♥(as) = (1, as)

ψ̂♥(ai) = (ai, 1) for i 6= s.

Let λ : Mρ → Ms
n−1 × 〈as〉 be the isomorphism w 7→ (w0, as

k) introduced in the proof

of Lemma 1.2.3. Then ψ̂♥ is an epimorphism, ker(ψ̂♥) = ker(ψ♥) and the following
diagram commutes:

M

ψ♥ ����

ψ̂♥

)) ))RRRRRRRRRRRRRRR

Mρ ≃
λ

Ms
n−1 × 〈as〉 ≃ Ms

n−1 ×N

1.2.5 Remark. By Definition 1.1.3, we know that the element asas−1 is central
in K[Mρ] for the congruence ρ of ♦ type with distinguished generators as−1, as.

1.2.6 Lemma. The element asas−1 is regular in K[Mρ], where ρ is of ♦ type with
distinguished generators as−1, as.

Proof. A degree argument easily implies that asas−1 6= 0. In view of Remark 1.2.5,
it suffices to prove that for any elements x, y ∈ Mρ, from the equality asxas−1y = 0 it
follows that x = y.
As in the proof of Theorem 1.1.1, to simplify notation we shall write i instead of ai
and we shall write ∗ instead of the exponents (they may be equal 0). Then, by (2), we
know that elements w ∈M have the canonical form

w =(1)∗

(21)∗(2)∗

(31)∗(32)∗(3)∗

. . .

(n1)∗(n2)∗ . . . (n)∗.

Relations inMρ in particular imply that the generators 1, 2, . . . , s−1 commute. There-
fore, the element w ∈Mρ may be written in the form

w =(1)∗(2)∗ . . . (s− 1)∗

(s1)∗(s2)∗ . . . (s)∗

(s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1)∗

. . .

(n1)∗(n2)∗ . . . (n)∗.

A presentation in this form is not unique, because for example i(sj) = j(si) for i, j < s,
where the element j commutes with all j′ for j′ ≤ s− 1 and the element si commutes
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with all si′ for i′ < s. We can therefore perform all such possible changes for j < i,
coming to the following form of w:

w =(1)∗(2)∗ . . . (i)∗

(sj)∗(s j + 1)∗ . . . (s)∗

(s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1)∗

. . .

(n1)∗(n2)∗ . . . (n)∗,

where the first or the second row (or both) may disappear or in the second row only
(s)∗ may be left. If in both of these rows some elements with non-zero exponents are
left (other than (s)∗), then w may be written in the above form with i, j satisfying the
condition i ≤ j ≤ s− 1 and the exponents of (i) and of (sj) are positive.
Using the commutativity of elements s, s + 1, . . . , n, each segment (t1)∗(t2)∗ . . . (t)∗,
for t > s, can be replaced by a segment of the form (t1)∗(t2)∗ . . . (t s − 1)∗(s)∗(s +
1)∗ . . . (t)∗. Moreover, the whole product (s)∗(s + 1)∗ . . . (t)∗ commutes with every
product (t′1)∗(t′2)∗ . . . (t′ s − 1)∗ for any t′ > t, and (s)∗ commutes with the prod-
uct (s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1 s− 1)∗. Hence, w can be rewritten as

w =(1)∗(2)∗ . . . (i)∗

(sj)∗(s j + 1)∗ . . . (s s− 1)∗

(s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1 s− 1)∗

. . .

(n1)∗(n2)∗ . . . (n s− 1)∗

(s)∗(s+ 1)∗ . . . (n)∗,

where the first or second row (or both) may disappear. If in both of these rows some
elements with non-zero exponents are left, then w may be written in the above form
with i, j satisfying the condition i ≤ j ≤ s− 1 and the exponents of (i) and of (sj) are
positive.
Each element of the form (t s − 1)∗, for t ≥ s, commutes with all elements of the
form (t′ t′′)∗ for t′ > t and t′′ ≤ s− 1. Thus, we obtain another form of w:

w =(1)∗(2)∗ . . . (i)∗

(sj)∗(s j + 1)∗ . . . (s s− 2)∗

(s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1 s− 2)∗

. . .

(n1)∗(n2)∗ . . . (n s− 2)∗

(s s− 1)∗(s+ 1 s− 1)∗ . . . (n s− 1)∗

(s)∗(s+ 1)∗ . . . (n)∗,

where the first or second row (or both) may disappear. If in both of these rows some
elements with non-zero exponents are left, then w may be written in the above form
with i, j satisfying the condition i ≤ j ≤ s− 2 and the exponents of (i) and of (sj) are
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positive. If some elements remain only in the first row, then in the above form we have
0 < i ≤ s− 1, if only in the second row, then 0 < j ≤ s− 2.
Note that this form is not unique, for example (k s− 1)l = (l s− 1)k for k, l > s− 1,
where the element (l s− 1) commutes with all (l′ s− 1) for l′ > s− 1 and the element
k commutes with all k′ ≥ s. Thus we can perform all such possible changes for k > l,
coming to the following form of w:

w =(1)∗(2)∗ . . . (i)∗(⋆)

(sj)∗(s j + 1)∗ . . . (s s− 2)∗

(s+ 1 1)∗(s+ 1 2)∗ . . . (s+ 1 s− 2)∗

. . .

(n1)∗(n2)∗ . . . (n s− 2)∗

(s s− 1)∗(s+ 1 s− 1)∗ . . . (k s− 1)∗

(l)∗(l + 1)∗ . . . (n)∗,

where the first or second row (or both) may disappear. If in both of these rows some
elements with non-zero exponents are left, then w may be written in the above form
with i, j satisfying the condition i ≤ j ≤ s− 2 and the exponents of (i) and of (sj) are
positive. If some elements remain in only one of the first two rows, in the above form
we have i ≤ s− 1 or j ≤ s − 2. Moreover, the last or the second last row (or both of
them) may also disappear. If in both of these rows some elements remain with non-
zero exponents, w may be written in the above form with k, l satisfying the condition
s ≤ k ≤ l. If some elements remain in only one of the last two rows, then in the above
form we have k ≥ s or l ≥ s.
For example, for s = 2 the above algorithm leads to the following form of w:

w =(1)∗

(21)∗(31)∗ . . . (k1)∗

(l)∗(l + 1)∗ . . . (n)∗,

where the conditions concerning the last two rows and the values of k and l are similar
to those described above for an arbitrary s.
We shall prove by induction on n that the general form (⋆) of w is unique. By
assumption n ≥ 3.
First, consider the case n = s = 3. We get

w =(1)∗(2)∗

(3 1)∗

(3 2)∗

(3)∗,

where at least one among the exponents of (2), (3 1) is zero. Let

w = (1)x(2)y(3 1)z(3 2)t(3)u, W = (1)X(2)Y (3 1)Z(3 2)T (3)U ,

where either y = 0 or z = 0 and either Y = 0 or Z = 0. Assume that w = W .
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If ρ is of type ♦, the relations introduced by factoring by ρ are a1a2 = a2a1 and
a1a3a2 = a2a3a1. By introducing in Mρ a new relation a1 = a2, we obtain a homo-
morphism of Mρ into the Chinese monoid M2 = 〈a1, a3〉. So, we can use the canonical
forms in M2 of the images of w and W , by comparing the corresponding exponents.
The image of w is (1)x+y(3 1)z+t(3)u, where either y = 0 or z = 0, the image of W is
(1)X+Y (3 1)Z+T (3)U , where either Y = 0 or Z = 0. Therefore,





x+ y = X + Y

z + t = Z + T

u = U.

On the other hand, comparing the degrees of w andW with respect to their generators,
we obtain 




x+ z = X + Z

y + t = Y + T

z + t + u = Z + T + U.

If x, y, z, t, u are known and the equality Y = 0 holds, we may calculate U = u, T = y+t,
X = x + y oraz Z = z − y. Since either y = 0 or z = 0 and the exponents are non-
negative, the equality Z = z − y yields y = 0. Therefore Z = z, T = t, X = x, so all
exponents in w andW are equal. The case of Z = 0 is similar. Therefore, for n = s = 3
the form (⋆) is unique, as was claimed.
A similar proof works in the case where n = 3 and s = 2.
Thus, assume that n > 3 and that the above form (⋆) is unique for all Chinese
monoids of rank m < n and all congruences of type ♦ defined on them.
Assume first that s ≥ 3. Then, as we already know, w is of the form

w =(1)α1(2)α2 . . . (i)αi . . . (s− 1)αs−1(⋆)

(s1)αs1 . . . (sj)αsj (s j + 1)αs j+1 . . . (s s− 2)αs s−2

(s+ 1 1)αs+1 1(s+ 1 2)αs+1 2 . . . (s+ 1 s− 2)αs+1 s−2

. . .

(n1)αn1(n2)αn2 . . . (n s− 2)αn s−2

(s s− 1)αs s−1(s+ 1 s− 1)αs+1 s−1 . . . (k s− 1)αk s−1 . . . (n s− 1)αn s−1

(s)αs . . . (l)αl(l + 1)αl+1 . . . (n)αn ,

where the following conditions (⋆⋆) and (⋆ ⋆ ⋆) hold:

α1 = α2 = . . . = αs−1 = 0 or(⋆⋆)

αs1 = αs2 = . . . = αs s−2 = 0 or

in the first and in the second row there exist non-zero exponents and
{
αi+1 = αi+2 = . . . = αs−1 = 0

αs1 = αs2 = . . . = αs j−1 = 0, where i ≤ j ≤ s− 2
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and

αs s−1 = αs+1 s−1 = . . . = αn s−1 = 0 or(⋆ ⋆ ⋆)

αs = αs+1 = . . . = αn = 0 or

in the last and in the second last row there exist non-zero exponents and
{
αk+1 s−1 = αk+2 s−1 = . . . = αn s−1 = 0

αs = αs+1 = αl−1 = 0, where s ≤ k ≤ l.

Let us now introduce a new relation a1 = a2 in Mρ. Then the relations in the new
monoid Mρ/(a1 = a2) are exactly the same as in the Chinese monoid of rank n − 1
with generators a2, . . . , an and with relations of ♦ type for the distinguished elements

as−1, as. Using notation of 1.2.1, we get natural isomorphismsMρ/(a1 = a2) ≃Ms−1,s
2,...,n ≃

Ms−2,s−1
n−1 .
In the new monoid Mρ/(a1 = a2), the image of w is

w̃ =(2)α1+α2 . . . (i)αi . . . (s− 1)αs−1

(s2)αs1+αs2 . . . (sj)αsj (s j + 1)αs j+1 . . . (s s− 2)αs s−2

(s+ 1 2)αs+1 1+αs+1 2 . . . (s+ 1 s− 2)αs+1 s−2

. . .

(n2)αn1+αn2 . . . (n s− 2)αn s−2

(s s− 1)αs s−1(s+ 1 s− 1)αs+1 s−1 . . . (k s− 1)αk s−1 . . . (n s− 1)αn s−1

(s)αs . . . (l)αl(l + 1)αl+1 . . . (n)αn ,

where conditions (⋆⋆) and (⋆ ⋆ ⋆) hold.
Assume we have an element w′ such that w′ = w in Mρ, which is also written in the
form (⋆), with exponents denoted respectively by βx or βxy. To prove that the form (⋆)
is unique, we need to show that the corresponding exponents α and β are equal. Let
the image of w′, after introducing the relation a1 = a2, be equal to

w̃′ =(2)β1+β2 . . . (i′)βi′ . . . (s− 1)βs−1

(s2)βs1+βs2 . . . (sj′)βsj′ (s j′ + 1)βs j′+1 . . . (s s− 2)βs s−2

(s+ 1 2)βs+1 1+βs+1 2 . . . (s+ 1 s− 2)βs+1 s−2

. . .

(n2)βn1+βn2 . . . (n s− 2)βn s−2

(s s− 1)βs s−1(s+ 1 s− 1)βs+1 s−1 . . . (k′ s− 1)βk′ s−1 . . . (n s− 1)βn s−1

(s)βs . . . (l′)βl′ (l′ + 1)βl′+1 . . . (n)βn,

where conditions analogous to (⋆⋆) and (⋆ ⋆ ⋆) hold.

Since w = w′, also w̃ = w̃′. Now, w̃ and w̃′ are elements of the monoid Ms−1,s
2,...,n . As

noted before, this monoid is defined by relations of type ♦ on a Chinese monoid on n−1
generators. Therefore, by the induction hypothesis, w and w′ are uniquely presented in
the form (⋆). Thus i = i′, j = j′, k = k′, l = l′ (if they exist) and
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α1 + α2 =β1 + β2 . . . αi =βi′ . . . αs−1 =βs−1

αs1 + αs2 =βs1 + βs2 . . . αsj =βsj′ . . . αs s−2 =βs s−2

αs+1 1 + αs+1 2 =βs+1 1 + βs+1 2 . . . . . . . . . αs+1 s−2 =βs+1 s−2

. . . . . . . . . . . . . . .

αn1 + αn2 =βn1 + βn2 . . . . . . . . . αn s−2 =βn s−2

αs s−1 =βs s−1 . . . αk s−1 =βk′ s−1 . . . αn s−1 =βn s−1

αs =βs . . . αl =βl′ . . . αn =βn,

where conditions (⋆⋆) and (⋆ ⋆ ⋆) hold.
Suppose s > 3. Then we may introduce the relation a2 = a3 in Mρ instead of the
relation a1 = a2. We then obtain a system of equations similar to the one above. It can
easily be checked that this system, combined with the one above, leads to the conclusion
that all corresponding exponents α and β are equal. Therefore the form (⋆) of w is
unique.
The last case to consider is s ≤ 3. Suppose first that s < n− 1.
We may then introduce a new relation an−1 = an in Mρ. As in the case considered
above, using the induction hypothesis and the commutativity of all elements of the form
nx for arbitrary x, we can reach the conclusion that i = i′, j = j′, k = k′, l = l′ (if they
exist) and that

α1 =β1 . . . αi =βi′ . . . αs−1 =βs−1

αs1 =βs1 . . . αsj =βsj′ . . . αs s−2 =βs s−2

αs+1 1 =βs+1 1 . . . . . . . . . αs+1 s−2 =βs+1 s−2

. . . . . . . . . . . . . . .

αn−1 1 + αn1 =βn−1 1 + βn1 . . . . . . . . . αn−1 s−2 + αn s−2 =βn−1 s−2 + βn s−2

αs s−1 =βs s−1 . . . αk s−1 =βk′ s−1 . . . αn s−1 =βn s−1

αs =βs . . . αl =βl′ . . . αn−1 + αn =βn−1 + βn,

where conditions (⋆⋆) and (⋆ ⋆ ⋆) hold.
We may also introduce the relation an−2 = an−1 instead of an−1 = an. We then
obtain a similar system of equations which, combined with the one above, leads to the
conclusion that all corresponding exponents α and β are equal. Thus the form (⋆) of
w is indeed unique.
The last case to consider is n − 1 ≤ s and s ≤ 3. Then n ≤ 4. For n = 3 we know
by the induction hypothesis that the claim is true. For n = 4 we have to consider only
the case 4− 1 ≤ s ≤ 3, so s = 3.
Let us introduce inM4/ρ the relation a1 = a2, which leads to the system of equations
as above. Also, independently, we introduce the relation a3 = a4, leading to another
system of equations as above. These two systems of equations combined lead to the
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conclusion that 



α31 + α32 = β31 + β32

α41 + α42 = β41 + β42
α31 + α41 = β31 + β41

α32 + α42 = β32 + β42

and all other exponents α, β are, respectively, equal. Furthermore, either α2 = 0 or
α31 = 0 and either α3 = 0 or α42 = 0, similarly for β.
Now we introduce inM4/ρ the relations a2ax = axa2 and a3ax = axa3 for x = 1, 2, 3, 4.
We obtain

M̃ =M4/ρ
/
(a2 centrala3 central

) ≃ M2 × 〈a2〉 × 〈a3〉,

where a1 and a4 are the generators of M2. In M2 we have the canonical form of
elements, so the elements of M2 × 〈a2〉 × 〈a3〉 may be written in the canonical form
(1)∗(41)∗(4)∗(2)∗(3)∗. Therefore, for the any elements w = w′ inM4/ρ and their images
w̃ = w̃′ ∈ M̃ , comparing the exponents in the canonical forms w̃ and w̃′ we obtain
in particular α41 = β41. Combined with the system of equations obtained above for
exponents α and β, this equality leads to the conclusion that all respective exponents
are equal. Therefore the forms w and w′ are identical, so the form (⋆) is indeed unique
also in this case.
Therefore, we have a unique form (⋆) of elements in Mρ. We shall now prove that
the element s (s − 1) is regular. Suppose that for some elements w,w′ the equality
s (s − 1) w = s (s − 1) w′ holds and that the exponents of the element s (s − 1) in
elements w,w′ written in the form (⋆) are αs s−1 and βs s−1, respectively. By Definition
1.1.3, the element asas−1, denoted here by s (s − 1), is central in Mρ. Therefore the
exponents of the element s (s − 1) in s (s − 1) w and s (s − 1) w′, written in the
form (⋆), are equal to αs s−1 + 1 and βs s−1 + 1, respectively. Since, by assumption,
s (s−1) w = s (s−1) w′ and the form (⋆) is unique, the equality αs s−1+1 = βs s−1+1
holds, so αs s−1 = βs s−1 also holds. All other exponents in the canonical forms of the
elements s (s− 1) w and s (s− 1) w′ are the same as in the elements w and w′, so they
are equal. Hence w = w′, which means that the element s (s− 1) is left regular. Since
it is central, the assertion follows. �

Note that Remark 1.2.5 and Lemma 1.2.6 imply that for ρ of ♦ type we can consider
the central localization Mρ〈(asas−1)

−1〉.

1.2.7 Lemma. If ρ is a congruence of ♦ type with distinguished generators as−1, as,
then there is an isomorphism

Mρ〈(asas−1)
−1〉 ≃Ms−1,s

n−2 × B ×Z

which is the natural extension of the map λ : Mρ →Ms−1,s
n−2 ×B × Z defined by





λ(as−1) = (1, p, g)

λ(as) = (1, q, 1)

λ(ai) = (ai, p, 1) for i < s− 1

λ(aj) = (aj, q, 1) for j > s.
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Proof. Define the transformation ψ̂♦ : M →Ms−1,s
n−2 × B × Z by





ψ̂♦(as−1) = (1, p, g)

ψ̂♦(as) = (1, q, 1)

ψ̂♦(ai) = (ai, p, 1) for i < s− 1

ψ̂♦(aj) = (aj, q, 1) for j > s.

We will prove that ψ̂♦ is a homomorphism by checking each coordinate separately.
In the first coordinate we have the transformation as−1 7→ 1, as 7→ 1, al 7→ al =

ψ♦(al) for l 6= s − 1, s. We shall check that under this map the images of generators
satisfy all the relations satisfied by the generators, i.e. the defining relations of M :
aiajak = aiakaj = ajaiak for i ≥ j ≥ k.
If all three indices i, j, k are equal to s− 1 or s, then all the images of generators are
equal 1 and satisfy all the relations.
If exactly two among the indices i, j, k are equal s−1 or s, then on both sides of each
of the relations there is only the image of the generator with the third index. Therefore
all the relations are satisfied.
If only the index i is equal s− 1 or s, then

aiajak 7→ 1ajak,

aiakaj 7→ 1akaj ,

ajaiak 7→ aj1ak

and all the images are equal, because, by the definition of ψ♦, aj and ak commute.
Similarly, one verifies the case where only the index k is equal to s− 1 or s.
If only the index j is equal s− 1 or s, then

aiajak 7→ ai1ak,

aiakaj 7→ aiak1,

ajaiak 7→ 1aiak

and in this case also all the images are equal.
If none of the indices i, j, k is equal to s− 1 or s, then the images of the generators
satisfy the respective relations, because ψ♦ is a homomorphism. This completes the

proof of the fact that the first coordinate of ψ̂♦ is a homomorphism.
In the second coordinate we have ai 7→ p for i ≤ s− 1, aj 7→ q for j ≥ s. As above,
we verify that under this map, the images of the generators satisfy all the defining
relations of M . Let i ≥ j ≥ k. If k ≥ s, then the image of each of the elements aiajak,
aiakaj , ajaiak is equal to q

3, thus these images are equal. Similarly, if i ≤ s− 1, then
the images are equal to p3. If i ≥ s > s− 1 ≥ j ≥ k, then

aiajak 7→ qpp = p,

aiakaj 7→ qpp = p,

ajaiak 7→ pqp = p,
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thus also all the images are equal. Similarly, for i ≥ j ≥ s > s− 1 ≥ k all the images

are equal to q. Therefore the second coordinate of ψ̂♦ is indeed a homomorphism.

The third coordinate of ψ̂♦ is a homomorphism as well, because all the relations inM

are homogeneous with respect to as−1. This completes the proof of the fact that ψ̂♦ is
a homomorphism.

We shall now prove that ker(ψ♦) ⊆ ker(ψ̂♦). So, assume that ψ♦(x) = ψ♦(y) for

some x, y ∈ M . We will show that also ψ̂♦(x) = ψ̂♦(y). It suffices to prove that

ψ̂♦(x) = ψ̂♦(y) for pairs (x, y) generating ρ.
For i, k < s− 1 and the pair (aiak, akai), we obtain

ψ̂♦(aiak) = (ai, p, 1) · (ak, p, 1) = (aiak, p
2, 1)

and similarly ψ̂♦(akai) = (akai, p
2, 1). Therefore ψ̂♦(aiak) = ψ̂♦(akai), as claimed. The

proof is similar for j, l > s and the pair (ajal, alaj).
For i < s− 1 and the pair (aias−1, as−1ai), we obtain

ψ̂♦(aias−1) = (ai, p, 1) · (1, p, g) = (ai, p
2, g) = ψ̂♦(as−1ai).

Similarly for j > s and the pair (ajas, asaj).
For i, k < s− 1 and the pair (aiasak, akasai), we obtain

ψ̂♦(aiasak) = (ai, p, 1) · (1, q, 1) · (ak, p, 1) = (aiak, pqp, 1) = (aiak, p, 1) = ψ̂♦(akasai).

Similarly for j, l > s and the pair (ajas−1al, alas−1aj). If in the above cases i = s− 1,
k = s− 1, j = s or l = s, the proof is analogous.

We have thus completed the proof of the fact that ker(ψ♦) ⊆ ker(ψ̂♦).

Therefore, ψ̂♦ can be presented as the composition of the epimorphism ψ♦ and some
homomorphism λ:

M

ψ♦

����

ψ̂♦ // Ms−1,s
n−2 × B × Z

Mρ

λ

88q
q

q
q

q
q

The element asas−1 is central in Mρ and from Lemma 1.2.6 we know it is regular,
therefore we can consider the localization Mρ〈(asas−1)

−1〉. The image λ(asas−1) =

(1, 1, g) is an invertible element inMs−1,s
n−2 ×B×Z. Hence, we may consider the natural

extension λ′ of λ to the localization Mρ〈(asas−1)
−1〉.

We shall check that λ′ is an epimorphism. We have

λ′(asas−1) = (1, 1, g) and λ′((asas−1)
−1) = (1, 1, g−1),

so also
λ′(as−1(asas−1)

−1) = (1, p, g)(1, 1, g−1) = (1, p, 1).

Moreover
λ′(as) = (1, q, 1),

so also
λ′(asai) = (1, q, 1)(ai, p, 1) = (ai, 1, 1) for i < s− 1
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and
λ′(aj(as−1(asas−1)

−1)) = (aj , q, 1)(1, p, 1) = (aj, 1, 1) for j > s.

Therefore, in the image of λ′ we can obtain any value in each of the three coordinates
separately. Thus λ′ is an epimorphism.
Next, we prove that λ′ determines an isomorphism 〈as−1, as, (asas−1)

−1〉 ≃ B × Z.
Notice that by the definition of Mn and ψ♦, we have 〈as−1, as〉 ≃ 〈as−1, as〉 ≃ M2,
because ψ♦|〈as−1,as〉 is trivial. Let M

′
2 = 〈as−1, as〉, so that M

′
2 ≃ M2. The localization

of 〈as−1, as〉 with respect to 〈(asas−1)
−1〉 is 〈as−1, as, (asas−1)

−1〉, so

〈as−1, as, (asas−1)
−1〉 =M ′

2〈(asas−1)
−1〉.

Consider the restriction of λ′ to 〈as−1, as, (asas−1)
−1〉. We know that

λ′(as−1) = (1, p, g), λ′(as) = (1, q, 1), λ′((asas−1)
−1) = (1, 1, g−1),

therefore, a proof similar to the one above shows that this restriction of λ′ is an epi-
morphism onto {1} × B × Z.
We shall check that it is also an injection. Each element w ∈ 〈as−1, as, (asas−1)

−1〉 =
M ′

2〈(asas−1)
−1〉 can be written in the form w = as−1

kas
l(asas−1)

−m, where k, l ∈ N, m ∈
Z. We then obtain λ′(w) = (1, pkql, gk−m). If for some element v = as−1

k′as
l′(asas−1)

−m′

the equality λ′(v) = λ′(w) = (1, pkql, gk−m) holds, then from the uniqueness of the
canonical forms of elements of B and Z it follows that k = k′, l = l′, k −m = k′ −m′,
so also m = m′ and thus w = v.
Therefore the considered restriction of λ′ is indeed an injection. Since we know it is
a surjection, it is an isomorphism and thus

M ′
2〈(asas−1)

−1〉 = 〈as−1, as, (asas−1)
−1〉

λ′

≃ {1} × B × Z ≃ B ×Z.

We shall now prove that

Mρ〈(asas−1)
−1〉 ≃ C ×B ×Z,

where

C
def
= 〈asai, ajas−1 : i < s− 1; s < j〉 ⊆M.

First we check that

Mρ〈(asas−1)
−1〉 = C · 〈as−1, as, (asas−1)

−1〉.

By the relations in the Chinese monoid, the following equalities hold in M :

(asai)as−1 = as−1(asai), (asai)as = as(asai)

for i ≤ s− 1 and similarly

(ajas−1)as = as(ajas−1), (ajas−1)as−1 = as−1(ajas−1)

for j ≥ s. Analogous equalities hold in Mρ. Therefore, each element of the set C =
〈asai, ajas−1 : i < s− 1; s < j〉 commutes with all elements of the set 〈as−1, as〉.
In the localization Mρ〈(asas−1)

−1〉 the following equalities hold:

ai = (asas−1)
−1(asai)as−1 for i < s− 1,

aj = (asas−1)
−1(ajas−1)as for j > s.
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HenceMρ ⊆ 〈C, as−1, as, (asas−1)
−1〉, thus alsoMρ〈(asas−1)

−1〉 ⊆ C · 〈as−1, as, (asas−1)
−1〉.

The opposite inclusion holds by the definition of C, thus we obtain

(9) Mρ〈(asas−1)
−1〉 = C · 〈as−1, as, (asas−1)

−1〉.

Let β : Ms−1,s
n−2 →M be the map defined by

{
β(ai) = asai for i < s− 1

β(aj) = ajas−1 for j > s.

We shall check that β is a homomorphism. It suffices to check that all relations ofMn−2

hold also for the images of elements in M . The relations in Mn−2 are the relations of
the Chinese monoid Mn−2 and the relations introduced by ρ. To simplify notation,
instead of ax we shall write only x. Then in Mn−2 we have:
1) relations from ρ: commutativity of elements 1, . . . , (s− 2),
2) relations from ρ: commutativity of elements (s + 1), . . . , n,
3) relations from the Chinese monoid: zyx = zxy = yzx for x ≤ y ≤ z.
Notice that if z < s − 1 or x > s, then the relations listed in (3) follow from the
relations from (1) and (2). Therefore instead of (3) we can consider only:
3.1) if x ≤ y < s < z, then zyx = yzx,
3.2) if x < s < y ≤ z, then zyx = zxy.
In M we have relations of the Chinese monoid M and the relations introduced by ρ.
We shall now check that the images of elements in M satisfy relations stated in (1),
(2), (3.1) and (3.2).
1) by the definition of β for i, k < s − 1 we have βi = si, β(k) = sk, so using
the relations in M we obtain β(i)β(k) = sisk = s(isk) = s(ksi) = sksi = β(k)β(i);
therefore the images of elements 1, . . . , (s− 2) commute.
2) by an analogous argument.
3.1) for x ≤ y ≤ s− 1 < s < z, using the Chinese relations in M , we obtain

β(z)β(y)β(x) = z(s− 1)sysx = z(sx)(s− 1)sy = (zx)s(s− 1)(sy) =

= (sy)zsx(s− 1) = syz(s− 1)sx = β(y)β(z)β(x).

3.2) by an analogous argument.
Thus, we have verified that β is indeed a homomorphism.

From the definitions of β and C we obtain that β : Ms−1,s
n−2 ։ C. Therefore C is the

homomorphic image of the monoid Ms−1,s
n−2 .

We may now define the natural homomorphism

β ′ : Ms−1,s
n−2 × B × Z → M ×B ×Z

as β on the first coordinate Ms−1,s
n−2 and identity on B ×Z. Therefore, β ′(Ms−1,s

n−2 ×B ×
Z) = C×B×Z. Earlier we have shown that 〈as−1, as, (asas−1)

−1〉 ≃ B×Z. Therefore,

(10) C ×B ×Z ≃ C × 〈as−1, as, (asas−1)
−1〉.

The composition of the epimorphisms λ′ and β ′ gives a natural epimorphism

(11) β ′λ′ : Mρ〈(asas−1)
−1〉 ։ C ×B ×Z.
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We also have a natural epimorphism

(12) C × 〈as−1, as, (asas−1)
−1〉 ։ C · 〈as−1, as, (asas−1)

−1〉.

Using (9)-(12) we obtain the commutative diagram

Mρ〈(asas−1)
−1〉 =

β′λ′
����

C · 〈as−1, as, (asas−1)
−1〉

C × B ×Z ≃ C × 〈as−1, as, (asas−1)
−1〉

OOOO

Therefore both maps in (11) and (12) must be isomorphisms. Thus in particular

Mρ〈(asas−1)
−1〉 ≃ C ×B ×Z.

Denote this isomorphism by α, so α = β ′λ′. Then we have the commutative diagram

M

ψ♦

����

ψ̂♦ // Ms−1,s
n−2 × B × Z

β′

(( ((PPPPPPPPPPPP

Mρ

λ
88qqqqqqqqqqq

⊆ Mρ〈(asas−1)
−1〉

λ′
OOOO

≃
α C × B × Z

This means that β ′ and λ′ are isomorphism, which in particular leads to the conclusion

that Mρ〈(asas−1)
−1〉 ≃Ms−1,s

n−2 × B × Z. This completes the proof. �

Notice that Ms−1,s
n−2 ⊆ Mρ, but the factor M

s−1,s
n−2 in the image of λ

′, i.e. in Ms−1,s
n−2 ×

B × Z, is not the same object.

2. Minimal prime ideals in K[M ]

In this Section, a bijection between the set of minimal prime ideals of K[M ] and
the set of leaves of a certain tree D is established. More precisely, the elements of
D are defined as diagrams of some special type, which correspond in a constructive
way to certain homogeneous congruences on M . In particular, it follows that every
minimal prime ideal P of K[M ] is of the form P = IρP , where ρP is the congruence
on M defined by ρP = {(s, t) ∈ M ×M : s− t ∈ P}. Therefore K[M ]/P ≃ K[M/ρP ].
The construction implies also that M/ρP embeds into the monoid N

cP × (B × Z)dP ,
where cP + 2dP = n. In Part 2.1 the tree D is introduced. In Parts 2.2 and 2.3 some
intermediate steps are proved. The main result is summarized in Theorem 2.3.2.
Recall that if the rank n of the monoid M is equal to 1 or 2 then the algebra K[M ]
is prime and semiprimitive, [3]. Hence, as before, we shall assume that n ≥ 3.

2.1. Diagrams and the tree D.

2.1.1 Notation. We start with defining certain auxiliary diagrams, built on the set

of n generators a1, a2, . . . , an of M . Let ◦
i
denote the i-th generator. The simplest

diagram is of the form

◦
1
◦
2
. . . ◦

n
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If unambiguous, we omit the indices, denoting the above diagram also by

◦ . . .◦

The next simple diagrams are of the form

◦ . . .◦ • ◦ . . .◦

with a distinguished generator as. A diagram of this type will be called a dot as or
simply a dot. We consider such diagrams only for s = 2, 3, . . . , n− 1. If the number of
generators is k < n, such a diagram is called dotk.
A diagram of the form

◦ . . .◦ • • ◦ . . .◦

with an arc joining generators as−1 and as is called an arc asas−1 or simply an arc.
Here s can be any of the numbers 2, . . . , n. If the number of generators is k < n, such
a diagram is called an arck.

Next we construct more complicated diagrams. It turns out that all considered
diagrams can be organized in a tree D, which indicates the order and the way these
diagrams are constructed.

2.1.2 Definition. We construct a finite tree D whose vertices are diagrams. The
construction is performed in several steps. We start with defining the root of D, then
in the first step we connect it by edges with certain new diagrams, which treated as
vertices of D form the first level of D. In the next steps we build the subsequent levels
of D.

• We start with the vertex corresponding to the first of the diagrams described in
2.1.1; this vertex is called the root of D,

• in the first step we connect the root with 2n− 3 vertices: n− 2 diagrams which
are dots and n− 1 diagrams which are arcs (in the sense of 2.1.1); for example,
if n = 4, then we get the first level of D:

◦ ◦ ◦ ◦

kkkkkkkkkkkkkkkkkkkk

xxxxxxxx

FFFFFFFF

SSSSSSSSSSSSSSSSSSSS

◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • •

• generators involved in the construction of the appropriate dots or arcs are
marked in black and are called the used generators, while the other genera-
tors are called unused,

• in the next steps we construct the subsequent levels ofD, in each step adding, as
vertices of D, more complicated diagrams constructed according to the following
rules

⊕
and

⊙
.

Rules
⊕
:

• in every diagram each generator can be used at most once,
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• if a diagram has k unused generators, we connect to it, as vertices of D, all
diagrams obtained by adding a dotk or an arck (for these k generators), in a
way allowed by the remaining rules; according to 2.1.1, neither a1 nor an can be
used as a dot.

• if in a diagram there is an arc using one of the extreme generators a1 or an, then
we do not connect any new vertices of D to this vertex and we call such an arc
an extreme arc, and the corresponding vertex – a leaf of D,

• an arck (for some k unused generators) can be added only above, which means
that this arc connects the two generators that are neighbors of some used gen-
erators. (As we shall see in Remark 2.1.4, in every step of the construction used
generators have indices ranging from j to j + i for some j > 0, i ≥ 0, so that
the two neighboring generators are well defined). We get a diagram of the form

◦ . . . ◦ • n−k used
generators • ◦ . . . ◦

We denote i subsequent used generators by < i >, so that the above diagram is
simply written as

◦ . . . ◦ • < n− k > • ◦ . . . ◦

• if in a given step we do not add to some diagram an arc above, and this diagram
is not a leaf of D then we have to add a dot obeying rules

⊙
.

Rules
⊙
:

• after an arck a dotk−2 can only follow next to this arc, in other words, after the
diagram whose last step of construction was an arck

◦ . . . ◦ • < n− k > • ◦ . . . ◦

we can either have the diagram

◦ . . . ◦ • • < n− k > • • ◦ . . . ◦

or one of the following two diagrams

◦ . . . ◦ • < n− k > • • ◦ . . . ◦ or ◦ . . . ◦ • • < n− k > • ◦ . . . ◦

• after a dotk, for k < n, the next dotk−1 can occur only as a direct neighbor of
the former dot; in other words, after a diagram

◦ . . . ◦ < n− k > • ◦ . . . ◦

whose last step of construction was the indicated dotk, either a diagram of the
following form can follow

◦ . . . ◦ • < n− k > • • ◦ . . . ◦

or the following diagram can follow

◦ . . . ◦ < n− k > • • ◦ . . . ◦

• immediately after a dot in the first level ofD only an arcn−1 above can be added,
so after a diagram

◦ . . .◦ • ◦ . . .◦
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the following diagram can only follow

◦ . . .◦ • • • ◦ . . .◦

2.1.3 Example. The following diagrams are vertices of some trees D (for n = 15
and 9, respectively)

◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • ◦ ◦

2.1.4 Remark. The tree D is finite. In every step of the above construction the used
generators have indices j, . . . , j + i for some i ≥ 0, j > 0. The order in which all dots
and arcs were added can be uniquely determined from the form of a given diagram.
The generators a1 or an can only be used as elements of an arc, and such an arc is an
extreme arc. A leaf of D is a vertex in which an extreme arc has appeared.

2.1.5 Definition. A branch in D is a chain of connected vertices, leading from the
root to some vertex d. If d is a leaf then such a branch is called maximal.
If a vertex d2 was connected to a vertex d1 in the process of construction of D, then

d2 is called a descendant of the vertex d1.

2.1.6 Examples. The following diagrams are leaves of D

◦ ◦ ◦ • • • • • • • • • • • • • • • • • • • • •

For n = 3 the tree D has the form

◦ ◦ ◦

zz
zz

zz
zz

DD
DD

DD
DD

◦ • ◦ • • ◦ ◦ • •

• • •

while for n = 4 the tree D has the form

◦ ◦ ◦ ◦

kkkkkkkkkkkkkkkkkkkk

xxxxxxxx

FFFFFFFF

SSSSSSSSSSSSSSSSSSSS

◦ • ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • •

• • • ◦ ◦ • • • • • • •
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2.2. Diagrams as congruences on M .
In this part we show that every leaf of D determines a minimal prime ideal of K[M ].

2.2.1 Notation. If u < v, by Mu,v
ij
we denote the Chinese monoid with ij generators

a1, . . . , au−1, av+1, . . . , an; so that ij = n− v+ u− 1. Sometimes we denote this monoid
simply by Mij , if it is clear from the context or inessential which of the generators

a1, . . . , an are skipped. This generalizes the notation used earlier: M
s
n−1 and M

s−1,s
n−2 .

Indices ij will be helpful because we shall build sequences of congruences ρj for j =
0, 1, 2, . . . and monoids Mij corresponding to these congruences.
Recall that ρ0 denotes the trivial congruence on M . For a congruence ρ on M , by

Mij/ρ we mean Mij/(ρ|Mij
).

For a given congruence ρj , let ψj : M →M/ρj be the natural epimorphism. For every
x ∈ M we write ψj(x) = x̂j . In particular, for x ∈ Mij by x̂

j we mean the image of x
in Mij/ρj = Mij/(ρj|Mij

). With this notation, M/ρ0 = M , ψ0 = id, x̂0 = x. If ρ1 is a

congruence of type ♥ or ♦ on M , then x̂1 = x = ψ(x), where ψ = ψ1 : M → M/ρ1 is
the natural homomorphism.

2.2.2 Definition. We define inductively the following sequences of pairs (St, it) for
t ≥ 1, it > 0. Let i0 = n and

{
S1 = N

i1 = n− 1
or

{
S1 = B × Z

i1 = n− 2

and for every t > 1 let
{
St = St−1 ×N

it = it−1 − 1
or

{
St = St−1 ×B ×Z

it = it−1 − 2.

Every such sequence (St, it) is clearly finite. In each of the pairs, St is a direct product
of n− it factors.
For example, (N, n− 1), (N×B ×Z, n− 3), (N×B ×Z×N, n− 4), . . . are initial
elements of a sequence of pairs.

2.2.3 Construction. With each of the diagrams defined in part 2.1 we associate in
a natural way a congruence on M such that if a vertex d1 is a descendant of a vertex
d2 in the tree D, then the congruence corresponding to the diagram d1 contains the
congruence corresponding to the diagram d2.

Proof. We proceed by induction. We adopt an induction hypothesis consisting of five
parts and we immediately verify the validity of the first inductive step.
Part (I). Consider the diagrams described in 2.1.1. With the diagram ◦ . . .◦ we
associate the trivial congruence ρ0. With a diagram from the first level of the tree D
(so a dot or an arc) we associate congruences ρ1 of type ♥ and ♦, respectively, with
appropriate values of the distinguished index s. Clearly, all such ρ1 satisfy ρ0 ⊆ ρ1.
Hence, assume inductively that we already know congruences corresponding to all
diagrams up to the j-th level of the tree D. We wish to define a congruence for
some diagram d′ from level j + 1. This diagram was constructed in step j + 1 of the
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construction of the tree D from a diagram d in level j, with which a congruence ρj is
associated, by adding an arc above or adding a dot on one of the sides. So we assume
that (I): a diagram d from level j is not a leaf of D and that we already constructed a
chain of congruences ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ . . . ⊆ ρj on M , corresponding to the branch of D
which leads to a diagram d′ from level j + 1.
Part (II). Let au, au+1, . . . , av be the generators used in our diagram d from level j
(we know that u 6= 1, v 6= n and in view of 2.1.4 the used generators form a connected
segment). Consider Mu,v

ij
/ρj.

For j = 0 this is Mn/ρ0 =Mn. For j = 1 we know from 1.2.1 that in case ♥

Ms
n−1/ρ1 =Ms

n−1 =
Ms

n−1

/
(a1,...,as−1 commute
as+1,...,an commute)

,

while in case ♦

Ms−1,s
n−2 /ρ1 =Ms−1,s

n−2 =Ms−1,s
n−2

/
(a1,...,as−2 commute
as+1,...,an commute)

.

Hence, assume inductively that (II): the congruence ρj is chosen in such a way

that Mu,v
ij
/ρj is a Chinese monoid of rank ij with generators â

j
1, . . . , â

j
u−1, â

j
v+1, . . . , â

j
n,

and with additional relations making the monoid 〈âj1, . . . , â
j
u−1〉 free commutative and

making 〈âjv+1, . . . , â
j
n〉 free commutative.

Part (III). Assume that for every diagram from any level t ≤ j, which has some
number it of unused generators, there is an associated pair (St, it), in accordance with
Definition 2.2.2. For t = 0, so for the root of D, we have i0 = 0, while S0 is not defined.
With diagrams of the first level of the tree D, so for t = 1, we associate the pairs (S1, i1)
as in Definition 2.2.2.
Part (IV). By Corollary 1.2.4 and Lemma 1.2.7 we have, for ρ1 of type ♥ and ♦,

respectively, an epimorphism ψ̂♥ or a homomorphism ψ̂♦, such that

(♥) M →M/ρ1 ≃Ms
n−1 × 〈as〉 ≃Ms

n−1 ×N ≃Ms
n−1/ρ1 ×N,

(♦) M →M/ρ1 →֒M/ρ1 〈(asas−1)
−1〉 ≃ Ms−1,s

n−2 ×B ×Z ≃Ms−1,s
n−2 /ρ1 ×B ×Z,

with the embedding accomplished by the central localization with respect to 〈asas−1〉.
More precisely, in Mn, for n ≥ 2, we have n − 2 possible congruences ρ1 of type ♥,
so also n − 2 possible epimorphisms ψ̂♥, and also we have n − 1 possible congruences

ρ1 of type ♦, so also n − 1 possible homomorphisms ψ̂♦. These homomorphisms can
be associated with the corresponding branches in D, depending on the value of s. For
example, if n = 3, we get the following first level of the tree D:

◦ ◦ ◦

ψ̂♥ : M→M2
2×N

iiiiiiiiiiiiiiiiiiiiiiii

ψ̂♦ : M→M1,2
1 ×B×Z

ψ̂♦ : M→M2,3
1 ×B×Z

UUUUUUUUUUUUUUUUUUUUUUUU

◦ • ◦ • • ◦ ◦ • •

Let f be a diagram from the branch of D leading to the considered diagram d from
level j+1 (for which we want to construct ρj+1). Assume that f is from level t+1 ≤ j
in D and it was created from a diagram from level t < j, in which there are 0 ≤ it ≤ n
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unused generators, and the used generators have indices ut, . . . , vt. The value of it can
be different for different diagrams from level t, see Definition 2.2.2.
If the diagram f was created by adding a dot then assume inductively that (IV ♥):
there exists an epimorphism

ψ̂t♥ : Mut,vt
it

/ρt →Mit−1/ρt+1 ×N

given by {
ψ̂t♥(â

t
s) = (1, gs)

ψ̂t♥(â
t
l) = (ât+1

l , 1) for l 6= s,

where 〈gs〉 ≃ N and s = ut − 1 or s = vt + 1, depending on which of the two possible
dots was added. We associate this epimorphism with the edge of the tree D which is
used to add the diagram f .
If f was created by adding an arc, then assume inductively that (IV ♦): there exists
a homomorphism

ψ̂t♦ : Mut,vt
it /ρt →Mut−1,vt+1

it−2 /ρt+1 × B × Z

given by 



ψ̂t♦(â
t
u−1) = (1, p, g)

ψ̂t♦(â
t
v+1) = (1, q, 1)

ψ̂t♦(â
t
l) = (ât+1

l , p, 1) for l < ut − 1

ψ̂t♦(â
t
l) = (ât+1

l , q, 1) for l > vt + 1,

where Z ≃ 〈g, g−1〉. We associate this homomorphism with the edge of the tree D,
which was used to add the diagram f .

Notice that for t = 0 the corresponding homomorphisms are ψ̂0
♥ = ψ̂♥ and ψ̂

0
♦ = ψ̂♦.

Part (V). Define for t < j and for △ = ♥ or △ = ♦ the map κ̂t△ by κ̂
0
△ = ψ̂△ and

for 0 < t < j

κ̂t△ : Mit/ρt × St →Mit+1/ρt+1 × St+1, κ̂t△ = (ψ̂t△, id).

By the induction hypothesis (IV) applied to ψ̂t△ we know that for every edge in D one

of the maps κ̂t♥ or κ̂
t
♦ exists and κ̂

t
♥ is an epimorphism. Each map κ̂

t
△ = (ψ̂t△, id) we

associate with the edge in D with which the corresponding ψ̂t△ is associated.
Consider the branch of D leading from the root to a diagram f from level t+1. The
subsequent edges of this branch correspond to some homomorphisms κ̂0∗, κ̂

1
∗, . . . , κ̂

t
∗,

where each ∗ denotes ♥ or ♦. For △ equal to ♥ or ♦, we define a homomorphism

κ̂′
t

△ : M → Mit+1/ρt+1 × St+1

as the composition

κ̂′
t

△ = κ̂t△ ◦ κ̂t−1
∗ ◦ . . . ◦ κ̂1∗ ◦ κ̂

0
∗.

For t = 0 we have κ̂′
0

△ = κ̂0△, while for 0 < t < j we have

κ̂′
t

△ = κ̂t△ ◦ (κ̂t−1
∇ ◦ κ̂t−2

∗ ◦ . . . κ̂1∗ ◦ κ̂
0
∗) = κ̂t△ ◦ κ̂′

t−1

∇ ,
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κ̂′
t

△ : M
κ̂′

t−1
∇→ Mu,v

it
/ρt × St

κ̂t
△

→ Mit+1/ρt × St+1,

where each ∗ denotes ♥ or ♦ and ∇ = ♥ or ∇ = ♦. The map κ̂′
t

△ is an epimorphism
if and only if all ∗ are equal to ♥ and ∇ = ♥. However, by the construction of D we

cannot simultaneously have κ̂0∗ = κ̂0♥ and κ̂
1
∗ = κ̂1♥. Hence κ̂

′
t

△ is an epimorphism only
for t = 0 and △ = ♥.

In cases where the index △ is not important we simply write ψ̂t or κ̂t or κ̂′
t
, respec-

tively.

Assume inductively that (V): for t+ 1 ≤ j we have ρt+1 = ker(κ̂′
t
). For t = 0, since

κ̂′
0
= κ̂0 = ψ̂0, we have ρ1 = ker(ψ), which agrees with the definition of ρ1.
Next, we define a congruence ρj+1 and we verify that it satisfies the inductive claim,
so conditions (I)-(V) are satisfied. We may assume that the considered diagram d′ from
level j + 1 was constructed from a diagram d from level j by adding a dot au−1 (the
proof for a dot av+1 is similar) or an arc av+1au−1. In the former case, we define a map

ψ̂j♥ : M
u,v
ij
/ρj →Mij−1/ρj ×N

as the natural extension of the homomorphism defined on generators as follows:
{
ψ̂j♥(â

j
u−1) = (1, gu−1)

ψ̂j♥(â
j
l ) = (âjl , 1) for l 6= u− 1,

where 〈gu−1〉 ≃ N, and in the latter case as the homomorphism

ψ̂j♦ : Mu,v
ij
/ρj →Mij−2

/ρj × B × Z

naturally extending:




ψ̂j♦(â
j
u−1) = (1, p, g)

ψ̂j♦(â
j
v+1) = (1, q, 1)

ψ̂j♦(â
j
l ) = (âjl , p, 1) for l < u− 1

ψ̂j♦(â
j
l ) = (âjl , q, 1) for l > v + 1.

Both maps are homomorphisms because they are homomorphisms on each of the com-

ponents. Moreover ψ̂j♥ is an epimorphism and ψ̂
j
♦ is not an epimorphism. This is

verified in the same way as for ψ̂♥ and ψ̂♦.
Let {

Sj+1 = Sj × 〈gu−1〉 ≃ Sj ×N

ij+1 = ij − 1

in case ♥ and {
Sj+1 = Sj ×B ×Z

ij+1 = ij − 2

in case ♦. Then ij+1 so defined coincides with the number of used generators in the
diagram. Moreover, the pairs (Sj+1, ij) defined in this way satisfy conditions of Defini-
tion 2.2.2. This completes the proof of part (III) of the inductive claim.
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Define the homomorphism

κ̂j△ : Mu,v
ij
/ρj × Sj →Mij+1

/ρj × Sj+1 by κ̂j△ = (ψ̂j△, id),

so κ̂′
j

△ are defined in the same way as κ̂
′
t

△ for t < j.

Similarly as for κ̂′
t
, let κ̂′

j

△ : M → Mij+1
/ρj+1 × Sj+1 be the homomorphism defined

by κ̂′
j

△ = κ̂j△ ◦ κ̂j−1
∗ . The homomorphism κ̂′

j
corresponds to a congruence ker(κ̂′

j
) on

M . We define ρj+1 = ker(κ̂′
j
). We will show that ρj+1 satisfies the inductive claim.

By the inductive hypothesis we know that ρt ⊆ ρt+1 for 0 < t < j. Also, for 0 < t ≤ j

we have κ̂′
t
= κ̂t◦κ̂′

t−1
, so that ker(κ̂′

t−1
) ⊆ ker(κ̂′

t
). Thus, by the inductive hypothesis

(V) and by the definition of ρj+1 we get

ρj = ker(κ̂′
j−1

) ⊆ ker(κ̂′
j
) = ρj+1,

so that ρj ⊆ ρj+1. This completes the proof of part (I) of the inductive claim.
Now we will show that ρj |Mij+1

⊇ ρj+1|Mij+1
. Assume that for some x, y ∈ Mij+1

we

have (x, y) ∈ ρj+1|Mij+1
. Similarly as above, by the definition of ρj+1 this means that

(x, y) ∈ ker(κ̂′
j
), so that κ̂′

j
(x) = κ̂′

j
(y). By the definition of κ̂′

j
: M →Mij+1

/ρj×Sj+1,

the latter implies that the first components (belonging to Mij+1
/ρj) of elements κ̂′

j
(x)

and κ̂′
j
(y) are equal, so that the images of x, y in Mij+1

/ρj are equal. Hence (x, y) ∈
ρj|Mij+1

. So indeed we have ρj |Mij+1
⊇ ρj+1|Mij+1

, as desired.

Therefore, in view of the opposite inclusion proved before, we get ρj |Mij+1
= ρj+1|Mij+1

,

whence also

Mij+1
/ρj =Mij+1

/ρj+1.

Thus Mij+1
/ρj+1 is the Chinese monoid on ij+1 generators, with the same additional

relations as Mij+1
/ρj, so with commutativity of the sets of generators that are on the

same side of the generators used earlier. This completes the proof of part (II) of the
inductive claim.
Since Mij+1

/ρj =Mij+1
/ρj+1, it follows that

ψ̂j♥ : Mu,v
ij
/ρj → Mij−1/ρj ×N =Mij+1

/ρj ×N =Mij+1
/ρj+1 ×N,

ψ̂j♦ : Mu,v
ij
/ρj → Mij−2/ρj ×B × Z =Mij+1

/ρj × B × Z =Mij+1
/ρj+1 × B × Z.

Moreover, for every generator al of Mij+1
we therefore have âjl = âj+1

l . By the above,

and in view of the definition, ψ̂j satisfies all the conditions of the inductive hypothesis

for ψ̂t with t < j. This completes the proof of part (IV) of the inductive claim.

Hence, also κ̂′
j
satisfies all conditions that hold by the assumption for κ̂′

t
with t < j.

Moreover, by the definition, ρj+1 = ker(κ̂′
j
). This completes the proof of part (V)

of the inductive claim, and hence completes the entire construction. �

2.2.4 Notation. From now on we adopt the notation used in Construction 2.2.3. We
know that ρj ⊆ ρj+1 and ψj and ψj+1 are epimorphisms. Hence there exists a natural
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epimorphism ϕj such that the diagram

M
ψj // //

ψj+1 ## ##GG
GG

GG
GG

G
M/ρj

ϕj

��
M/ρj+1

commutes, that is ψj+1 = ϕj ◦ ψj.

2.2.5 Lemma. For every j there exists a natural embedding

λj+1 : M/ρj+1 →֒ Mij+1
/ρj+1 × Sj+1.

Moreover, the following diagram commutes

M/ρj
�

�

λj //

ϕj

��

Mij/ρj × Sj

κ̂j

��
M/ρj+1

�

�

λj+1 // Mij+1
/ρj+1 × Sj+1

Proof. First, consider the case j = 1. If ρ1 is of type ♥ then Lemma 1.2.3 yields an
isomorphism M/ρ1 ≃Mi1/ρ1 × S1, which we denote by λ1. We know that the diagram

M

ψ
��

κ̂′
0
=ψ̂

&&NNNNNNNNNNNN

M/ρ1 ≃
λ1

Mi1/ρ1 × S1

commutes.
If ρ1 is of type♦, then by the proof of Lemma 1.2.7 we have an embedding λ : M/ρ1 →֒

Mi1/ρ1 × S1, which we denote by λ1. As in case ♥ we know that the diagram

M

ψ
��

κ̂′
0
=ψ̂

&&NNNNNNNNNNNN

M/ρ1
�

� λ1 // Mi1/ρ1 × S1

commutes.
For j > 1, by the inductive construction of κ̂′

j
in 2.2.3, we get Im(κ̂′

j
) ⊆Mij+1

/ρj+1×

Sj+1. Since ρj+1 = ker(κ̂′
j
), we thus get the desired natural embedding

λj+1 : M/ρj+1 →֒ Mij+1
/ρj+1 × Sj+1.

Therefore the diagram

M

ψj+1

��

κ̂′
j

((QQQQQQQQQQQQQQ

M/ρj+1
�

�

λj+1 // Mij+1
/ρj+1 × Sj+1
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commutes.
Since congruences from higher levels of the tree D satisfy analogous conditions, for
every j > 0 we get a commuting diagram

M

ψj

��

κ̂′
j−1

&&NNNNNNNNNNNN

M/ρj
�

�

λj // Mij/ρj × Sj.

Hence κ̂′
j−1

= λj ◦ ψj . Thus κ̂′
j−1

◦ ψ−1
j (x) = λj(x) for every x ∈M/ρj .

By the definition of κ̂′
j
we have κ̂′

j
= κ̂j ◦ κ̂′

j−1
. Moreover, by the definition of ϕj,

we have ψj+1 = ϕj ◦ ψj . Hence, for every x ∈ M/ρj and its preimage ψ
−1
j (x) ⊆ M , it

follows that ψj+1(ψ
−1
j (x)) = ϕj(x). All the above easily leads to

λj+1 ◦ ϕj(x) = (λj+1 ◦ ψj+1)(ψ
−1
j (x)) = κ̂′

j
(ψ−1

j (x)) =

= (κ̂j ◦ κ̂′
j−1

)(ψ−1
j (x)) = κ̂j ◦ λj(x),

which establishes the assertion. �

2.2.6 Notation. For a fixed diagram d inD, let Al be the submonoid ofM generated
by all products ayax, corresponding to arcs built in this diagram up to the l-th step
(inclusive) of the construction of d. In case ♥ for l = 1 (where there are no arcs), we
define A1 = {1}.

2.2.7 Notation. For simplicity, we sometimes identify M/ρl with λl(M/ρl) and we

identify (M/ρl) · (Â
l
l)
−1 with λl(M/ρl) · (λl(Â

l
l))

−1.

2.2.8 Lemma. With notation as in 2.2.6, for every l > 0 the elements âlyâ
l
x are

central and regular in M/ρl. Moreover (M/ρl) · (Â
l
l)
−1 ⊆Mil/ρl×Sl (identifying M/ρl

with λl(M/ρl)).

Proof. We know that Âll = ψl(Al) ⊆M/ρl. From Lemma 2.2.5 we have an embedding
λl : M/ρl →֒ Mil/ρl × Sl. We will consider the images of elements of Al in Mil/ρl × Sl

under the map λl ◦ ψl = κ̂′
l−1

: M →Mil/ρl × Sl.
Assume that in some step k + 1 < l of the construction, an arc ayax is built, where

k ≥ 0. We study the images of the generators up to this step k + 1.
Consider all the steps of the construction, from step one till step k. By the last part
of the proof of part (IV) of the inductive claim in Construction 2.2.3 we know that for
every t, in step t + 1 we have (depending on the case, respectively)

{
ψ̂t♥(â

t
x) = (ât+1

x , 1)

ψ̂t♥(â
t
y) = (ât+1

y , 1)
or

{
ψ̂t♦(â

t
x) = (ât+1

x , p, 1)

ψ̂t♦(â
t
y) = (ât+1

y , q, 1).

This follows from the definition of the maps ψ̂t△ and from the fact that in step k an arc
ayax is built, whence in the previous steps generators with indices between x and y are
used.
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This implies that in step k the images of the generators ax, ay ∈M under κ̂′
k−1
have

the form {
κ̂′
k−1

(ax) = (âkx, [1, p])

κ̂′
k−1

(ay) = (âky , [1, q]),

where âkx, â
k
y ∈Mx+1,y−1

ik
/ρk, and [1, p], [1, q] ∈ Sk = N

c × (B ×Z)d denote sequences of
length c+2d consisting of (c+ d) elements 1 and d elements p or (respectively) (c+ d)
elements 1 and d elements q, and p in [1, p] occurs in exactly the same places as q in
[1, q].

In step (k + 1) an arc ayax is built, so according to the definition of ψ̂
k
♦ we get

{
ψ̂k♦(â

k
x) = (1, p, g)

ψ̂k♦(â
k
y) = (1, q, 1),

so that{
κ̂′
k

♦(ax) = κ̂k♦ ◦ κ̂′
k−1

(ax) = κ̂k♦(â
k
x, [1, p]) = (ψ̂k♦(â

k
x), [1, p]) = (1, p, g, [1, p])

κ̂′
k

♦(ay) = (1, q, 1, [1, q]) (analogously).

In the next steps of the construction, from step k + 2 till step j, elements 1 occurring
as the first components of the above images of ax and ay yield in the image (1, 1)

in case ♥ and (1, 1, 1) in case ♦, respectively. More precisely, since ψ̂t♥ and ψ̂
t
♦, are

homomorphisms, for the element 1 ∈Mit/ρt we get the equalities{
ψ̂t♥(1) = (1, 1) ∈ Mit−1/ρt+1 ×N

ψ̂t♦(1) = (1, 1, 1) ∈Mit−2/ρt+1 ×B ×Z,

respectively. Hence, for every z ∈ St we get (respectively)
{
κ̂t♥(1, z) = (1, 1, z)

κ̂t♦(1, z) = (1, 1, 1, z),

respectively. Therefore, in step l of the construction, with l > k + 1 we get
{
κ̂′
l−1

(ax) = (âlx, [1, p]) = (1, . . . , 1, 1, p, g, [1, p])

κ̂′
l−1

(ay) = (âly, [1, q]) = (1, . . . , 1, 1, q, 1, [1, q]).

Since p occurs in [1, p] in the same components as q occurs in [1, q], it follows that

κ̂′
l−1

(ayax) = κ̂′
l−1

(ay)κ̂′
l−1

(ax) = (âlyâ
l
x, [1, qp]) =

= (1, . . . , 1, 1, qp, g, [1, qp]) = (1, . . . , 1, g, 1, . . . , 1) ∈Mil/ρl × Sl.

Moreover, the above implies that g occurs in the components N occurring in Sl.
Thus in step l for l > k + 1 the image of the element ayax (corresponding to any
previously built arc) in Mil/ρl × Sl is of the form (âlyâ

l
x, [1, 1]) = (1, . . . , 1, g, 1, . . . , 1).

This is a central element. It is also invertible in Mil/ρl × Sl. So it is also central and
regular in M/ρl ⊆Mil/ρl × Sl (where M/ρl is identified with λl(M/ρl)).
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In particular, we may consider the localization (M/ρl) · (Â
l
l)
−1 with respect to the

submonoid generated by all such elements. Moreover, with identifications as in 2.2.7,

since we have inclusions M/ρl ⊆ Mil/ρl × Sl and (Âll)
−1 ⊆ Mil/ρl × Sl, we also get

(M/ρl) · (Â
l
l)
−1 ⊆Mil/ρl × Sl. This completes the proof. �

2.2.9 Theorem. With identifications as in 2.2.7, we have

(M/ρl)(Â
l
l)
−1 =Mil/ρl × Sl.

Proof. By Lemma 2.2.8 we know that (M/ρl)(Â
l
l)
−1 ⊆Mil/ρl × Sl.

For ρ1 of type ♥ we have A1 = ∅ by the definition, and i1 = n − 1, S1 = N, so that
the claim takes the form M/ρ1 ≃ Mn−1/ρ1 × N, which holds by Lemma 1.2.3. For ρ1
of type ♦, the set A1 consists of one element asas−1, and i1 = n − 2, S1 = B × Z, so
the claim takes the form (M/ρ1) · 〈(asas−1)〉

−1 =Mn−2/ρ1 ×B×Z, which follows from
Lemma 1.2.7.
Assume by induction that the claim holds for all congruences ρ corresponding to
diagrams in level j of the tree D. In particular, it holds for ρj corresponding to the
diagram from which the considered diagram from level j + 1 was constructed (the one
for which the congruence ρj+1 was constructed). Then the embedding λj : M/ρj →֒
Mij/ρj × Sj leads to an isomorphism, so we get

(M/ρj) · (Â
j
j)

−1 =Mij/ρj × Sj

and the inductive claim takes the form (M/ρj+1) · (Â
j+1
j+1)

−1 =Mij+1
/ρj+1 × Sj+1.

Consider the commuting diagram (see Lemma 2.2.5)

(#) M/ρj
�

�

λj //

ϕj

��

Mij/ρj × Sj

κ̂j

��
M/ρj+1

�

�

λj+1 // Mij+1
/ρj+1 × Sj+1

By the inductive hypothesis, (M/ρj)(Â
j
j)

−1 = Mij/ρj × Sj (under identification as in

2.2.7), while by Lemma 2.2.8 the map λj+1 yields an embedding (M/ρj+1)(Â
j+1
j+1)

−1 →֒

Mij+1
/ρj+1×Sj+1. All elements λj(Â

j
j)

−1 are invertible in Mij/ρj ×Sj , by the last part
of the proof of Lemma 2.2.8. Let for any i = 1, 2, . . ., the homomorphism λ′i be the

unique extension of λi to the localization (M/ρj+1)(Â
j+1
j+1)

−1, built as in the proof of
Lemma 1.2.7. Consider the diagram

(##) (M/ρj)(Â
j
j)

−1 =
λ′j

ϕ′
j

��

Mij/ρj × Sj

κ̂j

��

(M/ρj+1)(Â
j+1
j+1)

−1 �

�

λ′j+1 // Mij+1
/ρj+1 × Sj+1

where ϕ′
j is the natural extension of ϕj . We know that ϕj is an epimorphism.
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We will show that for ρj of type ♥ the map ϕ
′
j also is an epimorphism. We have

Aj = Aj+1, because in case ♥ there is no new arc added. Consider the image Â
j
j ⊆M/ρj

under the map ϕj : M/ρj →M/ρj+1. We get Â
j+1
j ⊆M/ρj+1, and the elements of Â

j+1
j

are central in M/ρj+1 (because so are the elements of Â
j
j in M/ρj). Moreover, we know

that Âj+1
j = Âj+1

j+1, because Aj = Aj+1, so that the image Â
j
j ⊆ M/ρj under the map

ϕj is equal to Â
j+1
j+1. The image of M/ρj is equal to M/ρj+1, whence indeed ϕ

′
j is an

epimorphism.
Next we show that the diagram (##) commutes. We know that the diagram (#)
commutes, so

(λ′j+1ϕ
′
j)|M/ρj = λj+1ϕj = κ̂jλj = (κ̂jλ′j)|M/ρj .

Under this map, the images of elements of Âjj are invertible inMij+1
/ρj+1×Sj+1, because

ϕj(Â
j
j) = Âj+1

j ⊆ Âj+1
j+1 and we know from the last part of the proof of Lemma 2.2.8 that

the elements λj+1((Â
j+1
j+1)

−1) are invertible in Mij+1
/ρj+1 × Sj+1. Hence, there exists a

unique extension to the localization (M/ρj)(Â
j
j)

−1. It is equal to λ′j+1ϕ
′
j and also equal

to κ̂jλ′j, so that λ
′
j+1ϕ

′
j = κ̂jλ′j. In other words, the diagram (##) commutes.

We know that in case ♥ the maps κ̂j , λ′j and ϕ
′
j are epimorphisms. Hence, λ

′
j+1ϕ

′
j =

κ̂jλ′j is an epimorphism, so that the embedding λ
′
j is an epimorphism. Thus, in case ♥,

λ′j is an isomorphism. Then we get (M/ρj+1)(Â
j+1
j+1)

−1 =Mij+1
/ρj+1 × Sj+1, as desired.

This completes the inductive step in case ♥.
In case ♦, κ̂j and ϕ′

j are not epimorphisms and Aj  Aj+1. We have Im(ϕ′
j) =

(M/ρj+1)(Â
j+1
j )−1. It also follows that Im(κ̂j) ⊆ Im(λ′j+1), because

Im(κ̂j) = λ′j+1(Im(ϕ′
j)) = λ′j+1((M/ρj+1)(Â

j+1
j )−1) ⊆

⊆ λ′j+1

(
(M/ρj+1)(Â

j+1
j+1)

−1
)
= Im(λ′j+1).

Since κ̂j |Sj
= id, we also have

Sj = κ̂j(Sj) ⊆ Im(κ̂j) ⊆ Im(λ′j+1) = λ′j+1

(
(M/ρj+1)(Â

j+1
j+1)

−1
)
.

Consider Mu,v
ij
/ρj+1 =Mij/ρj+1. This is a Chinese monoid M

u,v
ij
with the additional

relations of type ♦, so with relations corresponding to the arc avau. Hence, we are in a
case as in Lemma 1.2.7, where relations of type ♦ are imposed on the Chinese monoid
M . Moreover, notice that λ′j+1|Mij

/ρj+1
coincides with the map λ from Lemma 1.2.7.

Hence we may apply Lemma 1.2.7 toMij/ρj+1. We then get ij+1 = ij−2, andMij+1
/ρj+1

corresponds to Mn−2, and more generally

λ′j+1

(
(Mij/ρj+1)〈(â

j
vâ
j
u)

−1〉
)
=Mij+1

/ρj+1 × B × Z.

Since Mij/ρj+1 ⊆M/ρj+1 and 〈(â
j
vâ
j
u)

−1〉 ⊆ (Âj+1
j+1)

−1, we thus get

Mij+1
/ρj+1 ×B ×Z = λ′j+1

(
(Mij/ρj+1)〈(â

j
vâ
j
u)

−1〉
)
⊆

⊆ λ′j+1

(
(M/ρj+1)(Â

j+1
j+1)

−1
)
= Im(λ′j+1).
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Moreover we know that Sj ⊆ Im(λ′j+1). This leads to

Mij+1
/ρj+1 × Sj+1 =Mij+1

/ρj+1 × B × Z× Sj ⊆ Im(λ′j+1).

The opposite inclusion holds by the assumption. Hence the embedding λ′j+1 is an
epimorphism, which implies that

λ′j+1

(
(M/ρj+1)(Â

j+1
j+1)

−1
)
=Mij+1

/ρj+1 × Sj+1.

Hence, as in case ♥, λ′j+1 is an isomorphism, so that (M/ρj+1)(Â
j+1
j+1)

−1 =Mij+1
/ρj+1×

Sj+1. This completes the inductive step in case ♦, proving the assertion. �

Notice that Construction 2.2.3 assigns ideals of the form Iρi ⊳K[M ] to the vertices
of the tree D.

2.2.10 Theorem. Under the correspondence described in Construction 2.2.3, ideals
of K[M ] corresponding to the leaves of D are prime.

Proof. Construction 2.2.3 describes an inductive interpretation of all diagrams in D
as congruences on M . In particular, by Theorem 2.2.9, for every leaf from level r of D
and for the corresponding congruence ρr on M , we have

(M/ρr)(Â
r
r)

−1 ≃Mir/ρr × Sr,

and Sr is of the form N
k × (B × Z)m for some exponents k,m.

If the extreme arc occurring in the given diagram does not join generators a1, an then
there are ir > 0 unused generators. The congruence ρr introduces the commutativity
of these remaining generators, so that Mir/ρr ≃ N

ir . Hence

Mir/ρr × Sr ≃ N
ir ×N

k × (B × Z)m ≃ N
k × (B × Z)m.

On the other hand, if the extreme arc joins a1 and an then ir = 0 and

Mir/ρr × Sr ≃ M0/ρr × Sr ≃ Sr ≃ N
k × (B ×Z)m.

Therefore, we have

K[M/ρr](Â
r
r)

−1 ≃ K[(M/ρr)(Â
r
r)

−1] ≃ K[Nk × (B × Z)m].

It is well known that, for every field L, the algebra L[B] is primitive, see [15]. From
[14] it then follows that R[B] is prime for every prime algebra K. This easily implies

that K[Nk × (B × Z)m] is prime. Thus K[M/ρr](Â
r
r)

−1 is prime. Since it is a central
localization of K[M/ρr], also K[M/ρr] ≃ K[M ]/Iρr is prime. Hence Iρr is a prime
ideal of K[M ]. �

2.2.11 Definition. By the middle of a diagram d ∈ D we mean
– the first generator used as a dot, if the construction of d starts with a dot,
– the middle of the first arc, if the construction of d starts with an arc.

An argument similar to that in the proof of Lemma 2.2.8 can be used to prove the
following result.

2.2.12 Lemma. Let ρ be the congruence on M corresponding to a diagram d. Con-
sider the images of the generators of M in M/ρ, interpreted as a submonoid in the
appropriate Mil/ρ × Sl, where Sl is the product of some copies of B × Z and some
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copies of N (as in the proof of Lemma 2.2.8). Then in the images of the used genera-
tors on the left from the middle of d, elements 1 and p occur and at most one element
g (where 〈g, g−1〉 ≃ Z, if the given generator was used in an arc) or one gs (if as was
used as a dot; then 〈gs〉 ≃ N as in Construction 2.2.3).
On the other hand, the images of the used generators on the right of the middle of d
contain components 1 and q and at most one gs (if the generator as was used as a dot).
If a dot as is the middle of d then (1, . . . , 1, gs) is the image of this generator.
The images in M/ρ of all generators used in d have elements p and q in components
corresponding to the arcs built during the construction of d. Moreover, from the con-
struction it follows that for every component B in Sl there exist generators ai, aj , whose
images in M/ρ have in this component elements p and q, respectively. Hence, if the
image in M/ρ of some w ∈M has p+ or q+ in this component, then it is not central in
M/ρ (here + denotes an arbitrary positive integer).

2.2.13 Lemma. If ρ and ρ′ are congruences corresponding to diagrams d and d′, and
d, d′ are in different branches of D, then Iρ * Iρ′ .

Proof. First, consider the case where the root of D is the only vertex of D that is
contained in both branches leading from the root to d and from the root to d′. This
means that these diagrams start with
(1a) two different dots: d with as, and d

′ with at, where t 6= s, or
(1b) two different arcs: d with asas−1, and d

′ with atat−1, where t 6= s, or
(1c) one of them, say d, starts with an arc asas−1, and d

′ starts with a dot at.
Clearly, the middle of d is different than the middle of d′.
In case (1a) the image of as in M/ρ is central. If d′ consists of a single dot at, then
the image of as in M/ρ′ is not central because it does not commute with the images of
generators lying on the other side of at. Otherwise, in d

′, directly after the initial dot
at, according to the rules, the arc at+1at−1 was built. Hence, Lemma 2.2.12 implies that
in M/ρ′ in the images of all generators on the left of at there is a component p, while
on the right there is q. Since as 6= at, some component of the image of as is equal to p
or q, hence also in this case this image is not central in M/ρ′. Therefore ρ * ρ′.
In the same way we see that the image of at is central in M/ρ′, but it is not central
in M/ρ, whence ρ′ * ρ. This proves the assertion in case (1a).
Similarly, in case (1b), the image of asas−1 is central in M/ρ. Assume, with no loss
of generality, that s > t. Then, by Lemma 2.2.12, in the images of as and as−1 in M/ρ′

there are components equal to q and there are no components equal to p, so the image
of asas−1 is not central in M/ρ′. In the same way we see that the image of atat−1 is
central in M/ρ′, but is not central in M/ρ. This yields the assertion in case (1b).
In case (1c), similarly, assume that s > t. The image of asas−1 is central in M/ρ. If

d′ consists of the single dot at, then in M/ρ′ we have the same relations as in M and
additionally the images of a1, . . . , at commute and the images of at, . . . , an commute.
Therefore, the image of asas−1 is not central in M/ρ′, because it does not commute
with the image of at−1 (since at is a dot, we must have t > 1).
On the other hand, if d′ is not a single dot, then as in case (1a), in the diagram

d′ directly after the initial dot at the arc at+1at−1 must have been built. Hence, by
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Lemma 2.2.12, in the image of as in M/ρ′ one of the components is equal to q, while
in the image of as−1 there are no components equal to p. Hence, the image of asas−1 is
not central in M/ρ′.
Similarly, the image of at is central in M/ρ′, but it is not central in M/ρ, because
one of its components is equal to p. Hence, again Iρ * Iρ′ and Iρ′ * Iρ.
This completes the proof in the case where the root of D is the only common vertex
of the branches containing d and d′.
Now, consider the opposite case. So, up to a certain step in the construction of

D the diagrams d and d′ are equal. Assume that generators ax+1, . . . , ay−1, where
1 < x + 1 < y − 1 < n, were used in this common part of the construction of d and
d′ (so the diagram obtained in this step is not a leaf of D). We may assume that
x+1 < y−1, so the number of generators used in the common part of the construction
of d and d′ exceeds 1, because if two diagrams start with the same dot then in both of
them the same arc must follow.
Hence, one of the following cases must occur.
(2a) In one of the diagrams, say in d, an arc ayax was built, while in d

′ a dot was
built (say, to the right of the previously used generators, so ay, and then y < n).
(2b) In one of the diagrams, say in d, a dot ax was built on one side, while in d

′ a
dot ay was built on the other side (then x > 1 and y < n).
First, consider case (2a). Recall that < i > denotes i consecutive used generators, so
an initial step in the construction of d in this case looks like

◦ . . . ◦ •
x
< y − x− 1 > •

y
◦ . . . ◦

while an initial step in the construction of d′ is of the form

◦ . . . ◦ ◦
x
< y − x− 1 > •

y
◦ . . . ◦

In d′, before the dot ay, some dots might have been added on the same side of the
previously used generators, and before this an arc azax+1 must had been added, for some
x + 1 < z < y. Therefore, the following diagram is an initial step in the construction
of d′

◦ . . . ◦ ◦
x

•
x+1

< z − x− 1 > •
z
. . . •

y
◦ . . . ◦

In the next steps of the construction of d′, after the dot ay some dots might have been
added on the same side as previously used generators, which was followed by one of the
following two steps.
(2a.1) An arc awax was added for some w > y (and perhaps the construction of d′

was not complete yet). So an initial step of the construction of d′ is of the form

◦ . . . ◦ •
x

•
x+1

< z − x− 1 > •
z
. . . •

y
. . . •

w
◦ . . . ◦

(2a.2) The construction of d′ was completed, so d′ is of the form

◦ . . . ◦ ◦
x

•
x+1

< z − x− 1 > •
z
. . . •

y
. . . • ◦ . . . ◦
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Since the generators ax+1, . . . , ay−1 are in both diagrams d and d
′ used in the same

way, an initial step of the construction of d must be of the form

◦ . . . ◦ •
x

•
x+1

< z − x− 1 > •
z
. . . •

y
◦ . . . ◦

In d the generator ax+1 is not the middle, because if it were the initial dot then an
arc ax+2ax would follow. However, we know that y 6= x + 2, because we assume that
y − x− 1 > 1.
In view of Lemma 2.2.8, the image of ayax is not central in M/ρ.
First, consider case (2a.1). Since the construction of ρ′ involves a dot ay, and at a later
stage an arc awax, where x < y < w, it follows that the image of ay inM/ρ′ is of the form
(. . . , 1, 1, . . .), while the image of ax is of the form (. . . , p, g, . . .), where the distinguished
two components B × Z result from adding the arc awax in the construction of M/ρ′,
and . . . denote the values of the remaining components. The forms of these sequences
are derived as in the proof of Lemma 2.2.8, by representing M/ρ′ as a submonoid of an
appropriate monoid Mil/ρ

′ × Sl, where Sl is a direct product of some copies of B × Z

and some copies of N. Therefore, the image of ayax is of the form (. . . , p, g, . . .), whence
– because of the component p – it is not central in M/ρ′. Hence, in case (2a.1), ρ * ρ′.
Next, consider case (2a.2). Using an argument and notation as in the proof of
Lemma 2.2.8, and applying Lemma 2.2.12 and the fact that ay appears in d

′ to the
right of the middle of d′, one can get a more detailed description of the image of ay
in M/ρ′ as (1, . . . , 1, gy, [1, q]), where gy appears in a component corresponding to N
in M/ρ′. Similarly, the image of ax has the form (âlx, 1, . . . , 1, [1, p]), where elements p
in [1, p] occur in the same components as elements q occur in [1, q] in the image of ay.
Hence, the image of ayax has the form (âlx, 1, . . . , 1, gy, [1, 1]). Moreover, â

l
x ∈ Mil/ρ

′

does not commute with âly+1 ∈ Mil/ρ
′, so the image of ayax is not central in M/ρ′.

Therefore, in case (2a.2) we also have ρ * ρ′.
Hence, in both subcases of case (2a) we get ρ * ρ′ and in the rest of the proof we
treat both these cases together.
We claim that the image of ayax+1 in M/ρ′ is central, but its image in M/ρ is not
central, which will yield ρ′ * ρ. As above, we know that the image of ay in M/ρ′ looks
like (1, . . . , 1, gy, [1, q]), where gy occurs in a component corresponding to N w M/ρ′.
On the other hand, ax+1 appears in d

′ to the left of the middle of d′, so in the image of
ax+1 the components are 1, p and a single g (in the component corresponding to an arc
with the left end in ax+1). Moreover, the elements p occur in the same components in
which the elements q occur in the image of ay. Therefore all components of the image
of ayax+1 are equal to 1 except for a single component g and a single component gy.
Hence, this element is central in M/ρ′.
Similarly, the element ay in the diagram d is to the right of the middle of d, so the
image of ay in M/ρ has the form (1, . . . , 1, q, 1, [1, q]). As noticed before, the element
ax+1 is in d to the left of the middle of d, whence in the image of ax+1 in M/ρ there
are components 1, p and either a single component g, if the generator ax+1 was used
in an arc, or a single gx+1, if it was used as a dot. Moreover, all components different
than 1 occur in the components corresponding to the part of d, which was built before
the construction of the arc ayax, so in some of the components covered by [1, q] in the
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image of ay. The remaining components of the image of ax+1 are all equal to 1. This
implies that the image of ayax+1 is not central in M/ρ, because q is not central. Hence,
we indeed get ρ′ * ρ, as desired.
It follows that Iρ * Iρ′ and Iρ′ * Iρ, which completes the proof in case (2a).
Finally, we deal with case (2b). This case can occur only if the common initial part
of d and d′ is „covered” with an arc (only in this case a dot can be added both on the
left and on the right of the arc). Hence, an initial part of the construction of d′ has the
form

◦ . . . ◦ ◦
x

•
x+1

< y − x− 2 > •
y−1

•
y

◦ . . . ◦

which is a special case of the diagram d′ described in case (2a). So we know that the
image of ayax+1 is central in M/ρ′. In this case

◦ . . . ◦ •
x

•
x+1

< y − x− 2 > •
y−1

◦
y

◦ . . . ◦

is an initial step in the construction of the diagram d, whence ax+1 is on the left of
the middle of d. Hence, as in case (2a), one can show that the image of ayax+1 is not
central in M/ρ. By symmetry, the image of ay−1ax is central in M/ρ, but is not central
in M/ρ′. Then, again Iρ * Iρ′ and Iρ′ * Iρ, which completes the proof in case (2b)
and therefore the proof of the lemma. �

2.3. Minimal prime ideals as the leaves of D.
In this part we prove that every prime ideal of K[M ] contains an ideal corresponding
to a leaf of the tree D, and more generally that there is a bijection between the set of
leaves of D and the set of minimal prime ideals of K[M ].

2.3.1 Theorem. Every prime ideal of K[M ] contains a prime ideal Iρr , where ρr is
the congruence corresponding to a leaf of D.

Proof. Let P be a fixed minimal prime ideal of K[M ]. By Theorem 1.1.4, P contains
an ideal of the form Iρ, where ρ is a congruence coming from a diagram in the first
level of the tree D, so it is of one of the following types:
♥) ρ corresponds to a diagram ◦ . . .◦ • ◦ . . .◦ where the indicated dot is neither a1
nor an,
♦) ρ corresponds to a diagram ◦ . . .◦ • • ◦ . . .◦ .
Moreover, in cases ♥ and ♦ respectively, the homomorphisms from Lemmas 1.2.3
and 1.2.7 can be extended to maps of the respective semigroup algebras. This leads to
homomorphisms

K[M ] // K[Mρ]

����
K[M ]/P

≃ K[Ms
n−1 × 〈as〉] ≃ K[Ms

n−1/ρ][N]

K[M ] // K[Mρ]

����

�

� // K[Mρ 〈(asas−1)
−1〉] ≃ K[Ms−1,s

n−2 ×B × Z] ≃ K[Ms−1,s
n−2 /ρ][B × Z]

K[M ]/P
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in cases ♥ and ♦, respectively, where the embedding is accomplished via the central
localization with respect to 〈asas−1〉.
Consider all chains of congruences ρ0  ρ1  ρ2  . . .  ρj onM , corresponding to a
fragment of a branch of the tree D, such that Iρj ⊆ P . By Lemma 2.2.5 we then have
natural homomorphisms

K[M ] // K[M/ρj ]

����

�

� // K[Mij/ρj ][Sj]

K[M ]/P

where Sj and ij are defined as in 2.2.2.
In the set of all such chains we choose a chain for which ij is minimal. We will show
that the corresponding ρj is the congruence assigned to a leaf of D. Suppose otherwise.
Then ij > 0 and Mij/ρj is not a free abelian monoid of rank ij , because none of the
generators a1, an have been used. More precisely,

(13) Mij/ρj =Mu,v
ij
/(ρj |Mu,v

ij

) = 〈a1, . . . , au−1, av+1, . . . , an :

a1, . . . , au−1︸ ︷︷ ︸
commute

, av+1, . . . , an︸ ︷︷ ︸
commute

, and the relations of a Chinese monoid hold〉.

Consider an equality α1K[Mij ]β1 = 0 of type ⊞ (see Notation 1.1.2), where α1, β1 ∈

K[Mij ]. Then, in K[Mij/ρj ][Sj] we get α̂
j
1K[Mij

/
ρj ][Sj]β̂

j
1 = 0, where x̂j denotes the

image of x in K[Mij/ρj ][Sj]. Notice that K[M/ρj ] embeds into K[Mij/ρj ][Sj ], because
M/ρj →֒ Mij/ρj×Sj . Thus we can identifyM/ρj with its image under this embedding.
Let

Iα1 =
(
K[Mij/ρj] α̂

j
1K[Mij/ρj]

)
[Sj] ∩K[M/ρj ],

Iβ1 =
(
K[Mij/ρj] β̂

j
1K[Mij/ρj ]

)
[Sj] ∩K[M/ρj ].

Then

Iα1 · Iβ1 ⊆
(
K[Mij/ρj ] α̂

j
1K[Mij/ρj] β̂

j
1K[Mij/ρj ]

)
[Sj] ∩K[M/ρj ] = 0.

Moreover Iα1 , Iβ1 ⊳K[M/ρj ], because Iα1 , Iβ1 ⊳K[Mij/ρj][Sj ].

Let P̂ j be the image of P in K[M/ρj ]. Since Iρj ⊆ P , there exists a natural map

K[M/ρj ] → K[M ]/P whose kernel is P̂ j. Moreover, K[M/ρj ]
/
P̂ j ≃ K[M ]/P . In

particular, P̂ j is a prime ideal in K[M/ρj ]. So, for every pair of ideals Iα1 , Iβ1, since

Iα1 · Iβ1 = 0, we get Iα1 ⊆ P̂ j or Iβ1 ⊆ P̂ j. Let γ1 = α1 if Iα1 ⊆ P̂ j and let γ1 = β1
otherwise (then we must have Iβ1 ⊆ P̂ j). Since Iγ1 ⊆ P̂ j, there exists a natural

homomorphism K[M/ρj ]
/
Iγ1 → K[M ]/P .

Now, consider another pair α2, β2 ∈ K[Mij ] of type ⊞. The equalities α2K[Mij ]β2 = 0

hold in
(
K[Mij/ρj ]

/
γ̂j1 = 0

)
[Sj ]. It follows that

α̂j,12

(
K[Mij/ρj ]

/
γ̂j1 = 0

)
[Sj] β̂

j,1
2 = 0,
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where x̂j,1 denotes the image of x in
(
K[Mij/ρj]

/
γ̂j1 = 0

)
[Sj]. Let P̂

j,1 be the image

of P in the algebra K[Mij/ρj ]
/
γ̂j1 = 0. We define Iα2 and Iβ2 by

Iα2 =
((
K[Mij/ρj]

/
γ̂j1 = 0

)
α̂j,12

(
K[Mij/ρj ]

/
γ̂j1 = 0

))
[Sj] ∩K[M/ρj ]

/
Iγ1 ,

Iβ2 =
((
K[Mij/ρj]

/
γ̂j1 = 0

)
β̂j,12

(
K[Mij/ρj ]

/
γ̂j1 = 0

))
[Sj] ∩K[M/ρj ]

/
Iγ1 .

As above, we see that Iα2 , Iβ2 are ideals in K[M/ρj ]
/
Iγ1 , the ideal P̂

j,1 is prime in

K[Mij/ρj ]
/
γ̂j1 = 0 and either Iα2 ⊆ P̂ j,1 or Iβ2 ⊆ P̂ j,1. Let γ2 = α2, if Iα2 ⊆ P̂ j,1 and

let γ2 = β2 otherwise (then we must have Iβ2 ⊆ P̂ j,1). Since Iγ2 ⊆ P̂ j,1, there exists a

homomorphism K[M/ρj ]
/
Iγ1

/
Iγ2 → K[M ]/P .

Similarly one shows that the image P̂ j,2 of P in K[M/ρj ]
/
Iγ1

/
Iγ2 is a prime ideal

and

K[M/ρj ]
/
Iγ1

/
Iγ2 →֒

(
K[Mij/ρj ]

/
γ̂j1 = 0

/
γ̂j,12 = 0

)
[Sj].

By the hypothesis, the above construction yields

P ⊳

��

K[M ]

��

P̂ j ⊳

��

K[M/ρj ]

��

�

� // K[Mij/ρj ][Sj ]

��

P̂ j,1 ⊳

��

K[M/ρj ]
/
Iγ1

��

�

� //
(
K[Mij/ρj ]

/
γ̂j1 = 0

)
[Sj ]

��

P̂ j,2 ⊳
K[M/ρj ]

/
Iγ1

/
Iγ2

��

�

� //
(
K[Mij/ρj ]

/
γ̂j1 = 0

/
γ̂j,12 = 0

)
[Sj]

K[M ]/P

where the ideals in the first column are prime and the kernels of the three homomor-
phisms from K[M ] to the subsequent three algebras in the second column are contained

in P , because Iρj ⊆ P , and also Iγ1 ⊆ P̂ j and Iγ2 ⊆ P̂ j,1.

Let x̂j,2 denote the image of x in
(
K[Mij/ρj ]

/
γ̂j1 = 0

/
γ̂j,12 = 0

)
[Sj]. Similarly, we

define also x̂j,m for m ≥ 3, using other pairs of elements α, β ∈ K[Mij ] of type ⊞. Let
x̂j,0 denote x̂j .
Notice that each of the elements α, β ∈ K[Mij ] of type ⊞ is a difference of two
elements of Mij , see Theorem 1.1.1. Hence, all considered elements γ are also of this
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type. Put γk = lk − pk, where lk, pk ∈Mij . Then it is clear that(
K[Mij/ρj]

/
γ̂j1 = 0

)
[Sj] = K

[
Mij/ρj

/
l̂j1 = p̂j1

]
[Sj ].

We also get
(
K[Mij/ρj ]

/
γ̂j1 = 0

/
γ̂j,12 = 0

)
= K[Mij/ρj ]

/
(γ̂j1, γ̂

j
2)

= K[Mij/ρj]
/{

γ̂j1=0

γ̂j2=0

,

which, as above, leads to
(
K[Mij/ρj]

/
γ̂j1 = 0

/
γ̂j,12 = 0

)
[Sj ] = K

[
Mij/ρj

/ {
l̂j1=p̂

j
1

l̂j2=p̂
j
2

]
[Sj ].

Proceeding in this way, until all t pairs α, β ∈ K[Mij ] of type ⊞ are used, we extend
the above diagram by adding more rows. As above, we get the following form of the
last two rows of this diagram:

P̂ j,t ⊳
K[M/ρj ]

/
Iγ1

/
Iγ2

/
. . .

/
Iγt

�� ��

�

� // K



Mij/ρj

/ 



l̂j1=p̂
j
1

l̂j2=p̂
j
2

...
l̂jt=p̂

j
t


 [Sj ]

K[M ]/P

Let η be the congruence on Mij generated by the set {(l1, p1), (l2, p2), . . . , (lt, pt)}.
Then we get

K



Mij/ρj

/ 



l̂j1=p̂
j
1

l̂j2=p̂
j
2

...
l̂jt=p̂

j
t


 [Sj ] =

(
K[Mij ]

/
Iρj

/
(γ̂j1, γ̂

j
2, . . . , γ̂

j
t )

)
[Sj ] =

=
(
K[Mij ]

/ (
Iρj ∪ (γ1, γ2, . . . , γt)

))
[Sj ] = K[Mij/(ρj ∨ η)][Sj],

where λ1 ∨ λ2 denotes the congruence generated by λ1 and λ2.
The congruence η is defined by a set containing one element from each pair (α, β)
of type ⊞ for K[Mij ], so by Theorem 1.1.4 it contains a congruence η0 of type ♥ij or
♦ij on Mij . Therefore, η0 * ρj|Mij

, and so ρj |Mij
 ρj |Mij

∨ η0 (see the description of

Mij/ρj in (13).
We know thatMij/ρj×Sj =Mu,v

ij
/ρj×Sj , so the generators au, . . . , av have been used,

for some 1 < u ≤ v < n. Let ω be the kernel of the map M →
(
Mij/(ρj ∨ η0)

)
× Sj.

The above construction implies that ω satisfies Iω ⊆ P .
Let ρj−1 be the congruence corresponding to the diagram dj−1 of level j − 1 in the
tree D, which is connected to the diagram dj corresponding to ρj . We will show that
one of the following cases holds.
(A) There exists a congruence ρj+1 on M such that ρj  ρj+1 ⊆ ω, and ρj+1 cor-
responds to a diagram dj+1 in D, which is connected to the diagram dj. In this case,
since Iω ⊆ P , we get Iρj+1

⊆ Iω ⊆ P and ij+1 < ij.
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For this, we will find a congruence χ onMij , of type ♥ij or♦ij , such that ρj |Mij
 χ ⊆

ρj|Mij
∨η0 and the congruence χ̈ onM which is the kernel of the natural homomorphism

M →Mij/ρj×Sj → Mij/χ×Sj corresponds to a diagram inD, lying below the diagram
corresponding to ρj ; then we will put ρj+1 = χ̈.
(B) There exists a congruence ρ′j such that ρj−1  ρ′j , where i

′
j < ij, and i

′
j is the

number of unused generators in ρ′j. Moreover, the congruence ρ
′
j corresponds to a

diagram in D, which is connected to the diagram dj−1 and ρ
′
j ⊆ ω. In this case, since

Iω ⊆ P , we get Iρ′j ⊆ Iω ⊆ P .

Both cases contradict the choice of ij , which will complete the proof of the fact that
ρj corresponds to a leaf of D.
We know that η0 is a congruence of type ♥ or ♦ on Mij = Mu,v

ij
. If η0 corresponds

to a diagram (on Mij ) which is an arc av+1au−1, then ω corresponds to a diagram in D
(on M) and we put χ = ρj |Mij

∨ η0. Then ω = χ̈ and we define ρj+1 = χ̈. We thus get

case (A).
We consider the remaining possibilities.
If η0 corresponds to a diagram (on Mij ) which is an arc asas−1 for some s > v + 1,
then av+1 becomes central in the monoidMij/(ρj∨η0) (it commutes with aj for j < v+1
because s > v + 1 and commutes with all aj for j > v + 1 because of the congruence
ρj). A symmetric argument shows that, if s < u, then au−1 becomes central.
Similarly, if η0 corresponds to a diagram (on Mij ) which is a dot as for some s > v,
then the elementu av+1 becomes central in Mij/(ρj ∨η0). A symmetric argument shows
that, if s < u, then au−1 becomes central.
Therefore, in both considered cases, the congruence ρj |Mij

∨ η0 induces centrality of
au−1 or of av+1 in the image of Mij , so ω is a congruence corresponding to the diagram
containing a dot neighboring the previously used generators. If these used generators
are covered with an arc, then the new diagram obtained by adding the dot neighboring
this arc is allowed by Definition 2.1.2, so it is an element of the tree defined forMij . Let
χ denote the congruence on Mij corresponding to this new diagram; so χ ⊆ ρj |Mij

∨ η0.
The second case is when the new dot is on the same side as some recently added dot.
Then it is also easy to see that we get a congruence χ ⊆ ρj |Mij

∨ η0 that corresponds
to a diagram on Mij .
In both cases we may thus define ρj+1 = χ̈ ! ρj and conditions in case (A) are
satisfied, in particular ij+1 < ij.
It remains to consider the case where the diagram dj corresponding to ρj contains
dots on one side and the considered „new dot” (coming from η0) is on the other side.
In this case, we construct a congruence ρ′j that satisfies conditions in (B).
Assume that the last step in the construction of dj was the dot au, while the new
dot is the dot av+1. Then, by Lemma 1.2.3, we get Mij−1

/ρj−1 ≃ Mij/ρj × 〈au〉. This
corresponds to replacing Mij−1

/ρj−1 × Sj−1 by Mij/ρj × 〈au〉 × Sj−1 (in the process of
constructing ρj from ρj−1; see Construction 2.2.3).
Let e be the diagram in D obtained from dj−1 by adding the arc av+1au. We will
show that the congruence ρ′j , corresponding to e, is contained in ω.
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Let M ′ be the image of Mij/ρj ×〈au〉 obtained by making the generator av+1 central
in the first component, in other words

M ′ =
(
Mij/ρj

/
(av+1 central)

)
× 〈au〉.

We have to check that the following relations hold in M ′:
– the image of av+1au is central,
– the images of awav+1az and azav+1aw are equal for w, z < u,
– the images of awauaz and azauaw are equal for w, z > v + 1.
These are the relations that are imposed on Mij/ρj−1 in the process of constructing
ρ′j from ρj−1 by adding the arc av+1au (see the definition of an ideal of type ♦ in
Definition 1.1.3 and Construction 2.2.3).

The image of av+1au in Mij/ρj × 〈au〉 is equal to (â
j
v+1, au). In M

′, the element av+1

becomes central in the first component. Hence the image of av+1au is central in M
′.

The image of awav+1az inMij/ρj×〈au〉 is equal to (â
j
wâ

j
v+1â

j
z, 1), while (â

j
zâ
j
v+1â

j
w, 1) is

the image of azav+1aw. Since av+1 is central in the first component and the images of az
and aw commute for w, z < u, we get âjwâ

j
v+1â

j
z = âjv+1(â

j
wâ

j
z) = âjv+1(â

j
zâ
j
w) = âjzâ

j
v+1â

j
w.

So in M ′ the images of awav+1az and azav+1aw are equal.
Similarly, the image of awauaz in Mij/ρj × 〈au〉 is equal to (â

j
wâ

j
z, â

j
u), and the image

of azauaw is equal to (â
j
zâ
j
w, â

j
u). In Mij/ρj × 〈au〉 we get (â

j
wâ

j
z, â

j
u) = (âjzâ

j
w, â

j
u) for

w, z > v + 1, because âjwâ
j
z = âjzâ

j
w in Mij/ρj for w, z > v + 1. Thus, also the images of

awauaz and azauaw are equal in M
′.

Hence, all the relations corresponding to adding the arc av+1au are satisfied. It follows
that the congruence ρ′j , corresponding to e is contained in ω. Since the diagram e has
i′j = ij − 1 unused generators, case (B) holds.
This completes the proof of the fact that ρj corresponds to a leaf of D. The ideal Iρj
is prime in K[M ] by Theorem 2.2.10. This proves the assertion. �

2.3.2 Theorem. There exists a bijection between the set of leaves of the tree D
and the set of minimal prime ideals of K[M ]. Namely, if d is a leaf of D and ρ is the
congruence corresponding to d, then Iρ is the minimal prime ideal assigned to d.

Proof. Let P be a minimal prime ideal of K[M ]. By Theorem 2.3.1, P contains a
prime ideal of the form Iρ, where ρ corresponds to a leaf of D. Therefore Iρ = P . Let
f(P ) = ρ.
Let d be an arbitrary leaf of D and let η be the corresponding congruence on M .
Then, by Theorem 2.2.10, Iη is a prime ideal of K[M ]. Hence, there exists a minimal
prime ideal Q of K[M ] contained in Iη. Then, again by Theorem 2.3.1, Q contains
an ideal of the form Iη′ for a congruence η

′ corresponding to a leaf d′ of D. Then
Iη′ ⊆ Q ⊆ Iη, while by Lemma 2.2.13 we have Iη′ ⊆ Iη if and only if the vertices of
D corresponding to congruences η and η′ are in the same branch of D. Since d, d′ are
leaves, we get η = η′. Then Iη′ = Q = Iη, so Iη is a minimal prime ideal of K[M ]. We
define g(η) = Iη. Therefore

gf(P ) = g(ρ) = Iρ = P.
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Clearly, ρP = ρIρ . It is easy to see that x− y ∈ Iρ if and only if (x, y) ∈ ρ. Therefore
f(P ) = ρP , and hence

fg(ρ) = f(Iρ) = ρIρ = ρ.

It follows that f and g establish the desired bijection. �

2.3.3 Notation. If P is a minimal prime ideal of K[M ] then the congruence corre-
sponding to P is denoted by ρP . Notice that this is a homogeneous congruence, because
minimal prime ideals of a Z-graded ring are homogeneous, see for example [9] (this also
is a consequence of our construction of ρP ).

A careful analysis of the proof of Theorem 2.2.10 leads to the following description
of the monoids M/ρP for minimal prime ideals P of K[M ]. Recall that MP = Mρr ,
where ρr = ρP , in other words this is the last of the congruences used in the chain
ρ1  ρ2  . . .  ρr, constructed in 2.2.3.

2.3.4 Corollary. For every minimal prime ideal P of K[M ] there exists an embed-
ding

M/ρP →֒ N
cP × (B ×Z)dP ,

where cP + 2dP = n. Moreover,
(♥) if ρ1 is of type ♥, then

MP ≃ T × 〈ârs〉 ≃ T ×N,

where K[T ] ≃ K[Mn−1]/Q for some minimal prime ideal Q of K[Mn−1];
(♦) if ρ1 is of type ♦, then

MP ⊆MP (Â
r
j)

−1 ≃ T ×N
t × B ×Z,

where 1 ≤ j ≤ r and K[T ] ≃ K[Mn−2−t]/Q for some 0 ≤ t ≤ n − 2 and a minimal
prime ideal Q in K[Mn−2−t]. For t = n− 2 we put K[M0] = K, Q = 0 and T = {1}.

Proof. Using the notation of the proof of Theorem 2.2.10, we know that ρr = ρP and

(M/ρr)(Â
r
r)

−1 ≃ N
∗ × (B ×Z)∗. Hence there is an embedding

M/ρP →֒ N
cP × (B × Z)dP

for some positive integers cP , dP . From the algorithm used in the process of building
the latter direct product we know that a factor N appears each time a single generator
is used (as a dot), while a factor B ×Z appears each time a pair of generators is used
(as an arc). After the extreme arc is added to a diagram, the submonoid generated by
the unused generators is free abelian. Hence cP + 2dP = n.
We keep the notation used in Construction 2.2.3 and in 2.2.4. For ρ1 of type ♥ we
have a commuting diagram

M
ψ1=ψ♥// //

ψr %% %%JJJJJJJJJJJ M/ρ1

ϕi◦...◦ϕ1
����

λ1
≃ Ms

n−1 × 〈ârs〉

κ̂r−1◦...◦κ̂1

��

≃ Ms
n−1 ×N

µ

��
M/ρr ≃MP

�

�

λr
// Mir/ρr × Sr

�

� // (N∗ × (B ×Z)∗)×N



STRUCTURE OF CHINESE ALGEBRAS 45

where λr is as in Lemma 2.2.5 and the last embedding is identity on Sr, while µ is a
homomorphism that makes the diagram commute.
From the construction we know that κ̂r−1 ◦ . . . ◦ κ̂1 is identity on 〈ârs〉 ≃ N. Hence,

µ has the form θ × id, where θ acts on Ms
n−1, and id acts on N. Let

T
def
= θ(Ms

n−1) ⊆ N
∗ × (B ×Z)∗.

Then T is a homomorphic image of Mn−1 and MP ≃ T ×N, where N is an isomorphic
image of 〈ârs〉.
Denote by d the diagram corresponding to the ideal P . In the second step of the
construction of d, the dot as, corresponding to ρ1 of type ♥, must have been followed
by the arc as+1as−1, corresponding to ρ2. We know that M/ρ1 ≃ Ms

n−1 × N and the

congruence ρr = ρP corresponds to the homomorphism Ms
n−1 × N

µ
։ T × N, so that

M/ρP =MP ≃ T ×N.
We remove the dot as from the diagram d. Then we get a diagram d′ in the tree built
for the Chinese monoid on n− 1 generators. Such d′ corresponds to a leaf of this new
tree, whence to a minimal prime ideal of K[Mn−1]. On the other hand, d

′ corresponds
to the kernel of the homomorphism Mn−1 → Ms

n−1 → T , which is a consequence of
the construction of ρ1, ρ2, . . . , ρr. So T is a homomorphic image of M

s
n−1. Let Q be

the kernel of the epimorphism K[Ms
n−1] ։ K[T ]. Then K[T ] ≃ K[Ms

n−1]/Q. Since d
′

corresponds to a minimal prime ideal of K[Mn−1], Q is a minimal prime ideal. This
completes the proof in case ρ1 is of type ♥.
Assume now that ρ1 is of type ♦. We consider two cases.
(a) r = 1, so that ρ1 = ρP corresponds to a diagram

• • ◦ . . .◦ or ◦ . . .◦ • •

Then Mn−2 ≃ N
n−2, so Lemma 1.2.7 yields

MP =M/ρP →֒ Mn−2 × B ×Z ≃ N
n−2 × B ×Z

and the assertion follows with t = n− 2, K[M0] = K, Q = 0 and T = {1}.
(b) r > 1, so in the construction of the diagram d corresponding to the ideal P ,
after an initial arc corresponding to the congruence ρ1, there were more steps leading
to the leaf d of D. Recall that such a construction must finish with an extreme arc (see
Definition 2.1.5). Hence, in d, after the initial arc asas−1, a number t ≥ 0 of dots have
been built, followed by another arc. Hence, for some 1 < j+1 ≤ r the congruence ρj+1

corresponds (for some t ≥ 0) to the diagram

◦ . . . ◦ • •
s−1

•
s

•
s+1

. . . •
s+t

• ◦ . . . ◦

or to an analogous diagram with t dots on the left of the arc asas−1. Then ρj corresponds
to the diagram

◦ . . . ◦ •
s−1

•
s

•
s+1

. . . •
s+t

◦ . . . ◦

or to the analogous diagram with t dots on the left of the arc asas−1. Then the number
of unused generators is equal to ij = n−2− t and Sj = N

t×B×Z, while Lemma 2.2.5
yields a natural embedding

M/ρj →֒ Mij/ρj × Sj =Mij/ρj ×N
t ×B ×Z.
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Moreover, Sr = Y × Sj = Y × N
t × (B × Z), where Y = N

∗ × (B × Z)∗ and the
construction of M/ρP yields natural homomorphisms

M/ρj

ϕr−1◦...◦ϕj

����

�

� // Mij/ρj × Sj

κ̂r−1◦...◦κ̂j

��

= Mij/ρj ×N
t × B × Z

��
M/ρr ≃MP

�

� // Mir/ρr × Y × Sj = Mir/ρr × Y ×N
t × B × Z

where κ̂r−1 ◦ . . . ◦ κ̂j is identity on Sj , so it is of the form θ × id, with θ : Mij/ρj →
Mir/ρr × Y and id : Sj → Sj. Let

T
def
= θ(Mij/ρj),

so T × Sj is the image of Mij/ρj × Sj under κ̂
r−1 ◦ . . . ◦ κ̂j = θ × id.

By Theorem 2.2.9,Mij/ρj×Sj = (M/ρj)(Â
j
j)

−1 (under an appropriate identification).
Consider the following diagram, similar to (##) used in Theorem 2.2.9:

(###) (M/ρj)(Â
j
j)

−1 =

ϕ′
r−1◦...◦ϕ

′
j ����

Mij/ρj × Sj

κ̂r−1◦...◦κ̂j=θ×id

��

MP (Â
r
j)

−1 = (M/ρr)(Â
r
j)

−1 �

�
λ′′r // Mir/ρr × Y × Sj = Mir/ρr × Sr

where λ′′r is the restriction of λ
′
r to MP (Â

r
j)

−1, and every ϕ′
k, for k = j, . . . , r − 1, is

the natural extension of ϕk to the appropriate localization. Then ϕ
′
r−1 ◦ . . . ◦ ϕ

′
j maps

M/ρj onto M/ρr, while Â
j
j is mapped onto Â

r
j . Therefore, this is an epimorphism onto

(M/ρr)(Â
r
j)

−1.

We know that T × Sj ⊆ Mir/ρr × Sr is the image of (M/ρj)(Â
j
j)

−1 = Mij/ρj × Sj
under κ̂r−1 ◦ . . . ◦ κ̂j = θ × id. Since diagram (###) commutes, this image must be
equal to

λ′′r ◦ ϕ
′
r−1 ◦ . . . ◦ ϕ

′
j((M/ρj)(Â

j
j)

−1) = λ′′r(MP (Â
r
j)

−1) ≃MP (Â
r
j)

−1 ⊆Mir/ρr × Sr.

Therefore

MP ⊆MP (Â
r
j)

−1 ≃ T × Sj = T ×N
t × B × Z,

which proves the first part of the assertion in case ρ1 is of type ♦.
Removing from d the dots s − 1, s, s + 1, . . . , s + t leads to a diagram d′ in the
tree constructed for the Chinese monoid Mn−2−t. This diagram d′ starts with an arc
as+t+1as−2. Hence, as in the last part of the above proof in case ♥, the diagram d′

corresponds to the kernel of the homomorphism Mn−2−t → Mn−2−t/ρj → T and we
get K[T ] ≃ K[Mn−2−t]/Q for a minimal prime ideal Q in Mn−2−t. This completes the
proof in case ♦, and hence the proof of the proposition. �
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3. Applications

Our final goal is to derive certain important consequences of the main result of
Section 2. First, in Part 3.1, we show that the prime radical of the Chinese algebra
K[M ] coincides with its Jacobson radical. Next, in Part 3.2, we obtain a formula for
the number of minimal primes of K[M ]. A surprising new representation of the monoid
M as a submonoid of the direct product Bd×Z

e for some d, e ≥ 1 is found in Part 3.3.
In particular, the latter implies that M satisfies a nontrivial identity.

3.1. B(K[M ]) = J(K[M ]).
We start with the following result.

3.1.1 Theorem. For every minimal prime ideal P of K[M ] the algebra K[M ]/P is
semiprimitive.

Proof. Let n denote the rank of M . If n = 1 then K[M1] = K[x]. If n = 2 then from
[3] we know that K[M2] is also prime and semiprimitive. Hence, we may assume that
n ≥ 3. By induction, we may also assume that the assertion is satisfied for all Chinese
algebras of rank less than n. We shall consider the two cases, denoted by ♥ and ♦, as
in Corollary 2.3.4.
First, consider case ♥. From Corollary 2.3.4 we know that K[M ]/P ≃ K[MP ] ≃

K[T ][x], where K[T ] is an algebra of the form K[Mn−1]/Q for some minimal prime
ideal Q ⊳ K[Mn−1]. By the inductive hypothesis, we get J(K[Mn−1]/Q) = 0. Since
K[Mn−1]/Q ≃ K[T ], this implies that J(K[M ]/P ) ≃ J(K[T ][x]) = 0, as desired.
Next, consider case ♦. Suppose that J(K[MP ]) 6= 0 and choose some nonzero a ∈

J(K[MP ]). From Corollary 2.3.4 we know thatMP →֒ T×N
t×B×Z for an appropriate

T . Hence K[MP ] can be viewed as a Z-graded algebra (according to the last component
of the above direct product) or as an N-graded algebra (for each of the t components
N). Therefore, from Theorem 30.28 in [12] we know that J(K[MP ]) is homogeneous.
Thus we may assume that a is homogeneous with respect to each of the gradations
coming from components Z or N. Let a =

∑k
i=1 λisi for some k ≥ 1, 0 6= λi ∈ K,

si ∈ MP . Then all si coincide when restricted to each of these components. This means
that there exist elements m ∈ N

t, z ∈ Z (independent of i) such that si = (ti, m, bi, z) ∈

T ×N
t × B × Z. Since a 6= 0, also

∑k
i=1 λi(ti, bi) 6= 0.

Consider the natural projection

Π: T ×N
t ×B ×Z → T × B

and the induced map of semigroup algebras. Clearly Π(a) =
∑k

i=1 λi(ti, bi) 6= 0.
We know that Π(MP ) ⊆ Π(T ×N

t×B×Z) = T ×B. We will show that the opposite
inclusion Π(MP ) ⊇ T × B also holds.
The monoid Π(MP ) contains (1, p) and (1, q), because under the homomorphism

ψr : M →MP ⊆ T ×N
t×B×Z we have as−1 7→ (1, 1, p, g), as 7→ (1, 1, q, 1). Therefore,

for every b ∈ B we have (1, b) ∈ Π(MP ).
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From the proof of Corollary 2.3.4 and from the commuting diagrams used in this
proof (in case ♦) it follows that the following diagram commutes:

M/ρj

ϕr−1◦...◦ϕj

����

�

� // Mij/ρj × Sj

θ×id
����

MP
�

� // MP (Â
r
j)

−1 ≃ T × Sj = T ×N
t × B × Z

Π // // T × B

The embedding in the first row, composed with the projection Mij/ρj × Sj → Mij/ρj,
mapsM/ρj ontoMij/ρj. By the definition T = θ(Mij/ρj) and Π is a projection, whence
the homomorphism

M/ρj →֒ Mij/ρj × Sj
θ×id
։ T × Sj

Π
։ T × B,

composed with the projection onto T , is a map onto T . Commutativity of the above
diagram implies now that also the homomorphism in the second row

MP →֒ T × Sj
Π
։ T ×B,

composed with T × B → T , is a map onto T .
It follows that the image of Π(MP ) under T × B → T coincides with T . Hence,
for every t ∈ T there exists b = piqj ∈ B such that (t, b) ∈ Π(MP ). Multiplying by
(1, qi) ∈ Π(MP ) on the left and by (1, p

j) ∈ Π(MP ) on the right, we get (t, 1) ∈ Π(MP ).
This and the fact that (1, b) ∈ Π(MP ) for every b ∈ B imply that Π(MP ) ⊇ T × B, as
desired.
Therefore, Π(MP ) = T × B, so that Π|MP

is surjective and so its natural extension
to K[MP ] is also surjective. Therefore we get Π(J(K[MP ])) ⊆ J(K[T × B]). Since
0 6= a ∈ J(K[MP ]) and Π(a) 6= 0, this implies that

(14) 0 6= Π(a) ∈ Π(J(K[MP ])) ⊆ J(K[T × B]).

Moreover, K[T ×B] ≃ K[T ][B] and from [3] we know that K[T ][B] contains an ideal
I ≃ M∞(K[T ]) such that K[T ][B]/I ≃ K[T ][x, x−1]. HereM∞(K[T ]) stands for the
algebra of N×N matrices over K[T ] with finitely many nonzero entries.
As in case ♥, from the inductive hypothesis it follows in view of Corollary 2.3.4 that

J(K[T ]) = 0. Hence, the above implies that J(K[T ][B]/I) ≃ J(K[T ][x, x−1]) = 0.
Moreover, J(K[T ]) = 0 yields

J(I) ≃ J(M∞(K[T ])) ≃ M∞(J(K[T ])) = 0.

Since J(I) = 0 and J(K[T ][B]/I) = 0, it follows that J(K[T ×B]) ≃ J(K[T ][B]) = 0.
This contradicts (14), completing the proof in case ♦. �

As a direct consequence we get

3.1.2 Corollary. B(K[M ]) = J(K[M ]).

Notice that the properties of the algebra K[M3] are different than those of the plactic
algebra of rank 3, which is not prime but is semiprimitive, see [3]. Namely, if n ≥ 3
then the Chinese algebra K[M ] of rank n is not semiprime, [8].
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3.2. Number of minimal prime ideals of K[M ].
In order to get a formula for the number of minimal primes of K[M ] we use the
construction of the tree D and the bijection between the leaves of D and the minimal
primes in K[M ], established in Theorem 2.3.2.
The following analogue of the Fibonacci sequence will be crucial.

3.2.1 Definition. The Tribonacci sequence is the sequence defined by the linear re-
currence

{
T0 = T1 = T2 = 1

Tn+1 = Tn + Tn−1 + Tn−2 for n ≥ 2.

The properties of this sequence are described in [19, A000213]. The initial elements

of Tn are T0 = T1 = T2 = 1, T3 = 3, T4 = 5, T5 = 9, T6 = 17, T7 = 31, T8 = 57,
T9 = 105, T10 = 193.

3.2.2 Theorem. Let M be the Chinese monoid of rank n. Then Tn is the number
of minimal prime ideals in K[M ].

Proof. Recall that, if the rank n of the Chinese monoid M is 1 or 2, then the algebra
K[M ] is prime. Hence, we may assume that n ≥ 3.
By Theorem 2.3.2, it is enough to enumerate the leaves of the tree D. From the
construction of D in Definition 2.1.2 we also know that a diagram f is a leaf of D
if and only if the last step in the construction of f is an arc containing one of the
generators a1, an, in other words an extreme arc. Hence, we will count the number of
such diagrams.
Let k be the number of generators used in the construction of f before constructing
the respective extreme arc (that is, the number of generators under this arc). Let
Uk denote the number of all possible configurations of k generators under an arc in a
diagram. For k = 0 we put U0 = 1. If k = 1, then U1 = 1, because the only possibility
is a single dot under the arc. If k = 2, clearly there is also a single possibility, so that
U2 = 1. For k = 3 there are 3 possibilities. For example, if a1a5 is the given arc, then
under this arc we can have: either the dot a3 and the arc a2a4, or the arc a3a4 and the
dot a2, or the arc a2a3 and the dot a4. Hence U3 = 3. Similarly, one can easily see that
U4 = 5.
In general, for every k ≥ 3 there are two different types of configurations of exactly k
generators under an arc A. The first type occurs when there is another arc A′ directly
under A. Then there are k−2 generators under A′, so the number of such configurations
is the same as for k − 2, that is Uk−2. The second type occurs when directly under
A there is a number i > 0 of consecutive dots (on one of the sides, right or left) and
another arc covering all other generators. In this case, the interior arc covers k − 2− i
generators, and the number of such configurations is twice the number of configurations
for k − 2− i, so 2Uk−2−i.
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The above implies that U0 = U1 = U2 = 1 and Uk = Uk−2+2 ·
∑k−2

i=1 Uk−2−i for k ≥ 3.

Notice that
∑k−2

i=1 Uk−2−i =
∑k−3

i=0 Ui, so that

Uk = Uk−2 + 2 ·
k−3∑

i=0

Ui.

Therefore

Uk+1 = Uk−1 + 2 ·
k−2∑

i=0

Ui = Uk−1 + 2 ·
k−3∑

i=0

Ui + 2Uk−2

and subtracting one of these equalities from the other one we get Uk+1 − Uk = Uk−1 +
Uk−2. So, for k ≥ 3,

Uk+1 = Uk + Uk−1 + Uk−2.

Let T ′
n denote the number of all minimal prime ideals of K[M ]. Then we may assume

T ′
0 = T ′

1 = T ′
2 = 1 and from Example 2.1.6 we know that T ′

3 = 3 and T ′
4 = 5. Recall

that n ≥ 3. If the last step in the construction of a leaf of D is the arc a1an then there
are n − 2 generators under this arc, hence there are Un−2 leaves of this type. On the
other hand, if the extreme arc used in the construction of a leaf contains only one of
the generators a1, an, then there are k ≤ n − 3 generators under it, so the number of
such leaves is 2Uk. Therefore, for n ≥ 3 we get T ′

n = Un−2 + 2 ·
∑n−3

k=0 Uk. Notice that
T ′
n = Un. The number of minimal prime ideals of K[M ] is therefore given be the linear
recurrence {

T ′
0 = T ′

1 = T ′
2 = 1

T ′
n+1 = T ′

n + T ′
n−1 + T ′

n−2.

The assertion follows. �

3.3. An embedding M →֒ N
c × (B × Z)d.

The construction of the monoids M/ρP , for all minimal prime ideals P ⊳K[M ] and
the associated congruences ρP , allows us to find an entirely new faithful representation
of M as a submonoid of the direct product Nc × (B × Z)d, with c + 2d = nTn, where
Tn is the n-th element of the Tribonacci sequence.
Let Pk be the set of all minimal prime ideals of K[Mk], for any 1 ≤ k ≤ n. If k = n,
we will simply write P = Pk. By Theorem 3.2.2, we know that |P| = Tn.

3.3.1 Lemma.
⋂
P∈P ρP = ρ0, where ρ0 stands for the trivial congruence on M .

Proof. If n = 1 then K[M1] = K[x], while for n = 2 the algebra K[M2] is also prime
by [3]. Hence, we may assume that n ≥ 3.
If n = 3 then there are 3 minimal primes in K[M ], say P1, P2 and P3, see Ex-
ample 2.1.6 and Theorem 2.3.2, or [3]. We prove that if two elements w, v ∈ M are
such that (w, v) ∈ ρPi

for i = 1, 2, 3, then w = v. Let a = a1, b = a2, c = a3. Let
w = (a)αa(ba)αba(b)αb(ca)αca(cb)αcb(c)αc and v = (a)βa(ba)βba(b)βb(ca)βca(cb)βcb(c)βc be
the canonical forms of w, v, respectively.
For simplicity, we write (x), (xy) for any non-negative powers of x and xy, if x, y ∈

{a, b, c}. Let ũ denote the image of u ∈M in M/ρPi
, for a fixed i.
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We know that ρP1 corresponds to imposing onM the additional relations ab = ba and
acb = bca. By the proof of Lemma 1.2.6, the canonical form of the element w̃ ∈M/ρP1

is (ã)(̃b)(c̃ã)(c̃̃b)(c̃), where the exponent of (̃b) or of (c̃ã) is equal to 0. Clearly, all the
exponents are determined by those in the element w, in particular the exponent of (c̃)
is equal to the exponent of (c) in w. Since w̃ = ṽ, all exponents in the canonical forms
of these two elements of M/ρP1 are equal, so in particular we get αc = βc.
Similarly, the congruence ρP2 corresponds to imposing relations bc = cb and bac =

cab on M . So (ã)(̃b)(̃bã)(c̃)(c̃ã) is the canonical form of elements of M/ρP2 , with the

exponent of (̃bã) or of (c̃) equal 0 and the exponent of (ã) equal to the exponent of (a)
in the original element of M . This and the equality w̃ = ṽ imply that αa = βa.
The congruence ρP3 corresponds to the relations ab = ba and bc = cb and it leads

to the canonical form (ã)(̃b)(c̃)(c̃ã) in M/ρP3. For w̃ = ṽ this yields equalities of the

corresponding exponents of (ã), (̃b), (c̃) and (c̃ã):





αa + αba = βa + βba
αb + αba + αcb = βb + βba + βcb

αc + αcb = βc + βcb
αca = βca.

These equalities, together with the earlier ones: αc = βc and αa = βa easily imply that
every exponent in the canonical form of w is equal to the corresponding exponent in
the form of v. Hence w = v, which finishes the proof in case n = 3.
Let n ≥ 4. Proceeding by induction we assume that the assertion is true for the
monoidMn−1. Let w, v ∈M and let w̃, ṽ be their images under some fixed epimorphism
M ։Mn−1.
If (w, v) ∈

⋂
P∈P ρP , then w−v ∈

⋂
P∈P P = B(K[M ]). Hence w̃− ṽ ∈

⋂
P∈Pn−1

P =

B(K[Mn−1]). This means that for every P ∈ Pn−1 one has w̃− ṽ ∈ P , so that (w̃, ṽ) ∈
ρP . By the induction hypothesis the latter implies that w̃ = ṽ.
Using the canonical forms of elements of Mn−1, as in the case n = 3, from such
equalities we get equalities of the corresponding exponents. For simplicity, the k-th
generator of M and its image will be denoted by k, for k = 1, 2, . . . , n.
Consider the maps fk, for k = 1, . . . , n− 1, defined on the generators of M by:

k, k + 1 7→ k and i 7→ i for i 6= k, k + 1.

It is easy to see that every such map transforms the defining relations of M into the
relations defining the Chinese monoid of rank n−1 with generators 1, . . . , k, k+2, . . . , n.
Hence, every fk defines a surjective homomorphism M → Mn−1. Notice that for every
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w ∈M and every fixed k, the image fk(w) is of the form

w̃ =(1)(21)(2) . . . (k − 1)

(k1)(k2) . . . (k)

(k1)(k2) . . . (kk)(k)

(k + 2 1) . . . (k + 2 k)(k + 2 k)

. . .

(n1)(n2) . . . (n k − 1)(nk)(nk)(n k + 2) . . . (n).

Since (ki) and (kj) commute for i, j ≤ k, the latter leads to

w̃ =(1)(21)(2) . . . (k − 1)

(k1)(k2) . . . (k k − 1)(k)

(k + 2 1) . . . (k + 2 k)

. . .

(n1)(n2) . . . (n k − 1)(nk)(n k + 2) . . . (n),

with the (non-indicated) exponents depending on the exponents in the canonical form
of w. Moreover, the above is the canonical form of w̃ in the corresponding Chinese
monoid of rank n − 1 (see (2)). Hence, from w̃ = ṽ we derive the following system of
equalities




αij = βij for i < k and every j
αkj + αk+1 j = βkj + βk+1 j for j < k

αk + 2αk+1 k + αk+1 = βk + 2βk+1 k + βk+1

αij = βij for i > k and j 6= k, k + 1
αik = βik for every i,

where α’s, β’s are the exponents in the canonical form of w, v, respectively, and with
the convention that αk = αkk and βk = βkk. The homomorphism of the above type for
k = n− 1, with n ≥ 4, leads in particular to the following equalities




αij = βij for i < n− 1 and every j
αn−1 1 + αn1 = βn−1 1 + βn1
αn−1 2 + αn2 = βn−1 2 + βn2.

On the other hand, for k = 1 we get in particular
{
αn−1 j = βn−1 j for j 6= 1, 2
αnj = βnj for j 6= 1, 2,

while for k = 3, with n ≥ 4, we get
{
αn1 = βn1

αn2 = βn2.

It is easy to see that the above three systems of equalities lead to the conclusion that
all exponents in the canonical form of w are equal to the corresponding exponents in
v. Hence w = v, which completes the proof. �
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3.3.2 Theorem. There exists an embedding M →֒
∏

P∈P M/ρP .

Proof. Let m ∈ M . Let mP denote the image of m in M/ρP , for P ∈ P. Then
m 7→ (mP )P∈P determines a homomorphism, which is injective by Lemma 3.3.1. �

3.3.3 Corollary. There exists an embedding M →֒ N
c × (B × Z)d, where c + 2d =

nTn.

Proof. From Corollary 2.3.4 we know that for every P ∈ P there is an embedding
M/ρP →֒ N

cP × (B×Z)dP such that cP +2dP = n. In view of Theorem 3.3.2 this yields
an embedding

M →֒ N
c × (B × Z)d,

with c+ 2d = n · |P| = nTn. �

It is well known that the bicyclic monoid B satisfies the identity xy2xxyxy2x =
xy2xyxxy2x, [1]. The following surprising result is an immediate consequence.

3.3.4 Corollary. The Chinese monoid M satisfies the identity

xy2xxyxy2x = xy2xyxxy2x.

3.3.5 Corollary. B(K[M ]) is not of the form Iρ for any congruence ρ on M .

Proof. Suppose that B(K[M ]) = Iρ for a congruence ρ onM . Then ρ = ρB(K[M ]) ⊆ ρP
for every prime ideal P of K[M ]. Thus, ρ ⊆

⋂
P∈P ρP . From Lemma 3.3.1 we know

that
⋂
P∈P ρP = ρ0, where ρ0 is the trivial congruence. Hence ρ = ρ0 and B(K[M ]) =

Iρ0 = 0. As recalled after Corollary 3.1.2, this contradicts [8]. The assertion follows. �
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