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Abstract

For m ∈ N, we give formulas for the number N(m) of irreducible components of
the m-th Jet Scheme of a complex branch C and for their codimensions, in terms
of m and the generators of the semigroup of C. This structure of the Jet Schemes
determines and is determined by the topological type of C.

1 Introduction

Let k be an algebraically closed field. The space of arcs X∞ of an algebraic k−variety
X is a non-noetherian scheme in general. It has been introduced by Nash in [N]. Nash
has initiated its study by looking at its image by the truncation maps X∞ −→ Xm in
the jet schemes of X.The mth−jet scheme Xm of X is a k− scheme of finite type which
parmametizes morphisms Spec k[t]

tm+1 −→ X. From now on we assume char k = 0. In [N],
Nash has derived from the existence of a resolution of singularities of X, that the number of
irreducible components of the Zariski closure of the set of the m−truncations of arcs on X
that send 0 into the singular locus of X is constant for m large enough. Besides a theorem
of Kolchin asserts that if X is irreducible, then X∞ is also irreducible. More recently
, the jet schemes have attracted attention from various viewpoints. In [Mus],Mustata
has characterized the locally complete intersection varieties having irreducible Xm for
m ≥ 0.In [ELM] , a formula comparing the codimensions of Ym in Xm with the log
canonical threshold of a pair (X,Y ) is given.In this work, we consider a curve C in the
complex plane C2 with a singularity at 0 at which it is analytically irreducible (i.e. the
formal neighborhood(C, 0) of C at 0 is a branch). We determine the irreducible components
of the space C0

m := π−1
m (0) where πm : Cm −→ C is the canonical projection, and we show

that their number is not bounded as m grows. More precisely, let x be a transversal
parameter in the local ring OC2,0, i.e. the line x = 0 is transversal to C at 0 and following
[ELM],for e ∈ N let

Conte(x)m(resp.Cont>e(x)m) := {γ ∈ Cm | ordtx ◦ γ = e(resp. > e)}.

Let Γ(C) =< β0, · · · , βg > be the semigroup of the branch (C, 0) and let ei =

gcd(β0, · · · , βi), 0 ≤ i ≤ g. Recall that Γ(C) and the topological type of C near 0 are
equivalent data. We show in theorem 4.9 that the irreducible components of C0

m are

1

ar
X

iv
:1

00
9.

58
45

v1
  [

m
at

h.
A

G
] 

 2
9 

Se
p 

20
10



2 JET SCHEMES 2

CmκI = Contκβ̄0(x)m,

for 1 ≤ κ and κβ̄0β̄1 + e1 ≤ m,

Cjmκv = Cont
κβ̄0
ej−1 (x)m

for 2 ≤ j ≤ g, 1 ≤ κ, κ 6≡ 0 mod
ej−1

ej
and κ β̄0β̄1

ej−1
+ e1 ≤ m < κβ̄j ,

Bm = Cont>n1q(x)m,

if qn1β̄1 + e1 ≤ m < (q + 1)n1β̄1 + e1.
These irreducible components give rise to infinite and finite inverse systems represented
by a tree.We recover < β0, · · · , βg > from the tree and the multiplicity β0 in corollary
4.13, and we give formulas for the number of irreducible components of C0

m and their
codimensions in terms of m and (β0, · · · , βg) in proposition 4.7 and corollary 4.10. We
recover the fact coming from [ELM] and [I] that

minm
codim(C0

m,C2
m)

m+ 1
=

1

β0

+
1

β1

.

The structure of the paper is as follows: The basics about Jet schemes and the
results that we will need are presented in section 2. In section 3 we present the definitions
and the reults we will need about branches. The last section is devoted to the proof of the
main result and corollaries.
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2 Jet schemes

Let k be an algebraically closed field of arbitrary characteristic. Let X be a k-scheme of
finite type over k and let m ∈ N. The functor Fm : k − Schemes −→ Sets which to an
affine scheme defined by a k−algebra A associates

Fm(Spec(A)) = Homk(SpecA[t]/(tm+1), X)

is representable by a k−scheme Xm [V]. Xm is the m-th jet scheme of X, and Fm is
isomorphic to its functor of points. In particular the closed points of Xm are in bijection
with the k[t]/(tm+1) points of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1) induces a
canonical projection πm,p : Xm −→ Xp. These morphisms clearly verify πm,p ◦ πq,m = πq,p
for p < m < q.
Note that X0 = X. We denote the canonical projection πm,0 : Xm −→ X0 by πm.



2 JET SCHEMES 3

Example 1. Let X = Spec k[x0,··· ,xn]
(f1,··· ,fr) be an affine k−scheme. For a k-algebra A, to give

a A-point of Xm is equivalent to give a k-algebra homomorphism

ϕ :
k[x0, · · · , xn]

(f1, · · · , fr)
−→ A[t]/(tm+1).

The map ϕ is completely determined by the image of xi, i = 0, · · · , n

xi 7−→ ϕ(xi) = x
(0)
i + x

(1)
i t+ · · ·+ x

(m)
i tm

such that fl(φ(x0), · · · , φ(xn)) ∈ (tm+1), l = 1, · · · , r.

If we write

fl(φ(x0), · · · , φ(xn)) =
m∑
j=0

F
(j)
l (x(0), · · · , x(j)) tjmod (tm+1)

where x(j) = (x
(j)
0 , · · · , x(j)

n ), then

Xm = Spec
k[x(0), · · · , x(m)]

(F
(j)
l )j=0,··· ,m

l=1,··· ,r

Example 2. From the above example, we see that the m-th jet scheme of the affine space
Ank is isomorphic to A(m+1)n

k and that the projection πm,m−1 : (Ank)m −→ (Ank)m−1 is the
map that forgets the last n coordinates.

Lemma 2.1. If f : X −→ Y is an étale morphism, then for every m ∈ N, the following
diagram

Xm

πm

��

fm // Ym

πm

��
X

f
// Y

is cartesian.

Proof : For a k-algebra A, to give an A-point of Ym×Y X is equivalent to give a commu-
tative diagram

Spec(A)

��

// X

f

��
Spec(A[t]/(tm+1)) // Y

which is equivalent to give a unique morphism Spec(A[t]/(t(m+1))) −→ X making the two
triangles commutative,since f is formally étale.
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Corollary 2.2. If X is a nonsingular k−variety of dimension n, then all projections
πm,m−1 : Xm −→ Xm−1 are locally trivial fibrations with fiber Ank . Then in particular Xm

is a nonsingular variety of dimension (m+ 1)n.

Proof : It is sufficient to prove that for every x ∈ X there exists an open neighborhood
U of x such that Um ' U ×k Amnk . But since X is nonsingular, there exists an open neigh-
borhood U of x and an étale morphism g : U −→ Ank . Then we deduce the claim from the
above lemma .

Let char(k) = 0, S = k[x0, · · · ., xn] and Sm = k[x(0), · · · ., x(m)]. Let D be the
k−derivation on Sm defined by D(x

(j)
i ) = (j + 1)x

(j+1)
i if 0 ≤ j < m, and D(x

(m)
i ) = 0.

For f ∈ S let f (1) := D(f) and we recursively define f (m) = D(f (m−1)).

Proposition 2.3. Let X = Spec(S/(f1, · · · , fr)) = Spec(R) and Rm = Γ(Xm). Then

Rm = Spec(
k[x(0), · · · ., x(m)]

(f
(j)
i )j=0,··· ,m

i=1,··· ,r

.

Proof : For a k−algebra A, to give an A−point of Xm is equivalent to give an homomor-
phism

φ : k[x0, · · · ., xn] −→ A[t]/(tm+1)

which can be given by

xi −→
x

(0)
i

0!
+
x

(1)
i

1!
t+ · · ·+

x
(m)
i

m!
tm.

Then for a polynomial f ∈ S, we have

φ(f) =

m∑
j=0

f (j)(x(0), · · · , x(j))

j!
tj .

To see this, it is sufficient to remark that it is true for f = xi, and that both sides of the
equality are additive and multiplicative in f , and the proposition follows.

Remark 2.4. Note that the proposition shows the linearity of the equations F ji (x(0), · · · , x(j))
defining Xm with respect to the new variables i.e x(j), which is the algebraic point of view
on the fibration in corollary 2.2.

3 Semigroup of complex branches

The main references for this section are [Z],[Me],[A],[Sp],[GP],[GT],[LR]. Let f ∈ C[[x, y]]
be an irreducible power series, which is y-regular (i.e f(0, y) = yβ0u(y) where u is invertible
in C[[y]]) and such that mult0f = βo and let C be the analytically irreducible plane
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curve(for short branch) defined by f in Spec C[[x, y]]. By the Newton-Puiseux theorem,
the roots of f are

y =
∞∑
i=0

aiw
ix

i
βo (1)

where w runs over the β0 − th-roots of unity in C.This is equivalent to the existence of a
parametrization of C of the form

x(t) = tβ0

y(t) =
∑
i≥β0

ait
i.

We recursively define βi = min{i, ai 6= 0, gcd(β0, · · · , βi−1) is not a divisor of i}.
Let e0 = β0 and ei = gcd(ei−1, βi), i ≥ 1. Since the sequence of positive integers

e0 > e1 > · · · > ei > · · ·

is strictly decreasing, there exists g ∈ N, sucht that eg = 1. The sequence (β1, · · · ., βg) is
the sequence of Puiseux exponents of C. We set

ni :=
ei−1

ei
,mi :=

βi
ei
, i = 1, · · · , g

and by convention, we set βg+1 = +∞ and ng+1 = 1.

On the other hand, for h ∈ C[[x, y]], we define the intersection number

(f, h)0 = (C,Ch)0 := dimC
C[[x, y]]

(f, h)
= ordt h(x(t), y(t))

where Ch is the Cartier divisor defined by h and {x(t)), y(t)} is as above.
The mapping vf : C[[x,y]]

(f) −→ N, h 7−→ (f, h)0 defines a divisorial valuation. We define the
semigroup of C to be the semigroup of vf i.e Γ(C) = Γ(vf ) = {(f, h)0 ∈ N, h 6≡ 0 mod(f)}.
The following propositions and theorem from [Z] characterize the structure of Γ(C).

Proposition 3.1. There exists a unique sequence of g + 1 positive integers (β̄0, · · · , β̄g)
such that:
i)β̄0 = β0,
ii)β̄i = min{Γ(C)\ < β̄0, · · · , βi−1 >}, 1 ≤ i ≤ g,
iii)Γ(C) =< β̄0, · · · , β̄g >,
where for i = 1, · · · , g + 1,< β̄0, · · · , βi−1 > is the semigroup generated by β̄0, · · · , βi−1.
By convention, we set β̄g+1 = +∞.

Proposition 3.2. The sequence (β̄0, · · · , β̄g) verifies:
i)ei = gcd(β̄0, · · · , β̄i), 0 ≤ i ≤ g,
ii)β̄0 = β0,β̄1 = β1 and β̄i = βi +

∑i−1
k=1

ek−1−ek
ei−1

βk,i = 2, · · · , g.
iii)niβ̄i < βi+1, 1 ≤ i ≤ g − 1



3 SEMIGROUP OF COMPLEX BRANCHES 6

Theorem 3.3. The sequence (β̄0, · · · , β̄g) and the sequence (β0, · · · ., βg) are equivalent
data They determine and are determined by the topological type of C.

Then from [A] or [Sp], we can choose a system of approximate roots (or a minimal
generating sequence) {x0, · · · , xg+1} of the divisorial valuation vf . We set x = x0, y = x1;
for i = 2, · · · , g + 1, xi ∈ C[[x, y]] is irreducible; for 1 ≤ i ≤ g, the analytically irreducible
curve Ci = {xi = 0} has i − 1 Puiseux exponents and maximal contact with C and
Cg+1 = C. This sequence also verifies
i) vf (xi) = β̄i, 0 ≤ i ≤ g,
ii)Γ(Ci) =< β̄0

ei−1
, · · · , β̄i−1

ei−1
> and the Puiseux sequence of Ci is ( β1

ei−1
, · · · , βi−1

ei−1
),2 ≤ i ≤

g + 1.
iii) for 1 ≤ i ≤ g, there exists a unique system of nonnegative integers bij , 0 ≤ j < i such
that for 1 ≤ j < i, bij < nj and niβ̄i = Σ0≤j<ibij β̄j . And for 0 ≤ i ≤ g, one can choose xi
such that they satisfy identities of the form

xi+1 = xnii − cix
bi0
0 · · ·x

bi(i−1)

i−1 −
∑

γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i , (?)

with ,0 ≤ γj < nj , for 1 ≤ j < i, and Σjγj β̄j > niβ̄i and with ci,γ , ci ∈ C and ci 6= 0. These
last equations (?) let us realize C as a complete intersection in Cg+1 = Spec C [[x0, · · · , xg]]
defined by the equations

fi = xi+1 − (xnii − cix
bi0
0 · · ·x

bi(i−1)

i−1 −
∑

γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i )

for 1 ≤ i ≤ g, with xg+1 = 0 by convention.

Let h ∈ C[[x, y]] be a y-regular irreducible power series with multiplicity p = ordyh(0, y).

Let y(x
1
β0 ) and z(x

1
p ) be respectively roots of f and g as in (1). We call contact order of

f and g in their Puiseux series the following rational number

of (h) := max{ordx(y(wx
1
β0 )− z(λx

1
p ));wβ0 = 1, λp = 1} =

max{ordx(y(wx
1
β0 )− z(x

1
p );wβ0 = 1} =

max{ordx(y(x
1
β0 )− z(λx

1
p );λp = 1} = oh(f).

The following formula is from [Me], see also [GP] .

Proposition 3.4. Assume that f and h are as above; let (β1, · · · , βg) the sequence of
Puiseux exponents of f and let i ≤ g + 1 be the smallest strictly positive integer such that
of (h) ≤ βi

β0
. Then

(f, h)0

p
=

i−1∑
k=1

ek−1 − ek
β0

βk + ei−1of (h)

Corollary 3.5. [GP] Let i > 0 be an integer.Then of (h) ≤ βi
β0

iff (f,h)0

p ≤ ei−1
β̄i
β0
. Moreover

of (h) = βi
β0

iff (f,h)0

p = ei−1
β̄i
β0
. In particular of (xi) = βi

β0
, 1 ≤ i ≤ g.



4 JET SCHEMES OF COMPLEX BRANCHES 7

4 Jet schemes of complex branches

We keep the notations of sections 2 and 3. We consider a curve C ⊂ C2 with a branch of
multiplicity β0 > 1 at 0, defined by f . Note that in suitable coordinates we can write

f(x0, x1) = (xn1
1 − cx

m1
0 )e1 +

∑
aβ0+bβ1>β0β1

cabx
a
0x

b
1; c ∈ C? and cab ∈ C. (�)

We look for the irreducible components of C0
m := (π−1

m (0)) for every m ∈ N, where πm :
Cm → C is the canonical projection. Let J0

m be the radical of the ideal defining (π−1
m (0))

in C2
m.

In the sequel, we will denote the integral part of a rational number r by [r].

Proposition 4.1. For 0 < m < n1β̄1, we have that

(C0
m)red = (π−1

m (0))red = Spec
C[x

(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ]

(x
(0)
0 , · · · , x

([ m
β1

])

0 , x
(0)
1 , · · · , x

([ m
β0

])

1 )
,

and

(C0
n1β1

)red = (π−1
n1β1

(0))red = Spec
C[x

(0)
0 , · · · , x(n1β1)

0 , x
(0)
1 , · · · , x(n1β1)

1 ]

(x
(0)
0 , · · · , x(n1−1)

0 , x
(0)
1 , · · · , x(m1−1)

1 , x
(m1)
1

n1
− cx(n1)

0

m1
)
.

Proof : We write f = Σ(a,b)cabfab where (a, b) ∈ N2, fab = xa0x
b
1, cab ∈ C and aβ0 +bβ1 ≥

β0β1(the segment [(0, β0)(β1, 0)] is the Newton Polygon of f). Let supp(f) = {(a, b) ∈
N2; cab 6= 0}.
For 0 < m < n1β1, the proof is by induction on m. For m = 1,we have that

F (1) = Σ(a,b)∈supp(f)cabF
(1)
ab

where (F (0), · · · , F (i)) (resp.(F (0)
ab , · · · , F

(i)
ab )) is the ideal defining the i-th jet scheme Ci of

C(resp. Cabi the i-th jet scheme of Cab = {fab = 0}) in C2
i .Then we have

F
(1)
ab =

∑
∑
ik=1

x
(i1)
0 · · ·x(ia)

0 x
(ia+1)
1 · · ·x(ia+b)

1

where β1(a+ b) ≥ aβ0 + bβ1 ≥ β0β1 so a+ b ≥ β0 > 1. Then for every (a, b) ∈ supp(f) and
every (i1, · · · , ia, · · · , ia+b) ∈ Na+b such that

∑a+b
k=1 ik = 1 there exists 1 ≤ k ≤ a+ b such

that ik = 0, this means that F (1)
ab ∈ (x

(0)
0 , x

(0)
1 ) and since we are looking over the origin,

we have that (x
(0)
0 , x

(0)
1 ) ⊆ J0

1 therefore (π−1
1 (0))red = Spec

C[x
(0)
0 ,x

(1)
0 ,x

(0)
1 ,x

(1)
1 ]

(x
(0)
0 ,x

(0)
1 )

(In fact this is

nothing but the Zariski tangent space of of C at 0).
Suppose that the lemma holds until m− 1 i.e.

(π−1
m−1(0))red = Spec

C[x
(0)
0 , · · · , x(m−1)

0 , x
(0)
1 , · · · , x(m−1)

1 ]

(x
(0)
0 , · · · , x

([m−1
β1

])

0 , x
(0)
1 , · · · , x

([m−1
β0

])

1 )

.
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First case:If [m−1
β1

] = [mβ1
] and [m−1

β0
] = [mβ0

]. We have

F (m) =
∑

(a,b)∈supp(f)

cab
∑

∑
ik=m

x
(i1)
0 · · ·x(ia)

0 x
(ia+1)
1 · · ·x(ia+b)

1

Let (a, b) ∈ supp(f); if for every k = 1, · · · , a, we had ik ≥ [mβ1
] + 1, and for every

k = a+ 1, · · · , a+ b, we had ik ≥ [mβ0
] + 1, then

m ≥ a([
m

β1
] + 1) + b([

m

β0
] + 1) >

m

β1
a+

m

β0
b = m

aβ0 + bβ1

β0β1
≥ m.

The contradiction means that there exists 1 ≤ k ≤ a such that ik ≤ [mβ1
] or there exists

a + 1 ≤ k ≤ a + b such that ik ≤ [mβ0
]. So F (m) lies in the ideal generated by J0

m−1 in

C[x
(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ] and J0
m = J0

m−1.C[x
(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ].
Second case:If [m−1

β1
] = [mβ1

] and [m−1
β0

] + 1 = [mβ0
] (i.e. β0 divides m). We have that

F (m) = F
(m)
0β0

+
∑

(a,b)∈supp(f);(a,b)6=(0,β0)

F
(m)
ab , (??)

where

F
(m)
0β0

=
∑

∑
ik=m

x
(i1)
1 · · ·x(iβ0

)

1 = x
( m
β0

)

1

β0

+
∑

∑
ik=m;(i1,··· ,iβ0

)6=( m
β0
,··· , m

β0
)

x
(i1)
1 · · ·x(iβ0

)

1 ;

but
∑
ik = m and (i1, · · · , iβ0) 6= (mβ0

, · · · , mβ0
) implies that there exists 1 ≤ k ≤ β0 such

that ik < m
β0
, so∑

∑
ik=m;(i1,··· ,iβ0

)6=( m
β0
,··· , m

β0
)

x
(i1)
1 · · ·x(iβ0

)

1 ∈ J0
m−1.C[x

(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ].

For the same reason as above, we have that∑
(a,b)∈supp(f);(a,b)6=(0,β0)

F
(m)
ab ∈ J

0
m−1.C[x

(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ].

From (??) we deduce that x
( m
β0

)

1 ∈ J0
m and

F (m) ∈ (x
(0)
0 , · · · , x

([ m
β1

])

0 , x
(0)
1 , · · · , x

( m
β0

)

1 ). Then J0
m = (x

(0)
0 , · · · , x

([ m
β1

])

0 , x
(0)
1 , · · · , x

( m
β0

)

1 ).
The third case i.e. if [m−1

β1
] + 1 = [mβ1

] and [m−1
β0

] = [mβ0
] is discussed as the second one.

Note that these are the only three possible cases since m < n1β1 = lcm(β0, β1)(here lcm
stands for the least common multiple).
For m = n1β1, we have that F (m) is the coefficient of tm in the expansion of

f(x
(0)
0 + x

(1)
0 t+ · · ·+ x

(m)
0 tm, x

(0)
1 + x

(1)
1 t+ · · ·+ x

(m)
1 tm).
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But since we are interested in the radical of the ideal defining the m-th jet scheme, and
we have found that x(0)

0 , · · · , x(n1−1)
0 , x

(0)
1 , · · · , x(m1−1)

1 ∈ J0
m−1 ⊆ J0

m, we can annihilate
x

(0)
0 , · · · , x(n1−1)

0 , x
(0)
1 , · · · , x(m1−1)

1 in the above expansion. Using (�), we see that the
coefficient of tm is (x

(m1)
1

n1
− cx(n1)

0

m1
)e1 .

In the sequel if A is a ring , I ⊆ A an ideal and f ∈ A, we denote by V (I) the subvariety
of Spec A defined by I and by D(f) the open set {f 6= 0} in SpecA i.e. D(f) = SpecAf .
The proof of the following corollary is analogous to that of proposition 4.1.

Corollary 4.2. Let m ∈ N; let k ≥ 1 be such that m = kn1β1 + i; 1 ≤ i ≤ n1β1. Then if
i < n1β1, we have that

Cont>kn1(x0)m = (π−1
m,kn1β1

(V (x
(0)
0 , · · · , x(kn1)

0 )))red =

Spec
k[x

(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ]

(x
(0)
0 , · · · , x(kn1)

0 , · · · , x
(kn1+[ i

β1
])

0 , x
(0)
1 , · · · , x(km1)

1 , · · · , x
(km1+[ i

β0
])

1 )

and if i = n1β1

(π−1
m,kn1β1

(V (x
(0)
0 , · · · , x(kn1)

0 )))red =

Spec
k[x

(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ]

(x
(0)
0 , · · · , x((k+1)n1−1)

0 , x
(0)
1 , · · · , x((k+1)m1−1)

1 , x
((k+1)m1)
1

n1
− cx((k+1)n1)

0

m1
)
.

We now consider the case of a plane branch with one Puiseux exponent.

Lemma 4.3. Let C be a plane branch with one Puiseux exponent. Let m, k ∈ N, such that
k 6= 0 and m ≥ kn1β1 + 1, and let πm,kn1β1 : Cm → Ckn1β1 be the canonical projection.
Then

Ckm := π−1
m,kn1β1

(V (x
(0)
0 , · · · , x(kn1−1)

0 ) ∩D(x
(kn1)
0 ))red

is irreducible of codimension k(m1 + n1) + 1 + (m− kn1β1) in C2
m.

Proof : First note that since e1 = 1, we have m1 = β1

e1
= β1.Let I0k

m be the ideal defining

Ckm in C2
m∩D(x

(kn1)
0 ).Since m ≥ kn1β1, by corollary 4.2, x(0)

1 , · · · , x(km1−1)
1 ∈ I0k

m .So I0k
m is

the radical of the ideal I∗0km := (x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F (0), · · · , F (m)). Now
it follows from � and proposition 2.5 that

F (l) ∈ (x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ) for 0 ≤ l < kn1m1,

F (kn1m1) ≡ x(km1)
1

n1
− cx(kn1)

0

m1
mod (x

(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ),

F (kn1m1+l) ≡ n1x
(km1)
1

n1−1
x

(km1+l)
1 −m1cx

(kn1)
0

m1−1
x

(kn1+l)
0

+Hl(x
(0)
0 , · · · , x(kn1+l−1)

0 , x
(0)
1 , · · · , x(km1+l−1)

1 )mod (x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ),

for 1 ≤ l ≤ m− kn1m1.
This implies that I∗0km := (x

(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F (kn1m1), · · · , F (m)).More-
over the subscheme of C2

m∩D(x
(kn1)
0 ) defined by I∗0km is isomorphic to the product of C∗(C∗
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is isomorphic to the regular locus of x(km1)
1

n1
− cx(kn1)

0

m1
) by an affine space and its codi-

mension is k(m1 +n1)+1+(m−kn1m1); so it is reduced and irreducible, and it is nothing
but Ckm, or equivalently I0k

m = I∗0km .

Corollary 4.4. Let C be a plane branch with one Puiseux exponent. Let m ∈ N,m 6= 0. let
q ∈ N be such that m = qn1β1 + i; 0 < i ≤ n1β1. Then C0

m = π−1
m (0) has q + 1 irreducible

components which are:
CmkI = Ckm, 1 ≤ k ≤ q,

and Bm = Cont>qn1(x)m = π−1
m,qn1β1

(V (x
(0)
0 , · · · , x(qn1)

0 )).

We have that
codim(CmkI ,C2

m) = k(m1 + n1) + 1 + (m− kn1m1)

and

codim(Bm,C2
m) = q(m1 + n1) + [

i

β0
] + [

i

β1
] + 2 = [

m

β0
] + [

m

β1
] + 2 if i < n1β1

codim(Bm,C2
m) = (q + 1)(m1 + n1) + 1 if i = n1β1.

Proof : The codimensions and the irreducibility of Bm and CmkI follow from corollary 4.2
and lemma 4.3. This shows that if 1 ≤ k < k′ ≤ q, codim(Cmk′I ,C2

m) < codim(CmkI ,C2
m)

then Cmk′I * CmkI . On the other hand, since Cmk′I ⊆ V (x
(kn1)
0 ) and CmkI 6⊆ V (x

(kn1)
0 ),

we have that CmkI * Cmk′I . This also shows that dim Bm ≥ dim CmkI for 1 ≤ k ≤ q,
therefore Bm 6⊆ CmkI , 1 ≤ k ≤ q.But CmkI 6⊆ Bm because Bm ⊆ V (x

(qn1)
0 ) and CmkI 6⊆

V (x
(qn1)
0 ) for 1 ≤ k ≤ q. We thus have that CmkI 6⊆ Bm and Bm 6⊆ CmkI . We conclude

the corollary from the fact that by construction C0
m = ∪qk=1CmkI ∪Bm.

To understand the general case, i.e. to find the irreducible components of C0
m where C has

a branch with g Puiseux exponents at 0 , since for kn1β̄1 < m ≤ (k+ 1)n1β̄1,m, k ∈ N we
know by corollary 4.2 the structure of them-jets that project to V (x

(0)
0 , · · · , x(kn1)

0 )∩C0
kn1β1

,
we search to understand for m > kn1β1 the m-jets that projects to
V (x

(0)
0 , · · · , x(kn1−1)

0 )∩D(x
(kn1)
0 ), i.e. Ckm := π−1

m,kn1β̄1
(V (x

(0)
0 , · · · , x(kn1−1)

0 )∩D(x
(kn1)
0 ))red.

Let m, k ∈ N be such that m ≥ kn1β1. Let j = max{l, n2 · · ·nl−1 divides k}(we set j = 2
if the greatest common divisor (k, n2) = 1 or if g = 1). Set κ such that k = κn2 · · ·nj−1,
then we have kn1 = κ β0

nj ···ng .

Proposition 4.5. Let 2 ≤ j ≤ g+ 1; for i = 2, .., g, and kn1β̄1 < m < κei−1
β̄i
ej−1

, we have
that

Ckm = π̄−1
m,[ m

ni···ng
](C

k
i,[ m
ni···ng

]),

where π̄m,[ m
ni···ng

] : C2
m −→ C2

[ m
ni···ng

] is the canonical map. For j < g + 1 and m ≥ κβ̄j,we

have that
Ckm = ∅
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Proof : Let φ ∈ Ckm. Let φ̃ : SpecC[[t]] −→ (C2, 0) be such that that lifts φ = φ̃
mod tm+1. Let f̃ ∈ C[[x, y]] be a function that defines the branch C̃ image of φ̃. we may
assume that the map SpecC[[t]] −→ C̃ induced by φ̃ is the normalization of C̃. Since
ordtx0 ◦ φ̃ = kn1, ordtx1 ◦ φ̃ = km1, (ordtx0 ◦ φ̃ = kn1) the multiplicity m(f̃) of C̃ at the
origin is ordx1 f̃(0, x1) = kn1 = κ β0

nj ···ng .

Claim: If (f, f̃)0 < κei−1
β̄i
ej−1

then (f, f̃)0 = ni · · ·ng(xi, f̃)0.

Indeed, we have that (f,f̃)0

ordy f̃(0,y)
< ei−1

β̄i
β0
, therefore by corollary 3.5 we have that

of (f̃) <
βi
β0

= of (xi).

Let y(x
1
β0 ), z(x

1
n1···ni−1 ) and u(x

1
m(f̃) ) be respectively Puiseux-roots of f ,xi and f̃ . There

exist w, λ ∈ C such that w
β0

ni···ng = 1, λm(f̃) = 1 and

of (f̃) = ordx(u(λx
1

m(f̃) )− y(x
1
β0 ))

and
of (xi) = ordx(y(x

1
β0 )− z(wx

1
n1···ni−1 )).

Since of (f̃) < of (xi), we have that

of (f̃) = ordx(u(λx
1

m(f̃) )− y(x
1
β0 ) + y(x

1
β0 )− z(wx

1
n1···ni−1 ))

= ordx(u(λx
1

m(f̃) )− z(wx
1

n1···ni−1 )) ≤ oxi(f̃).

On the other hand, there exist λ and δ ∈ C, such that λm(f̃) = 1, δβ0 = 1 and such that

oxi(f̃) = ordx(u(λx
1

m(f̃) )− z(x
1

n1···ni−1 ))

and
of (xi) = ordx(y(δx

1
β0 )− z(x

1
n1···ni−1 )).

We have then that

oxi(f̃) = ordx(u(λx
1

m(f̃) )− y(δx
1
β0 ) + y(δx

1
β0 )− z(wx

1
n1···ni−1 )).

Now

ordx(u(λx
1

m(f̃) )− y(δx
1
β0 )) ≤ of (f̃) < of (xi) = ordx(y(δx

1
β0 )− z(wx

1
n1···ni−1 )).

So
oxi(f̃) = ordx(u(λx

1
m(f̃) )− y(δx

1
β0 )) ≤ of (f̃).

We conclude that of (f̃) = oxi(f̃), and since the sequence of Puiseux exponents of
Ci is ( β0

ni···ng , · · · ,
βi−1

ni···ng ), applying proposition 3.4 to C and Ci, we find that (f, f̃)0 =
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ni · · ·ng(xi, f̃)0 and claim follows.
On the other hand by the corollary 3.5 applied to f and f̃ ,(f, f̃)0 ≥ κei−1

β̄i
ej−1

if and

only if of (f̃) ≥ βi
β0

= oxi(f) = of (xi) so of (f̃) ≥ βi
β0

if and only if oxi(f̃) ≥ βi
β0
, therefore

(xi, f̃)0 ≥ κ β̄i
ej−1

. This proves the first assertion.
The second assertion is a direct consequence of lemma 5.1 in [GP].
To further analyse the Ckm’s, we realize, as in section 3, C as a complete intersection in
Cg+1 = Spec C[x0, · · · , xg] defined by the ideal (f1, · · · , fg) where

fi = xi+1 − (xnii − cix
bi0
0 · · ·x

bi(i−1)

i−1 −
∑

γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i )

for 1 ≤ i ≤ g and xg+1 = 0. This will let us see the Ckm’s as fibrations over some reduced
scheme that we understand well.
We keep the notations above and let I0

m be the radical of the ideal defining C0
m in Cg+1

m and
let I0k

m be the ideal defining Ckm = (V (I0
m, x

(0)
0 , · · · , x(kn1−1)

0 ) ∩D(x
(kn1)
0 ))red in D(x

(kn1)
0 ).

Lemma 4.6. Let k 6= 0, j and κ as above. For 1 ≤ i < j ≤ g (resp.1 ≤ i < j − 1 = g)
and for κni · · ·nj−1β̄i ≤ m < κni+1 · · ·nj−1βi+1, we have

I0k
m = (x

(0)
0 , · · · , x

(
κβ̄0

nj ···ng
−1)

0 ,

x
(0)
l , · · · , x

(
κβ̄l

nj ···ng
−1)

l , F
(κ

nlβ̄l
nj ···ng

)

l , · · · , F (m)
l , 1 ≤ l ≤ i,

x
(0)
i+1, · · · , x

([ m
ni+1···ng

])

i+1 ,

F
(0)
l , · · · , F (m)

l , i+ 1 ≤ l ≤ g − 1).

Moreover for 1 ≤ l ≤ i,

F
(κ

nlβ̄l
nj ···ng

)

l ≡ −(x
(κ

β̄l
nj ···ng

)

l

nl

− clx
(κ

β̄0
nj ···ng

)

0

bl0

· · · . x
(κ

βl−1
nj ···ng

)

l−1

bl(l−1)

)

mod ((x
(0)
l , · · · , x

(κ
β̄l

nj ···ng
−1)

l )0≤l≤i, x
(0)
i+1, · · · , x

([ m
ni+1···ng

])

i+1 ),

for 1 ≤ l < i and κ nlβ̄l
nj ···ng < n < κ

βl+1

nj ···ng (resp. l = i and κ niβ̄i
nj ···ng < n ≤ [ m

ni+1···ng ])

F
(n)
l ≡ −(nlx

(κ
β̄l

nj ···ng
)nl−1

l x
(κ

β̄l
nj ···ng

+n−κ nlβ̄l
nj ···ng

)

l −

cl
∑

0≤h≤l−1

blhx
(κ

β̄0
nj ···ng

)bl0

0 · · ·x
(κ

β̄h
nj ···ng

)blh−1

h x
(κ

β̄h
nj ···ng

+n−κ nlβ̄l
nj ···ng

)

h · · ·x
(κ

βl−1
nj ···ng

)
bl(l−1)

l−1 +

Hl(· · · , x
(κ

β̄h
nj ···ng

+n−κ nlβ̄l
nj ···ng

−1)

h , · · · ))
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mod ((x
(0)
l , · · · , x

(κ
β̄l

nj ···ng
−1)

l )0≤l≤i, x
(0)
i+1, · · · , x

([ m
ni+1···ng

])

i+1 ),

for 1 ≤ l < i and κ
βl+1

nj ···ng ≤ n ≤ m(resp. l = i and [ m
ni+1···ng ] < n ≤ m), or

i+ 1 ≤ l ≤ g − 1 and 0 ≤ n ≤ m,

F
(n)
l = x

(n)
l+1 +Hl(x

(0)
0 , · · · , x(n)

0 , · · · , x(0)
l , · · · , x(n)

l ).

For i = j − 1 = g and m ≥ κngβ̄g,

I0k
m = (x

(0)
0 , · · · , x(κβ̄0−1)

0 ,

x
(0)
l , · · · , x(κβ̄l−1)

l , F
(κnlβ̄l)
l , · · · , F (m)

l ), 1 ≤ l ≤ g,

where for 1 ≤ l < g and κnlβ̄l ≤ n ≤ m, the above formula for F (n)
l remains valid,

F
(κngβ̄g)
g ≡ −(x

(κβ̄g)ng
g − cgx(κβ̄0)bg0

0 · · · . x
(κβg−1)

bg(g−1)

g−1 )

mod ((x
(0)
l , · · · , x(κβ̄l−1)

l ))0≤l≤g

and for κngβ̄g < n ≤ m,

F (n)
g ≡ −(ngx

(κβ̄g)ng−1

g x
(κβ̄g+n−κngβ̄g)
g −

cg
∑

0≤h≤g−1

bg0x
(κβ̄0)

bgh

0 · · ·x(κβ̄h)
bgh−1

h x
(κβ̄h+n−κnhβ̄h)
h · · ·x(κβg−1)

bg(g−1)

g−1 +

Hg(· · · , x(κβ̄h+n−κnhβ̄h)
h , · · · ))

mod ((x
(0)
l , · · · , x(κβ̄l−1)

l ))0≤l≤g

Proof : First assume that κni · · ·nj−1β̄i ≤ m < κni+1 · · ·nj−1β̄i+1 for 1 ≤ i < j ≤ g (resp.
1 ≤ i < j − 1 = g). By proposition 4.5, we have that Ckm = π̄−1

m,[ m
ni+1···ng

](C
k
i+1,[ m

ni+1···ng
])

where π̄m,[ m
ni+1···ng

] : C2
m −→ C2

[ m
ni+1···ng

] is the canonical map. Now C2 = Spec C[x0, x1](resp.

Ci+1 = V (xi+1)) is realized as the complete intersection in Cg+1 = Spec C[x0, · · · , xg] de-
fined by the ideal (f1, · · · , fg−1)(resp. (f1, · · · , fg−1, xi+1)). So since m ≥ kn1β̄1, I

0k
m is the

radical of the ideal I∗0km =

(x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F
(0)
1 , · · · , F (m)

1 ,

· · · , F (0)
g−1, · · · , F

(m)
g−1 , x

(0)
i+1, · · · , x

([ m
ni+1···ng

])

i+1 ).

We first observe that F (n)
1 ≡ x

(n)
2 mod (x

(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ) for 0 ≤ n <
kn1β̄1. Now since m

n2···ng ≥ [ m
n2···ng ] ≥ kn1m1, we have

F
(kn1m1)
1 ≡ −(x

(km1)n1

1 − c1x
(kn1)m1

0 )
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mod (x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , x
(0)
2 , · · · , x

([ m
n2···ng

])

2 )

and
F

(n)
1 ≡ −(n1x

(km1)n1−1

1 x
(km1+n−kn1m1)
1 −m1c1x

(kn1)m1−1

0 x
(kn1+n−kn1m1)
0 )

+H1(x
(0)
0 , · · · , x(kn1+n−kn1m1−1)

0 , x
(0)
1 , · · · , x(km1+n−kn1m1−1)

1 )

mod (x
(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , x
(0)
2 , · · · , x

([ m
n2···ng

])

2 )

for kn1β̄1 < n ≤ [ m
n2···ng ]. Finally, for l = 1 and [ m

n2···ng ] < n ≤ m, or 2 ≤ l ≤ g − 1 and
0 ≤ n ≤ m, we have

F
(n)
l = x

(n)
l+1 +Hl(x

(0)
0 , · · · , x(n)

0 , · · · , x(0)
l , · · · , x(n)

l ).

As a consequence for i = 1, the subscheme of Cg+1∩D(x
(kn1)
0 ) defined by I∗0km is isomorphic

to the product of C∗ by an affine space , so it is reduced and irreducible and I∗0km = I0k
m is a

prime ideal in C[x
(0)
0 , · · · , x(m)

0 , · · · , x(0)
g , · · · , x(m)

g ]
x

(kn1)
0

, generated by a regular sequence,
i.e the proposition holds for i = 1.
Assume that it holds for i < j − 1 < g(resp. i < j − 2 = g − 1). For κni+1 · · ·nj−1βi+1 ≤
m < κni+2 · · ·nj−1βi+2, the ideal in C[x

(0)
0 , · · · , x(m)

0 , · · · , x(0)
g , · · · , x(m)

g ]
x

(kn1)
0

generated by

I0k
κni+1···nj−1βi+1−1

is contained in I0k
m . By the inductive hypothesis, x(0)

l , · · · , x
(

κβ̄l
nj ···ng

−1)

l ∈
I0k
κni+1···nj−1βi+1−1

for l = 1, · · · , i+ 1. So I0k
m is the radical of

I∗0km = (x
(0)
0 , · · · , x

(
κβ̄0

nj ···ng
−1)

0 ,

x
(0)
l , · · · , x

(
κβ̄l

nj ···ng
−1)

l , F
(0)
l , · · · , F (m)

l , 1 ≤ l ≤ i+ 1,

x
(0)
i+2, · · · , x

([ m
ni+2···ng

])

i+2 ,

F
(0)
l , · · · , F (m)

l , i+ 2 ≤ l ≤ g − 1).

Now for 0 ≤ n < κnlβ̄l
nj ···ng ,we have

F
(n)
l ≡ x(n)

l+1 mod (x
(0)
0 , · · · , x

(
κβ̄0

nj ···ng
−1)

l , x
(0)
l , · · · , x

(
κβ̄l

nj ···ng
−1)

l ,

1 ≤ l ≤ i+ 1).

Here since βl+1 > nlβ̄l, for 1 ≤ l ≤ i and m
ni+2···ng ≥ [ m

ni+2···ng ] ≥ κni+1βi+1

nj ···ng , we can

delete F (n)
l , 1 ≤ l ≤ i + 1, 0 ≤ n < κnlβ̄l

nj ···ng from the above generators of I∗0km without

changing the generated ideal. The identities relative to the F (n)
l for 1 ≤ l ≤ i+ 1, κnlβ̄lnj ···ng ≤

n ≤ m or i + 2 ≤ l ≤ g − 1 and 0 ≤ n ≤ m follow immediately from (�). So here
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again the subscheme of Cg+1 ∩ D(x
(kn1)
0 ) defined by I∗0km is isomorphic to the product

of C∗ by an affine space , so it is reduced and irreducible and I∗0km = I0k
m is a prime

ideal in C[x
(0)
0 , · · · , x(m)

0 , · · · , x(0)
g , · · · , x(m)

g ]
x

(kn1)
0

, generated by a regular sequence, i.e the
proposition holds for i+ 1.
The case i = j − 1 = g and m ≥ κngβg follows by similar arguments.
As an immediate consequence we get

Proposition 4.7. Let C be a plane branch with g Puiseux exponents. Let k 6= 0, j and
κ as above. For m ≥ kn1β1, let πm,kn1β1 : Cm → Ckn1β1 be the canonical projection
and let Ckm := π−1

m,kn1β1
(D(x

(kn1)
0 ) ∩ V (x

(0)
0 , · · · , x(kn1−1)

0 ))red. Then for 1 ≤ i < j ≤ g

(resp.1 ≤ i < j − 1 = g) and κni · · ·nj−1β̄i ≤ m < κni+1 · · ·nj−1βi+1, Ckm is irreducible of
codimension

κ

nj · · ·ng
(β̄0 + β̄1 +

i−1∑
l=1

(βl+1 − nlβl)) + ([
m

ni+1 · · ·ng
]− κniβ̄i

nj · · ·ng
) + 1

in C2
m.

For j ≤ g and m ≥ κβ̄j (resp.j = g + 1 and m ≥ κngβ̄g),

Ckm = ∅

(resp. Ckm is of codimension

κ(β̄0 + β̄1 +

g−1∑
l=1

(βl+1 − nlβl)) +m− κngβ̄g + 1)

in C2
m.

For k′ ≥ k and m ≥ k′n1β1, we now compare codim(Ckm,C2
m) and codim(Ck′m ,C2

m).

Corollary 4.8. For k′ ≥ k ≥ 1 and m ≥ k′n1β1, if Ckm and Ck′m are nonempty, we have

codim(Ck
′
m ,C2

m) ≤ codim(Ckm,C2
m).

Proof : Let γk : [kn1β1,∞[−→ [k(n1 +m1),∞[ be the function given by

γk(m) =
k

e1
(β̄0 + β̄1 +

i−1∑
l=1

(βl+1 − nlβl)) + (
m

ei
− kniβ̄i

e1
) + 1

for 1 ≤ i < g and kβ̄i
n2···ni−1

≤ m <
kβi+1

n2···ni and

γk(m) =
k

e1
(β̄0 + β̄1 +

g−1∑
l=1

(βl+1 − nlβl)) + (m− kngβ̄g
e1

) + 1
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for i = g and m ≥ kβg
n2···ng−1

.

In view of proposition 4.7 , we have that codim(Ckm,C2
m) = [γk(m)] for k ≡ 0 mod

n2 · · ·nj−1 and k 6≡ 0 mod n2 · · ·nj with 2 ≤ j ≤ g and any integerm ∈ [kn1β1,
kβj

n2···nj−1
[ or

for k ≡ 0 mod n2 · · ·ngand any integerm ≥ kn1β1. Similarly we define γk′ : [k′n1β1,∞[−→
[k′(n1 +m1),∞[ by changing k to k′.
Let Γk(resp.Γk

′
) be the graph of γk(resp γk′) in R2.Now let τ : R2 −→ R2 be defined by

τ(a, b) = (a, b − 1) and let λk′/k : R2 −→ R2 be defined by λk′/k(a, b) = k′

k (a, b). We note
that τ(Γk

′
) = λk

′/k(τ(Γk)); we also note that the endpoints of τ(Γk) and τ(Γk
′
) lie on the

line through 0 with slope β0+β1

e1n1β1
= 1

e1
n1+m1
n1m1

< 1
e1
. Since k′

k ≥ 1, the image of τ(Γk) by
λk
′/k lie on the subset of R2 whith boundary the union of τ(Γk), of the segment joining

its endpoint (kn1β1,
k
e1

(β0 + β1)) to (kn1β1, 0) and of [kn1β1,∞[ × 0. This implies that
γk
′
(m) ≤ γk(m) for m ≥ k′n1β1 ,hence [γk

′
(m)] ≤ [γk(m)] and the claim.

Theorem 4.9. Let C be a plane branch with g ≥ 2 Puiseux exponents. Let m ∈ N.
For 1 ≤ m < n1β1 + e1,C0

m = Cont>0(x0)m is irreducible. For qn1β1 + e1 ≤ m <
(q + 1)n1β1 + e1,with q ≥ 1 in N, the irreducible components of C0

m are :

CmκI = Contκβ̄0(x0)m

for 1 ≤ κ and κβ̄0β̄1 + e1 ≤ m,

Cjmκv = Cont
κβ̄0

nj ···ng (x0)m

for j = 2, · · · , g, 1 ≤ κ and κ 6≡ 0 mod nj and such that κn1 · · ·nj−1β̄1 + e1 ≤ m < κβ̄j,

Bm = Cont>n1q(x0)m.

Proof : We first observe that for any integer k 6= 0 and any m ≥ kn1β1,

(C0
m)red = ∪1≤h≤kC

h
m ∪ Cont>kn1(x0)m

where Chm := Conthn1(x0)m as above. Indeed , for k = 1, we have that (C0
m)red ⊂

V (x
(0)
0 , · · · , x(n1−1)

0 ) by proposition 4.1. Arguing by induction on k, we may assume that
the claim holds for m ≥ (k − 1)n1β1.Now by corollary 4.2, we know that for m ≥ kn1β1,
Cont>(k−1)n1(x0)m ⊂ V (x

(0)
0 , · · · , x(kn1−1)

0 ), hence the claim for m ≥ kn1β1.
We thus get that for qn1β1 + e1 ≤ m < (q + 1)n1β1 + e1,

(C0
m)red = ∪1≤k≤qC

k
m ∪ Cont>qn1(x0)m.

By proposition 4.7,for 1 ≤ k ≤ q, Ckm is either irreducible or empty. We first note
that if Ckm 6= ∅, then Ckm 6⊂ Cont>qn1(x0)m. Similarly, if 1 ≤ k < k′ ≤ q and if
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Ckm and Ck
′
m are nonempty, then Ckm 6⊂ Ck′m . On the other hand by corollary 4.8, we

have that codim(Ck
′
m ,C2

m) ≤ codim(Ckm,C2
m). So Ck′m 6⊂ Ckm. Finally we will show that

Cont>qn1(x0)m 6⊂ Ckm if Ckm 6= ∅ for 1 ≤ k ≤ q. To do so, it is enough to check that
codim(Ckm,C2

m) ≥ codim(Cont>qn1(x0)m,C2
m). For m ∈ [qn1β1 + e1, (q+ 1)n1β1[, we have

δq(m) := codim(Cont>qn1(x0)m,C2
m) = 2 + q(n1 +m1) + [

m− qn1β1

β0
] + [

m− qn1β1

β1
]

by corollary 4.2.Let λq : [qn1β1 + e1[−→ [q(n1 +m1),∞[ be the function given by λq(m) =
q(n1 + m1) + m−qn1β1

e1
+ 1. For simplicity, set i = m − qn1β1.For any integer i such that

e1 ≤ i < n1β1 = n1m1e1, we have 1 + [ i
n1e1

] + [ i
m1e1

] ≤ [ ie1 ]. Indeed this is true for i = e1

and it follows by induction on i from the fact that for any pair of integers (b, a), we have
[ b+1
a ] = [ ba ] if and only if b+ 1 6≡ 0 mod a and [ b+1

a ] = [ ba ] + 1 otherwise, since i < n1m1e1.
So δq(m) ≤ [λq(m)].
But in the proof of corollary 4.8, we have checked that if Ckm 6= ∅, we have codim(Ckm,C2

m) =
[γk(m)]. We have also checked that for q ≥ k and m ≥ qn1β, γ

k(m) ≥ γq(m). Finally in
view of the definitions of γq and λq, we have γq(m) ≥ λq(m), so [γq(m)] ≥ [λq(m)] ≥ δq(m).
For m = (q + 1)n1β1, we have δq(m) = (q + 1)(n1 + m1) + 1 by corollary 4.2. For
m ∈ [(q+1)n1β1, (q+1)n1β1+e1[, we have Cont>qn1(x0)m = Cq+1

m ∪Cont>(q+1)n1(x0)m and
Cont>(q+1)n1(x0)m = V (x

(0)
0 , · · · , x((q+1)n1)

0 , x
(0)
1 , · · · , x((q+1)m1)

1 ) again by corollary 4.2. If
in addition we havem < (q+1)β̄2, then by proposition 4.5 Cq+1

m = V (x
(0)
0 , · · · , x((q+1)n1−1)

0 ,

x
(0)
1 , · · · , x((q+1)m1−1)

1 , x
((q+1)m1)n1

1 − c1x
((q+1)n1)m1

0 ) ∩D(x
((q+1)n1)
0 , thus we have

Cont>qn1(x0)m = Cq+1
m and δq(m) = (q + 1)(n1 + m1) + 1. We have (q + 1)n1β1 + e1 ≤

(q+ 1)β2 if q+ 1 ≥ n2, because β2−n1β1 ≡ 0 mod (e2) . If not , we may have (q+ 1)β2 <
(q+1)n1β1+e1, so for (q+1)β2 ≤ m < (q+1)n1β1+e1, we have C

q+1
m = ∅, Cont>qn1(x0)m =

Cont>(q+1)n1(x0)m and δq(m) = (q + 1)(n1 +m1) + 2.
In both cases, for m ∈ [(q+1)n1β1, (q+1)n1β1 +e1[, we have δq(m) ≤ (q+1)(n1 +m1)+2.
Since [λq(m)] = q(n1+m1)+n1m1+1, we conclude that [λq(m)] ≥ δq(m), so for 1 ≤ k ≤ q,
if Ckm 6= ∅, we have [γk(m)] ≥ δq(m). This proves that the irreducible components of C0

m

are the Ckm for 1 ≤ k ≤ q and Ckm 6= ∅, and Cont>qn1(x0)m, hence the claim in viewof the
characterization of the nonempty Ck′sm ’s given in proposition 4.5.

Corollary 4.10. Under the assumption of theorem 4.9, let q0 + 1 = min{α ∈ N;α(β2 −
n1β1) ≥ e1}. Then 0 ≤ q0 < n2. For 1 ≤ m < (q0 + 1)n1β1 + e1, C

0
m is irreducible and we

have codim(C0
m,C2

m) =

2 + [
m

β0
] + [

m

β1
] for 0 ≤ q ≤ q0 and qn1β1 + e1 ≤ m < (q + 1)n1β1

or 0 ≤ q ≤ q0 and (q + 1)β2 ≤ m < (q + 1)n1β1 + e1.

1 + [
m

β0
] + [

m

β1
] for 0 ≤ q < q0 and (q + 1)n1β1 ≤ m < (q + 1)β2

or (q0 + 1)n1β1 ≤ m < (q0 + 1)n1β1 + e1.
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For q ≥ q0 + 1 in N and qn1β1 + e1 ≤ m < (q + 1)n1β1 + e1, the number of irreducible
components of C0

m is:

N(m) = q + 1−
g∑
j=2

([
m

β̄j
]− [

m

nj β̄j
])

and codim(C0
m,C2

m) =

2 + [
m

β0
] + [

m

β1
] for qn1β1 + e1 ≤ m < (q + 1)n1β1.

1 + [
m

β0
] + [

m

β1
] for (q + 1)n1β1 ≤ m < (q + 1)n1β1 + e1.

Proof : We have already observed that n2(β2 − n1β1) ≥ e1 because β2 − n1β1 ≡ 0 mod
(e2), so 1 ≤ q0 + 1 ≤ n2.
For qn1β1 + e1 ≤ m < (q + 1)n1β1 + e1, with q ≥ 1, we have seen in the proof of theorem
4.9 that the irreducible components of C0

m are the Ckm for 1 ≤ k ≤ q and Ckm 6= ∅ and
Contqn1(x0)m. We thus have to enumerate the empty Ckm for 1 ≤ k ≤ q. By proposition 4.5,
Ckm = ∅ if and only if j := max{l; l ≥ 2 and k ≡ 0 mod n2 · · ·nl−1} ≤ g andm ≥ k

n2···nj−1
βj .

Now recall that βi+1 > niβi for 1 ≤ i ≤ g − 1 and that β2 − n1β1 ≥ e2. This implies that
for 3 ≤ j ≤ g, we have βj − n1 · · ·nj−1β1 > n2 · · ·nj−1(β2 − n1β1) ≥ n2 · · ·nj−1e2 ≥ e1.

So if j ≥ 3 and κ is a positive integer such that m ≥ κβj , we have m−e1
n1β1

> κn2 · · ·nj−1,

hence q = [m−e1n1β1
] ≥ κn2 · · ·nj−1. Therefore for j ≥ 3, there are exactly [m

βj
] integers κ ≥ 1

such that m ≥ κβj and κn2 · · ·nj−1 ≤ q, among them [ m
njβj

] are ≡ 0 mod (nj).

Similarly if (q+1)n1β1 +e1 ≤ (q+1)β2, or equivalently q ≥ q0, and if κ is a positive integer
such that m ≥ κβ2, we have κ ≤ m

β2
< q + 1. Therefore if q ≥ q0 + 1, we conclude that

there are
∑g

j=2([m
βj

]− [ m
njβj

]) empty Ckm’s with 1 ≤ k ≤ q. Moreover we have shown in the

proof of theorem 4.9 that codim(C0
m,C2

m) = codim(Cont>qn1(x0)m,C2
m) = 2 + [mβ0

] + [mβ1
]

if m < (q + 1)n1β1(resp.1 + (q + 1)(n1 +m1) = 1 + [mβ0
] + [mβ1

] for m ≥ (q + 1)n1β1).Also
note that q0β2 < q0n1β1 + e1 < (q0 + 1)n1β1 + e1 ≤ (q0 + 1)β2 ≤ n2β2 < β3 · · · . Therefore
for q0n1β1 + e1 ≤ m < (q0 + 1)n1β1 + e1, we have [m

β2
] = q0, [

m
n2β2

] = [m
β3

] = · · · = 0, so

N(m) = 1, i.e. C0
m is irreducible.

Finally, assume that qn1β1 + e1 ≤ m < (q + 1)n1β1 + e1 with q ≥ 1 and q ≤ q0. Since
q0 < n2, for 1 ≤ k ≤ q we have k 6≡ 0 mod(n2) and m ≥ qn1β1 + e1 > qβ2, hence
for 1 ≤ k ≤ q, Ckm = ∅ and C0

m = Contqn1(x0)m is irreducible.(The case q = q0 was
already known).So for n1β1 ≤ m < (q0 + 1)n1β1 + e1, C0

m is irreducible.( Recall that for
1 ≤ m < q0n1β1 + e1, the irreducibility of C0

m is already known).It only remains to check
the codimensions of C0

m for 1 ≤ m ≤ q0n1β1 + e1. Here again we have seen in the proof of
Theorem 4.9 that codim(C0

m,C2
m) = codim(Cont>qn1(x0)m,C2

m) =: δq(m) for any q ≥ 1
and qn1β1 + e1 ≤ m < (q + 1)n1β1 + e1 and that δq(m) =

2 + [
m

β0
] + [

m

β1
] for any q ≥ 1 and qn1β1 + e1 ≤ m < (q + 1)n1β1
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(q + 1)(n1 +m1) + 1 = 1 + [
m

β0
] + [

m

β1
] for q < q0 and (q + 1)n1β1 ≤ m < (q + 1)β2

(q+ 1)(n1 +m1) + 2 = 2 + [
m

β0
] + [

m

β1
] for q < q0 and (q+ 1)β2 ≤ m < (q+ 1)n1β1 + e1.

This completes the proof.

In [I], Igusa has shown that the log-canonical threshold of the pair ((C2, 0), (C, 0)) is 1
β0

+ 1
β1
.

Here (C2, 0)(resp.(C, 0))) is the formal neighberhood of C2 (resp. C) at 0. Corollary .4.10
allows to recover corollary B of [ELM] in this special case.

Corollary 4.11. If the plane curve C has a branch at 0, with multiplicity β0, and first
Puiseux exponent β1, then

minm
codim(C0

m,C2
m)

m+ 1
=

1

β0
+

1

β1
.

Proof : For any m, p 6= 0 in N, we have m − p[mp ] ≤ p − 1 and m − p[mp ] = p − 1 if
and only if m + 1 ≡ 0 mod (p); so for any m ∈ N, 2 + [mβ0

] + [mβ1
] ≥ (m + 1)( 1

β0
+ 1

β1
)

and we have equality if and only if m + 1 ≡ 0 mod (β0) and mod (β1) or equivalently
m + 1 ≡ 0 mod (n1β1) since n1β1 is the least common multiple of β0 and β1.If not we
have 1 + [mβ0

] + [mβ1
] ≥ (m+ 1)( 1

β0
+ 1

β1
). Now if (q + 1)n1β1 ≤ m < (q + 1)n1β1 + e1 with

q ∈ N,we have (q + 1)n1β1 < m + 1 ≤ (q + 1)n1β1 + e1 < (q + 2)n1β1, so m + 1 6≡ 0
mod (n1β1). If (q + 1)n1β1 ≤ m < (q + 1)β2 with q ∈ N and q < q0, then (q + 1)n1β1 <
m + 1 ≤ (q + 1)n1β1 + e1 < (q + 2)n1β1, so m + 1 6≡ 0 mod (n1β1). So in both cases, we
have 1 + [mβ0

] + [mβ1
] ≥ (m+ 1)( 1

β0
+ 1

β1
). The claim follows from corollary 4.10.

It also follows immediately from corollary 4.10

Corollary 4.12. Let q0 ∈ N as in corollary 4.10. There exists n1β1 linear functions,
L0, · · · , Ln1β1−1 such that dim(C0

m) = Li(m) for any m ≡ i mod (n1β1) such that m ≥
q0n1β1 + e1.

The canonical projections πm+1,m : C0
m+1 −→ C0

m,m ≥ 1, induce infinite inverse
systems

· · ·Bm+1 −→ Bm · · · −→ B1

· · ·C(m+1)κI −→ CmκI · · · −→ C(κβ0β1+e1)κI −→ Bκβ0β1+e1−1

and finite inverse systems

Cj
(κβj−1)κv

−→ Cjmκv · · · −→ Cj(κn1···nj−1β1+e1)κv −→ Bκn1···nj−1β1+e1−1

for 2 ≤ j ≤ g, and κ 6≡ 0 mod (nj).
We get a tree TC,0 by representing each irreducible component of C0

m,m ≥ 1, by a vertex
vi,m, 1 ≤ i ≤ N(m), and by joining the vertices vi1,m+1 and vi0,m if πm+1,m induces one
of the above maps between the corresponding irreducible components. We represent the
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tree for the branch defined by f(x, y) = (y2 − x3)2 − 4x6y − x9 = 0, whose semigroup is
(4, 6, 15).
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This tree only depends on the semigroup Γ.
Conversely , we recover β0, · · · , βg from this tree and max{m, codim(Bm,C2

m) = 2} =

β0 − 1. Indeed the number of edges joining two vertices from which an infinite branch
of the tree starts is β0β1. We thus recover β1 and e1. We recover β2 − n1β1, · · · , βj −
n1 · · ·nj−1β1, · · · , βg − n1 · · ·ng−1β1, hence β2, · · · , βg from the number of edges in the
finite branches.

Corollary 4.13. Let C be a plane branch with g ≥ 1 Puiseux exponents. The tree TC,0
described above and max{m, dim C0

m = 2m} determine the sequence β0, · · · , βg and con-
versely.
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