arXiv:1009.5845v1 [math.AG] 29 Sep 2010

Jet schemes of complex plane branches and equisingularity

Hussein MOURTADA
September 30, 2010

Abstract

For m € N, we give formulas for the number N(m) of irreducible components of
the m-th Jet Scheme of a complex branch C and for their codimensions, in terms
of m and the generators of the semigroup of C'. This structure of the Jet Schemes
determines and is determined by the topological type of C.

1 Introduction

Let k be an algebraically closed field. The space of arcs X, of an algebraic k—variety
X is a non-noetherian scheme in general. It has been introduced by Nash in [N]. Nash
has initiated its study by looking at its image by the truncation maps X, — X, in
the jet schemes of X.The m!"—jet scheme X,, of X is a k— scheme of finite type which
parmametizes morphisms Spec t,lfl[ﬂl — X. From now on we assume char k = 0. In [N],
Nash has derived from the existence of a resolution of singularities of X, that the number of
irreducible components of the Zariski closure of the set of the m—truncations of arcs on X
that send 0 into the singular locus of X is constant for m large enough. Besides a theorem
of Kolchin asserts that if X is irreducible, then X, is also irreducible. More recently
, the jet schemes have attracted attention from various viewpoints. In [Mus|,Mustata
has characterized the locally complete intersection varieties having irreducible X, for
m > 0.In |[ELM]| , a formula comparing the codimensions of Y, in X,, with the log
canonical threshold of a pair (X,Y") is given.In this work, we consider a curve C in the
complex plane C? with a singularity at 0 at which it is analytically irreducible (i.e. the
formal neighborhood(C, 0) of C at 0 is a branch). We determine the irreducible components
of the space C9, := 7,.1(0) where 7, : C;, — C'is the canonical projection, and we show
that their number is not bounded as m grows. More precisely, let x be a transversal
parameter in the local ring Ogz , i.e. the line x = 0 is transversal to C' at 0 and following

[ELM]. for e € N let

Cont®(x)m(resp.Cont”¢(2)m) := {y € Cm | ordyx oy = e(resp. > e)}.

Let T(C) =< By, ,Bg > be the semigroup of the branch (C,0) and let e¢; =
ged(Bg, -+ ,B;), 0 < i < g. Recall that T'(C) and the topological type of C near 0 are
equivalent data. We show in theorem 4.9 that the irreducible components of CY are
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Conps = Contrho () m,
for 1 < k and kfBof1 + e1 < m,

KB

= Cont -1 (x)m

cJ

mRrv

for2§j§g,1§/€,n7—é0modeij—;landn%%—el§m<m5j,

By, = Cont”™™9(x)

if qnlﬁ_l +e1<m<(q+ 1)71151 + €.

These irreducible components give rise to infinite and finite inverse systems represented
by a tree.We recover < S, - ,Bg > from the tree and the multiplicity 3, in corollary
4.13, and we give formulas for the number of irreducible components of C% and their
codimensions in terms of m and (B, - ,Bg) in proposition 4.7 and corollary 4.10. We
recover the fact coming from [ELM)| and [I] that

min. codim(CY  C2 ) _ ; N ;
m+1 Bo b1
The structure of the paper is as follows: The basics about Jet schemes and the
results that we will need are presented in section 2. In section 3 we present the definitions
and the reults we will need about branches. The last section is devoted to the proof of the
main result and corollaries.
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2 Jet schemes

Let k be an algebraically closed field of arbitrary characteristic. Let X be a k-scheme of
finite type over k and let m € N. The functor F,, : k — Schemes — Sets which to an
affine scheme defined by a k—algebra A associates

Fon(Spec(A)) = Homy(SpecA[t)/(£™1), X)

is representable by a k—scheme X, [V]. X,, is the m-th jet scheme of X, and F,, is
isomorphic to its functor of points. In particular the closed points of X, are in bijection
with the k[t]/(#™1) points of X.

For m,p € N,m > p, the truncation homomorphism A[t]/(t"*1) — A[t]/(#**1) induces a
canonical projection 7, , : X, — X,,. These morphisms clearly verify m,, , 0 7gm = mqp
for p <m < q.

Note that Xo = X. We denote the canonical projection 7, o : X, — Xo by m,.
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Example 1. Let X = Spec M be an affine k—scheme. For a k-algebra A, to give
a A-point of Xy, is equivalent to give a k-algebra homomorphism

. ]C[{L‘[), e 7xn]

L I

(flv Ty f?")

The map ¢ is completely determined by the image of x;,1 =0,--- ., n

x; — o(x;) = :Ez(O) 4 :Ez('l)t N :EZ(m)tm

— Al (™).

such that fi(¢(xo), -, ¢(xn)) € @), I=1,--- 7.

If we write

fild(zo), o)) = Y FP @@, 2D tVmod (¢
j=0

where £U) = (ZE((]j), e ,x,(lj)), then

X = Spec [ j’ ._’%

(5)15=0,+;m

ﬂ )l—l,‘- K
Example 2. From the above example, we see that the m-th jet scheme of the affine space
A} is isomorphic to A,gmH)n and that the projection Tmm—1 : (AY)m — (A})m—1 is the

map that forgets the last n coordinates.

Lemma 2.1. If f : X — Y is an étale morphism, then for every m € N, the following
diagram

Jm

Xm—Y,,

ﬂml lﬂm

X T> Y
18 cartesian.

Proof : For a k-algebra A, to give an A-point of Y;,, xy X is equivalent to give a commu-
tative diagram

Spec(A) X

|k

Spec(A[t]/ (")) —Y

which is equivalent to give a unique morphism Spec(A[t]/(t1))) — X making the two
triangles commutative,since f is formally étale. O
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Corollary 2.2. If X is a nonsingular k—wvariety of dimension n, then all projections
Tmm—1 : Xm — Xm—1 are locally trivial fibrations with fiber AY. Then in particular X,
is a nonsingular variety of dimension (m + 1)n.

Proof : Tt is sufficient to prove that for every x € X there exists an open neighborhood
U of x such that U,, ~ U x;, A7"". But since X is nonsingular, there exists an open neigh-
borhood U of z and an étale morphism g : U — A}!. Then we deduce the claim from the
above lemma . ]

Let char(k) = 0, S = klzg, - .,x,) and Sy, = k[z(®,--- ,2(™]. Let D be the
k—derivation on S,, defined by D(:UEJ)) =G+ 1).@5”1) if 0 < j < m, and D(acgm)) = 0.
For f € S let f(U := D(f) and we recursively define f(™ = D(f(m—1),

Proposition 2.3. Let X = Spec(S/(f1,---, fr)) = Spec(R) and Ry, =I'(X,,). Then

k x(o)’. . .,x(m)
R, = Spec( [z (j))j 07-77m ]
) =1, 7

Proof : For a k—algebra A, to give an A—point of X, is equivalent to give an homomor-

phism
b : klzo, - .,z — A[t]/ (™)
which can be given by
RUN o
S TR TRUR R

Then for a polynomial f € S, we have

To see this, it is sufficient to remark that it is true for f = x;, and that both sides of the
equality are additive and multiplicative in f, and the proposition follows. O

Remark 2.4. Note that the proposition shows the linearity of the equations sz (g(o), e ,g(j))
defining X,, with respect to the new variables i.e x9), which is the algebraic point of view
on the fibration in corollary 2.2.

3  Semigroup of complex branches

The main references for this section are |Z|,[Mel,[Al,[Sp],|GP],|GT],|LR]. Let f € C[[z,y]]
be an irreducible power series, which is y-regular (i.e f(0,y) = y*wu(y) where u is invertible
in C[[y]]) and such that multyf = B, and let C' be the analytically irreducible plane
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curve(for short branch) defined by f in Spec C|[z,y]]. By the Newton-Puiseux theorem,
the roots of f are

0 .
Y= Zaiwixﬁio (1)
=0

where w runs over the 8y — th-roots of unity in C.This is equivalent to the existence of a
parametrization of C' of the form

z(t) = tPo
y(t) = Z a;t'.
i>fo

We recursively define 8; = min{i,a; # 0, ged(Bo,- -+ ,Pi—1) is not a divisor of i}.
Let eg = By and e; = ged(e;—1, 5i),i > 1. Since the sequence of positive integers

e > €1 > > €5 > v

is strictly decreasing, there exists g € N, sucht that e, = 1. The sequence (81, -- ., Bq) is
the sequence of Puiseux exponents of C'. We set
€i—1 Bi .
ngi=——m; '= —,1= 17 g
€; €;

and by convention, we set 8441 = +00 and ng4q = 1.

On the other hand, for h € C[[z, y]], we define the intersection number

. Cl[z,
(210 = (€.Cho = dime =y M) — ord hatt) 1)
where C}, is the Cartier divisor defined by h and {z(t)), y(t)} is as above.

The mapping vy : % — N, h —— (f, h)o defines a divisorial valuation. We define the

semigroup of C' to be the semigroup of vy i.e I'(C') = T'(vy) = {(f, h)o € N, h #Z 0 mod(f)}.
The following propositions and theorem from [Z] characterize the structure of I'(C').

Proposition 3.1. There exists a unique sequence of g + 1 positive integers (,8_0, o, By)
such that:

i)Bo = Bo, ) B

ii) B3 = min{L(C)\ < Bo,- -+, ;-1 >}, 1 <i < g,

i) (C) =< Po, -+, By >,

where for i = 1,---,g+ 1,< Bo, - ,Bi_1 > is the semigroup generated by Bo, - - Biq-
By convention, we set Bg_,_l = +00.

Proposition 3.2. The sequence (Bo, -+, By) verifies:
i)ei_: gcd(ﬂ_o7 ’ﬂ,l)?O_S/I/ Sg, - B
i)Bo = Bo.B1 = P1 and B = Bi + > T=E B i =2, 4.

€i—1
iii)n;B; < B, 1 <i<g—1
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Theorem 3.3. The sequence (Bo, -, B4) and the sequence (Bo, - ., By) are equivalent
data They determine and are determined by the topological type of C.

Then from [A] or [Sp|, we can choose a system of approximate roots (or a minimal

generating sequence) {xg, -+ ,z411} of the divisorial valuation vy. We set & = xo,y = w1;
fori=2,--- g+ 1,2; € C[[z,y]] is irreducible; for 1 < i < g, the analytically irreducible
curve C; = {x; = 0} has i — 1 Puiseux exponents and maximal contact with C' and

Cy4+1 = C. This sequence also verifies

i)[(C;) =< ?fl yoo ,% > and the Puiseux sequence of Cj is (e?—jl, e ,fj:ll)ﬂ <i<
g+ 1

i1i) for 1 <1 < g, there exists a unique system of nonnegative integers b;;, 0 < j < i such
that for 1 < j <1, bj; < nj and n;8; = Yo<j<ibi;3;. And for 0 < i < g, one can choose x;
such that they satisfy identities of the form

e

i b; bii— i
T = @yt — gl — Z Ci@y @], (%)
Y=(v0," %4)
with ,0 <v; <nj,for1 < j <1, and Ej’ijj > n;f3; and with ¢i~, ¢ € Cand ¢; # 0. These
last equations (%) let us realize C' as a complete intersection in CI* = Spec C [[xg, - - - , x4]]
defined by the equations
i b; bii— i
fi =i = (@ =g x T = Y i)
7:(707"' 771)

for 1 <i < g, with 441 = 0 by convention.

Let h € Cl[z, y]] be a y-regular irreducible power series with multiplicity p = ord,h(0,y).
1

1 1
Let y(zPf0) and z(x?) be respectively roots of f and g as in (1). We call contact order of
f and g in their Puiseux series the following rational number

of(h) := ma:v{ordz(y(wa:%) - z()\x%));wﬁo =1L\ =1}=
max{ordx(y(wx%) - z(x%);wﬁo =1} =
max{ordm(y(x%) - Z(/\ZL'%); AP =1} = op(f).
The following formula is from [Me], see also [GP] .

Proposition 3.4. Assume that f and h are as above; let (f1,---,B,y) the sequence of
Puiseux exponents of f and let © < g+ 1 be the smallest strictly positive integer such that
or(h) < % Then

"By + ei_105(h)

i—1

(f,h)o lz: ep—1—€
p — Do
Corollary 3.5. [GP] Leti > 0 be an integer. Then o(h) < % zﬂ@ < ei_l%, Moreover

of(h) = % iﬁ@ = ei_l%. In particular of(z;) = %, 1<i<yg.
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4 Jet schemes of complex branches

We keep the notations of sections 2 and 3. We consider a curve C' C C? with a branch of
multiplicity 8o > 1 at 0, defined by f. Note that in suitable coordinates we can write

[(xo,x1) = (2! — cag™ )™ + Z cab:cgzvlf; ceC*and cqyp € C. (o)
aBo+bB1>Bof1

We look for the irreducible components of C?, := (7,.1(0)) for every m € N, where m,, :
Cpn — C is the canonical projection. Let JO, be the radical of the ideal defining (7;,!(0))
in C2,.

In the sequel, we will denote the integral part of a rational number r by [r].

Proposition 4.1. For 0 < m < n131, we have that

o o m (0 _(m)
(C?n)red = (W;zl(o))red = Spec (C[)xo ’ (7[2)}) 7mol 7 7gf[lﬂ]]) ’
(:U(())a axoﬁl axg )7 7*7:1/30 )
and
B (C[QS(O),'-- ’Jj(nlﬁl)jx(o)"” ’x(nlﬁl)]
(Cg red = (Wn ! (0))rea = Spec L v ! ! 7 i
161 151 (x80)7 e 7x(()n1_1)7x:(l0)7 Tty g_ml_l)7x:(lm1) ' — ngnl) 1)

Proof : We write f = %, 4)cab fap Where (a,b) € N2, fop = 1‘856[{, cap € Cand afy+ b5 >
BopB1(the segment [(0,5y)(B1,0)] is the Newton Polygon of f). Let supp(f) = {(a,b) €
N2; cqp # 0},

For 0 < m < n1f1, the proof is by induction on m. For m = 1,we have that

1
FO = E(a,b)esupp(f)cabFéb)

where (F(O) ... F@) (resp. (F(b), e ,F('))) is the ideal defining the i-th jet scheme C; of
C(resp. C2 the i-th jet scheme of C% = {f,, = 0}) in C? .Then we have

5 e e

S ip=1
where 1(a+b) > afo+bp1 > Lo so a+b > Py > 1. Then for every (a,b) € supp(f) and
every (i1, ,iq, - ,ia4p) € N¥*? such that ZaH’ i, = 1 there exists 1 < k < a + b such

that i, = 0, this means that FC(L;) (x(() )’xgo)) and since we are looking over the origin,
Lot 0

@, (0)) ](In fact this is

we have that (ZL‘(()O), l‘go)) C J? therefore (7 2(0))eq = Spec

nothing but the Zariski tangent space of of C' at 0).
Suppose that the lemma holds until m — 1 i.e.

U e T el |

— Ty y Ly "y )
(Wml_l(o))red = Spec (0)0 ([LD (;) ([1 1)
(1‘0 1 T . R R | )
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First case:If [m—:l] = [5] and [m—;l] = [5]. We have

I T LN (AN

(ayb)ESupp(f) Z ir=m

Let (a,b) € supp(f); if for every k = 1,--- ,a, we had iy > [%] + 1, and for every
k=a+1,---,a+b, wehad iy > [g2] + 1, then
aﬂo-i-bﬁl
m>a +1)+0b +1 Ty = >m
([51] ) ([50] )> 51 Bo BB

The contradiction means that there exists 1 < k < a such that i < [%] or there exists

a+1 <k < a+bsuch that 7, < [2”—0] So F(™) lies in the ideal generated by JO | in

(C[:v[()o),--- ,a:(()m),xgo), . ,xgm)] and JO, = anfl.(C[xéo), . x(()m) :z:g ), gm)]
Second case:If [mll] = [5] and [mﬁ—;l] +1=[5] (i.e. B divides m). We have that

FOm = R + > FiP, ()
(a7b)65upp(f);(aﬂb)i(ovﬂo)
where
) i myBo ) i
CETD Sy AR NS N e )
D ig=m Zik:m;(ila“'7i[30)3’£(%7"'7%)
but > i = m and (i1,--- ,ig,) # (g"”—o,--- ,%) implies that there exists 1 < k < f3y such
that iy < 72, so
Z xgll) ('30) EJgL I(C[ ¢ ) 71"[()m)7x50)>"' 7x§m)]

S i=m;(in,ipg ) A (G 5g)
For the same reason as above, we have that

Z Fé;n) € ng_l.((:[xéo),--- ,x(()m),q:go),o'- ,:cgm)].
(a,b)Esupp(f);(a,b)yé(o,ﬁo)

From (xx) we deduce that xi%) € JY and
Fm e (O, ... gD, <0>, . i o). Then 70 = (20, a0m? O b)),
The third case ie. if [75 4+1= [5;] and ["5 1] = [5;] is discussed as the second one.

Note that these are the only three possible cases since m < n11 = lem(fo, B1)(here lem
stands for the least common multiple).
For m = n1 61, we have that F("™) is the coefficient of ¢ in the expansion of

P+l 2O MM,
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But since we are interested in the radical of the ideal defining the m-th jet scheme, and

we have found that xéo), e ,x(gmfl),xgo), ‘e ,xgmlfl) € J,%_l C JO we can annihilate

ar(()o),--- ,x(()m_l), go)’ . ,x&ml_l) in the above expansion. Using (¢), we see that the
n m

coefficient of t" is (z gml) Lo cxgm) 1)61. O

In the sequel if A is aring , I C A an ideal and f € A, we denote by V (I) the subvariety
of Spec A defined by I and by D(f) the open set {f # 0} in SpecA i.e. D(f) = SpecAy.
The proof of the following corollary is analogous to that of proposition 4.1.

Corollary 4.2. Let m € N; let k > 1 be such that m = kn181 + ;1 < i <niB1. Then if
1 < n1P1, we have that

mn — kn
Cont>k 1(330)m = (7rm,1kn161 (V(xg)())a T ,:E(() 1))))red =
0 m 0 m
Spec k[ﬂ?é),,ﬂ?é )7:1:5)7"'7555 )]
kni+[+ O
(:1:((]0)’ L 7£L’ékn1), L 7;[‘8 1+[51])7x§0)’ . 7.’B§_km1), L 7375- 1+[5 ]))
and if it = n151
— kn

(ﬂ-m,lkmlﬂl (V(xg))v T 71"(() 1))))red =

o . m) (0  _(m)
Spec 3 (k+1)n -f[x(& 7 ’x(?kﬂixni ’1> (i1+1>]m T (kA Dn) ™
Ty, LTy R R g Y — ey V)

We now consider the case of a plane branch with one Puiseux exponent.

Lemma 4.3. Let C be a plane branch with one Puiseur exponent. Let m,k € N, such that
E# 0 and m > kniB1 + 1, and let T, gn, g, © Cm — Crnip, be the canonical projection.
Then

Ot = Tl (V@ a6 ™ ) N D™ ) rea

is irreducible of codimension k(my +n1) + 1+ (m — kn131) in C2,.

Proof : First note that since e; = 1, we have m; = 61 = By.Let I%% be the ideal defining

Ck in C2,ND(x (knl)) Since m > kn1f1, by corollary 4.27 l‘go), e ,x&kml_l) € I9%.So I19F is
the radical of the ideal %% := (ac(()o), . ,x(()km_l), xgo), . ,x&kml_l), FO ... Fm) Now
it follows from ¢ and proposition 2.5 that
FO ¢ (.CL‘((]O), . ,:U(()knl_l),fcgo),'-- ,a:gkml_l)) for 0<1< knima,
F(knlml) — :L_gkml)nl _ CZC((]knl)ml mod (xé())’ o ’x(()knlfl)’$§0)’ o 7:L‘gk:mlfl))’
F(kn1m1+l) = nlxgkml)nlilxgkm1+l) . mlcx(knﬂml*lxéknﬁrl)
+Hl(l‘(()0), o ’x(()knl—i—l—l)? xg(])’ o 7xglm‘ru—&-l—l)) mod ($(()0)’ B 7xékn1—1)’ xg(])’ o ’xgkrru—l))’

for 1 <l <m—knimq.
This implies that I*0% .= (a:(()o), e gml_l),xgo), e ,xgkml_l), Flknama) . ,F(m)). More-
over the subscheme of C2, N D(x (lml)) defined by I*%% is isomorphic to the product of C*(C*
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is isomorphic to the regular locus of x(kml) cac(()lml) ) by an affine space and its codi-

mension is k(mq +n1)+1+(m— lmlml) so it is reduced and irreducible, and it is nothing
but CF , or equivalently I9F = 130k,

O

Corollary 4.4. Let C be a plane branch with one Puiseux exponent. Let m € Nym # 0. let
q € N be such that m = qni1S1 + ;0 < i < nyB1. Then C% = 7,.1(0) has q + 1 irreducible
components which are: -

ka]:CﬁL,l Ské%

and By, = Cont™ ™ () = m b o0 (Vo af™))).

m7qn1/81
We have that
codim(Cyir, CZ) = k(my +n1) + 1+ (m — knymy)

and
7 ) m

2=
B ]+ [ﬁ1] [ﬁ ]+ [51
codim(Bm,(Cfn) =(q+1)(mi+n1)+1 if i=nif.

codim(By,, C2) = q(my +n1) + [5- J+2 if i<mp

Proof : The codimensions and the irreducibility of B,,, and C,,;r follow from corollary 4.2
and lemma 4.3. This shows that if 1 < k < k' < ¢, codim(Cppr1, C2,) < codim(Cyrr, C2)

then Cpprr € Crkr. On the other hand, since Cpprp C V(:c[()km)) and Cppr € V(z (knl)),
we have that Cp,r §Z Conrrr- This also shows that dim By, > dim Cyir for 1 < k < g,

therefore By, € Cpir,1 < k < ¢.But Crpr € By, because By, C V(x (qnl)) and Cypr €

V(x ((qu)) for 1 < k < q. We thus have that C,,x; € B™ and B"™ € C,,,;. We conclude
the corollary from the fact that by construction C9, = UZZIka 71U Bp,. O

To understand the general case, i.e. to find the irreducible components of ng where C' has
a branch with ¢ Puiseux exponents at 0 , since for kn15; < m < (k+ 1)n151, m, k € N we

know by corollary 4.2 the structure of the m-jets that project to V(JI(()O), SRR :E((]knl))ﬂcgmﬁl,
we search to understand for m > kni[; the m-jets that projects to
Vg, o ag™ TNDg™) de CF = g (V(mé°>, el TND ™)) e

Let m, k € N be such that m > kny 1. Let j = maz{l,ny---n;_1 divides k}(we set j = 2

if the greatest common divisor (k,n2) =1 or if g = 1). Set & such that k = kng---n;_1,
50

g

then we have kn; = r

Proposition 4.5. Let 2 < j < g+1; fori=2,..,g, and kn151 < m < ke;_1 eﬁil, we have
.
that

k ——1 k
Cm = Trm,[ m ](Cz’[ .m ]),
ngng n;ng
where wm[ ] C2 — (C[ ] 1s the canonical map. For j < g+ 1 and m > K;Bj,we
have that n
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Proof :  Let ¢ € CF. Let ¢ : SpecC[[t]] — (C2,0) be such that that lifts ¢ = ¢
mod ™1, Let f € (C[[a: y]] be a function that defines the branch C' image of ¢. we may
assume that the map SpecC[[t]] — C induced by ¢ is the normalization of C. Since
ord;xp o qb = kny,ordizy 0 ¢ = kmy, (ordizg o qﬁ = kny) the multiplicity m(f) of C at the

origin is ordy, f(0,x1) = kny = /ﬁ%
J

Claim: If (f, f)o < ﬁei,lejgil then (f, f)o =n, - ~ng($i,f)0~

Indeed, we have that (oo < e;_1%+, therefore by corollary 3.5 we have that
ordy f(0,y) ﬁ

6 |
Of(f) 50 Of(xz)'

1 . 1 N
Let y(zPfo), z(x™1mi-1) and u(x™ ) be respectively Puiseux-roots of f.x; and f. There
Bo =
exist w, A € C such that wm~7s =1, \™(f) =1 and
1

o7(f) = ordy(u(A D) — y(%))

and
1

of(x;) = ordx(y(g;%) — 2(wzTT ),

Since o4(f) < of(x;), we have that

~ 1

of(f) = Ordx(u()\xﬁ) - y(x%) + y(m%) ~ (wrTmeT))

1 1 -
— ordy (u(Ae ™) — 2(wa ™)) < o, ().
On the other hand, there exist A and § € C, such that ) = 1,6% =1 and such that

1

Oxi(f) = Ode(u()\xﬁ) — z(xmmio))

and
1

of(fti) = ordx(y(ég;%) — (zTr e ),

We have then that

1 1 1 1

02, (F) = orda (u(Ax B ) — y(5270) + y(527) — 2(wa 1)),
Now

1

ordgc(u()\xﬁ) — y(ém%)) <op(f) < op(xi) = ordx(y(éx%) — z(wammi-)),

So

- 1 1 .
0, (f) = orde(u(Azm) —y(6z %)) < o ().
We conclude that og( f) = 0z, ( f), and since the sequence of Puiseux exponents of
C; is ( fo ... ﬁl_ ), applying proposition 3.4 to C' and C;, we find that (f, f)o =

N Ng n;
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n; - ng(zi, f)o and claim follows.

On the other hand by the corollary 3.5 applied to f and f,(f, f)o >
only if Of(f) > % = 04,(f) = of(x;) s0 op(f) > % if and only if o, (f) > gl therefore
($i7 f)

The second assertlon is a direct consequence of lemma 5.1 in [GP]. Ul

To further analyse the C’,]fl’s, we realize, as in section 3, C as a complete intersection in
C97! = Spec Clzg, - -+ ,x,] defined by the ideal (fi,--- , f;) where

K€i—1g ’1 if and

s proves the first assertion.

_ n; b; bi(i—1) Yo yi
fi=xip1 — (2] —cxg® -] — E Ciny’ e x))

=70, ¥i)

for 1 <i < gand x4y = 0. This will let us see the Cfn’s as fibrations over some reduced
scheme that we understand well.
We keep the notations above and let I, be the radical of the ideal defining C9, in C%™ and

let I% be the ideal defining C* = (V(Ifn,xéo), . ,x(()knrl)) N D(x (km)))red in D(x(()knl)).

Lemma 4.6. Let k # 0, j and k as above. For1 <i < j<g (respl <i<j—1=g)
and for kn;---m;j_ 1B <m < KMl - Nj— 15#1, we have

(2o 1)
0 ng-n
I?nk:(x(())a"' x0T
1) (L)
xl(O)v"'vxl] ! 7F1l ! g:"'aﬂ(m)ylglgia
0) (Crper)
Tiv1r T ’

Moreover for 1 <1 <1,

5 5\ 5, \bio By |-
(hf) (st (hr ) (75
F =—(z — Ay T1—1 )
B _ m
(”n----ng 1) (0) ([niJrl‘..ngD)
)

(0)
mod ((xl y Ty Ay ! )0<l<i7xi+17"' y Liy1

f0r1<l<zcmd/<a”15’ <n</<cﬁl+1 (respl—zand/i 5 <n§[ m_1)

Ni41:"Ng

B _ B B
(Rm)nl ! (KW‘*‘”—H#)

Fl(“) = _(mxl J x, jng
B} — By n B B— by—
b ; g)bzo (’fﬁ)blh ! (’fnj..’.tng +n—"€nj.l..,llg) ("ﬂinjl...,llg) =1

Oghgl 1

(kP g TP )
J
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(h—2 1) (e —
mod ((x§0)7 I 7 )0§l§i7 1,2(3?1’ ce 7$7;+1Z+1 ! )a

f07’1<l<zcmdmnﬁl+1 <n < mresp. | =i and [—2—] < n < m), or

ng = = Nit1 Mg

1+1<l<g-—1 andogngm

n n 0 n 0 n
T T R )

fori=j5—-1=g andmZmngB_g,

Ignk = ($§)0)7 U 7$(()HEO_1),

oD ) B 1<l <y,
()

where for 1 <1< g and kB < n < m, the above formula for F™ remains valid,

Fg(nngﬁ_g) = (xéﬁﬁ_g) g Cgm(()mﬁo) 9o . xg;ﬁlg 1)’ala— 1))
3—1
mod ()", & ))ocis,
and for kngBy <n < m,
) = (e
o S
Z bgox(()nﬁo Yook .xgﬁﬁh) gh mgﬁﬁh+n knpBR) _x;n_ﬁlg,l) 9(g—1 N
0<h<g 1
Hy(--- xéﬁﬁwn—mh/fh) )
mod ((acl(o)7 . 7xl(ﬂﬁz—1)))0§l§g

Proof : First assume that xn; - --n;_ 1B <m < KMl - Mj— 1@“ for 1 <i < j < g (resp.
1 <i< j—1=g). By proposition 4.5, we have that Ck _;Ll[ m }(C'Z_l[ m ])

nj41ng niyqng

where T, [ :C2, — (C[2 m__ is the canonical map. Now C? = Spec Clzg, v1](resp.
z+1 ‘ng nit1 g
Ci+1 =V (x;+1)) is realized as the complete intersection in C9™! = Spec Clzg, - - - , 4] de-

fined by the ideal (f1,- -, fg—1)(resp. (f1, -, fo—1,Ti+1)). So since m > kny S, I% is the
radical of the ideal 0% =

(.1'(()0), B ’w(()knl—l)7 ng)’ o ,.%'gkml_l), F1(0)7 o 7F1(m)7
=D
0 m 0 ng n
,Fgf—)lv ' ’Fggfl)’xz(—&-)l’ Tt )
We first observe that F( ") — gn) mod (9380 o ,xgml*l), mgo), . ,:ngmrl)) for 0 <n <
kn1B:1. Now since n;?ng > MT%] > knimq, we have
kanlml) = —(xg_kml) 1 _ Clxgknl)ml)
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mod (f(()o)»"' 7xékn171)’x§0)7.” ’xgkmlq)’xgo)’m ’x;[nz...ng]))

and ni—1 mq—1
Fl(n) — _(nlxgkml) 1 xgkmﬁrnfknlml) . mlclI(()knl) 1 xékn1+nfkn1m1))

+H, (CC(()O), o 7$ékn1+nfkn1m171)’ 1:50)’ o 7:Cgkmﬂrnfknlml71))

mod (x(()0)7'.. ’xgk:nl—l),xgo)?”' 7x§km1—1)’xg))"” 7:1:;[7”24..@}))
for knif; < n < [n2mng] Finally, for I = 1 and [mmng] <n<m,or2<l<g-—1and
0 <n <m, we have

‘Fl(n) = 'rl(i)l + HZ($80)» T 7$§)n)7 T axl(O)’ T 7xl(n))

As a consequence for i = 1, the subscheme of C97! ﬁD(x(()km)) defined by I’*%% is isomorphic

to the product of C* by an affine space , so it is reduced and irreducible and I*% = 19% is a

prime ideal in (C[:céo), e ,x(()m), e ,xéo), e ,wgm)]x(knl), generated by a regular sequence,
0

i.e the proposition holds for ¢ = 1. B
Assume that it holds for i < j —1 < g(resp. i < j —2 =g —1). For kn41---nj—18;,1 <
(0) (m) (0) (m)

m < KNipo -+ nj—1Bi40, theideal in Clzy , -+ g™, -,z 2y ]Z‘éknl) generated by
(=)
gi i Br—1 is contained in Ifnk. By the inductive hypothesis, xl(o), ey I €
i+l N —10i+1—
Igfl \n; 1B 1f01"l:1,~~,z'+1. So I% is the radical of
i1 10417
(2o 1)
0 n n
I:r?k:(x(())v"'7xoj ! 3
0 50 o) (m) :
x; 7"'7xl] 7}7} 7'”7-F1l 71§l§1+]—7
0 ([ﬁ])
551(4-)27 L Tye
.FZ(O),"‘ ;F}(m),l+2§l§g—1)
Now for 0 < n < %,We have
J g
(1) (1)
Fl(n) Exl(:l-)l mod (55(()0)"" SR )v"‘ ot
1<I<i+1).
i _ — . lini+13i

Here since 8,1 > mf, for 1 < 1 <4 a{ld nw’;.ny > [nz+;’lng] > njmn;l’ we can
delete Fl(n), 1 <1 <i4+1,0<n< % from the above generators of I;’;?k without

changing the generated ideal. The identities relative to the Fl(n) for 1 <l <i+1, :ni”ilg <
J
n<mori+2<1[l<g—1and 0 <n < m follow immediately from (¢). So here
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again the subscheme of C9t! N D(x(()knl)) defined by I3 is isomorphic to the product
of C* by an affine space , so it is reduced and irreducible and I;;?k = IPnk is a prime

ideal in C[:c((]o), e ,xém), e ,Cﬂgo), e ,xgm)]z(knl), generated by a regular sequence, i.e the
0
proposition holds for 7 + 1.

The case i = j — 1 = g and m > kngyf, follows by similar arguments. O
As an immediate consequence we get

Proposition 4.7. Let C' be a plane branch with g Puiseux exponents. Let k # 0,7 and
k as above. For m > kniBi, let Ty pnig, © Cm — Cinyp, be the canonical projection

and let CF, = 7! (D(x(()knl)) N V(x((]o),--- ,:L“éknrl)))red. Then for 1 < i < j<gyg

m,kn1 81 i -
(resp.1 <i<j—1=g) and kn;---nj_15; <m < kN1 nj—1041, C* is irreducible of
codimension

— m KB )

(Bo+ B+ (Brex — b)) + ([ | - +1
=1

K
in C2,. B B
For j < g and m > kfB; (resp.j = g+ 1 and m > kngyf,),
ck =10

(resp. ijz is of codimension

g—1

w(Bo + B1 + Z(BHI —mBy)) +m — kngBy + 1)

=1

in C2,.
For k' > k and m > k'ny 31, we now compare codim(C¥ C2) and codim(C’,k;;,(Czn).
Corollary 4.8. For k' >k >1 and m > k'ni 31, if C¥ and C¥ are nonempty, we have
codim(C¥, C2)) < codim(C* ,C2).

Proof : Let 4% : [kn11, 00— [k(n1 + my), co[ be the function given by

i—1 _
R ot i 3 3 m  kniB;
v (m) = o (Bot B+ > B =B + (= - elﬁ )1
=1 )
f0r1§i<gand%§m<%and
k « kngp3,
7 (m) = a(ﬁo + B+ Z(ﬂlﬂ =) + (m— %) +1
1=1
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fori:gandmzﬂ.
ng-ng_1

In view of proposition , we have that codim(C¥ C2) = [y*(m)] for k = 0 mod
ng---nj—1 and k # 0 mod ny - - - n; with 2 < j < g and any integer m € [knq 31, mkii;_l[ or
for k = 0 mod ny - - - ngand any integer m > kny ;. Similarly we define AR [k By, oo[—
[K'(n1 + m1), oo by changing k to &’

Let T¥(resp.T¥) be the graph of 4% (resp v¥') in R2.Now let 7 : R2 — R? be defined by
7(a,b) = (a,b—1) and let \¥'/% : R2 — R? be defined by A\¥'/*(a,b) = %(a, b). We note
that 7(I%") = X¥'/k(7(I'%)); we also note that the endpoints of 7(I'*) and 7(I'*') lie on the
linle through 0 with slope 5107;;%11 = %”ﬁ;ﬁﬁl < % Since % > 1, the image of 7(I'*) by
MN¥'/F lie on the subset of R? whith boundary the union of 7(I'*), of the segment joining
its endpoint (kn1f1, £(50 + (1)) to (kn1P1,0) and of [kny1,00[ x 0. This implies that

¥ (m) < ~¥(m) for m > k'nyB1 jhence [y (m)] < [y#(m)] and the claim.

O]

Theorem 4.9. Let C be a plane branch with g > 2 Puiseux exponents. Let m € N.
For 1 < m < mB1 + e1,C9 = Cont>®(xq)m, is irreducible. For qniff +e1 < m <
(g + 1)n1 By + e, with ¢ > 1 in N, the irreducible components of C°, are :

Cinrs = ContrPo (20)m

for 1 <k and kfBof1 +e1 < m,

. LZEN,
Cﬂrmv = Cont™i™" ($0)m
forj=2,---,9,1 <k and k #0 mod n; and such that/inl--'nj_151+el <m< ﬁﬁj,

B,, = C’ont>”1q(x0)m.
Proof : We first observe that for any integer k£ # 0 and any m > kny 51,
(C2)ed = Ur<n<iCM U Cont™ ™ (20) m

where C! := Cont"(xg),, as above. Indeed , for k = 1, we have that (C9)..q C
V(x(()o), e ,x(()m_l)) by proposition Arguing by induction on k, we may assume that
the claim holds for m > (k — 1)n;8;.Now by corollary we know that for m > knq 51,
Cont>kF=Dm1(0),, V(a:(()o), e ,J:ékm_l)), hence the claim for m > knq ;.

We thus get that for gn151 +e1 <m < (¢ + 1)n1 51 + ex,
(Co)red = Ulgkzqufn U Cont” ™ (20) .

By proposition for 1 <k <gq Ck is either irreducible or empty. We first note
that if CF # 0, then Ck ¢ Cont”(x¢),,. Similarly, if 1 < k& < k¥ < ¢ and if
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C’ﬁI and C’ﬁ; are nonempty, then CT’% ¢ CT’%' On the other hand by corollary we
have that codim(CK  C2)) < codim(C% C2). So C¥ ¢ Ck. Finally we will show that
Cont>™ (20), ¢ Ck if CE # () for 1 < k < q. To do so, it is enough to check that
codim(CE  C2)) > codim(Cont”> ™ (z9)m, C2,). For m € [gn1p1 + e1, (¢ + 1)n1B1], we have

m — qni 5y m — qnif1
F L

by corollary 4.2.Let A7 : [qn1 51 + e1[— [g(n1 +my), oo be the function given by A\(m) =
q(ny +my) + %71“61 + 1. For simplicity, set ¢ = m — gn15;.For any integer ¢ such that

§%(m) := codim(Cont” 1 (20)m, C2) = 2+ q(n1 +mq) + |

e1 <i<nif =mnimier, we have 1 + | i ]+ U | < [é] Indeed this is true for ¢ = e;

niei miel
and it follows by induction on ¢ from the fact that for any pair of integers (b, a), we have
[1] = [3] if and only if b+ 1 # 0 mod a and [b'ﬁ'Tl] = [3] + 1 otherwise, since i < nymyey.

So §9(m) < [(m)).

But in the proof of corollary we have checked that if C* # (), we have codim(C¥,,C2,) =
[v*(m)]. We have also checked that for ¢ > k and m > qni3, v*(m) > 44(m). Finally in
view of the definitions of v? and A%, we have v4(m) > \1(m), so [y4(m)] > [A1(m)] > 09(m).
For m = (q + 1)n1B1, we have §%(m) = (¢ + 1)(nq + mq) + 1 by corollary 4.2 For
m € [(qg+1)n151, (qg41)n1B1+e1[, we have Cont™ 1 (z0),, = CLTUCONt™ @™ (14),, and
Cont> (@™ (34, = V(x(()o), e ’$(()(q+1)n1)’ xgo), e ,ajg(qﬂ)ml)) again by corollary If

in addition we have m < (g+1)0s, then by proposition 4.5 C& = V(x(()o)7 o ’x(()(q+1)m—1)’
x§°), a ,icg(qul)ml_l), xg(q+1)m1)"1 - clx(()(qul)m)ml) N D(x(()(q+1)n1), thus we have

Cont™ 1 (20), = CL and §9(m) = (q + 1)(n1 + m1) + 1. We have (¢ + 1)n1 81 + e, <
(g +1)By if g+ 1 > no, because By —n1f; = 0 mod (e2) . If not , we may have (q+1)8y <
(g+1)n1B1+e1, so for (q+1)Bz < m < (g+1)n1 Bi+e1, we have CL™ = 0, Cont™ 1™ (z0),, =
Cont> (@)™ (z4), and 69(m) = (¢ + 1)(ny +my) + 2.

In both cases, for m € [(¢+1)n151, (g+1)n1 51 +e1[, we have 09(m) < (g+1)(ny+mq)+2.
Since [A?(m)] = g(n1+m1)+nimi+1, we conclude that [A9(m)] > §4(m), so for 1 < k < g,
if CF # 0, we have [y¥(m)] > §9(m). This proves that the irreducible components of C9,
are the CF for 1 < k < ¢ and CF, # 0, and Cont>%1(x),, hence the claim in viewof the

characterization of the nonempty C’,’ﬁ;s’s given in proposition 4.5.

O]

Corollary 4.10. Under the assumption of theorem 4.9, let go + 1 = min{a € N; a(By —
n1By) > e1}. Then 0 < qo < no. For 1 <m < (qo + 1)n1 By + e1, CY, is irreducible and we
have codim(CY,, C2 ) =

m

Bo

m

B
or 0<qg<qo and (g+1)By <m < (g+ 1)n1B1 + e1.

m m _

%]JF[E] for 0<qg<gqo and (¢+1)ni1f1 <m < (qg+1)5,

or (qo+1)n1fr <m < (qo+ 1)n1p1 + e1.

24+ [+ [5] for 0<q<qo and gqnifi+er <m < (q¢+1)n1fp

1+
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Forq>qo+1in N and qgni 81 +e1 <m < (¢+ 1)n1 51 + e1, the number of irreducible
components of CO, is:

g

m m

N(m)=qg—+1— LS I e
(m) =q jEQ([ﬂj] [njﬁj])
and codim(CY,,C2)) =
24 [+ (2] for qniBi+er <m < (q+ 1)nipr.
Bo b1
L+ [+ (2 for (q+Dmpy <m < (¢+ mby +er.
Bo b1

Proof :  We have already observed that ns(B5 — n15;) > e1 because 85 — n18; = 0 mod
(e2),50 1 < qo +1 < my.

For gniB1 +e1 <m < (¢+ 1)n1B1 + e1, with ¢ > 1, we have seen in the proof of theorem
4.9 that the irreducible components of €9, are the Ck for 1 < k < q and C¥, # @ and
Cont®™ (zg),,. We thus have to enumerate the empty C¥ for 1 < k < ¢. By proposition 4.5,
Ck = () ifand only if j := max{l;1 > 2and k = 0mod ny---ny;_1} < gand m > nQ‘“];jilBj.
Now recall that 3;,; > n;8; for 1 <i < g —1 and that 35 — n181 > e2. This implies that
for 3 < j < g, we have Bj — n1-~nj_151 > n2~~nj_1(52 —n1fy) > no cemj_1eg > eq.

So if 7 > 3 and k is a positive integer such that m > /{Bj, we have 721;511 > KMo M1,

hence ¢ = [721_,8611] > kng - --nj—1. Therefore for j > 3, there are exactly [Bm] integers k > 1
o j
Such that m Z K/ﬁ] and KNg -+ n]*l § q, among them [n% ] are =0 HlOd (nj)
iPj

Similarly if (g+1)n181 +e1 < (¢+1)p5, or equivalently ¢ > qg, and if x is a positive integer

such that m > kf5, we have K < Bﬂ < q + 1. Therefore if ¢ > qg + 1, we conclude that
2

there are Z?ZQ([%] - [%]) empty CF’s with 1 < k < q. Moreover we have shown in the
j iB;
proof of theorem 4.9 that codim(CY,, C2,) = codim(Cont>1 (xq),, C2) = 2 + (5] + (5]

if m < (¢+1)nifr(resp.l + (g +1)(n1+m1) =1+ [g] + 5] for m = (¢ + 1)n1B1).Also
note that goBy < goni1B1 +e1 < (go+1)n1B1+e1 < (go+1)By < n2By < Bs---. Therefore

m

for gon1f1 +e1 < m < (qo + 1)n151 + e1, we have [BLZ] = qo, [ﬁ@] = [fs] =-.-=0,s0
N(m) =1, ie. CY is irreducible.

Finally, assume that gnif8; +e1 < m < (¢ + 1)n151 + e; with ¢ > 1 and ¢ < ¢g. Since
qo < ng, for 1 < k < ¢ we have k # 0 mod(nz) and m > gqniB1 + €1 > By, hence
for 1 < k < q,C¥ = 0 and C% = Cont?™ (), is irreducible.(The case ¢ = qo was
already known).So for n18; < m < (go + 1)n181 + e1, CY, is irreducible.( Recall that for
1 <m < gon1P1 + e1, the irreducibility of C¥, is already known).It only remains to check
the codimensions of C’?n for 1 < m < goni161 + e1. Here again we have seen in the proof of
Theorem 4.9 that codim(CY,,C2,) = codim(Cont”" (xg),,, C2,) =: §9(m) for any ¢ > 1
and gni1 81 +e1 <m < (q+ 1)n1 81 + e1 and that §4(m) =

%] + [ﬁ] for any ¢>1 and qnifr+e1 <m < (q¢g+ 1)ni1p

2+ B
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(g+1)(n1+my)+1= [g;] [ZL] for ¢<qo and (q+1)ni1B <m < (q+1)5,
(q+1)(n1+m1)+2—2+[50] [gi] for ¢ <qo and (q+1)By <m < (¢+1)n1f1+e1.

This completes the proof.
D
In [I], Igusa has shown that the log-canonical threshold of the pair ((C2,0), (C,0)) is + 5

Here (C2,0)(resp.(C,0))) is the formal neighberhood of C? (resp. C) at 0. Corollary 4.10
allows to recover corollary B of [ELM] in this special case.

Corollary 4.11. If the plane curve C' has a branch at 0, with multiplicity By, and first
Puiseux exponent (1, then
codim(CQ,,C2,) 1 1

m+1 " Bo 51

Proof : For any m,p # 0 in N, we have m—p[%] <p-—1and m— p[m] =p-—1if
and only if m + 1 = 0 mod (p); so for any m € N,2 + [2] + [5] = (m+ 1)(ﬁo + ﬁ)
and we have equality if and only if m + 1 = 0 mod (fy) and mod (/31) or equivalently
m+1= 0 mod (nlﬁl) since nlﬁl is the least common multiple of 8y and f£;1.If not we
have 1+ [Zt] +[71] > (m + 1)( ) Now if (¢ + 1)ni151 <m < (¢+ 1)n1 1 + e1 with
q € N,we have q+1 nifr < m—|—1 < (g+1)niBr+er < (@+2)mpPr,som+1#£0
mod (n131). If (¢ + 1)n1B1 < m < (¢+1)By with ¢ € N and ¢ < qo, then (¢ + 1)n1 81 <
m+1<(¢g+1)ni1f1+e1 <(qg+2)n151,s0 m+ 1% 0 mod (n151). So in both cases, we
have 1+ [2] +[5] = (m + 1)(6% + é) The claim follows from corollary 4.10.

O

It also follows immediately from corollary 4.10

Corollary 4.12. Let qo9 € N as in corollary 4.10. There exists n131 linear functions,
Lo,y Lnyg,—1 such that dim(C2) = Li(m) for any m = i mod (n1/31) such that m >
qon1f1 + e1.

The canonical projections 7, 41m : CO 1 Cgl,m > 1, induce infinite inverse

m
systems

< Byt — B — By

 Cimatyet = Cmnt -+ = Clagoprver)ns — Brpoprrer—1

and finite inverse systems

7l —

J
(kB;—1)Kv mrv T C(

Kn1m 1 B1ter)kv Bisny ;1 pr+er—1

for 2 < j < g, and k # 0 mod (n;).

We get a tree T g by representing each irreducible component of CY . m > 1, by a vertex
Vim,1 < 1 < N(m), and by joining the vertices v, m+1 and vy m if Tpm41m induces one
of the above maps between the corresponding irreducible components. We represent the
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tree for the branch defined by f(z,y) = (y> — 23)? — 425y — 2° = 0, whose semigroup is
(4,6,15).
m .

.
-~

| i
38.= 30y, +eg / +
|
|
. |

' '

26 =210 +e

u
|
|
|
|
15 = 4,
14=n16 +e
i
|
i
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This tree only depends on the semigroup I'.
Conversely , we recover B, ,Bg from this tree and max{m, codim(B,,C?,) = 2} =
B — 1. Indeed the number of edges joining two vertices from which an infinite branch
of the tree starts is B9f1. We thus recover 3, and e;. We recover By — nifq,- - ,Bj -
ng-- 'nj_131, e ,Eg —ny- -'ng_lgl, hence By, - ,Eg from the number of edges in the
finite branches.

Corollary 4.13. Let C be a plane branch with g > 1 Puiseux exponents. The tree T
described above and max{m,dim C9 = 2m} determine the sequence B, - - ,Bg and con-
versely.
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