# Jet schemes of complex plane branches and equisingularity 

Hussein MOURTADA

September 30, 2010


#### Abstract

For $m \in \mathbb{N}$, we give formulas for the number $N(m)$ of irreducible components of the m-th Jet Scheme of a complex branch $C$ and for their codimensions, in terms of $m$ and the generators of the semigroup of $C$. This structure of the Jet Schemes determines and is determined by the topological type of $C$.


## 1 Introduction

Let $k$ be an algebraically closed field. The space of arcs $X_{\infty}$ of an algebraic $k$-variety $X$ is a non-noetherian scheme in general. It has been introduced by Nash in [N. Nash has initiated its study by looking at its image by the truncation maps $X_{\infty} \longrightarrow X_{m}$ in the jet schemes of $X$.The $m^{t h}$-jet scheme $X_{m}$ of $X$ is a $k$ - scheme of finite type which parmametizes morphisms Spec $\frac{k[t]}{t^{m+1}} \longrightarrow X$. From now on we assume char $k=0$. In $\mathbb{N}$, Nash has derived from the existence of a resolution of singularities of $X$, that the number of irreducible components of the Zariski closure of the set of the $m$-truncations of arcs on $X$ that send 0 into the singular locus of $X$ is constant for $m$ large enough. Besides a theorem of Kolchin asserts that if $X$ is irreducible, then $X_{\infty}$ is also irreducible. More recently , the jet schemes have attracted attention from various viewpoints. In [Mus],Mustata has characterized the locally complete intersection varieties having irreducible $X_{m}$ for $m \geq 0$.In ELM], a formula comparing the codimensions of $Y_{m}$ in $X_{m}$ with the $\log$ canonical threshold of a pair $(X, Y)$ is given.In this work, we consider a curve $C$ in the complex plane $\mathbb{C}^{2}$ with a singularity at 0 at which it is analytically irreducible (i.e. the formal neighborhood $(C, 0)$ of $C$ at 0 is a branch). We determine the irreducible components of the space $C_{m}^{0}:=\pi_{m}^{-1}(0)$ where $\pi_{m}: C_{m} \longrightarrow C$ is the canonical projection, and we show that their number is not bounded as $m$ grows. More precisely, let $x$ be a transversal parameter in the local ring $O_{\mathbb{C}^{2}, 0}$, i.e. the line $x=0$ is transversal to $C$ at 0 and following [ELM], for $e \in \mathbb{N}$ let

$$
\text { Cont }^{e}(x)_{m}\left(\text { resp.Cont }{ }^{>e}(x)_{m}\right):=\left\{\gamma \in C_{m} \mid \operatorname{ord}_{t} x \circ \gamma=e(\text { resp. }>e)\right\} .
$$

Let $\Gamma(C)=<\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}>$ be the semigroup of the branch $(C, 0)$ and let $e_{i}=$ $\operatorname{gcd}\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{i}\right), 0 \leq i \leq g$. Recall that $\Gamma(C)$ and the topological type of $C$ near 0 are equivalent data. We show in theorem 4.9 that the irreducible components of $C_{m}^{0}$ are

$$
C_{m \kappa I}=\overline{\operatorname{Cont}^{\kappa \bar{\beta}_{0}}(x)_{m}}
$$

for $1 \leq \kappa$ and $\kappa \bar{\beta}_{0} \bar{\beta}_{1}+e_{1} \leq m$,

$$
C_{m \kappa v}^{j}=\overline{\operatorname{Cont}^{\frac{\kappa \bar{\beta}_{0}}{e_{j-1}}}(x)_{m}}
$$

for $2 \leq j \leq g, 1 \leq \kappa, \kappa \not \equiv 0 \bmod \frac{e_{j-1}}{e_{j}}$ and $\kappa \frac{\bar{\beta}_{\beta} \bar{\beta}_{1}}{e_{j-1}}+e_{1} \leq m<\kappa \bar{\beta}_{j}$,

$$
B_{m}=\text { Cont }^{>n_{1} q}(x)_{m}
$$

if $q n_{1} \bar{\beta}_{1}+e_{1} \leq m<(q+1) n_{1} \bar{\beta}_{1}+e_{1}$.
These irreducible components give rise to infinite and finite inverse systems represented by a tree. We recover $<\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}>$ from the tree and the multiplicity $\bar{\beta}_{0}$ in corollary 4.13 , and we give formulas for the number of irreducible components of $C_{m}^{0}$ and their codimensions in terms of $m$ and $\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}\right)$ in proposition 4.7 and corollary 4.10. We recover the fact coming from ELM and [I] that

$$
\min _{m} \frac{\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)}{m+1}=\frac{1}{\bar{\beta}_{0}}+\frac{1}{\bar{\beta}_{1}}
$$

The structure of the paper is as follows: The basics about Jet schemes and the results that we will need are presented in section 2 . In section 3 we present the definitions and the reults we will need about branches. The last section is devoted to the proof of the main result and corollaries.

## AKNOWLEDGEMENTS

I would like to express all my gratitude to Monique Lejeune-Jalabert, without whom this work would not exist.

## 2 Jet schemes

Let $k$ be an algebraically closed field of arbitrary characteristic. Let $X$ be a $k$-scheme of finite type over $k$ and let $m \in \mathbb{N}$. The functor $F_{m}: k-S c h e m e s \longrightarrow S e t s$ which to an affine scheme defined by a $k$-algebra $A$ associates

$$
F_{m}(\operatorname{Spec}(A))=\operatorname{Hom}_{k}\left(\operatorname{Spec} A[t] /\left(t^{m+1}\right), X\right)
$$

is representable by a $k$-scheme $X_{m}[\mathrm{~V}] . X_{m}$ is the m-th jet scheme of $X$, and $F_{m}$ is isomorphic to its functor of points. In particular the closed points of $X_{m}$ are in bijection with the $k[t] /\left(t^{m+1}\right)$ points of $X$.
For $m, p \in \mathbb{N}, m>p$, the truncation homomorphism $A[t] /\left(t^{m+1}\right) \longrightarrow A[t] /\left(t^{p+1}\right)$ induces a canonical projection $\pi_{m, p}: X_{m} \longrightarrow X_{p}$. These morphisms clearly verify $\pi_{m, p} \circ \pi_{q, m}=\pi_{q, p}$ for $p<m<q$.
Note that $X_{0}=X$. We denote the canonical projection $\pi_{m, 0}: X_{m} \longrightarrow X_{0}$ by $\pi_{m}$.

Example 1. Let $X=\operatorname{Spec} \frac{k\left[x_{0}, \cdots, x_{n}\right]}{\left(f_{1}, \cdots, f_{r}\right)}$ be an affine $k$-scheme. For a $k$-algebra $A$, to give a A-point of $X_{m}$ is equivalent to give a $k$-algebra homomorphism

$$
\varphi: \frac{k\left[x_{0}, \cdots, x_{n}\right]}{(f 1, \cdots, f r)} \longrightarrow A[t] /\left(t^{m+1}\right)
$$

The map $\varphi$ is completely determined by the image of $x_{i}, i=0, \cdots, n$

$$
x_{i} \longmapsto \varphi\left(x_{i}\right)=x_{i}^{(0)}+x_{i}^{(1)} t+\cdots+x_{i}^{(m)} t^{m}
$$

such that $f_{l}\left(\phi\left(x_{0}\right), \cdots, \phi\left(x_{n}\right)\right) \in\left(t^{m+1}\right), l=1, \cdots, r$.
If we write

$$
f_{l}\left(\phi\left(x_{0}\right), \cdots, \phi\left(x_{n}\right)\right)=\sum_{j=0}^{m} F_{l}^{(j)}\left(\underline{x}^{(0)}, \cdots, \underline{x}^{(j)}\right) t^{j} \bmod \quad\left(t^{m+1}\right)
$$

where $\underline{x}^{(j)}=\left(x_{0}^{(j)}, \cdots, x_{n}^{(j)}\right)$, then

$$
X_{m}=\operatorname{Spec} \frac{k\left[\underline{x}^{(0)}, \cdots, \underline{x}^{(m)}\right]}{\left(F_{l}^{(j)}\right)_{l=1, \cdots, r}^{j=0, \cdots, m}}
$$

Example 2. From the above example, we see that the $m$-th jet scheme of the affine space $\mathbb{A}_{k}^{n}$ is isomorphic to $\mathbb{A}_{k}^{(m+1) n}$ and that the projection $\pi_{m, m-1}:\left(\mathbb{A}_{k}^{n}\right)_{m} \longrightarrow\left(\mathbb{A}_{k}^{n}\right)_{m-1}$ is the map that forgets the last $n$ coordinates.

Lemma 2.1. If $f: X \longrightarrow Y$ is an étale morphism, then for every $m \in \mathbb{N}$, the following diagram

is cartesian.
Proof: For a $k$-algebra $A$, to give an $A$-point of $Y_{m} \times_{Y} X$ is equivalent to give a commutative diagram

which is equivalent to give a unique morphism $\operatorname{Spec}\left(A[t] /\left(t^{(m+1)}\right)\right) \longrightarrow X$ making the two triangles commutative,since $f$ is formally étale.

Corollary 2.2. If $X$ is a nonsingular $k$-variety of dimension $n$, then all projections $\pi_{m, m-1}: X_{m} \longrightarrow X_{m-1}$ are locally trivial fibrations with fiber $\mathbb{A}_{k}^{n}$. Then in particular $X_{m}$ is a nonsingular variety of dimension $(m+1) n$.

Proof : It is sufficient to prove that for every $x \in X$ there exists an open neighborhood $U$ of $x$ such that $U_{m} \simeq U \times_{k} \mathbb{A}_{k}^{m n}$. But since $X$ is nonsingular, there exists an open neighborhood $U$ of $x$ and an étale morphism $g: U \longrightarrow \mathbb{A}_{k}^{n}$. Then we deduce the claim from the above lemma .

Let $\operatorname{char}(k)=0, S=k\left[x_{0}, \cdots ., x_{n}\right]$ and $S_{m}=k\left[\underline{x}^{(0)}, \cdots ., \underline{x}^{(m)}\right]$. Let $D$ be the $k$-derivation on $S_{m}$ defined by $D\left(x_{i}^{(j)}\right)=(j+1) x_{i}^{(j+1)}$ if $0 \leq j<m$, and $D\left(x_{i}^{(m)}\right)=0$. For $f \in S$ let $f^{(1)}:=D(f)$ and we recursively define $f^{(m)}=D\left(f^{(m-1)}\right)$.

Proposition 2.3. Let $X=\operatorname{Spec}\left(S /\left(f_{1}, \cdots, f_{r}\right)\right)=\operatorname{Spec}(R)$ and $R_{m}=\Gamma\left(X_{m}\right)$. Then

$$
R_{m}=\operatorname{Spec}\left(\frac{k\left[\underline{x}^{(0)}, \cdots, \underline{x}^{(m)}\right]}{\left(f_{i}^{(j)}\right)_{i=1, \cdots, r}^{j=0, \cdots, m}} .\right.
$$

Proof : For a $k$-algebra $A$, to give an $A$-point of $X_{m}$ is equivalent to give an homomorphism

$$
\phi: k\left[x_{0}, \cdots,, x_{n}\right] \longrightarrow A[t] /\left(t^{m+1}\right)
$$

which can be given by

$$
x_{i} \longrightarrow \frac{x_{i}^{(0)}}{0!}+\frac{x_{i}^{(1)}}{1!} t+\cdots+\frac{x_{i}^{(m)}}{m!} t^{m}
$$

Then for a polynomial $f \in S$, we have

$$
\phi(f)=\sum_{j=0}^{m} \frac{f^{(j)}\left(\underline{x}^{(0)}, \cdots, \underline{x}^{(j)}\right)}{j!} t^{j}
$$

To see this, it is sufficient to remark that it is true for $f=x_{i}$, and that both sides of the equality are additive and multiplicative in $f$, and the proposition follows.

Remark 2.4. Note that the proposition shows the linearity of the equations $F_{i}^{j}\left(\underline{x}^{(0)}, \cdots, \underline{x}^{(j)}\right)$ defining $X_{m}$ with respect to the new variables i.e $\underline{x}^{(j)}$, which is the algebraic point of view on the fibration in corollary 2.2.

## 3 Semigroup of complex branches

The main references for this section are $[\mathrm{Z},[\mathrm{Me},, \mathrm{A}, \mid \mathrm{Sp}$, ,GP, $[\mathrm{GT}],[\mathrm{LR}$. Let $f \in \mathbb{C}[[x, y]]$ be an irreducible power series, which is $y$-regular (i.e $f(0, y)=y^{\beta_{0}} u(y)$ where $u$ is invertible in $\mathbb{C}[[y]])$ and such that mult $_{0} f=\beta_{o}$ and let $C$ be the analytically irreducible plane
curve(for short branch) defined by $f$ in $S p e c \mathbb{C}[[x, y]]$. By the Newton-Puiseux theorem, the roots of $f$ are

$$
\begin{equation*}
y=\sum_{i=0}^{\infty} a_{i} w^{i} x^{\frac{i}{\beta_{o}}} \tag{1}
\end{equation*}
$$

where $w$ runs over the $\beta_{0}-t h$-roots of unity in $\mathbb{C}$. This is equivalent to the existence of a parametrization of $C$ of the form

$$
\begin{gathered}
x(t)=t^{\beta_{0}} \\
y(t)=\sum_{i \geq \beta_{0}} a_{i} t^{i}
\end{gathered}
$$

We recursively define $\beta_{i}=\min \left\{i, a_{i} \neq 0, \operatorname{gcd}\left(\beta_{0}, \cdots, \beta_{i-1}\right)\right.$ is not a divisor of $\left.i\right\}$. Let $e_{0}=\beta_{0}$ and $e_{i}=\operatorname{gcd}\left(e_{i-1}, \beta_{i}\right), i \geq 1$. Since the sequence of positive integers

$$
e_{0}>e_{1}>\cdots>e_{i}>\cdots
$$

is strictly decreasing, there exists $g \in \mathbb{N}$, sucht that $e_{g}=1$. The sequence $\left(\beta_{1}, \cdots ., \beta_{g}\right)$ is the sequence of Puiseux exponents of $C$. We set

$$
n_{i}:=\frac{e_{i-1}}{e_{i}}, m_{i}:=\frac{\beta_{i}}{e_{i}}, i=1, \cdots, g
$$

and by convention, we set $\beta_{g+1}=+\infty$ and $n_{g+1}=1$.
On the other hand, for $h \in \mathbb{C}[[x, y]]$, we define the intersection number

$$
(f, h)_{0}=\left(C, C_{h}\right)_{0}:=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}[[x, y]]}{(f, h)}=\operatorname{ord}_{t} h(x(t), y(t))
$$

where $C_{h}$ is the Cartier divisor defined by $h$ and $\left.\{x(t)), y(t)\right\}$ is as above.
The mapping $v_{f}: \frac{\mathbb{C}[[x, y]]}{(f)} \longrightarrow \mathbb{N}, h \longmapsto(f, h)_{0}$ defines a divisorial valuation. We define the semigroup of $C$ to be the semigroup of $v_{f}$ i.e $\Gamma(C)=\Gamma\left(v_{f}\right)=\left\{(f, h)_{0} \in \mathbb{N}, h \not \equiv 0 \bmod (f)\right\}$. The following propositions and theorem from [Z] characterize the structure of $\Gamma(C)$.

Proposition 3.1. There exists a unique sequence of $g+1$ positive integers ( $\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}$ ) such that:
i) $\bar{\beta}_{0}=\beta_{0}$,
ii) $\bar{\beta}_{i}=\min \left\{\Gamma(C) \backslash<\bar{\beta}_{0}, \cdots, \bar{\beta}_{i-1}>\right\}, 1 \leq i \leq g$, iii) $\Gamma(C)=<\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}>$,
where for $i=1, \cdots, g+1,<\bar{\beta}_{0}, \cdots, \bar{\beta}_{i-1}>$ is the semigroup generated by $\bar{\beta}_{0}, \cdots, \bar{\beta}_{i-1}$. By convention, we set $\bar{\beta}_{g+1}=+\infty$.

Proposition 3.2. The sequence $\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}\right)$ verifies:
i) $e_{i}=\operatorname{gcd}\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{i}\right), 0 \leq i \leq g$,
ii) $\bar{\beta}_{0}=\beta_{0}, \bar{\beta}_{1}=\beta_{1}$ and $\bar{\beta}_{i}=\beta_{i}+\sum_{k=1}^{i-1} \frac{e_{k-1}-e_{k}}{e_{i-1}} \beta_{k}, i=2, \cdots, g$.
iii) $n_{i} \bar{\beta}_{i}<\bar{\beta}_{i+1}, 1 \leq i \leq g-1$

Theorem 3.3. The sequence $\left(\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}\right)$ and the sequence $\left(\beta_{0}, \cdots, \beta_{g}\right)$ are equivalent data They determine and are determined by the topological type of $C$.

Then from A] or Sp , we can choose a system of approximate roots (or a minimal generating sequence) $\left\{x_{0}, \cdots, x_{g+1}\right\}$ of the divisorial valuation $v_{f}$. We set $x=x_{0}, y=x_{1}$; for $i=2, \cdots, g+1, x_{i} \in \mathbb{C}[[x, y]]$ is irreducible; for $1 \leq i \leq g$, the analytically irreducible curve $C_{i}=\left\{x_{i}=0\right\}$ has $i-1$ Puiseux exponents and maximal contact with $C$ and $C_{g+1}=C$. This sequence also verifies
i) $v_{f}\left(x_{i}\right)=\bar{\beta}_{i}, 0 \leq i \leq g$,
ii) $\Gamma\left(C_{i}\right)=<\frac{\overline{\beta_{0}}}{e_{i-1}}, \cdots, \frac{\bar{\beta}_{i-1}}{e_{i-1}}>$ and the Puiseux sequence of $C_{i}$ is $\left(\frac{\beta_{1}}{e_{i-1}}, \cdots, \frac{\beta_{i-1}}{e_{i-1}}\right), 2 \leq i \leq$ $g+1$.
iii) for $1 \leq i \leq g$, there exists a unique system of nonnegative integers $b_{i j}, 0 \leq j<i$ such that for $1 \leq j<i, b_{i j}<n_{j}$ and $n_{i} \bar{\beta}_{i}=\Sigma_{0 \leq j<i} b_{i j} \bar{\beta}_{j}$. And for $0 \leq i \leq g$, one can choose $x_{i}$ such that they satisfy identities of the form

$$
x_{i+1}=x_{i}^{n_{i}}-c_{i} x_{0}^{b_{i 0}} \cdots x_{i-1}^{b_{i(i-1)}}-\sum_{\gamma=\left(\gamma_{0}, \cdots, \gamma_{i}\right)} c_{i, \gamma} x_{0}^{\gamma_{0}} \cdots x_{i}^{\gamma_{i}},(\star)
$$

with, $0 \leq \gamma_{j}<n_{j}$, for $1 \leq j<i$, and $\Sigma_{j} \gamma_{j} \bar{\beta}_{j}>n_{i} \bar{\beta}_{i}$ and with $c_{i, \gamma}, c_{i} \in \mathbb{C}$ and $c_{i} \neq 0$. These last equations $(\star)$ let us realize $C$ as a complete intersection in $\mathbb{C}^{g+1}=S \operatorname{pec} \mathbb{C}\left[\left[x_{0}, \cdots, x_{g}\right]\right]$ defined by the equations

$$
f_{i}=x_{i+1}-\left(x_{i}^{n_{i}}-c_{i} x_{0}^{b_{i}} \cdots x_{i-1}^{b_{i(i-1)}}-\sum_{\gamma=\left(\gamma_{0}, \cdots, \gamma_{i}\right)} c_{i, \gamma} x_{0}^{\gamma_{0}} \cdots x_{i}^{\gamma_{i}}\right)
$$

for $1 \leq i \leq g$, with $x_{g+1}=0$ by convention.
Let $h \in \mathbb{C}[[x, y]]$ be a $y$-regular irreducible power series with multiplicity $p=\operatorname{ord}_{y} h(0, y)$. Let $y\left(x^{\frac{1}{\beta_{0}}}\right)$ and $z\left(x^{\frac{1}{p}}\right)$ be respectively roots of $f$ and $g$ as in (1). We call contact order of $f$ and $g$ in their Puiseux series the following rational number

$$
\begin{gathered}
o_{f}(h):=\max \left\{\operatorname{ord}_{x}\left(y\left(w x^{\frac{1}{\beta_{0}}}\right)-z\left(\lambda x^{\frac{1}{p}}\right)\right) ; w^{\beta_{0}}=1, \lambda^{p}=1\right\}= \\
\max \left\{\operatorname{ord}_{x}\left(y\left(w x^{\frac{1}{\beta_{0}}}\right)-z\left(x^{\frac{1}{p}}\right) ; w^{\beta_{0}}=1\right\}=\right. \\
\max \left\{\operatorname{ord}_{x}\left(y\left(x^{\frac{1}{\beta_{0}}}\right)-z\left(\lambda x^{\frac{1}{p}}\right) ; \lambda^{p}=1\right\}=o_{h}(f) .\right.
\end{gathered}
$$

The following formula is from [Me, see also GP .
Proposition 3.4. Assume that $f$ and $h$ are as above; let $\left(\beta_{1}, \cdots, \beta_{g}\right)$ the sequence of Puiseux exponents of $f$ and let $i \leq g+1$ be the smallest strictly positive integer such that $o_{f}(h) \leq \frac{\beta_{i}}{\beta_{0}}$. Then

$$
\frac{(f, h)_{0}}{p}=\sum_{k=1}^{i-1} \frac{e_{k-1}-e_{k}}{\beta_{0}} \beta_{k}+e_{i-1} o_{f}(h)
$$

Corollary 3.5. $G \mathcal{G P}$ Let $i>0$ be an integer.Then $o_{f}(h) \leq \frac{\beta_{i}}{\beta_{0}}$ iff $\frac{(f, h)_{0}}{p} \leq e_{i-1} \frac{\bar{\beta}_{i}}{\beta_{0}}$. Moreover $o_{f}(h)=\frac{\beta_{i}}{\beta_{0}}$ iff $\frac{(f, h)_{0}}{p}=e_{i-1} \frac{\bar{\beta}_{i}}{\beta_{0}}$. In particular $o_{f}\left(x_{i}\right)=\frac{\beta_{i}}{\beta_{0}}, 1 \leq i \leq g$.

## 4 Jet schemes of complex branches

We keep the notations of sections 2 and 3 . We consider a curve $C \subset \mathbb{C}^{2}$ with a branch of multiplicity $\beta_{0}>1$ at 0 , defined by $f$. Note that in suitable coordinates we can write

$$
f\left(x_{0}, x_{1}\right)=\left(x_{1}^{n_{1}}-c x_{0}^{m_{1}}\right)^{e_{1}}+\sum_{a \beta_{0}+b \beta_{1}>\beta_{0} \beta_{1}} c_{a b} x_{0}^{a} x_{1}^{b} ; c \in \mathbb{C}^{\star} \text { and } c_{a b} \in \mathbb{C} .
$$

We look for the irreducible components of $C_{m}^{0}:=\left(\pi_{m}^{-1}(0)\right)$ for every $m \in \mathbb{N}$, where $\pi_{m}$ : $C_{m} \rightarrow C$ is the canonical projection. Let $J_{m}^{0}$ be the radical of the ideal defining $\left(\pi_{m}^{-1}(0)\right)$ in $\mathbb{C}_{m}^{2}$.
In the sequel, we will denote the integral part of a rational number $r$ by $[r]$.
Proposition 4.1. For $0<m<n_{1} \bar{\beta}_{1}$, we have that

$$
\left(C_{m}^{0}\right)_{\text {red }}=\left(\pi_{m}^{-1}(0)\right)_{\text {red }}=\operatorname{Spec} \frac{\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{m}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]}{\left(x_{0}^{(0)}, \cdots, x_{0}^{\left.\left[\frac{m_{1}}{\beta_{1}}\right]\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(\left[\frac{m}{\beta_{0}}\right]\right)}\right)},
$$

and
$\left(C_{n_{1} \beta_{1}}^{0}\right)_{\text {red }}=\left(\pi_{n_{1} \beta_{1}}^{-1}(0)\right)_{\text {red }}=\operatorname{Spec} \frac{\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{\left(n_{1} \beta_{1}\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(n_{1} \beta_{1}\right)}\right]}{\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(m_{1}-1\right)}, x_{1}^{\left(m_{1}\right)^{n_{1}}}-c x_{0}^{\left.\left(n_{1}\right)^{m_{1}}\right)}\right.}$.
Proof: We write $f=\Sigma_{(a, b)} c_{a b} f_{a b}$ where $(a, b) \in \mathbb{N}^{2}, f_{a b}=x_{0}^{a} x_{1}^{b}, c_{a b} \in \mathbb{C}$ and $a \beta_{0}+b \beta_{1} \geq$ $\beta_{0} \beta_{1}$ (the segment $\left[\left(0, \beta_{0}\right)\left(\beta_{1}, 0\right)\right]$ is the Newton Polygon of $\left.f\right)$. Let $\operatorname{supp}(f)=\{(a, b) \in$ $\left.\mathbb{N}^{2} ; c_{a b} \neq 0\right\}$.
For $0<m<n_{1} \beta_{1}$, the proof is by induction on $m$. For $m=1$, we have that

$$
F^{(1)}=\Sigma_{(a, b) \in \operatorname{supp}(f)} c_{a b} F_{a b}^{(1)}
$$

where $\left(F^{(0)}, \cdots, F^{(i)}\right)\left(\right.$ resp. $\left.\left(F_{a b}^{(0)}, \cdots, F_{a b}^{(i)}\right)\right)$ is the ideal defining the $i$-th jet scheme $C_{i}$ of $C$ (resp. $C_{i}^{a b}$ the $i$-th jet scheme of $C^{a b}=\left\{f_{a b}=0\right\}$ ) in $\mathbb{C}_{i}^{2}$.Then we have

$$
F_{a b}^{(1)}=\sum_{\sum i_{k}=1} x_{0}^{\left(i_{1}\right)} \cdots x_{0}^{\left(i_{a}\right)} x_{1}^{\left(i_{a+1}\right)} \cdots x_{1}^{\left(i_{a+b}\right)}
$$

where $\beta_{1}(a+b) \geq a \beta_{0}+b \beta_{1} \geq \beta_{0} \beta_{1}$ so $a+b \geq \beta_{0}>1$. Then for every $(a, b) \in \operatorname{supp}(f)$ and every $\left(i_{1}, \cdots, i_{a}, \cdots, i_{a+b}\right) \in \mathbb{N}^{a+b}$ such that $\sum_{k=1}^{a+b} i_{k}=1$ there exists $1 \leq k \leq a+b$ such that $i_{k}=0$, this means that $F_{a b}^{(1)} \in\left(x_{0}^{(0)}, x_{1}^{(0)}\right)$ and since we are looking over the origin, we have that $\left(x_{0}^{(0)}, x_{1}^{(0)}\right) \subseteq J_{1}^{0}$ therefore $\left(\pi_{1}^{-1}(0)\right)_{\text {red }}=S p e c \frac{\mathbb{C}\left[x_{0}^{(0)}, x_{0}^{(1)}, x_{1}^{(0)}, x_{1}^{(1)}\right]}{\left(x_{0}^{(0)}, x_{1}^{(0)}\right)}$ (In fact this is nothing but the Zariski tangent space of of $C$ at 0 ).
Suppose that the lemma holds until $m-1$ i.e.

$$
\left(\pi_{m-1}^{-1}(0)\right)_{\text {red }}=\operatorname{Spec} \frac{\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m-1)}, x_{1}^{(0)}, \cdots, x_{1}^{(m-1)}\right]}{\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\left[\frac{m-1}{\beta_{1}}\right]\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left.\left[\frac{m-1}{\beta_{0}}\right]\right)}\right)} .
$$

$\underline{\text { First case: }}$ If $\left[\frac{m-1}{\beta_{1}}\right]=\left[\frac{m}{\beta_{1}}\right]$ and $\left[\frac{m-1}{\beta_{0}}\right]=\left[\frac{m}{\beta_{0}}\right]$. We have

$$
F^{(m)}=\sum_{(a, b) \in \operatorname{supp}(f)} c_{a b} \sum_{\sum i_{k}=m} x_{0}^{\left(i_{1}\right)} \cdots x_{0}^{\left(i_{a}\right)} x_{1}^{\left(i_{a+1}\right)} \cdots x_{1}^{\left(i_{a+b}\right)}
$$

Let $(a, b) \in \operatorname{supp}(f)$; if for every $k=1, \cdots, a$, we had $i_{k} \geq\left[\frac{m}{\beta_{1}}\right]+1$, and for every $k=a+1, \cdots, a+b$, we had $i_{k} \geq\left[\frac{m}{\beta_{0}}\right]+1$, then

$$
m \geq a\left(\left[\frac{m}{\beta_{1}}\right]+1\right)+b\left(\left[\frac{m}{\beta_{0}}\right]+1\right)>\frac{m}{\beta_{1}} a+\frac{m}{\beta_{0}} b=m \frac{a \beta_{0}+b \beta_{1}}{\beta_{0} \beta_{1}} \geq m
$$

The contradiction means that there exists $1 \leq k \leq a$ such that $i_{k} \leq\left[\frac{m}{\beta_{1}}\right]$ or there exists $a+1 \leq k \leq a+b$ such that $i_{k} \leq\left[\frac{m}{\beta_{0}}\right]$. So $F^{(m)}$ lies in the ideal generated by $J_{m-1}^{0}$ in $\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]$ and $J_{m}^{0}=J_{m-1}^{0} \mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]$.
Second case:If $\left[\frac{m-1}{\beta_{1}}\right]=\left[\frac{m}{\beta_{1}}\right]$ and $\left[\frac{m-1}{\beta_{0}}\right]+1=\left[\frac{m}{\beta_{0}}\right]$ (i.e. $\beta_{0}$ divides $m$ ). We have that

$$
F^{(m)}=F_{0 \beta_{0}}^{(m)}+\sum_{(a, b) \in \operatorname{supp}(f) ;(a, b) \neq\left(0, \beta_{0}\right)} F_{a b}^{(m)}, \quad(\star \star)
$$

where

$$
F_{0 \beta_{0}}^{(m)}=\sum_{\sum i_{k}=m} x_{1}^{\left(i_{1}\right)} \cdots x_{1}^{\left(i_{\beta_{0}}\right)}=x_{1}^{\left(\frac{m}{\beta_{0}}\right)^{\beta_{0}}}+\sum_{\sum i_{k}=m ;\left(i_{1}, \cdots, i_{\beta_{0}}\right) \neq\left(\frac{m}{\left.\beta_{0}, \cdots, \frac{m}{\beta_{0}}\right)}\right.} x_{1}^{\left(i_{1}\right)} \cdots x_{1}^{\left(i_{\beta_{0}}\right)}
$$

but $\sum i_{k}=m$ and $\left(i_{1}, \cdots, i_{\beta_{0}}\right) \neq\left(\frac{m}{\beta_{0}}, \cdots, \frac{m}{\beta_{0}}\right)$ implies that there exists $1 \leq k \leq \beta_{0}$ such that $i_{k}<\frac{m}{\beta_{0}}$, so

$$
\sum_{\sum i_{k}=m ;\left(i_{1}, \cdots, i_{\beta_{0}}\right) \neq\left(\frac{m}{\left.\beta_{0}, \cdots, \frac{m}{\beta_{0}}\right)}\right.} x_{1}^{\left(i_{1}\right)} \cdots x_{1}^{\left(i_{\beta_{0}}\right)} \in J_{m-1}^{0} \cdot \mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]
$$

For the same reason as above, we have that

$$
\sum_{(a, b) \in \operatorname{supp}(f) ;(a, b) \neq\left(0, \beta_{0}\right)} F_{a b}^{(m)} \in J_{m-1}^{0} \cdot \mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]
$$

From $(\star \star)$ we deduce that $x_{1}^{\left(\frac{m}{\beta_{0}}\right)} \in J_{m}^{0}$ and
$F^{(m)} \in\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\left[\frac{m}{\beta_{1}}\right]\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(\frac{m}{\beta_{0}}\right)}\right)$. Then $J_{m}^{0}=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\left[\frac{m}{\beta_{1}}\right]\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(\frac{m}{\beta_{0}}\right)}\right)$.
The third case i.e. if $\left[\frac{m-1}{\beta_{1}}\right]+1=\left[\frac{m}{\beta_{1}}\right]$ and $\left[\frac{m-1}{\beta_{0}}\right]=\left[\frac{m}{\beta_{0}}\right]$ is discussed as the second one. Note that these are the only three possible cases since $m<n_{1} \beta_{1}=l c m\left(\beta_{0}, \beta_{1}\right)$ (here lcm stands for the least common multiple).
For $m=n_{1} \beta_{1}$, we have that $F^{(m)}$ is the coefficient of $t^{m}$ in the expansion of

$$
f\left(x_{0}^{(0)}+x_{0}^{(1)} t+\cdots+x_{0}^{(m)} t^{m}, x_{1}^{(0)}+x_{1}^{(1)} t+\cdots+x_{1}^{(m)} t^{m}\right)
$$

But since we are interested in the radical of the ideal defining the $m$-th jet scheme, and we have found that $x_{0}^{(0)}, \cdots, x_{0}^{\left(n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(m_{1}-1\right)} \in J_{m-1}^{0} \subseteq J_{m}^{0}$, we can annihilate $x_{0}^{(0)}, \cdots, x_{0}^{\left(n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(m_{1}-1\right)}$ in the above expansion. Using ( $\left.\diamond\right)$, we see that the coefficient of $t^{m}$ is $\left(x_{1}^{\left(m_{1}\right)^{n_{1}}}-c x_{0}^{\left(n_{1}\right)^{m_{1}}}\right)^{e_{1}}$.
In the sequel if $A$ is a ring, $I \subseteq A$ an ideal and $f \in A$, we denote by $V(I)$ the subvariety of Spec $A$ defined by $I$ and by $D(f)$ the open set $\{f \neq 0\}$ in SpecA i.e. $D(f)=S p e c A_{f}$. The proof of the following corollary is analogous to that of proposition 4.1.

Corollary 4.2. Let $m \in \mathbb{N}$; let $k \geq 1$ be such that $m=k n_{1} \beta_{1}+i ; 1 \leq i \leq n_{1} \beta_{1}$. Then if $i<n_{1} \beta_{1}$, we have that

$$
\begin{gathered}
\text { Cont }^{>k n_{1}}\left(x_{0}\right)_{m}=\left(\pi_{m, k n_{1} \beta_{1}}^{-1}\left(V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}\right)}\right)\right)\right)_{r e d}= \\
\operatorname{Spec} \frac{k\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]}{\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}\right)}, \cdots, x_{0}^{\left(k n_{1}+\left[\frac{i}{\beta_{1}}\right]\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}\right)}, \cdots, x_{1}^{\left(k m_{1}+\left[\frac{i}{\beta_{0}}\right]\right)}\right)}
\end{gathered}
$$

and if $i=n_{1} \beta_{1}$

$$
\left(\pi_{m, k n_{1} \beta_{1}}^{-1}\left(V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}\right)}\right)\right)\right)_{r e d}=
$$

$$
\text { Spec } \frac{k\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, x_{1}^{(0)}, \cdots, x_{1}^{(m)}\right]}{\left(x_{0}^{(0)}, \cdots, x_{0}^{\left((k+1) n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left((k+1) m_{1}-1\right)}, x_{1}^{\left.(k+1) m_{1}\right)^{n_{1}}}-c x_{0}^{\left((k+1) n_{1}\right)^{m_{1}}}\right)} .
$$

We now consider the case of a plane branch with one Puiseux exponent.
Lemma 4.3. Let $C$ be a plane branch with one Puiseux exponent. Let $m, k \in \mathbb{N}$, such that $k \neq 0$ and $m \geq k n_{1} \beta_{1}+1$, and let $\pi_{m, k n_{1} \beta_{1}}: C_{m} \rightarrow C_{k n_{1} \beta_{1}}$ be the canonical projection. Then

$$
C_{m}^{k}:=\pi_{m, k n_{1} \beta_{1}}^{-1}\left(V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right) \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)\right)_{\text {red }}
$$

is irreducible of codimension $k\left(m_{1}+n_{1}\right)+1+\left(m-k n_{1} \beta_{1}\right)$ in $\mathbb{C}_{m}^{2}$.
Proof: First note that since $e_{1}=1$, we have $m_{1}=\frac{\beta_{1}}{e_{1}}=\beta_{1}$. Let $I_{m}^{0 k}$ be the ideal defining $C_{m}^{k}$ in $\mathbb{C}_{m}^{2} \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)$. Since $m \geq k n_{1} \beta_{1}$, by corollary 4.2, $x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)} \in I_{m}^{0 k}$.So $I_{m}^{0 k}$ is the radical of the ideal $I_{m}^{* 0 k}:=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}, F^{(0)}, \cdots, F^{(m)}\right)$. Now it follows from $\diamond$ and proposition 2.5 that

$$
\begin{gathered}
F^{(l)} \in\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}\right) \text { for } 0 \leq l<k n_{1} m_{1}, \\
F^{\left(k n_{1} m_{1}\right)} \equiv x_{1}^{\left(k m_{1}\right)^{n_{1}}}-c x_{0}^{\left(k n_{1}\right)^{m_{1}}} \bmod \left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}\right), \\
F^{\left(k n_{1} m_{1}+l\right)} \equiv n_{1} x_{1}^{\left(k m_{1}\right)^{n_{1}-1}} x_{1}^{\left(k m_{1}+l\right)}-m_{1} c x_{0}^{\left(k n_{1}\right)^{m_{1}-1}} x_{0}^{\left(k n_{1}+l\right)} \\
+H_{l}\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}+l-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}+l-1\right)}\right) \bmod \left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}\right),
\end{gathered}
$$ for $1 \leq l \leq m-k n_{1} m_{1}$.

This implies that $I_{m}^{* 0 k}:=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}, F^{\left(k n_{1} m_{1}\right)}, \cdots, F^{(m)}\right)$. Moreover the subscheme of $\mathbb{C}_{m}^{2} \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)$ defined by $I_{m}^{* 0 k}$ is isomorphic to the product of $\mathbb{C}^{*}\left(\mathbb{C}^{*}\right.$
is isomorphic to the regular locus of $\left.x_{1}^{\left(k m_{1}\right)^{n_{1}}}-c x_{0}^{\left(k n_{1}\right)^{m_{1}}}\right)$ by an affine space and its codimension is $k\left(m_{1}+n_{1}\right)+1+\left(m-k n_{1} m_{1}\right)$; so it is reduced and irreducible, and it is nothing but $C_{m}^{k}$, or equivalently $I_{m}^{0 k}=I_{m}^{* 0 k}$.

Corollary 4.4. Let $C$ be a plane branch with one Puiseux exponent. Let $m \in \mathbb{N}, m \neq 0$. let $q \in \mathbb{N}$ be such that $m=q n_{1} \beta_{1}+i ; 0<i \leq n_{1} \beta_{1}$. Then $C_{m}^{0}=\pi_{m}^{-1}(0)$ has $q+1$ irreducible components which are:

$$
C_{m k I}=\overline{C_{m}^{k}}, 1 \leq k \leq q,
$$

$$
\text { and } \quad B_{m}=\operatorname{Cont}^{>q n_{1}}(x)_{m}=\pi_{m, q n_{1} \beta_{1}}^{-1}\left(V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(q n_{1}\right)}\right)\right) \text {. }
$$

We have that

$$
\operatorname{codim}\left(C_{m k I}, \mathbb{C}_{m}^{2}\right)=k\left(m_{1}+n_{1}\right)+1+\left(m-k n_{1} m_{1}\right)
$$

and

$$
\begin{gathered}
\operatorname{codim}\left(B_{m}, \mathbb{C}_{m}^{2}\right)=q\left(m_{1}+n_{1}\right)+\left[\frac{i}{\beta_{0}}\right]+\left[\frac{i}{\beta_{1}}\right]+2=\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right]+2 \text { if } i<n_{1} \beta_{1} \\
\operatorname{codim}\left(B_{m}, \mathbb{C}_{m}^{2}\right)=(q+1)\left(m_{1}+n_{1}\right)+1 \text { if } i=n_{1} \beta_{1} .
\end{gathered}
$$

Proof: The codimensions and the irreducibility of $B_{m}$ and $C_{m k I}$ follow from corollary 4.2 and lemma 4.3. This shows that if $1 \leq k<k^{\prime} \leq q, \operatorname{codim}\left(C_{m k^{\prime}}, \mathbb{C}_{m}^{2}\right)<\operatorname{codim}\left(C_{m k I}, \mathbb{C}_{m}^{2}\right)$ then $C_{m k^{\prime} I} \nsubseteq C_{m k I}$. On the other hand, since $C_{m k^{\prime} I} \subseteq V\left(x_{0}^{\left(k n_{1}\right)}\right)$ and $C_{m k I} \nsubseteq V\left(x_{0}^{\left(k n_{1}\right)}\right)$, we have that $C_{m k I} \nsubseteq C_{m k^{\prime} I}$. This also shows that $\operatorname{dim} B_{m} \geq \operatorname{dim} C_{m k I}$ for $1 \leq k \leq q$, therefore $B_{m} \nsubseteq C_{m k I}, 1 \leq k \leq q$. But $C_{m k I} \nsubseteq B_{m}$ because $B_{m} \subseteq V\left(x_{0}^{\left(q n_{1}\right)}\right)$ and $C_{m k I} \nsubseteq$ $V\left(x_{0}^{\left(q n_{1}\right)}\right)$ for $1 \leq k \leq q$. We thus have that $C_{m k I} \nsubseteq B^{m}$ and $B^{m} \nsubseteq C_{m k I}$. We conclude the corollary from the fact that by construction $C_{m}^{0}=\cup_{k=1}^{q} C_{m k I} \cup B_{m}$.

To understand the general case, i.e. to find the irreducible components of $C_{m}^{0}$ where $C$ has a branch with $g$ Puiseux exponents at 0 , since for $k n_{1} \overline{\beta_{1}}<m \leq(k+1) n_{1} \bar{\beta}_{1}, m, k \in \mathbb{N}$ we know by corollary 4.2 the structure of the $m$-jets that project to $V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}\right)}\right) \cap C_{k n_{1} \beta_{1}}^{0}$, we search to understand for $m>k n_{1} \beta_{1}$ the $m$-jets that projects to $V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right) \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)$, i.e. $C_{m}^{k}:=\pi_{m, k n_{1} \overline{\beta_{1}}}^{-1}\left(V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right) \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)\right)_{\text {red }}$. Let $m, k \in \mathbb{N}$ be such that $m \geq k n_{1} \beta_{1}$. Let $j=\max \left\{l, n_{2} \cdots n_{l-1}\right.$ divides $\left.k\right\}$ (we set $j=2$ if the greatest common divisor $\left(k, n_{2}\right)=1$ or if $g=1$ ). Set $\kappa$ such that $k=\kappa n_{2} \cdots n_{j-1}$, then we have $k n_{1}=\kappa \frac{\beta_{0}}{n_{j} \cdots n_{g}}$.
Proposition 4.5. Let $2 \leq j \leq g+1$; for $i=2, . ., g$, and $k n_{1} \bar{\beta}_{1}<m<\kappa e_{i-1} \frac{\bar{\beta}_{i}}{e_{j-1}}$, we have that

$$
C_{m}^{k}=\bar{\pi}_{m,\left[\frac{m}{n_{i} \cdots \cdots g}\right]}^{-1}\left(C_{i,\left[\frac{m}{n_{i} \cdots n_{g}}\right]}^{k}\right),
$$

where $\bar{\pi}_{m,\left[\frac{m}{n_{i} \cdots n_{g}}\right]}: \mathbb{C}_{m}^{2} \longrightarrow \mathbb{C}_{\left[\frac{m}{n_{i} \cdots n_{g}}\right]}^{2}$ is the canonical map. For $j<g+1$ and $m \geq \kappa \bar{\beta}_{j}$, we have that

$$
C_{m}^{k}=\emptyset
$$

Proof: Let $\phi_{\tilde{f}} \in C_{m}^{k}$. Let $\tilde{\phi}: \operatorname{Spec} \mathbb{C}[[t]] \longrightarrow\left(\mathbb{C}^{2}, 0\right)$ be such that that lifts $\phi=\tilde{\phi}$ $\bmod t^{m+1}$. Let $\tilde{f} \in \mathbb{C}[[x, y]]$ be a function that defines the branch $\tilde{C}$ image of $\tilde{\phi}$. we may assume that the map Spec $\mathbb{C}[t t]] \longrightarrow \tilde{C}$ induced by $\tilde{\phi}$ is the normalization of $\tilde{C}$. Since $\operatorname{ord}_{t} x_{0} \circ \tilde{\phi}=k n_{1}, \operatorname{ord}_{t} x_{1} \circ \tilde{\phi}=k m_{1},\left(\operatorname{ord}_{t} x_{0} \circ \tilde{\phi}=k n_{1}\right)$ the multiplicity $m(\tilde{f})$ of $\tilde{C}$ at the origin is $\operatorname{ord}_{x_{1}} \tilde{f}\left(0, x_{1}\right)=k n_{1}=\kappa \frac{\beta_{0}}{n_{j} \cdots n_{g}}$.
Claim: If $(f, \tilde{f})_{0}<\kappa e_{i-1} \frac{\bar{\beta}_{i}}{e_{j-1}}$ then $(f, \tilde{f})_{0}=n_{i} \cdots n_{g}\left(x_{i}, \tilde{f}\right)_{0}$.
Indeed, we have that $\frac{(f, \tilde{f})_{0}}{\operatorname{ord}_{y} \tilde{f}(0, y)}<e_{i-1} \frac{\bar{\beta}_{i}}{\beta_{0}}$, therefore by corollary 3.5 we have that

$$
o_{f}(\tilde{f})<\frac{\beta_{i}}{\beta_{0}}=o_{f}\left(x_{i}\right) .
$$

Let $y\left(x^{\frac{1}{\beta_{0}}}\right), z\left(x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)$ and $u\left(x^{\left.\frac{1}{m(f)}\right)}\right.$ be respectively Puiseux-roots of $f, x_{i}$ and $\tilde{f}$. There exist $w, \lambda \in \mathbb{C}$ such that $w^{\frac{\beta_{0}}{n_{i} \cdots n_{g}}}=1, \lambda^{m(\tilde{f})}=1$ and

$$
o_{f}(\tilde{f})=\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(\tilde{f})}}\right)-y\left(x^{\frac{1}{\beta_{0}}}\right)\right)
$$

and

$$
o_{f}\left(x_{i}\right)=\operatorname{ord}_{x}\left(y\left(x^{\frac{1}{\beta_{0}}}\right)-z\left(w x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)\right) .
$$

Since $o_{f}(\tilde{f})<o_{f}\left(x_{i}\right)$, we have that

$$
\begin{aligned}
o_{f}(\tilde{f})= & \operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(\tilde{f})}}\right)-y\left(x^{\frac{1}{\beta_{0}}}\right)+y\left(x^{\frac{1}{\beta_{0}}}\right)-z\left(w x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)\right) \\
& =\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(f)}}\right)-z\left(w x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)\right) \leq o_{x_{i}}(\tilde{f}) .
\end{aligned}
$$

On the other hand, there exist $\lambda$ and $\delta \in \mathbb{C}$, such that $\lambda^{m(\tilde{f})}=1, \delta^{\beta_{0}}=1$ and such that

$$
o_{x_{i}}(\tilde{f})=\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(\tilde{f})}}\right)-z\left(x^{\left.\frac{1}{\overline{1_{1} \cdots n_{i-1}}}\right)}\right)\right.
$$

and

$$
o_{f}\left(x_{i}\right)=\operatorname{ord}_{x}\left(y\left(\delta x^{\frac{1}{\beta_{0}}}\right)-z\left(x^{\left.\left.\frac{1}{\overline{n_{1} \cdots n_{i-1}}}\right)\right) . ~ . ~ . ~}\right.\right.
$$

We have then that

$$
o_{x_{i}}(\tilde{f})=\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m^{(f)}}}\right)-y\left(\delta x^{\frac{1}{\beta_{0}}}\right)+y\left(\delta x^{\frac{1}{\beta_{0}}}\right)-z\left(w x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)\right) .
$$

Now

$$
\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(f)}}\right)-y\left(\delta x^{\frac{1}{\beta_{0}}}\right)\right) \leq o_{f}(\tilde{f})<o_{f}\left(x_{i}\right)=\operatorname{ord}_{x}\left(y\left(\delta x^{\frac{1}{\beta_{0}}}\right)-z\left(w x^{\frac{1}{n_{1} \cdots n_{i-1}}}\right)\right) .
$$

So

$$
o_{x_{i}}(\tilde{f})=\operatorname{ord}_{x}\left(u\left(\lambda x^{\frac{1}{m(\tilde{f})}}\right)-y\left(\delta x^{\frac{1}{\beta_{0}}}\right)\right) \leq o_{f}(\tilde{f}) .
$$

We conclude that $o_{f}(\tilde{f})=o_{x_{i}}(\tilde{f})$, and since the sequence of Puiseux exponents of $C_{i}$ is $\left(\frac{\beta_{0}}{n_{i} \cdots n_{g}}, \cdots, \frac{\beta_{i-1}}{n_{i} \cdots n_{g}}\right)$, applying proposition 3.4 to $C$ and $C_{i}$, we find that $(f, \tilde{f})_{0}=$
$n_{i} \cdots n_{g}\left(x_{i}, \tilde{f}\right)_{0}$ and claim follows.
On the other hand by the corollary 3.5 applied to $f$ and $\tilde{f},(f, \tilde{f})_{0} \geq \kappa e_{i-1} \frac{\bar{\beta}_{i}}{e_{j-1}}$ if and only if $o_{f}(\tilde{f}) \geq \frac{\beta_{i}}{\beta_{0}}=o_{x_{i}}(f)=o_{f}\left(x_{i}\right)$ so $o_{f}(\tilde{f}) \geq \frac{\beta_{i}}{\beta_{0}}$ if and only if $o_{x_{i}}(\tilde{f}) \geq \frac{\beta_{i}}{\beta_{0}}$, therefore $\left(x_{i}, \tilde{f}\right)_{0} \geq \kappa \frac{\bar{\beta}_{i}}{e_{j-1}}$. This proves the first assertion.
The second assertion is a direct consequence of lemma 5.1 in (GP.
To further analyse the $C_{m}^{k}$ 's, we realize, as in section 3, $C$ as a complete intersection in $\mathbb{C}^{g+1}=\operatorname{Spec} \mathbb{C}\left[x_{0}, \cdots, x_{g}\right]$ defined by the ideal $\left(f_{1}, \cdots, f_{g}\right)$ where

$$
f_{i}=x_{i+1}-\left(x_{i}^{n_{i}}-c_{i} x_{0}^{b_{i 0}} \cdots x_{i-1}^{b_{i(i-1)}}-\sum_{\gamma=\left(\gamma_{0}, \cdots, \gamma_{i}\right)} c_{i, \gamma} x_{0}^{\gamma_{0}} \cdots x_{i}^{\gamma_{i}}\right)
$$

for $1 \leq i \leq g$ and $x_{g+1}=0$. This will let us see the $C_{m}^{k}$ 's as fibrations over some reduced scheme that we understand well.
We keep the notations above and let $I_{m}^{0}$ be the radical of the ideal defining $C_{m}^{0}$ in $\mathbb{C}_{m}^{g+1}$ and let $I_{m}^{0 k}$ be the ideal defining $C_{m}^{k}=\left(V\left(I_{m}^{0}, x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right) \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)\right)_{r e d}$ in $D\left(x_{0}^{\left(k n_{1}\right)}\right)$.

Lemma 4.6. Let $k \neq 0, j$ and $\kappa$ as above. For $1 \leq i<j \leq g$ (resp. $1 \leq i<j-1=g$ ) and for $\kappa n_{i} \cdots n_{j-1} \bar{\beta}_{i} \leq m<\kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1}$, we have

$$
\begin{gathered}
I_{m}^{0 k}=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\frac{\kappa \overline{\beta_{0}}}{n_{j} \cdots n_{g}}-1\right)},\right. \\
x_{l}^{(0)}, \cdots, x_{l}^{\left(\frac{\kappa \bar{\beta}_{l}}{n_{j} \cdots n_{g}}-1\right)}, F_{l}^{\left(\kappa \frac{n_{l} \overline{\bar{\beta}_{l}}}{n_{j} \cdots n_{g}}\right)}, \cdots, F_{l}^{(m)}, 1 \leq l \leq i, \\
x_{i+1}^{(0)}, \cdots, x_{i+1}^{\left(\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]\right)}, \\
\left.F_{l}^{(0)}, \cdots, F_{l}^{(m)}, i+1 \leq l \leq g-1\right) .
\end{gathered}
$$

Moreover for $1 \leq l \leq i$,

$$
\begin{aligned}
& \left.F_{l}^{\left(\kappa \frac{n_{l} \bar{\beta}_{l}}{n_{j} \cdots n_{g}}\right)} \equiv-\left(x_{l}^{\left(\kappa \frac{\bar{\beta}_{l}}{n_{j} \cdots n_{g}}\right)^{n_{l}}}-c_{l} x_{0}^{\left(\kappa \frac{\bar{\beta}_{0}}{n_{j} \cdots n_{g}}\right)^{b_{l 0}}} \cdots \cdot x_{l-1}^{\left(\kappa \frac{\bar{\beta}_{l-1}}{n_{l} \cdots n_{g}}\right.}\right)^{b_{l(l-1)}}\right) \\
& \quad \bmod \left(\left(x_{l}^{(0)}, \cdots, x_{l}^{\left(\kappa \frac{\bar{\beta}_{l}}{n_{j} \cdots n_{g}}-1\right)}\right)_{0 \leq l \leq i}, x_{i+1}^{(0)}, \cdots, x_{i+1}^{\left(\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]\right)}\right)
\end{aligned}
$$

for $1 \leq l<i$ and $\kappa \frac{n_{l} \bar{\beta}_{l}}{n_{j} \cdots n_{g}}<n<\kappa \frac{\bar{\beta}_{l+1}}{n_{j} \cdots n_{g}}\left(\right.$ resp. $l=i$ and $\kappa \frac{n_{i} \bar{\beta}_{i}}{n_{j} \cdots n_{g}}<n \leq\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]$ )

$$
\begin{gathered}
F_{l}^{(n)} \equiv-\left(n_{l} x_{l}^{\left(\kappa \frac{\overline{\beta_{l}}}{n_{j} \cdots n_{g}}\right)^{n_{l}-1}} x_{l}^{\left(\kappa \frac{\overline{\beta_{l}}}{n_{j} \cdots n_{g}}+n-\kappa \frac{n_{n} \overline{\beta_{l}}}{n_{j} \cdots n_{g}}\right)}-\right. \\
c_{l} \sum_{0 \leq h \leq l-1} b_{l h} x_{0}^{\left(\kappa \frac{\overline{\beta_{0}}}{n_{j} \cdots n_{g}}\right)^{b_{l 0}}} \cdots x_{h}^{\left(\kappa \frac{\overline{\beta_{h}}}{n_{j} \cdots n_{g}}\right)^{b l h}-1} x_{h}^{\left(\kappa \frac{\overline{\beta_{h}}}{n_{j} \cdots n_{g}}+n-\kappa \frac{n_{l} \overline{\bar{\beta}_{l}}}{n_{j} \cdots n_{g}}\right)} \cdots x_{l-1}^{\left(\kappa \frac{\overline{\beta_{l-1}}}{n_{j} \cdots n_{g}}\right)^{b_{l(l-1)}}}+ \\
\left.H_{l}\left(\cdots, x_{h}^{\left(\kappa \frac{\overline{\beta_{h}}}{n_{j} \cdots n_{g}}+n-\kappa \frac{n_{l} \overline{\beta_{l}}}{n_{j} \cdots n_{g}}-1\right)}, \cdots\right)\right)
\end{gathered}
$$

$$
\bmod \left(\left(x_{l}^{(0)}, \cdots, x_{l}^{\left(\kappa \frac{\bar{\beta}_{l}}{n_{j} \cdots n_{g}}-1\right)}\right)_{0 \leq l \leq i}, x_{i+1}^{(0)}, \cdots, x_{i+1}^{\left(\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]\right)}\right),
$$

for $1 \leq l<i$ and $\kappa \frac{\overline{\beta_{l+1}}}{n_{j} \cdots n_{g}} \leq n \leq m\left(\right.$ resp. $l=i$ and $\left.\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]<n \leq m\right)$, or $i+1 \leq l \leq g-1$ and $0 \leq n \leq m$,

$$
F_{l}^{(n)}=x_{l+1}^{(n)}+H_{l}\left(x_{0}^{(0)}, \cdots, x_{0}^{(n)}, \cdots, x_{l}^{(0)}, \cdots, x_{l}^{(n)}\right)
$$

For $i=j-1=g$ and $m \geq \kappa n_{g} \bar{\beta}_{g}$,

$$
\begin{gathered}
I_{m}^{0 k}=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\kappa \bar{\beta}_{0}-1\right)}\right. \\
\left.x_{l}^{(0)}, \cdots, x_{l}^{\left(\kappa \bar{\beta}_{l}-1\right)}, F_{l}^{\left(\kappa n_{l} \bar{\beta}_{l}\right)}, \cdots, F_{l}^{(m)}\right), 1 \leq l \leq g
\end{gathered}
$$

where for $1 \leq l<g$ and $\kappa n_{l} \bar{\beta}_{l} \leq n \leq m$, the above formula for $F_{l}^{(n)}$ remains valid,

$$
\begin{aligned}
F_{g}^{\left(\kappa n_{g} \bar{\beta}_{g}\right)} \equiv & -\left(x_{g}^{\left(\kappa \overline{\beta_{g}}\right)^{n_{g}}}-c_{g} x_{0}^{\left(\kappa \bar{\beta}_{0}\right)^{b} g 0} \cdots \cdot x_{g-1}^{\left(\kappa{\overline{\beta_{g-1}}}^{b}\right)^{b(g-1)}}\right) \\
& \bmod \left(\left(x_{l}^{(0)}, \cdots, x_{l}^{\left(\kappa \bar{\beta}_{l}-1\right)}\right)\right)_{0 \leq l \leq g}
\end{aligned}
$$

and for $\kappa n_{g} \bar{\beta}_{g}<n \leq m$,

$$
\begin{gathered}
F_{g}^{(n)} \equiv-\left(n_{g} x_{g}^{\left(\kappa \overline{g_{g}}\right)^{n_{g}-1}} x_{g}^{\left(\kappa \overline{\beta_{g}}+n-\kappa n_{g} \overline{\beta_{g}}\right)}-\right. \\
c_{g} \sum_{0 \leq h \leq g-1} b_{g 0} x_{0}^{\left(\kappa \overline{\beta_{0}}\right)^{b g h}} \cdots x_{h}^{\left(\kappa \overline{\beta_{h}}\right)^{b_{g h}-1}} x_{h}^{\left(\kappa \overline{\beta_{h}}+n-\kappa n_{h} \overline{\beta_{h}}\right)} \cdots x_{g-1}^{\left(\kappa \overline{\beta_{g-1}}\right)^{b g(g-1)}}+ \\
\left.H_{g}\left(\cdots, x_{h}^{\left(\kappa \overline{\beta_{h}}+n-\kappa n_{h} \overline{\beta_{h}}\right)}, \cdots\right)\right) \\
\bmod \left(\left(x_{l}^{(0)}, \cdots, x_{l}^{\left(\kappa \overline{\beta_{l}}-1\right)}\right)\right)_{0 \leq l \leq g}
\end{gathered}
$$

Proof : First assume that $\kappa n_{i} \cdots n_{j-1} \bar{\beta}_{i} \leq m<\kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1}$ for $1 \leq i<j \leq g$ (resp. $1 \leq i<j-1=g)$. By proposition 4.5, we have that $C_{m}^{k}=\bar{\pi}_{m,\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]}^{-1}\left(C_{i+1,\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]}^{k}\right)$ where $\left.\bar{\pi}_{m,\left[\frac{m}{n_{i+1}^{\cdots n_{g}}}\right]}: \mathbb{C}_{m}^{2} \longrightarrow \mathbb{C}_{\left[\frac{m}{n_{i+1} \cdots n_{g}}\right.}^{2}\right]$ is the canonical map. Now $\mathbb{C}^{2}=\operatorname{Spec} \mathbb{C}\left[x_{0}, x_{1}\right]$ (resp. $\left.C_{i+1}=V\left(x_{i+1}\right)\right)$ is realized as the complete intersection in $\mathbb{C}^{g+1}=\operatorname{Spec} \mathbb{C}\left[x_{0}, \cdots, x_{g}\right]$ defined by the ideal $\left(f_{1}, \cdots, f_{g-1}\right)$ (resp. $\left.\left(f_{1}, \cdots, f_{g-1}, x_{i+1}\right)\right)$. So since $m \geq k n_{1} \overline{\beta_{1}}, I_{m}^{0 k}$ is the radical of the ideal $I_{m}^{* 0 k}=$

$$
\begin{gathered}
\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}, F_{1}^{(0)}, \cdots, F_{1}^{(m)},\right. \\
\left.\cdots, F_{g-1}^{(0)}, \cdots, F_{g-1}^{(m)}, x_{i+1}^{(0)}, \cdots, x_{i+1}^{\left(\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]\right)}\right)
\end{gathered}
$$

We first observe that $F_{1}^{(n)} \equiv x_{2}^{(n)} \bmod \left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}\right)$ for $0 \leq n<$ $k n_{1} \bar{\beta}_{1}$. Now since $\frac{m}{n_{2} \cdots n_{g}} \geq\left[\frac{m}{n_{2} \cdots n_{g}}\right] \geq k n_{1} m_{1}$, we have

$$
F_{1}^{\left(k n_{1} m_{1}\right)} \equiv-\left(x_{1}^{\left(k m_{1}\right)^{n_{1}}}-c_{1} x_{0}^{\left(k n_{1}\right)^{m_{1}}}\right)
$$

$$
\bmod \left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}, x_{2}^{(0)}, \cdots, x_{2}^{\left(\left[\frac{m}{n_{2} \cdots n_{g}}\right]\right)}\right)
$$

and

$$
\begin{aligned}
& F_{1}^{(n)} \equiv-\left(n_{1} x_{1}^{\left(k m_{1}\right)^{n_{1}-1}} x_{1}^{\left(k m_{1}+n-k n_{1} m_{1}\right)}-m_{1} c_{1} x_{0}^{\left(k n_{1}\right)^{m_{1}-1}} x_{0}^{\left(k n_{1}+n-k n_{1} m_{1}\right)}\right) \\
&+H_{1}\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}+n-k n_{1} m_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}+n-k n_{1} m_{1}-1\right)}\right) \\
& \bmod \left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left(k m_{1}-1\right)}, x_{2}^{(0)}, \cdots, x_{2}^{\left(\left[\frac{m}{n_{2} \cdots n_{g}}\right]\right)}\right)
\end{aligned}
$$

for $k n_{1} \bar{\beta}_{1}<n \leq\left[\frac{m}{n_{2} \cdots n_{g}}\right]$. Finally, for $l=1$ and $\left[\frac{m}{n_{2} \cdots n_{g}}\right]<n \leq m$, or $2 \leq l \leq g-1$ and $0 \leq n \leq m$, we have

$$
F_{l}^{(n)}=x_{l+1}^{(n)}+H_{l}\left(x_{0}^{(0)}, \cdots, x_{0}^{(n)}, \cdots, x_{l}^{(0)}, \cdots, x_{l}^{(n)}\right)
$$

As a consequence for $i=1$, the subscheme of $\mathbb{C}^{g+1} \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)$ defined by $I_{m}^{* 0 k}$ is isomorphic to the product of $\mathbb{C}^{*}$ by an affine space, so it is reduced and irreducible and $I_{m}^{* * k}=I_{m}^{0 k}$ is a prime ideal in $\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, \cdots, x_{g}^{(0)}, \cdots, x_{g}^{(m)}\right]_{x_{0}^{\left(k n_{1}\right)}}$, generated by a regular sequence, i.e the proposition holds for $i=1$.

Assume that it holds for $i<j-1<g($ resp. $i<j-2=g-1)$. For $\kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1} \leq$ $m<\kappa n_{i+2} \cdots n_{j-1} \bar{\beta}_{i+2}$, the ideal in $\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, \cdots, x_{g}^{(0)}, \cdots, x_{g}^{(m)}\right]_{x_{0}^{\left(k n_{1}\right)}}$ generated by $I_{k n_{i+1} \cdots n_{j-1} \overline{\beta_{i+1}-1}}^{0 k}$ is contained in $I_{m}^{0 k}$. By the inductive hypothesis, $x_{l}^{(0)}, \cdots, x_{l}^{\left(\frac{k \bar{\beta}_{l}}{n_{j} \cdots n_{g}}-1\right)} \in$ $I_{k n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1}-1}^{0 k}$ for $l=1, \cdots, i+1$. So $I_{m}^{0 k}$ is the radical of

$$
\begin{gathered}
I_{m}^{* 0 k}=\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(\frac{\kappa \overline{\beta_{0}}}{n_{j} \cdots n_{g}}-1\right)},\right. \\
x_{l}^{(0)}, \cdots, x_{l}^{\left(\frac{\kappa \overline{\bar{\beta}_{l}}}{n_{j}}-1\right)}{ }^{\left(0 n_{g}\right.}, F_{l}^{(0)}, \cdots, F_{l}^{(m)}, 1 \leq l \leq i+1, \\
x_{i+2}^{(0)}, \cdots, x_{i+2}^{\left(\left[\frac{m}{n_{i+2} \cdots n_{g}}\right]\right)}, \\
\left.F_{l}^{(0)}, \cdots, F_{l}^{(m)}, i+2 \leq l \leq g-1\right) .
\end{gathered}
$$

Now for $0 \leq n<\frac{\kappa n_{l} \overline{\bar{l}}_{l}}{n_{j} \cdots n_{g}}$, we have

$$
\begin{gathered}
F_{l}^{(n)} \equiv x_{l+1}^{(n)} \bmod \left(x_{0}^{(0)}, \cdots, x_{l}^{\left(\frac{\kappa \overline{\beta_{0}}}{n_{j} \cdots n_{g}}-1\right)}, x_{l}^{(0)}, \cdots, x_{l}^{\left(\frac{\kappa \overline{\beta_{l}}}{n_{j} \cdots n_{g}}-1\right)},\right. \\
1 \leq l \leq i+1) .
\end{gathered}
$$

Here since $\bar{\beta}_{l+1}>n_{l} \bar{\beta}_{l}$, for $1 \leq l \leq i$ and $\frac{m}{n_{i+2} \cdots n_{g}} \geq\left[\frac{m}{n_{i+2} \cdots n_{g}}\right] \geq \frac{\kappa n_{i+1} \bar{\beta}_{i+1}}{n_{j} \cdots n_{g}}$, we can delete $F_{l}^{(n)}, 1 \leq l \leq i+1,0 \leq n<\frac{\kappa n_{1} \bar{\beta}_{l}}{n_{j} \cdots n_{g}}$ from the above generators of $I_{m}^{* * k}$ without changing the generated ideal. The identities relative to the $F_{l}^{(n)}$ for $1 \leq l \leq i+1, \frac{\kappa n_{l} \bar{\beta}_{l}}{n_{j} \cdots n_{g}} \leq$ $n \leq m$ or $i+2 \leq l \leq g-1$ and $0 \leq n \leq m$ follow immediately from ( $\diamond$ ). So here
again the subscheme of $\mathbb{C}^{g+1} \cap D\left(x_{0}^{\left(k n_{1}\right)}\right)$ defined by $I_{m}^{* 0 k}$ is isomorphic to the product of $\mathbb{C}^{*}$ by an affine space, so it is reduced and irreducible and $I_{m}^{* 0 k}=I_{m}^{0 k}$ is a prime ideal in $\mathbb{C}\left[x_{0}^{(0)}, \cdots, x_{0}^{(m)}, \cdots, x_{g}^{(0)}, \cdots, x_{g}^{(m)}\right]_{x_{0}^{\left(k n_{1}\right)}}$, generated by a regular sequence, i.e the proposition holds for $i+1$.
The case $i=j-1=g$ and $m \geq \kappa n_{g} \overline{\beta_{g}}$ follows by similar arguments.
As an immediate consequence we get
Proposition 4.7. Let $C$ be a plane branch with $g$ Puiseux exponents. Let $k \neq 0, j$ and $\kappa$ as above. For $m \geq k n_{1} \beta_{1}$, let $\pi_{m, k n_{1} \beta_{1}}: C_{m} \rightarrow C_{k n_{1} \beta_{1}}$ be the canonical projection and let $C_{m}^{k}:=\pi_{m, k n_{1} \beta_{1}}^{-1}\left(D\left(x_{0}^{\left(k n_{1}\right)}\right) \cap V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right)\right)_{\text {red }}$. Then for $1 \leq i<j \leq g$ (resp. $1 \leq i<j-1=g$ ) and $\kappa n_{i} \cdots n_{j-1} \bar{\beta}_{i} \leq m<\kappa n_{i+1} \cdots n_{j-1} \bar{\beta}_{i+1}, C_{m}^{k}$ is irreducible of codimension

$$
\frac{\kappa}{n_{j} \cdots n_{g}}\left(\bar{\beta}_{0}+\bar{\beta}_{1}+\sum_{l=1}^{i-1}\left(\bar{\beta}_{l+1}-n_{l} \overline{\beta_{l}}\right)\right)+\left(\left[\frac{m}{n_{i+1} \cdots n_{g}}\right]-\frac{\kappa n_{i} \bar{\beta}_{i}}{n_{j} \cdots n_{g}}\right)+1
$$

in $\mathbb{C}_{m}^{2}$.
For $j \leq g$ and $m \geq \kappa \bar{\beta}_{j}$ (resp. $j=g+1$ and $m \geq \kappa n_{g} \bar{\beta}_{g}$ ),

$$
C_{m}^{k}=\emptyset
$$

(resp. $C_{m}^{k}$ is of codimension

$$
\left.\kappa\left(\bar{\beta}_{0}+\bar{\beta}_{1}+\sum_{l=1}^{g-1}\left(\bar{\beta}_{l+1}-n_{l} \bar{\beta}_{l}\right)\right)+m-\kappa n_{g} \bar{\beta}_{g}+1\right)
$$

in $\mathbb{C}_{m}^{2}$.
For $k^{\prime} \geq k$ and $m \geq k^{\prime} n_{1} \beta_{1}$, we now compare $\operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right)$ and $\operatorname{codim}\left(C_{m}^{k^{\prime}}, \mathbb{C}_{m}^{2}\right)$.
Corollary 4.8. For $k^{\prime} \geq k \geq 1$ and $m \geq k^{\prime} n_{1} \beta_{1}$, if $C_{m}^{k}$ and $C_{m}^{k^{\prime}}$ are nonempty, we have

$$
\operatorname{codim}\left(C_{m}^{k^{\prime}}, \mathbb{C}_{m}^{2}\right) \leq \operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right)
$$

Proof: Let $\gamma^{k}:\left[k n_{1} \beta_{1}, \infty\left[\longrightarrow\left[k\left(n_{1}+m_{1}\right), \infty[\right.\right.\right.$ be the function given by

$$
\gamma^{k}(m)=\frac{k}{e_{1}}\left(\bar{\beta}_{0}+\bar{\beta}_{1}+\sum_{l=1}^{i-1}\left(\bar{\beta}_{l+1}-n_{l} \bar{\beta}_{l}\right)\right)+\left(\frac{m}{e_{i}}-\frac{k n_{i} \bar{\beta}_{i}}{e_{1}}\right)+1
$$

for $1 \leq i<g$ and $\frac{k \bar{i}_{i}}{n_{2} \cdots n_{i-1}} \leq m<\frac{k \bar{\beta}_{i+1}}{n_{2} \cdots n_{i}}$ and

$$
\gamma^{k}(m)=\frac{k}{e_{1}}\left(\bar{\beta}_{0}+\bar{\beta}_{1}+\sum_{l=1}^{g-1}\left(\bar{\beta}_{l+1}-n_{l} \bar{\beta}_{l}\right)\right)+\left(m-\frac{k n_{g} \bar{\beta}_{g}}{e_{1}}\right)+1
$$

for $i=g$ and $m \geq \frac{k \overline{\beta_{g}}}{n_{2} \cdots n_{g-1}}$.
In view of proposition 4.7, we have that $\operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right)=\left[\gamma^{k}(m)\right]$ for $k \equiv 0 \bmod$ $n_{2} \cdots n_{j-1}$ and $k \not \equiv 0 \bmod n_{2} \cdots n_{j}$ with $2 \leq j \leq g$ and any integer $m \in\left[k n_{1} \beta_{1}, \frac{k \bar{\beta}_{j}}{n_{2} \cdots n_{j-1}}\right.$ [or for $k \equiv 0 \bmod n_{2} \cdots n_{g}$ and any integer $m \geq k n_{1} \beta_{1}$. Similarly we define $\gamma^{k^{\prime}}:\left[k^{\prime} n_{1} \beta_{1}, \infty[\longrightarrow\right.$ $\left[k^{\prime}\left(n_{1}+m_{1}\right), \infty\left[\right.\right.$ by changing $k$ to $k^{\prime}$.
Let $\Gamma^{k}\left(\right.$ resp. $\left.\Gamma^{k^{\prime}}\right)$ be the graph of $\gamma^{k}\left(\right.$ resp $\left.\gamma^{k^{\prime}}\right)$ in $\mathbb{R}^{2}$. Now let $\tau: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be defined by $\tau(a, b)=(a, b-1)$ and let $\lambda^{k^{\prime} / k}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be defined by $\lambda^{k^{\prime} / k}(a, b)=\frac{k^{\prime}}{k}(a, b)$. We note that $\tau\left(\Gamma^{k^{\prime}}\right)=\lambda^{k^{\prime} / k}\left(\tau\left(\Gamma^{k}\right)\right)$; we also note that the endpoints of $\tau\left(\Gamma^{k}\right)$ and $\tau\left(\Gamma^{k^{\prime}}\right)$ lie on the line through 0 with slope $\frac{\beta_{0}+\beta_{1}}{e_{1} n_{1} \beta_{1}}=\frac{1}{e_{1}} \frac{n_{1}+m_{1}}{n_{1} m_{1}}<\frac{1}{e_{1}}$. Since $\frac{k^{\prime}}{k} \geq 1$, the image of $\tau\left(\Gamma^{k}\right)$ by $\lambda^{k^{\prime} / k}$ lie on the subset of $\mathbb{R}^{2}$ whith boundary the union of $\tau\left(\Gamma^{k}\right)$, of the segment joining its endpoint $\left(k n_{1} \beta_{1}, \frac{k}{e_{1}}\left(\beta_{0}+\beta_{1}\right)\right)$ to $\left(k n_{1} \beta_{1}, 0\right)$ and of $\left[k n_{1} \beta_{1}, \infty[\times 0\right.$. This implies that $\gamma^{k^{\prime}}(m) \leq \gamma^{k}(m)$ for $m \geq k^{\prime} n_{1} \beta_{1}$,hence $\left[\gamma^{k^{\prime}}(m)\right] \leq\left[\gamma^{k}(m)\right]$ and the claim.

Theorem 4.9. Let $C$ be a plane branch with $g \geq 2$ Puiseux exponents. Let $m \in \mathbb{N}$. For $1 \leq m<n_{1} \beta_{1}+e_{1}, C_{m}^{0}=$ Cont $^{>0}\left(x_{0}\right)_{m}$ is irreducible. For $q n_{1} \beta_{1}+e_{1} \leq m<$ $(q+1) n_{1} \beta_{1}+e_{1}$,with $q \geq 1$ in $\mathbb{N}$, the irreducible components of $C_{m}^{0}$ are :

$$
C_{m \kappa I}=\overline{\text { Cont }^{\kappa \overline{\beta_{0}}}\left(x_{0}\right)_{m}}
$$

for $1 \leq \kappa$ and $\kappa \bar{\beta}_{0} \bar{\beta}_{1}+e_{1} \leq m$,

$$
C_{m \kappa v}^{j}=\overline{\operatorname{Cont}^{\frac{\kappa \overline{\beta_{0}}}{n_{\cdots}^{\cdots n_{g}}}}\left(x_{0}\right)_{m}}
$$

for $j=2, \cdots, g, 1 \leq \kappa$ and $\kappa \not \equiv 0 \bmod n_{j}$ and such that $\kappa n_{1} \cdots n_{j-1} \bar{\beta}_{1}+e_{1} \leq m<\kappa \bar{\beta}_{j}$,

$$
B_{m}=\text { Cont }^{>n_{1} q}\left(x_{0}\right)_{m} .
$$

Proof: We first observe that for any integer $k \neq 0$ and any $m \geq k n_{1} \beta_{1}$,

$$
\left(C_{m}^{0}\right)_{\text {red }}=\cup_{1 \leq h \leq k} C_{m}^{h} \cup \text { Cont }^{>k n_{1}}\left(x_{0}\right)_{m}
$$

where $C_{m}^{h}:=$ Cont $^{h n_{1}}\left(x_{0}\right)_{m}$ as above. Indeed, for $k=1$, we have that $\left(C_{m}^{0}\right)_{\text {red }} \subset$ $V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(n_{1}-1\right)}\right)$ by proposition 4.1. Arguing by induction on $k$, we may assume that the claim holds for $m \geq(k-1) n_{1} \beta_{1}$. Now by corollary 4.2, we know that for $m \geq k n_{1} \beta_{1}$, Cont ${ }^{>(k-1) n_{1}}\left(x_{0}\right)_{m} \subset V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left(k n_{1}-1\right)}\right)$, hence the claim for $m \geq k n_{1} \beta_{1}$. We thus get that for $q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$,

$$
\left(C_{m}^{0}\right)_{\text {red }}=\cup_{1 \leq k \leq q} C_{m}^{k} \cup \text { Cont }^{>q n_{1}}\left(x_{0}\right)_{m} .
$$

By proposition 4.7 for $1 \leq k \leq q, C_{m}^{k}$ is either irreducible or empty. We first note that if $C_{m}^{k} \neq \emptyset$, then $\overline{C_{m}^{k}} \not \subset$ Cont $^{>q n_{1}}\left(x_{0}\right)_{m}$. Similarly, if $1 \leq k<k^{\prime} \leq q$ and if
$C_{m}^{k}$ and $C_{m}^{k^{\prime}}$ are nonempty, then $\overline{C_{m}^{k}} \not \subset \overline{C_{m}^{k^{\prime}}}$. On the other hand by corollary 4.8, we have that $\operatorname{codim}\left(C_{m}^{k^{\prime}}, \mathbb{C}_{m}^{2}\right) \leq \operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right)$. So $\overline{C_{m}^{k^{\prime}}} \not \subset \overline{C_{m}^{k}}$. Finally we will show that $\operatorname{Cont}^{>q n_{1}}\left(x_{0}\right)_{m} \not \subset \overline{C_{m}^{k}}$ if $C_{m}^{k} \neq \emptyset$ for $1 \leq k \leq q$. To do so, it is enough to check that $\operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right) \geq \operatorname{codim}\left(\operatorname{Cont}^{>q n_{1}}\left(x_{0}\right)_{m}, \mathbb{C}_{m}^{2}\right)$. For $m \in\left[q n_{1} \beta_{1}+e_{1},(q+1) n_{1} \beta_{1}[\right.$, we have

$$
\delta^{q}(m):=\operatorname{codim}\left(\text { Cont }^{>q n_{1}}\left(x_{0}\right)_{m}, \mathbb{C}_{m}^{2}\right)=2+q\left(n_{1}+m_{1}\right)+\left[\frac{m-q n_{1} \beta_{1}}{\beta_{0}}\right]+\left[\frac{m-q n_{1} \beta_{1}}{\beta_{1}}\right]
$$

by corollary 4.2.Let $\lambda^{q}:\left[q n_{1} \beta_{1}+e_{1}\left[\longrightarrow\left[q\left(n_{1}+m_{1}\right), \infty\left[\right.\right.\right.\right.$ be the function given by $\lambda^{q}(m)=$ $q\left(n_{1}+m_{1}\right)+\frac{m-q n_{1} \beta_{1}}{e_{1}}+1$. For simplicity, set $i=m-q n_{1} \beta_{1}$. For any integer $i$ such that $e_{1} \leq i<n_{1} \beta_{1}=n_{1} m_{1} e_{1}$, we have $1+\left[\frac{i}{n_{1} e_{1}}\right]+\left[\frac{i}{m_{1} e_{1}}\right] \leq\left[\frac{i}{e_{1}}\right]$. Indeed this is true for $i=e_{1}$ and it follows by induction on $i$ from the fact that for any pair of integers $(b, a)$, we have $\left[\frac{b+1}{a}\right]=\left[\frac{b}{a}\right]$ if and only if $b+1 \not \equiv 0 \bmod a$ and $\left[\frac{b+1}{a}\right]=\left[\frac{b}{a}\right]+1$ otherwise, since $i<n_{1} m_{1} e_{1}$. So $\delta^{q}(m) \leq\left[\lambda^{q}(m)\right]$.
But in the proof of corollary 4.8, we have checked that if $C_{m}^{k} \neq \emptyset$, we have $\operatorname{codim}\left(C_{m}^{k}, \mathbb{C}_{m}^{2}\right)=$ $\left[\gamma^{k}(m)\right]$. We have also checked that for $q \geq k$ and $m \geq q n_{1} \beta, \gamma^{k}(m) \geq \gamma^{q}(m)$. Finally in view of the definitions of $\gamma^{q}$ and $\lambda^{q}$, we have $\gamma^{q}(m) \geq \lambda^{q}(m)$, so $\left[\gamma^{q}(m)\right] \geq\left[\lambda^{q}(m)\right] \geq \delta^{q}(m)$. For $m=(q+1) n_{1} \beta_{1}$, we have $\delta^{q}(m)=(q+1)\left(n_{1}+m_{1}\right)+1$ by corollary 4.2. For $m \in\left[(q+1) n_{1} \beta_{1},(q+1) n_{1} \beta_{1}+e_{1}\left[\right.\right.$, we have Cont $^{>q n_{1}}\left(x_{0}\right)_{m}=C_{m}^{q+1} \cup C_{o n t}>^{(q+1) n_{1}}\left(x_{0}\right)_{m}$ and Cont ${ }^{>(q+1) n_{1}}\left(x_{0}\right)_{m}=V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left((q+1) n_{1}\right)}, x_{1}^{(0)}, \cdots, x_{1}^{\left((q+1) m_{1}\right)}\right)$ again by corollary 4.2. If in addition we have $m<(q+1) \bar{\beta}_{2}$, then by proposition $4.5 C_{m}^{q+1}=V\left(x_{0}^{(0)}, \cdots, x_{0}^{\left((q+1) n_{1}-1\right)}\right.$, $\left.x_{1}^{(0)}, \cdots, x_{1}^{\left((q+1) m_{1}-1\right)}, x_{1}^{\left((q+1) m_{1}\right)^{n_{1}}}-c_{1} x_{0}^{\left((q+1) n_{1}\right)^{m_{1}}}\right) \cap D\left(x_{0}^{\left((q+1) n_{1}\right)}\right.$, thus we have Cont $^{>q n_{1}}\left(x_{0}\right)_{m}=\overline{C_{m}^{q+1}}$ and $\delta^{q}(m)=(q+1)\left(n_{1}+m_{1}\right)+1$. We have $(q+1) n_{1} \beta_{1}+e_{1} \leq$ $(q+1) \bar{\beta}_{2}$ if $q+1 \geq n_{2}$, because $\bar{\beta}_{2}-n_{1} \bar{\beta}_{1} \equiv 0 \bmod \left(e_{2}\right)$. If not , we may have $(q+1) \bar{\beta}_{2}<$ $(q+1) n_{1} \beta_{1}+e_{1}$, so for $(q+1) \overline{\beta_{2}} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$, we have $C_{m}^{q+1}=\emptyset$, Cont $^{>q n_{1}}\left(x_{0}\right)_{m}=$ Cont ${ }^{>(q+1) n_{1}}\left(x_{0}\right)_{m}$ and $\delta^{q}(m)=(q+1)\left(n_{1}+m_{1}\right)+2$.
In both cases, for $m \in\left[(q+1) n_{1} \beta_{1},(q+1) n_{1} \beta_{1}+e_{1}\left[\right.\right.$, we have $\delta^{q}(m) \leq(q+1)\left(n_{1}+m_{1}\right)+2$. Since $\left[\lambda^{q}(m)\right]=q\left(n_{1}+m_{1}\right)+n_{1} m_{1}+1$, we conclude that $\left[\lambda^{q}(m)\right] \geq \delta^{q}(m)$, so for $1 \leq k \leq q$, if $C_{m}^{k} \neq \emptyset$, we have $\left[\gamma^{k}(m)\right] \geq \delta^{q}(m)$. This proves that the irreducible components of $C_{m}^{0}$ are the $\overline{C_{m}^{k}}$ for $1 \leq k \leq q$ and $C_{m}^{k} \neq \emptyset$, and Cont ${ }^{>q n_{1}}\left(x_{0}\right)_{m}$, hence the claim in viewof the characterization of the nonempty $C_{m}^{k^{\prime} s}$ s given in proposition 4.5.

Corollary 4.10. Under the assumption of theorem 4.9, let $q_{0}+1=\min \left\{\alpha \in \mathbb{N} ; \alpha\left(\bar{\beta}_{2}-\right.\right.$ $\left.\left.n_{1} \bar{\beta}_{1}\right) \geq e_{1}\right\}$. Then $0 \leq q_{0}<n_{2}$. For $1 \leq m<\left(q_{0}+1\right) n_{1} \beta_{1}+e_{1}, C_{m}^{0}$ is irreducible and we have $\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)=$

$$
\begin{gathered}
2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \text { for } 0 \leq q \leq q_{0} \text { and } q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1} \\
\text { or } 0 \leq q \leq q_{0} \text { and }(q+1) \bar{\beta}_{2} \leq m<(q+1) n_{1} \beta_{1}+e_{1} . \\
1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \text { for } 0 \leq q<q_{0} \text { and }(q+1) n_{1} \beta_{1} \leq m<(q+1) \bar{\beta}_{2} \\
\text { or }\left(q_{0}+1\right) n_{1} \beta_{1} \leq m<\left(q_{0}+1\right) n_{1} \beta_{1}+e_{1} .
\end{gathered}
$$

For $q \geq q_{0}+1$ in $\mathbb{N}$ and $q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$, the number of irreducible components of $C_{m}^{0}$ is:

$$
N(m)=q+1-\sum_{j=2}^{g}\left(\left[\frac{m}{\bar{\beta}_{j}}\right]-\left[\frac{m}{n_{j} \bar{\beta}_{j}}\right]\right)
$$

and $\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)=$

$$
\begin{aligned}
2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \text { for } q n_{1} \beta_{1}+e_{1} & \leq m<(q+1) n_{1} \beta_{1} . \\
1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \text { for }(q+1) n_{1} \beta_{1} & \leq m<(q+1) n_{1} \beta_{1}+e_{1} .
\end{aligned}
$$

Proof: We have already observed that $n_{2}\left(\bar{\beta}_{2}-n_{1} \bar{\beta}_{1}\right) \geq e_{1}$ because $\bar{\beta}_{2}-n_{1} \bar{\beta}_{1} \equiv 0 \bmod$ $\left(e_{2}\right)$, so $1 \leq q_{0}+1 \leq n_{2}$.
For $q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$, with $q \geq 1$, we have seen in the proof of theorem 4.9 that the irreducible components of $C_{m}^{0}$ are the $\overline{C_{m}^{k}}$ for $1 \leq k \leq q$ and $C_{m}^{k} \neq \emptyset$ and Cont ${ }^{q n_{1}}\left(x_{0}\right)_{m}$. We thus have to enumerate the empty $C_{m}^{k}$ for $1 \leq k \leq q$. By proposition 4.5, $C_{m}^{k}=\emptyset$ if and only if $j:=\max \left\{l ; l \geq 2\right.$ and $\left.k \equiv 0 \bmod n_{2} \cdots n_{l-1}\right\} \leq g$ and $m \geq \frac{k}{n_{2} \cdots n_{j-1}} \bar{\beta}_{j}$. Now recall that $\bar{\beta}_{i+1}>n_{i} \bar{\beta}_{i}$ for $1 \leq i \leq g-1$ and that $\bar{\beta}_{2}-n_{1} \overline{\beta_{1}} \geq e_{2}$. This implies that for $3 \leq j \leq g$, we have $\bar{\beta}_{j}-n_{1} \cdots n_{j-1} \bar{\beta}_{1}>n_{2} \cdots n_{j-1}\left(\bar{\beta}_{2}-n_{1} \bar{\beta}_{1}\right) \geq n_{2} \cdots n_{j-1} e_{2} \geq e_{1}$. So if $j \geq 3$ and $\kappa$ is a positive integer such that $m \geq \kappa \bar{\beta}_{j}$, we have $\frac{m-e_{1}}{n_{1} \beta_{1}}>\kappa n_{2} \cdots n_{j-1}$, hence $q=\left[\frac{m-e_{1}}{n_{1} \beta_{1}}\right] \geq \kappa n_{2} \cdots n_{j-1}$. Therefore for $j \geq 3$, there are exactly $\left[\frac{m}{\beta_{j}}\right]$ integers $\kappa \geq 1$ such that $m \geq \kappa \bar{\beta}_{j}$ and $\kappa n_{2} \cdots n_{j-1} \leq q$, among them $\left[\frac{m}{n_{j} \bar{\beta}_{j}}\right]$ are $\equiv 0 \bmod \left(n_{j}\right)$.
Similarly if $(q+1) n_{1} \beta_{1}+e_{1} \leq(q+1) \bar{\beta}_{2}$, or equivalently $q \geq q_{0}$, and if $\kappa$ is a positive integer such that $m \geq \kappa \bar{\beta}_{2}$, we have $\kappa \leq \frac{m}{\beta_{2}}<q+1$. Therefore if $q \geq q_{0}+1$, we conclude that there are $\sum_{j=2}^{g}\left(\left[\frac{m}{\bar{\beta}_{j}}\right]-\left[\frac{m}{n_{j} \bar{\beta}_{j}}\right]\right)$ empty $C_{m}^{k}$ 's with $1 \leq k \leq q$. Moreover we have shown in the proof of theorem 4.9 that $\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)=\operatorname{codim}\left(\operatorname{Cont}^{>q n_{1}}\left(x_{0}\right)_{m}, \mathbb{C}_{m}^{2}\right)=2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right]$ if $m<(q+1) n_{1} \beta_{1}\left(\right.$ resp. $1+(q+1)\left(n_{1}+m_{1}\right)=1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right]$ for $\left.m \geq(q+1) n_{1} \beta_{1}\right)$.Also note that $q_{0} \bar{\beta}_{2}<q_{0} n_{1} \beta_{1}+e_{1}<\left(q_{0}+1\right) n_{1} \beta_{1}+e_{1} \leq\left(q_{0}+1\right) \bar{\beta}_{2} \leq n_{2} \bar{\beta}_{2}<\bar{\beta}_{3} \cdots$. Therefore for $q_{0} n_{1} \beta_{1}+e_{1} \leq m<\left(q_{0}+1\right) n_{1} \beta_{1}+e_{1}$, we have $\left[\frac{m}{\bar{\beta}_{2}}\right]=q_{0},\left[\frac{m}{n_{2} \bar{\beta}_{2}}\right]=\left[\frac{m}{\beta_{3}}\right]=\cdots=0$, so $N(m)=1$, i.e. $C_{m}^{0}$ is irreducible.
Finally, assume that $q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$ with $q \geq 1$ and $q \leq q_{0}$. Since $q_{0}<n_{2}$, for $1 \leq k \leq q$ we have $k \not \equiv 0 \bmod \left(n_{2}\right)$ and $m \geq q n_{1} \beta_{1}+e_{1}>q \bar{\beta}_{2}$, hence for $1 \leq k \leq q, C_{m}^{k}=\emptyset$ and $C_{m}^{0}=$ Cont $^{q n_{1}}\left(x_{0}\right)_{m}$ is irreducible.(The case $q=q_{0}$ was already known). So for $n_{1} \beta_{1} \leq m<\left(q_{0}+1\right) n_{1} \beta_{1}+e_{1}, C_{m}^{0}$ is irreducible.( Recall that for $1 \leq m<q_{0} n_{1} \beta_{1}+e_{1}$, the irreducibility of $C_{m}^{0}$ is already known).It only remains to check the codimensions of $C_{m}^{0}$ for $1 \leq m \leq q_{0} n_{1} \beta_{1}+e_{1}$. Here again we have seen in the proof of Theorem 4.9 that $\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)=\operatorname{codim}\left(\operatorname{Cont}^{>q n_{1}}\left(x_{0}\right)_{m}, \mathbb{C}_{m}^{2}\right)=: \delta^{q}(m)$ for any $q \geq 1$ and $q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$ and that $\delta^{q}(m)=$

$$
2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \text { for any } q \geq 1 \text { and } q n_{1} \beta_{1}+e_{1} \leq m<(q+1) n_{1} \beta_{1}
$$

$(q+1)\left(n_{1}+m_{1}\right)+1=1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right]$ for $q<q_{0}$ and $(q+1) n_{1} \beta_{1} \leq m<(q+1) \bar{\beta}_{2}$
$(q+1)\left(n_{1}+m_{1}\right)+2=2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right]$ for $q<q_{0}$ and $(q+1) \bar{\beta}_{2} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$.
This completes the proof.
In [I], Igusa has shown that the log-canonical threshold of the pair $\left(\left(\mathbb{C}^{2}, 0\right),(C, 0)\right)$ is $\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}}$. Here $\left(\mathbb{C}^{2}, 0\right)$ (resp. $\left.(C, 0)\right)$ ) is the formal neighberhood of $\mathbb{C}^{2}($ resp. $C)$ at 0 . Corollary .4.10 allows to recover corollary B of [ELM] in this special case.

Corollary 4.11. If the plane curve $C$ has a branch at 0 , with multiplicity $\beta_{0}$, and first Puiseux exponent $\beta_{1}$, then

$$
\min _{m} \frac{\operatorname{codim}\left(C_{m}^{0}, \mathbb{C}_{m}^{2}\right)}{m+1}=\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}} .
$$

Proof: For any $m, p \neq 0$ in $\mathbb{N}$, we have $m-p\left[\frac{m}{p}\right] \leq p-1$ and $m-p\left[\frac{m}{p}\right]=p-1$ if and only if $m+1 \equiv 0 \bmod (p)$; so for any $m \in \mathbb{N}, 2+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \geq(m+1)\left(\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}}\right)$ and we have equality if and only if $m+1 \equiv 0 \bmod \left(\beta_{0}\right)$ and $\bmod \left(\beta_{1}\right)$ or equivalently $m+1 \equiv 0 \bmod \left(n_{1} \beta_{1}\right)$ since $n_{1} \beta_{1}$ is the least common multiple of $\beta_{0}$ and $\beta_{1}$.If not we have $1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \geq(m+1)\left(\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}}\right)$. Now if $(q+1) n_{1} \beta_{1} \leq m<(q+1) n_{1} \beta_{1}+e_{1}$ with $q \in \mathbb{N}$, we have $(q+1) n_{1} \beta_{1}<m+1 \leq(q+1) n_{1} \beta_{1}+e_{1}<(q+2) n_{1} \beta_{1}$, so $m+1 \not \equiv 0$ $\bmod \left(n_{1} \beta_{1}\right)$. If $(q+1) n_{1} \beta_{1} \leq m<(q+1) \bar{\beta}_{2}$ with $q \in \mathbb{N}$ and $q<q_{0}$, then $(q+1) n_{1} \beta_{1}<$ $m+1 \leq(q+1) n_{1} \beta_{1}+e_{1}<(q+2) n_{1} \beta_{1}$, so $m+1 \not \equiv 0 \bmod \left(n_{1} \beta_{1}\right)$. So in both cases, we have $1+\left[\frac{m}{\beta_{0}}\right]+\left[\frac{m}{\beta_{1}}\right] \geq(m+1)\left(\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}}\right)$. The claim follows from corollary 4.10.

It also follows immediately from corollary 4.10
Corollary 4.12. Let $q_{0} \in \mathbb{N}$ as in corollary 4.10. There exists $n_{1} \beta_{1}$ linear functions, $L_{0}, \cdots, L_{n_{1} \beta_{1}-1}$ such that $\operatorname{dim}\left(C_{m}^{0}\right)=L_{i}(m)$ for any $m \equiv i \bmod \left(n_{1} \beta_{1}\right)$ such that $m \geq$ $q_{0} n_{1} \beta_{1}+e_{1}$.

The canonical projections $\pi_{m+1, m}: C_{m+1}^{0} \longrightarrow C_{m}^{0}, m \geq 1$, induce infinite inverse systems

$$
\begin{gathered}
\cdots B_{m+1} \longrightarrow B_{m} \cdots \longrightarrow B_{1} \\
\cdots C_{(m+1) \kappa I} \longrightarrow C_{m \kappa I} \cdots \longrightarrow C_{\left(\kappa \beta_{0} \beta_{1}+e_{1}\right) \kappa I} \longrightarrow B_{\kappa \beta_{0} \beta_{1}+e_{1}-1}
\end{gathered}
$$

and finite inverse systems

$$
C_{\left(\kappa \bar{\beta}_{j}-1\right) \kappa v}^{j} \longrightarrow C_{m \kappa v}^{j} \cdots \longrightarrow C_{\left(\kappa n_{1} \cdots n_{j-1} \beta_{1}+e_{1}\right) \kappa v}^{j} \longrightarrow B_{\kappa n_{1} \cdots n_{j-1} \beta_{1}+e_{1}-1}
$$

for $2 \leq j \leq g$, and $\kappa \not \equiv 0 \bmod \left(n_{j}\right)$.
We get a tree $T_{C, 0}$ by representing each irreducible component of $C_{m}^{0}, m \geq 1$, by a vertex $v_{i, m}, 1 \leq i \leq N(m)$, and by joining the vertices $v_{i_{1}, m+1}$ and $v_{i_{0}, m}$ if $\pi_{m+1, m}$ induces one of the above maps between the corresponding irreducible components. We represent the
tree for the branch defined by $f(x, y)=\left(y^{2}-x^{3}\right)^{2}-4 x^{6} y-x^{9}=0$, whose semigroup is $(4,6,15)$.


This tree only depends on the semigroup $\Gamma$.
Conversely, we recover $\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}$ from this tree and $\max \left\{m, \operatorname{codim}\left(B_{m}, \mathbb{C}_{m}^{2}\right)=2\right\}=$ $\bar{\beta}_{0}-1$. Indeed the number of edges joining two vertices from which an infinite branch of the tree starts is $\beta_{0} \beta_{1}$. We thus recover $\bar{\beta}_{1}$ and $e_{1}$. We recover $\bar{\beta}_{2}-n_{1} \bar{\beta}_{1}, \cdots, \bar{\beta}_{j}-$ $n_{1} \cdots n_{j-1} \bar{\beta}_{1}, \cdots, \bar{\beta}_{g}-n_{1} \cdots n_{g-1} \bar{\beta}_{1}$, hence $\bar{\beta}_{2}, \cdots, \bar{\beta}_{g}$ from the number of edges in the finite branches.

Corollary 4.13. Let $C$ be a plane branch with $g \geq 1$ Puiseux exponents. The tree $T_{C, 0}$ described above and $\max \left\{m, \operatorname{dim} C_{m}^{0}=2 m\right\}$ determine the sequence $\bar{\beta}_{0}, \cdots, \bar{\beta}_{g}$ and conversely.

## References

[A] S.S. Abhyankar, Irreducibility Criterion for Germs of Analytic Functions of Two Complex Variables, Advances in Mathematics 74, (1989), 190-257.
[ELM] L. Ein, R. Lazarsfeld, M. Mustata, Contact Loci in Arc Spaces. Compositio Math. 140 (2004) 1229-1244.
[G] E. Garca Barroso, Invariants des singularits de courbes planes et courbure des fibres de Milnor. Servicio de Publicaciones de la ULL (2004).
[GT] R. Goldin,B. Teissier, Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), 315-340, Progr. Math., 181, Birkhuser, Basel, 2000.
[GP] Gwozdziewicz J., Ploski A., On the approximate roots of polynomials, Ann. Polon. Math. LX.3,1995.
[I] J.I.Igusa, On the first terms of certain asymptotic expansion, Complex and Algebraic Geometry,Iwanami Shoten and Cambridge Univ.Press, 1977,p.357-368.
[LR] M. Lejeune-Jalabert,A. Reguera-Lpez, Arcs and wedges on sandwiched surface singularities. Amer. J. Math. 121 (1999), no. 6, 1191-1213.
[Me] M. Merle, Invariants polaires des courbes planes, Invent. Math. 41, (1977) 103-111.
[Mus] M. Mustata with an appendix by D.Eisenbud and E.Frenkel, Jet schemes of locally complete intersection canonical singularities,Invent. Math. 145, 2001.
[N] J. F. Nash, Arc structure of singularities, Duke Math. J. 81, 1995.
[Sp] M. Spivakovsky, Valuations in Function Fields of Surfaces, American Journal of Mathematics Vol. 112 No. 1., 1990.
[V] P.Vojta, Jets via Hasse-Schmidt derivations. Diophantine geometry, 335-361, CRM Series, 4, Ed. Norm., Pisa, 2007.
[Z] O. Zariski with an appendix by B.Teissier, Le probleme des modules pour les branches planes, Ecole Polytechnique, 1973.

Laboratoire de Mathématiques de Versailles, Université de Versailles-St-Quentin-enYvelines, 45 avenue des États-Unis, 78035 Versailles Cedex, France.
Email address: mourtada@math.uvsq.fr

