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ASYMPTOTICS OF COEFFICIENTS OF MULTIVARIATE

GENERATING FUNCTIONS:

IMPROVEMENTS FOR MULTIPLE POINTS

ALEXANDER RAICHEV AND MARK C. WILSON

Abstract. Let F (x) =
∑

ν∈Nd Fνx
ν be a multivariate power series with complex co-

efficients that converges in a neighborhood of the origin. Assume F = G/H for some
functions G and H holomorphic in a neighborhood of the origin. For example, F could
be a rational combinatorial generating function. We derive asymptotics for the ray co-
efficients Fnα as n → ∞ for α in a permissible subset of d-tuples of positive integers.
More specifically, we give an algorithm for computing arbitrary terms of the asymptotic
expansion for Fnα when the asymptotics are controlled by a transverse multiple point
of the analytic variety H = 0. We have implemented our algorithm in Sage and apply
it to several examples. This improves upon earlier work on analytic combinatorics in
several variables by R. Pemantle and M. C. Wilson.

1. Introduction

In [PW02, PW04] Pemantle and Wilson began a program of analytic combinatorics in
several variables to derive asymptotic expansions for coefficients of combinatorial gener-
ating functions. In this article we continue that program by improving upon several of
their results.

Let F (x) =
∑

ν∈Nd Fνx
ν1
1 · · ·xνd

d be a power series with complex coefficients that con-
verges in a neighborhood of the origin. Assume F = G/H for some functions G and H
holomorphic in a neighborhood of the origin. For example, F could be a rational func-
tion. We derive asymptotics for the ray coefficients Fnα as n → ∞ for α in a permissible
subset of d-tuples of positive integers.

The general form of the asymptotic expansion of Fnα was determined in [PW02, PW04]
for tame local geometries of the singular variety V = {x ∈ Cd : H(x) = 0}. However, until
now, explicit computation of higher-order terms (for numerical approximation for small
n or for computing variances of random variables, for instance) has not been attempted.

Our Contribution. In this article we give an algorithm for computing arbitrary terms
of the asymptotic expansion for Fnα when the asymptotics are controlled by a multiple
point of V of order r ≥ 1. We do this by first deriving an explicit formula in Section 3
for the special case where r ≤ d and the ideal generated by the germ of H in the ring of
germs of holomorphic functions is radical. This generalizes the formula for the smooth
point case r = 1 in [RW08, Theorem 3.2] and improves upon the formula in [PW04, Thm
3.5], which gave an explicit formula for only the leading term. We then show in Section 5
how to reduce the general multiple point case to the special case. This gives a unified
method for the computation of higher-order asymptotics that works for any value of r
and d. Our method of derivation uses Fourier-Laplace integrals as in [PW04], but avoids
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the complications of infinite stationary phase sets. We have implemented our algorithm
in Sage and apply it to examples in Section 6. Section 7 contains most of our proofs.

2. Preliminaries

Throughout this article we make use of basic theorems from local analytic geometry,
good references for which are [dJP00, Tay02].

For brevity we write a power series
∑

ν∈Nd aν(x1 − c1)
ν1 · · · (xd − cd)

νd as
∑

ν aν(x− c)ν

and use the multi-index notation ν! = ν1! · · · νd!, nν = (nν1, . . . , nνd), ν + 1 = (ν1 +
1, . . . , νd + 1), and ∂ν = ∂ν1

1 · · ·∂νd
d , where ∂j is partial differentiation with respect to

component j.
Let O(Ω) denote the C-algebra of holomorphic functions on an open set Ω ⊆ Cd and

Oc the C-algebra of germs of holomorphic functions at c ∈ C
d. The latter algebra is a

local Noetherian factorial ring whose unique maximal ideal is the set {f ∈ Oc : f(c) = 0}
of non-units.

We refer often to both d-tuples and (d− 1)-tuples and write â = (a1, . . . , ad−1) given a
tuple a = (a1, . . . , ad). For simplicity we assume d ≥ 2, though our formulas below also
apply in the case d = 1 of univariate functions after making the simple changes described
in [RW08, Remark 3.6].

Let Ω ⊆ Cd be an (open) neighborhood of the origin and F (x) =
∑

ν Fνx
ν ∈ O(Ω).

Assume F = G/H for some relatively primeG,H ∈ O(Ω). Let V be the set of singularities
of F , that is, the holomorphic variety/analytic set {x ∈ Ω : H(x) = 0} determined by H .
We will derive asymptotics for the ray coefficients Fnα as n → ∞ with α in a permissible
subset of Nd

+, the set of d-tuples of positive integers. For asymptotics of Fν when d = 2
and ν → ∞ along more general paths see [Lla06].

To begin we recall several key definitions from [PW02, PW04].
Just as in the univariate case, asymptotics for the coefficients of F are determined by

the location and type of singularities of F , that is, by the geometry of V. Generally
the singularities closest to the origin are the most important. We define ‘closest to the
origin’ in terms of polydiscs. For c ∈ C

d, let D(c) = {x ∈ C
d : ∀j |xj | < |cj|} and

C(c) = {x ∈ Cd : ∀j |xj | = |cj |} be the respective polydisc and polycircle centered at the
origin with polyradius determined by c.

Definition 2.1. We say that a point c ∈ V is minimal if there is no point x ∈ V such
that |xj | < |cj| for all j. We say that c ∈ V is strictly minimal if there is a unique
x ∈ V such that |xj | ≤ |cj | for all j, namely x = c, and we say that c is finitely minimal

if there are finitely many such values of x.

In other words, a point c ∈ V is minimal if V ∩ D(c) ⊆ T (c), finitely minimal if it is
minimal and V ∩D(c) is finite, and strictly minimal if V ∩D(c) = {c}.

Note that V always contains minimal points. To see this, let c ∈ V and define f :
V ∩D(c) → R by f(x) =

√
x2
1 + · · ·+ x2

d. Since f is a continuous function on a compact
space, it has a minimum, and that minimum is a minimal point of V.

The singularities of F with the simplest geometry are the regular/smooth points of V,
that is, points c ∈ V with ∇H(c) 6= 0. Asymptotics for Fnα dependent on smooth points
were derived in [PW02, RW08]. Here we focus on asymptotics dependent on points with
the next simplest geometry, that is, multiple points.

Definition 2.2. Let c ∈ V and consider the unique factorization of the germ of H in
Oc into irreducible germs. Choosing representatives for these germs gives a factorization

2



H = Ha1
1 · · ·Har

r valid in a neighborhood of c. We say that c is a multiple point of
order r if

• for all j we have Hj(c) = 0,
• for some k and for all j we have ck∂kHj(c) 6= 0, and
• every subset S ⊆ {∇H1(c), . . . ,∇Hr(c)} spans a subspace of Cd of maximal vector
space dimension min{|S|, d}.

The first two conditions imply that c is a smooth point for each Hj, hence V is locally
a union of complex manifolds that intersect at c. So a multiple point of order r = 1 is a
smooth point of V, and in this way multiple points are generalizations of smooth points.
The last condition says that the manifolds generated by the Hj intersect transversely at
c∗. Notice that this definition depends only on information about H in an arbitrarily
small neighborhood of c and so it is independent of the germ representatives chosen.

Lastly, we will need to consider the singularities of F relevant to α that arise in the
integrals used to approximate Fnα. These singularities are called critical points.

Definition 2.3. Let α ∈ N
d
+ and let c ∈ V be a multiple point with ck∂kHj(c) 6= 0 for all

j = 1, . . . , r. For each j let

γj(c) =

(
c1∂1Hj(c)

ck∂kHj(c)
, . . . ,

cd∂dHj(c)

ck∂kHj(c)

)
.

We say that c is critical for α if

(
α1

αk
, . . . ,

αd

αk

)
=

r∑

j=1

sjγj(c)

for some sj ≥ 0, that is, if α lies in the conical hull of the γj(c), which we call the critical
cone of c.

For a Morse theoretic explanation of the relevance of critical points and logarithmic
gradients, which we omit to maintain a relatively simple presentation, see the survey
[PW08].

3. The full asymptotic expansion: special case

Let c ∈ V be a multiple point of order r, and letH = Ha1
1 · · ·Har

r be a local factorization
of H about c as above. For concreteness and ease of notation, suppose cd∂dHj(c) 6= 0 for
all j.

Applying the Weierstrass preparation theorem applied to each Hj, we get

Hj(w, y) = Uj(w, y)

(
y − 1

hj(w)

)

∗ In keeping with [PW08] we are simplifying matters by assuming transversality. For a more general
definition of ‘multiple point’ see [PW04].
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in a neighborhood of c, where Uj is holomorphic and nonzero at c, hj is holomorphic in
a neighborhood of ĉ with 1/hj(ĉ) = cd, and ∂dHj(w, 1/hj(w)) 6= 0. Thus

H(w, y) =U(w, y)

r∏

j=1

(
y − 1

hj(w)

)aj

=U(w, y)

r∏

j=1

( −y

hj(w)

)aj r∏

j=1

(
1

y
− hj(w)

)aj

in a neighborhood of c, where U = U1 · · ·Ur. We use reciprocals, because they turn out
to be convenient for proving Lemma 4.5 later on.

Remark 3.1. For the remainder of this section we assume the special case of a1 = . . . =
ar = 1 and r ≤ d. Thus

H = U(w, y)

r∏

j=1

−y

hj(w)

r∏

j=1

(
1

y
− hj(w)

)

To express our results we use the following sets and functions, most of which are derived
from G and H .

For r ≥ 2, let

∆ = {s ∈ R
r−1 : sj ≥ 0 for all j and

r−1∑

j=1

sj ≤ 1},

the standard orthogonal simplex of dimension r − 1.
Let W be a neighborhood of ĉ on which the hj are defined. For j = 0, . . . , r − 1 and

α ∈ Nd
+ define the functions h : W ×∆ → C, Aj : dom(U) → C, e : [−1, 1]d−1 → Cd−1,

Ãj , h̃, Φ̃ : e−1(W ∩ C(ĉ))×∆ → C, and Pj : N → N by

Ǧ(w, y) =
G(w, y)

U(w, y)

r∏

j=1

−hj(w)

y

h(w, s) = s1h1 + · · ·+ sr−1hr−1 + (1−
r−1∑

j=1

sj)hr

Aj(w, y) = (−1)r−1y−r+j

(
∂

∂y

)j

Ǧ(w, y−1)

e(t) = (c1 exp(it1), . . . , cd−1 exp(itd−1))

h̃(t, s) = h(e(t), s)

Ãj(t, s) = Aj(e(t), h̃(t, s))

Φ̃(t, s) = − log(cdh̃(t, s)) + i
d−1∑

m=1

αm

αd
tm

Pj(n) =

(
r − 1

j

)
(αdn− 1)r−1−j.
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Note that F (w, y) = Ǧ(w, y)/
∏r

j=1(y
−1 − hj(w)) and that h̃, Ãj, and Φ̃ are all C∞

functions. The falling factorial powers in Pj are defined by ak = a(a− 1) · · · (a− k + 1)
and a0 = 1 for a ∈ R and k ∈ N. So the degree of Pj in n is r − 1− j.

Let Jlog(H, c) denote the r × d logarithmic Jacobian matrix, the jth row of which is
the logarithmic gradient vector ∇logHj(c) = (c1∂1Hj(c), . . . , cd∂dHj(c)). Notice that if the
multiple point c has all nonzero coordinates, then every subset S ⊆ {∇logH1(c), . . . ,∇logHr(c)}
spans a subspace of Cd of dimension |S|.

If α is critical for c, then

α =

(
αds

∗
1

cd∂dH1(c)
, . . . ,

αds
∗
r

cd∂dHr(c)

)
Jlog(c)

for some nonnegative tuple s∗ with
∑r

j=1 s
∗
j = 1. Moreover, if c has all nonzero coordi-

nates, then the tuple s∗ is unique since Jlog(c) has rank r ≤ d. Let θ∗ = (0, . . . , 0, s∗1, . . . , s
∗
r−1) ∈

R
d−1 ×∆ ⊂ R

d+r−2.
If the Hessian det Φ̃′′(θ∗) is nonzero, then c is called nondegenerate for α.

Remark 3.2. In the smooth point case r = 1 we can simplify the definitions above. In
that case H = Ha1

1 with a1 = 1 (in this section) and we set

h(w) = h1(w)

A0(w) = y−1Ǧ(w, y−1)
∣∣∣
y=h(w)

Ã0(t) = A0(e(t))

h̃(t) = h(e(t))

Φ̃(t) = − log(cdh̃(t)) + i

d−1∑

m=1

αm

αd
tm

θ∗ = t∗ = 0.

Our main theorem is a more explicit form of the following general formula.

Theorem 3.3 [PW04, Theorem 3.5]. Let α ∈ Nd
+ and c ∈ V be a strictly minimal multiple

point with all nonzero coordinates that is critical and nondegenerate for α. Then there
is a nonsingular matrix M(c) and coefficients bq(α) such that

Fnα ∼ c−nα

[
(2π)(r−d)/2 detM(c)−1/2

∑

q≥0

bq(α)(αdn)
(r−d)/2−q

]

as n → ∞.

Theorem 3.4. In the situation of Theorem 3.3 we have
5



Fnα =c−nα

[
(2π)(r−d)/2 det Φ̃′′(θ∗)−1/2

N−1∑

q=0

(αdn)
(r−d)/2−q(⋆)

×
∑

0≤j≤min{r−1,q}
max{0,q−r}≤k≤q

j+k≤q

Lk(Ãj, Φ̃)

(
r − 1

j

)[
r − j

r + k − q

]
(−1)q−j−k

+O
(
n(r−d)/2−N

)
]
,

as n → ∞.
Here

Lk(Ãj , Φ̃) =

2k∑

l=0

Hk+l(ÃjΦ̃
l
)(θ∗)

(−1)k2k+ll!(k + l)!
,

Φ̃(θ) = Φ̃(θ)− Φ̃(θ∗)− 1

2
(θ − θ∗)Φ̃′′(θ∗)(θ − θ∗)T ,

the differential operator H is given by

H = −
∑

1≤a,b≤d+r−2

(Φ̃′′(θ∗)−1)a,b∂a∂b,

and
[
a
b

]
denotes the Stirling numbers of the first kind. In every term of Lk(Ãj , Φ̃) the

total number of derivatives of Ãj and of Φ̃′′ is at most 2k + j.
Moreover, for each N ∈ N the big-oh constant of (⋆) stays bounded as α varies within

a compact subset of Rd
+ of the critical cone of c.

Remark 3.5. Regarding the −1/2 power occurring in the determinant in (⋆), we let
z−1/2 = |z|−1/2 exp(−i arg z/2) for z ∈ C \ {0} with arg z ∈ [−π/2, π/2].

In the smooth point case r = 1, (⋆) agrees with the formula in [RW08, Theorem 3.2].
Moreover, in that case we can allow coordinates of c to be zero as long as ck∂kH(c) 6= 0
for some k. Also, when r = 1 and d = 2 we can drop the nondegeneracy hypothesis
([RW08, Theorem 3.3]).

In case r = d, it can be shown by Leray residue arguments that the asymptotic formula
in Theorem 3.4 simplifies: all higher-order terms are zero.

Theorem 3.6 [PW08, Corollary 3.24]. Let α ∈ N
d
+ and c ∈ V be a strictly minimal

multiple point with all nonzero coordinates that is critical and nondegenerate for α. If
r = d and G(c) 6= 0, then there exists ǫ ∈ (0, 1) such that

Fnα = c−nα

[
G(c)

| detJ(H, c)| +O (ǫn)

]
,

as n → ∞. Here J(H, c) is the r × d Jacobian matrix of H .
Moreover, the big-oh constant stays bounded as α varies within a compact subset of

R
d
+ of the critical cone of c.
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4. Proving Theorem 3.4

To prove Theorem 3.4 we follow an approach similar to that of [PW02, PW04, RW08].
However, in contrast to those articles, here we first assume H has no repeated factors
and then show in Section 5 how to reduce to this case via a cohomological trick. We take
the following steps.

Step 1: Use Cauchy’s integral formula to express cnαFnα as a d-variate integral over
a contour C in Ω.

Step 2: Expand the contour C across cd and use Cauchy’s residue theorem to ex-
press the innermost integral as a residue.

Step 3: Rewrite the residue as an r-variate integral over the simplex ∆.
Step 4: Rewrite the resulting integral as a Fourier-Laplace integral.
Step 5: Approximate the integral asymptotically.

Starting at step 1, we use Cauchy’s integral formula to write

cnαFnα = cnα
1

(2πi)d

∫

C

G(w)dw

wnα+1H(w)
,

where C is a contour in Ω. We then follow steps 2–5 by applying the following lemmas,
the proofs of which can be found in Section 7.

Lemma 4.1 [PW02, proof of Lemma 4.1], for step 2. Let α ∈ Nd
+ and c ∈ V be a strictly

minimal multiple point with nonzero coordinates. There exists ǫ ∈ (0, 1) and a polydisc
neighborhood D of ĉ such that

cnαFnα = cnα(2πi)1−d

∫

X

−Rn(w)

wnα̂+1
dw +O (ǫn)

as n → ∞, where X = D ∩ C(ĉ) and Rn(w) is the sum over j of the residues of y 7→
y−αdn−1F (w, y) at hj(w).

The next lemma conveniently expresses the residue sum Rn(w) as an integral.

Lemma 4.2 for step 3. In the previous lemma for r ≥ 2 we have

Rn(w) =

∫

∆

(
∂

∂y

)r−1

(−1)r−1fn(w, y)
∣∣∣
y=h(w,s)

ds,

where fn(w, y) = −yαdn−1Ǧ(w, y−1) and ds is the standard volume form ds1 ∧ · · · ∧ dsr−1

For the smooth case r = 1 we have Rn(w) = fn(w, h(w)).

Lemma 4.3 for step 4. For r ≥ 2,

cnαFnα = (2π)1−d
r−1∑

j=0

Pj(n)

∫

X̃

∫

∆

Ãj(t, s) exp(−αdnΦ̃(t, s))ds dt+O(ǫn),

as n → ∞, where X̃ = e−1(X). For r = 1,

cnαFnα = (2π)1−d

∫

X̃

Ãj(t) exp(−αdnΦ̃(t)) dt+O(ǫn),

as n → ∞

The next lemma on Fourier-Laplace integrals provides our key approximation. The
function spaces mentioned are complex valued. A stationary and nondegenerate point of
a function g is a point θ∗ such that g′(θ∗) = 0 and det g′′(θ∗) 6= 0, respectively.

7



Lemma 4.4 [Hör83, Theorem 7.7.5], for step 5. Let E ⊂ Rm be open, N ∈ N+, and
p = N + ⌈m/2⌉. If A ∈ C2p(E) with compact support in E , Φ ∈ C3p+1(E), ℜΦ ≥ 0,
ℜΦ(θ∗) = 0, Φ has a unique stationary point θ∗ ∈ suppA, and θ∗ is nondegenerate, then

∫

E

A(θ) exp(−ωΦ(θ))dθ = exp(−ωΦ(θ∗)) det

(
ωΦ′′(θ∗)

2π

)−1/2 N−1∑

k=0

ω−kLk(A,Φ)+O
(
ω−m/2−N

)
,

as ω → ∞.
Here Lk is the function defined in Theorem 3.4 with m = d + r − 2. Moreover, the

big-oh constant is bounded when the partial derivatives of Φ up to order 3p+ 1 and the
partial derivatives of A up to order 2p all stay bounded in supremum norm over E .

The final lemma ensures that the hypotheses of Lemma 4.4 are satisfied in our setting.

Lemma 4.5 for step 5. Let α ∈ Nd
+ and c be a strictly minimal multiple point that is

critical and nondegenerate for α. Then on X̃ × ∆, we have ℜΦ̃ ≥ 0 with equality only

at points of the form (0, s) (and only at zero for r = 1), and Φ̃ has a unique stationary
point at θ∗.

We can now prove Theorem 3.4.

Proof of Theorem 3.4. By Lemmas 4.1 and 4.3 there exists ǫ ∈ (0, 1) and an open bounded

neighbourhood X̃ of 0 such that

cnαFnα = (2π)1−d
r−1∑

j=0

Pj(n)Ij,n +O (ǫn)

as n → ∞, where Ij,n =
∫
E
Ãj(θ) exp(−αdnΦ̃(θ))dθ and E = X̃ × ∆◦, where ∆◦ is the

interior of ∆.
Choose κ ∈ C∞(E) with compact support in E (a bump function) such that κ = 1 on

a neighbourhood Y of θ∗. Then

Ij,n =

∫

E

κ(θ)Ãj(θ) exp(−αdnΦ̃(θ))dθ +

∫

E

(1− κ(θ))Ãj(θ) exp(−αdnΦ̃(θ))dθ.

The second integral decreases exponentially as n → ∞ since ℜΦ̃ is strictly positive on
the compact set E \ Y by Lemma 4.5. By Lemma 4.5 again and the nondegeneracy

hypothesis, we we may apply Lemma 4.4 to the first integral. Noting that Lk(κÃj , Φ̃) =

Lk(Ãj , Φ̃) because the derivatives are evaluated at θ∗ and κ = 1 in a neighborhood of θ∗,
we get

Ij,n = exp(−ndΦ̃(θ
∗)) det

(
αdnΦ̃

′′(θ∗)

2π

)−1/2 N−1∑

k=0

(αdn)
−kLk(Ãj, Φ̃) +O((αdn)

−(d−1+r−1)/2−N )

= (2π)(d+r−2)/2 det Φ̃′′(θ∗)−1/2
N−1∑

k=0

Lk(Ãj , Φ̃)(αdn)
−(d+r−2)/2−k +O

(
n−(d+r−2)/2−N

)

as n → ∞.
Notice that for j = 0, . . . , r − 1 each Ij,n has error O(n−(d+r−2)/2−N ) and each Pj(n)

has degree r− j − 1 in n. Thus the error in the asymptotic expansion for cnαFnα will be
8



a sum of terms of the form O(n(r−d)/2−N−j) which is O(n(r−d)/2−N ). So

cnαFnα = (2π)(r−d)/2 det Φ̃′′(θ∗)−1/2

N−1∑

q=0

bq(α)(αdn)
(r−d)/2−q +O

(
n(r−d)/2−N

)

= (2π)(r−d)/2 det Φ̃′′(θ∗)−1/2
r−1∑

j=0

N−1∑

k=0

Pj(n)Lk(Ãj, Φ̃)(αdn)
−(d+r−2)/2−k +O

(
n−(r−d)/2−N

)
.

Let us expand Pj(n) and collect like powers to find the coefficients bq(α).
The falling factorial powers satisfy (a− 1)m = (a− 1) . . . (a− 1− k) = 1

a
am+1 and are

related to regular powers and Stirling numbers of the first kind via

am =

p∑

l=0

[
m

l

]
(−1)m−lal;

see [GKP94, (6.13)] for instance. Thus

Pj(n) =

(
r − 1

j

)
1

αdn

r−j∑

l=0

[
r − j

l

]
(−1)r−j−l(αdn)

l,

and so

N−1∑

q=0

bq(α)(αdn)
(r−d)/2−q =

r−1∑

j=0

N−1∑

k=0

r−j∑

l=0

Lk(Ãj , Φ̃)

(
r − 1

j

)[
r − j

l

]
(−1)r−j−l(αdn)

−(d+r)/2−k+l.

The coefficient bq(α) is found by imposing the constraint (r−d)/2−q = −(d+r)/2−k+l.
Thus l = r + k − q, and we can eliminate the l-sum to arrive at formula (⋆).

Lastly, regarding uniformity, we may assume that the Ãj and Φ̃ are defined and hence
C∞ on a neighborhood of the closure of E , so that their derivatives up to any given order
all stay bounded in supremum norm over E . Now suppose α varies within a compact
subset K ⊂ Rd

+ of the critical cone of c. Since Jlog(H, c) has rank r ≤ d it is a bijective
linear transformation from R

r to its image in R
d and therefore a bicontinuous function.

Thus its inverse maps K to a compact set K ′ of θ∗s in E . Choose the neighborhood Y in
the argument above to contain K ′ so that one bump function κ works for all θ∗. Since

the derivatives of the κÃj and Φ̃ up to any given order all stay bounded in supremum

norm over E and since only Φ̃ and Φ̃′ depend on α but continuously, we conclude by
Lemma 4.4 that for any given N , the big-oh constant in (⋆) remains bounded as α varies
within K. �

5. The full asymptotic expansion: general case

Again let c ∈ V be a strictly minimal multiple point of order r with all coordinates
nonzero and let H = Ha1

1 · · ·Har
r be a local factorization of H . We deal now with the

case of arbitrary aj and r.
In step 2 of the previous section the Cauchy integral can be manipulated to reduce to

the special case a1 = . . . = ar = 1 and r ≤ d. More specifically, we amend our plan by
inserting these three steps after step 2:

(2a) If r > d, then decompose F as a sum of fractions whose denominators are of type∏
j∈J H

bj
j where J is a size d subset of {1, .., r} and each bj is an integer with

bj ≤ aj . So each denominator in the sum has only d irreducible factors of H .
9



(2b) If some irreducible factor of H is repeated, then treat each resulting integral
as the integral of a holomorphic form, and rewrite each integral as the sum of
integrals whose denominators are of type wnα+1

∏
j∈J Hj where J is a size at most

d subset of {1, .., r}. So each holomorphic form has a denominator with at most
d unrepeated irreducible factors of H .

(6) Add up all the asymptotic expansions.

The following two lemmas prove that these additional steps are possible.

Lemma 5.1 [Pem00, Theorem 4.5], for step 2a. Suppose r > d, G and H1, . . . , Hr are
holomorphic in a neighborhood U of c, a1, . . . , ar are positive integers, and the complex
manifolds Vj := {x ∈ U : Hj(x) = 0} intersect transversely at c. Then there exist an
open neighborhood U ′ of c, functions GJ holomorphic (and possibly zero) on U ′, and
positive integers bj ≤ aj such that

G

Ha1
1 · · ·Har

r

=
∑

J∈J

GJ∏
j∈J H

bj
j

,

where J is the set of all size d subsets of {1, . . . , r}.

Lemma 5.2 [AY83, Theorem 17.6], for step 2b. Suppose that G and H1, . . . , Hr are
holomorphic functions in a neighborhood of U of c, r ≤ d, and the complex manifolds
Vj := {x ∈ U : Hj(x) = 0} intersect transversely at c. Then there exist an open
neighborhood U ′ of c and functions GJ holomorphic (and possibly zero) on U ′ such that
the holomorphic form

G(x)dx
∏r

j=1H
bj
j (x)

,

where dx = dx1 ∧ · · · ∧ dxd and the bj are positive integers, is de Rham cohomologous in
U ′ \ (V1 ∪ · · · ∪ Vr) to the holomorphic form

∑

J∈J

GJ(x)dx∏
j∈J Hj(x)

,

where J is the set of all subsets of {1, . . . , r}. In particular, the integrals of the two forms
above over a polycircle in U ′ \ (V1 ∪ · · · ∪ Vr) are equal.

Remark 5.3. When applying Lemma 5.2 in step 2b, G(x) will be of the form G(x)/xnα+1

where G(x) does not contain n and each bj ≤ aj. Thus upon inspection of the constructive
proof of Lemma 5.2, the cohomologous form will have n-degree at most

∑r
j=1(bj − 1).

In particular, if r ≥ d and the other assumptions of Theorem 3.6 hold, then we can
combine Lemmas 5.1 and 5.2 and Theorem 3.6 to conclude that cnαFnα will be asymptotic
with exponentially decaying error term to a polynomial of degree at most

∑r
j=1 aj − r,

as is also shown in [PW04, Theorem 3.6].

Remark 5.4. In case c is finitely minimal, for each point x of V ∩ C(c) we simply find
an open set around x and apply the general procedure above. After that we sum the
resulting asymptotic expansions over the finitely many x.

6. Examples

Let us apply the formulas and procedures of Sections 3 and 5 to a few combinatorial ex-
amples, that is, to functions with all nonnegative Maclaurin coefficients. We wrote a Sage
package called mgf.sage to do this. Its source code and the worksheets for the examples

10



below are available at http://www.cs.auckland.ac.nz/~raichev/research.html. A
detailed description of mgf.sage will appear in another article.

We focus on combinatorial examples F (x), because for any α ∈ Nd
+ there is a minimal

point in V ∩ R
d
+ that determines the asymptotics for Fnα ([PW08, Theorem 3.16]).

Since there is no known computable procedure to factor an arbitrary polynomial H in
the analytic local ring of germs of holomorphic functions about c, we choose examples
whereH is a polynomial whose local factorization in the algebraic local ring about c equals
its factorization in the analytic local ring, that is, H is a polynomial whose irreducible
factors in C[x] are all smooth at c.

Example 6.1 (r < d, no repeated factors). Consider the trivariate rational function

F (x, y, z) =
1

(1− x(1 + y))(1− zx2(1 + 2y))

in a sufficiently large neighborhood Ω of the origin; cf [PW08, Example 4.10]. Its coef-
ficients Fν are all nonnegative, and its denominator H(x, y, z) factors over C[x, y, z] into
irreducible terms H1(x, y, z) = 1 − x(1 + y) and H2(x, y, z) = 1 − zx2(1 + 2y), both of
which are globally smooth.

The set of non-smooth/singular points of V = {(x, y, z) ∈ Ω : H(x, y, z) = 0} is
V ′ = {(x, y, z) ∈ Ω : H(x, y, z) = ∇H(x, y, z) = 0} = {(1/(a + 1), a, (a + 1)2/(2a + 1)) :
a ∈ C \ {−1}}, which consists entirely of multiple points of order r = 2. A simple check
shows that the points (1/(a+ 1), a, (a+ 1)2/(2a+ 1)) for a > 0 are strictly minimal.

The critical cone for each such point is the conical hull of the vectors γ1 = (1, a/(a +
1), 0) and γ2 = (1, a/(2a+ 1), 1/2).

For instance, c = (1/2, 1, 4/3) controls asymptotics for all α in the conical hull of the
vectors γ1(c) = (1, 1/2, 0) and γ2(c) = (1, 1/3, 1/2). For instance, α = (8, 3, 3) is in this
critical cone, and applying Theorem 3.4 we get

Fnα = 108n

[ √
3√
7π

(
n−1/2 − 1231

24696
n−3/2

)
+O(n−5/2)

]

as n → ∞.
Comparing this approximation with the actual values of Fnα for small n, we get the

following table.

n 1 2 4 8

Fnα/108n 0.3518518519 0.2548010974 0.1823964231 0.1297748629
√

3√
7π

n−1/2 0.3693487820 0.2611690282 0.1846743909 0.1305845142
√

3√
7π

(
n−1/2 − 1231

24696
n−3/2

)
0.3509381749 0.2546598957 0.1823730650 0.1297708726

one-term relative error -0.1823730650 -0.02499177148 -0.01248910347 -0.006238891584
two-term relative error 0.002596766210 0.0005541644108 0.0001280622701 0.00003074786527

Example 6.2 (r < d, no repeated factors). Consider the trivariate rational function

F (x, y, z) =
16

(4− 2x− y − z)(4 − x− 2y − z)

in a sufficiently large neighborhood Ω of the origin; cf [PW04, Example 3.10]. Its coef-
ficients Fν are all nonnegative, and its denominator H(x, y, z) factors over C[x, y, z] into
irreducible terms H1(x, y, z) = 4 − 2x− y − z and H2(x, y, z) = 4 − x − 2y − z, both of
which are globally smooth.

11
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The set of non-smooth points of V = {(x, y, z) ∈ Ω : H(x, y, z) = 0} is V ′ = {(x, y, z) ∈
Ω : H(x, y, z) = ∇H(x, y, z) = 0} = {(1− a, 1− a, 1 + 3a : a ∈ C}, which contains a line
segment {(1 − a, 1 − a, 1 + 3a : −1/3 < a < 1} of multiple points of order r = 2. The
multiple point c = (1, 1, 1) is strictly minimal and its critical cone is the conical hull of
the vectors γ1(c) = (2, 1, 1) and γ2(c) = (1, 2, 1).

For instance, α = (3, 3, 2) is in the critical cone and applying Theorem 3.4 we get

Fnα =
1√
3π

(
4n−1/2 − 25

72
n−3/2

)
+O(n−5/2),

as n → ∞.
Comparing this approximation with the actual values of Fnα for small n, we get the

following table.

n 1 2 4 8 16

Fnα 0.7849731445 0.7005249476 0.5847732654 0.4485547669 0.3237528587
4√
3π

n−1/2 1.302940032 0.9213177320 0.6514700159 0.4606588663 0.3257350080
1√
3π

(
4n−1/2 − 25

72
n−3/2

)
1.189837599 0.8813299832 0.6373322118 0.4556603976 0.3239677825

one-term relative error -0.6598530041 -0.3151819006 -0.1140557451 -0.02698466340 -0.006122414820
two-term relative error -0.5157685423 -0.2580993528 -0.2580993528 -0.01584116640 -0.0006638514355

Example 6.3 (r < d, repeated factors). Consider the trivariate rational function

F (x, y, z) =
16

(4− 2x− y − z)2(4− x− 2y − z)

in a sufficiently large neighborhood Ω of the origin. Its coefficients Fν are all nonnegative,
and its denominator H(x, y, z) = (4− 2x− y− z)2(4− x− 2y− z) is shown factored over
C[x, y, z]. Since H contains repeated factors, we first reduce

F (x, y, z) dx ∧ dy ∧ dz

xα1n+1yα2n+1zα3n+1
,

the differential form of the Cauchy integral of F , to a de Rham cohomologous form with
no repeated factors, namely

[16(2α3y − α2z)n + 16(2y − z)]/(yz) dx ∧ dy ∧ dz

(4− 2x− y − z)(4 − x− 2y − z)xα1n+1yα2n+1zα3n+1
,

which determines the asymptotics of Fnα. The constructive procedure in the proof of
Lemma 5.2 to find such a cohomologous form is implemented in mgf.sage.

The singular variety V of this new form is the same as in the previous example and so
the singularity analysis is the same.

Taking α = (3, 3, 2) again, for instance, and applying Theorem 3.4 we get

Fnα =
1√
3π

(
4n1/2 +

47

72
n−1/2

)
+O(n−3/2),

as n → ∞.
It is a coincidence that the leading coefficient above is the same as the leading coefficient

in the previous example without repeated factors. Using the denominator (4− 2x− y −
z)3(4− x− 2y − z) instead, for instance, gives a different leading coefficient.

Comparing our approximation with the actual values of Fnα for small n, we get the
following table.

12



n 1 2 4 8 16

Fnα 0.9812164307 1.576181132 2.485286378 3.700576827 5.260983954
4√
3π

n1/2 1.302940032 1.842635464 2.605880063 3.685270927 5.211760127
1√
3π

(
4n1/2 + 47

72
n−1/2

)
1.515572607 1.992989400 2.712196350 3.760447895 5.264918270

one-term relative error -0.3278824031 -0.1690505784 -0.04852305395 0.004136084917 0.009356391776
two-term relative error -0.5445854345 -0.2644418586 -0.09130133815 -0.01617884746 -0.0007478289298

Notice that in this case the two-term approximation to Fnα is not an improvement over
the one-term approximation until somewhere between n = 8 and n = 16. The question of
how many terms of a divergent asymptotic series expansion to use for a given argument
to obtain the best approximation/least error is called the question of ‘optimal truncation’
or ‘optimal approximation’. See [PK01], for instance, for more details.

Example 6.4 (r ≥ d with no repeated factors). Consider the bivariate function

F (x, y) =
9 exp(x+ y)

(3− 2x− y)(3− x− 2y)

in a sufficiently large neighborhood Ω of the origin; cf [PW08, Example 4.12].
Its coefficients Fν are all nonnegative, and its denominator H(x, y) factors over C[x, y]

into irreducible terms H1(x, y) = 3− 2x− y and H2(x, y) = 3−x− 2y, both of which are
globally smooth.

The set of non-smooth points of V = {(x, y) ∈ Ω : H(x, y) = 0} is V ′ = {(x, y) ∈
Ω : H(x, y) = ∇H(x, y) = 0}, which consists of the multiple point c = (1, 1) of order
r = 2. The point c is strictly minimal and its critical cone is the conical hull of the vectors
γ1(c) = (2, 1) and γ2(c) = (1/2, 1).

By Theorem 3.6, for any α in this critical cone we get

Fnα = 3e2 +O(ǫn),

as n → ∞, where ǫ ∈ (0, 1).

Example 6.5 (r ≥ d with repeated factors). Consider the bivariate function

F (x, y) =
9 exp(x+ y)

(3− 2x− y)2(3− x− 2y)2
,

which is a variation of the function of the previous example.
Since the denominator of F contains repeated factors, we first reduce

F (x, y) dx∧ dy

xα1n+1yα2n+1
,

the differential form of the Cauchy integral of F , to a de Rham cohomologous form with
no repeated factors which mgf.sage computes.

Reusing the analysis of the previous example and applying Theorem 3.6 to any α in
conical hull of the vectors γ1(c) = (2, 1) and γ2(c) = (1/2, 1) we get

Fnα = −3e2(2α1 − α2)(α1 − 2α2)n
2 − 6e2 (α1 + α2)n− 12e2 +O(ǫn),

as n → ∞, where ǫ ∈ (0, 1).
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7. Remaining Proofs

Proof of Lemma 4.2. Let fn(w, y) = −yαdn−1Ǧ(w, y−1). Then for r ≥ 2,

Rn(w) =
r∑

j=1

lim
y→hj(w)−1

y−αdn−1(y − hj(w)
−1)F (w, y)

=

r∑

j=1

lim
y→hj(w)−1

−y−αdnhj(w)
−1(y−1 − hj(w))

Ǧ(w, y)∏r
k=1(y

−1 − hk(w))

=

r∑

j=1

fn(w, hj(w))∏
k 6=j(hj(w)− hk(w))

=

∫ 1

0

dσ1

∫ σ1

0

dσ2 · · ·
∫ σr−2

0

(
∂

∂y

)r−1

fn(w, (1− σ1)h1 + (σ1 − σ2)h2 + · · ·

(σr−2 − σr−1)hr−1 + σr−1hr) dσr−1

(by [DL93, Chapter 4, Section 7, equations (7.7) and (7.12)])

=

∫

∆

(
∂

∂y

)r−1

(−1)r−1fn(w, s1h1 + · · ·+ sr−1hr−1 + (1−
r−1∑

j=1

)hr) ds

(by the change of variables (s1, . . . , sr−1) = (1− σ1, σ1 − σ2, . . . , σr−2 − σr−1)),

as desired.
Notice that the (−1)r−1 cancels with the (−1)r−1 in the definition of fn.
For r = 1, we have Rn(w) = limy→h0(w)−1 y−αdn−1(y − h0(w)

−1)F (w, y) = fn(w, h(w)).
�

Proof of Lemma 4.3. First, for r ≥ 2,

(
∂

∂y

)r−1

(−1)r−1f(w, y)

=

(
∂

∂y

)r−1

(−1)ryαdn−1Ǧ(w, y−1)

= −
r−1∑

j=0

(
r − 1

j

)(
∂

∂y

)r−1−j

yαdn−1(−1)r−1

(
∂

∂y

)j

Ǧ(w, y−1)

= −
r−1∑

j=0

(
r − 1

j

)
(αdn− 1)r−1−jyαdn−r+j(−1)r−1

(
∂

∂y

)j

Ǧ(w, y−1)

= −
r−1∑

j=0

Pj(n)y
−αdnAj(w, y).
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Thus

cnα(2πi)1−d

∫

X

−R(w)

wnα̂+1
dw

=cnα(2πi)1−d

∫

X

1

wnα̂+1

∫

∆

(
∂

∂y

)r−1

(−1)r−1f(w, y)
∣∣∣
y=h(w,s)

ds dw

(by Lemma 4.2)

=cnα(2πi)1−d

r−1∑

j=0

Pj(n)

∫

X

1

wnα̂+1

∫

∆

h(w, s)αdnAj(w, h(w, s))ds dw

=(2πi)1−d

r−1∑

j=0

Pj(n)

∫

X

∫

∆

ĉnα̂

wnα̂
Aj(w, h(w, s))(cdh(w, s))

αdnds
dw

∏d−1
m=1wm

=(2π)1−d

r−1∑

j=0

Pj(n)

∫

X̃

∫

∆

d−1∏

m=1

exp(−iαmntm)Ãj(t, s)(cdh̃(t, s))
αdnds dt

(via the change of variables w = e(t))

=(2π)1−d

r−1∑

j=0

Pj(n)

∫

X̃

∫

∆

Ãj(t, s) exp(−αdnΦ̃(t, s))ds dt,

which with Lemma 4.1 proves the stated formula for cnαFnα.
The formula for the case r = 1 follows similarly. �

Proof of Lemma 4.5. First Φ̃(0, s) = 0 and

ℜΦ̃(t, s) = − log |cdh̃(t, s)| ≥ − log

r∑

j=1

sj|cdhj(e(t))| > 0

for t 6= 0, because the sum is convex and |hj(w)
−1| > |cd| for w 6= ĉ since c is strictly

minimal.
Now, by the implicit function theorem, ∂khj(w) = hj(w)

2∂kHj(w, 1/hj(w))/∂dHj(w, 1/hj(w))
for k < d, j ≤ r, and w ∈ W . Thus for all k < d we have

∂kΦ̃(θ
∗) =− i

ck exp(itk)

h(e(t), s)

r∑

j=1

s∗j
∂khj(e(t))

2Hj(e(t), 1/hj(e(t))

∂dHj(e(t), 1/hj(e(t)))
+ i

αk

αd

∣∣∣
θ∗

=− i

r∑

j=1

s∗j
ck∂kHj(c)

cd∂dHj(c)
+ i

αk

αd

=0,

since c is critical for α. Also ∂kΦ̃(θ
∗) = 0 for d ≤ k ≤ r + d− 2 since Φ̃(0, s) is constant.

Thus Φ̃′(θ∗) = 0. Now det Φ̃′′(θ∗) 6= 0, since c is nondegenerate for α. So there is a

neighborhood of θ∗ in which θ∗ is the only zero of Φ̃′. Thus, shrinking X̃ ×∆ if needed,

θ∗ is the unique stationary point of Φ̃. �
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