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EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED

RANDOM WALKS

OLIVIER RAIMOND AND BRUNO SCHAPIRA

Abstract. We obtain the convergence in law of a sequence of excited (also
called cookies) random walks toward an excited Brownian motion. This last

process is a continuous semi-martingale whose drift is a function, say ϕ, of
its local time. It was introduced by Norris, Rogers and Williams as a simpli-
fied version of Brownian polymers, and then recently further studied by the
authors. To get our results we need to renormalize together the sequence of
cookies, the time and the space in a convenient way. The proof follows a gen-
eral approach already taken by Tóth and his coauthors in multiple occasions,
which goes through Ray-Knight type results. Namely we first prove, when ϕ is
bounded and sufficiently regular, that the convergence holds at the level of the
local time processes. This is done via a careful study of the transition kernel
of an auxiliary Markov chain which describes the local time at a given level.
Then we prove a tightness result and deduce the convergence at the level of
the full processes.

1. Introduction

1.1. General overview. Self-interacting random processes play a prominent role
in the probability theory and in statistical physic. One fascinating aspect is that
behind an apparent simplicity, they can be extremely hard to analyze rigorously.
Just to mention one striking example, it is still not known whether once reinforced
random walks on a ladder are recurrent in general (see however [Sel] and [Ver] for
a partial answer and the surveys [MR] and [Pem] for other problems on reinforced
processes). A major difficulty in these models is that we loose the Markovian
property and in particular the usual dichotomy between recurrence and transience
can be broken. A famous example where this happens is for vertex reinforced
random walks on Z: it is now a well known result in the field, first conjectured
and partially proved by Pemantle and Volkov [PemV], that almost surely these
processes eventually get stuck on five sites [Tar]. For analogous results concerning
self-attracting diffusions, see [CLJ], [HRo] and [R].

Beside this very basic, yet fundamental, problem of recurrence, a question of
particular interest is to understand the connections between the various discrete and
continuous models. In particular an important challenging conjecture is that self-
avoiding random walks on Z

2 converge, after renormalization, toward the SLE8/3

(see [LSW] for a discussion on this and [DCS] for some recent progress). There are
in fact not many examples where invariance principles or central limit theorems
were fully established. But for instance it was proved that random walks perturbed
at extrema converge after the usual renormalization toward a perturbed Brownian
motion (see e.g. [Dav] and [W]).

In this paper we are interested in the class of so-called excited random processes,
which are among the most elementary examples of self-interacting processes. By
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this we mean that the interaction with the past trajectory is as localized as possible:
the evolution of these processes at any time only depend on their local time at their
present position. A discrete version was introduced relatively recently by Benjamini
and Wilson [BW] and a generalization, called multi-excited or cookie random walks,
was then further studied by Zerner [Z] and many other authors (see in particular
[MPRV] and references therein). Closely related models were also considered in
[ABK], [BKS], [K] and [KRS]. Dolgopyat [D] observed that in dimension 1, in the
recurrent regime, and after the usual renormalization, multi-excited random walks
also converge toward a perturbed Brownian motion (we will give a more precise
statement later). However, as we will see below, the latter are not, in some sense,
the most natural continuous versions of excited processes. Somewhat more natural
ones were introduced two decades ago by Norris, Rogers and Williams [NRW2], in
connection with the excluded volume problem [NRW1], and as a simplified model
for Brownian polymers. They were later called excited Brownian motions by the
authors [RS].

The aim of this paper is to show that excited Brownian motions can be ap-
proached in law by multi-excited random walks in the Skorokhod space, i.e. in the
sense of the full process. For this we need to use a nonstandard renormalization,
namely we need to scale together and appropriately the sequence of cookies, which
govern the drift of the walk, the space and the time. But let us give more details,
starting with some definitions:

A multi-excited or cookie random walk (Xε(n), n ≥ 0) is associated to a sequence

ε := (εi, i ≥ 1) ∈ [−1, 1]N,

of cookies in the following way: set

pε,i :=
1

2
(1 + εi),

for all i ≥ 1, and let (Fε,n, n ≥ 0) be the filtration generated by Xε. Then Xε(0) :=
0 and for all n ≥ 0,

P[Xε(n+ 1)−Xε(n) = 1 | Fε,n] = 1− P[Xε(n+ 1)−Xε(n) = −1 | Fε,n] = pε,i,

if #{j ≤ n : Xε(j) = Xε(n)} = i. We notice that the case of random cookies has
also been studied in the past, for instance by Zerner [Z], but here we consider only
deterministic ε.

On the other hand excited Brownian motions are solutions of a stochastic differential
equation of the type:

dYt = dBt + ϕ(LYt

t ) dt,

where B is a Brownian motion, L·
· is the local time process of Y and ϕ : R → R is

some measurable (bounded) function.

So at an heuristic level the discrete and the continuous models are very similar:
the drift is a function of the local time at the present position. But the analogy
can be pushed beyond this simple observation. In particular criteria for recurrence
and nonzero speed in both models (see respectively [KZ] and [RS]) are entirely
similar (see below). Our results here give now a concrete link. We first prove
that when ϕ is bounded and sufficiently regular, the local time process of Xε,
conveniently renormalized, converges to the one of Y , exactly in the same spirit
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as in Tóth’s papers on self-interacting random walks (see [T2]). Then we obtain a
tightness result and deduce a convergence in the Skorokhod space at the level of the
processes (see Theorem 1.4 below). For proving the convergence of the local time
processes we use a standard criterion of Ethier and Kurtz [EK] on approximation of
diffusions. To show that we can apply it here we introduce some auxiliary Markov
chains describing the local time on each level and we make a careful analysis of the
transition kernels of these Markov chains (see Section 2).

1.2. Description of the results. For a ∈ Z and v ∈ N, let

τε,a(v) := inf {j : #{i ≤ j : Xε(i) = a and Xε(i+ 1) = a− 1} = v + 1} .
We assume here that Xε is recurrent, in which case all these stopping times are a.s.
finite. A criterion when εi ≥ 0 for all i or when εi = 0 for i large enough is given in
[Z] and [KZ] (namely in these cases, Xε is recurrent if, and only if,

∑
i εi ∈ [−1, 1]).

Then we consider the process (Sε,a,v(k), k ∈ Z) defined by

Sε,a,v(k) = #{j ≤ τε,a(v)− 1 : Xε(j) = k and Xε(j + 1) = k − 1}.
In particular Sε,a,v(a) = v. Assume now that ϕ is bounded and let εn = (εi(n), i ≥
1) be defined by

εi(n) :=
1

2n
ϕ

(
i

2n

)
for all n ≥ 1 and all i ≥ 1.

Since ϕ is bounded, if n is large enough then εn ∈ [−1, 1]N and Xεn is well defined.
Then for a ∈ R and v ≥ 0, set

Λ(n)
a,v(x) :=

1

n
Sεn,[2na],[nv]([2nx]) for all x ∈ R.

We give now the analogous definitions in the continuous setting. First for a ∈ R,
let

τa(v) := inf{t > 0 : La
t > v} for all v ≥ 0,

be the right continuous inverse of the local time of Y at level a. To simplify we
assume also that Y is recurrent. This is equivalent (see [RS, Theorem 1.1]) to
requiring C+

1 = C−
1 = +∞, where

C±
1 :=

∫ ∞

0

exp

[
∓
∫ x

0

dl

l

∫ l

0

ϕ(u) du

]
dx.

In particular when ϕ is nonnegative or compactly supported this is equivalent to∫∞

0 ϕ(ℓ) dℓ ∈ [−1, 1]. In this case τa(v) is a.s. finite for any a and v. Then set

Λa,v(x) := Lx
τa(v)

,

for all a, v, and x. The Ray-Knight theorem describes the law of (Λa,v(x), x ∈ R)
(a proof is given in [NRW2] when v = 0, but it applies as well for v > 0) and we
recall this result now. To fix ideas we assume that a ≤ 0. An analogue result holds
for a ≥ 0. So first we have Λa,v(a) = v. Next on [a, 0], Λa,v is solution of the
stochastic differential equation:

dΛa,v(x) = 2
√
Λa,v(x) dBx + 2(1 + h (Λa,v(x))) dx,(1)

where B is a Brownian motion and

h(z) :=

∫ z

0

ϕ(ℓ) dℓ for all z ≥ 0.
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On [0,+∞), it is solution of

dΛa,v(x) = 2
√
Λa,v(x) dBx + 2h (Λa,v(x))) dx,(2)

up to the first time, say w+
a,v, when it hits 0, and then is absorbed in 0 (i.e.

Λa,v(x) = 0 for x ≥ w+
a,v). Similarly (Λa,v(a− x), x ≥ 0) is solution of (2) (with a

drift −2h instead of 2h) up to the first time, say w−
a,v, when it hits 0, and then is

absorbed in 0.
We denote by D(R) the Skorokhod space, i.e. the space of càdlàg functions on

R, which is a separable metric space (see for instance Section 12 in [Bil]).

Our first result is the following theorem:

Theorem 1.1. Assume that ϕ is bounded, Lipschitz and such that (ℓ 7→ ℓϕ(ℓ)) is

also Lipschitz. Assume further that for n large enough, Xεn is recurrent and that

Y is recurrent. Then for any a ∈ R and v ≥ 0,

(Λ(n)
a,v(x), x ∈ R)

L
=⇒
n→∞

(Λa,v(x), x ∈ R) ,

in the Skorokhod space D(R).

As announced above, this theorem gives the convergence of a sequence of excited
random walks toward the excited Brownian motion (associated to ϕ) at the level
of the local times. We will later extend this result in two directions. First in
a non homogeneous setting, i.e. when ϕ is allowed to depend also on the space
variable. We refer the reader to Subsection 2.7 for more details. Then we will
prove a multidimensional version (see Theorem 5.1): given any finite set I and

(ai, vi), i ∈ I, the sequence (Λ
(n)
ai,vi , i ∈ I) converges in law toward (Λai,vi , i ∈ I).

A consequence of Theorem 1.1 is the following

Corollary 1.2. For any a ∈ R and v ≥ 0, the random variable τεn,[2na]([nv])/(4n
2)

converges in law toward τa(v), when n → ∞.

For u ∈ R, denote by θu some geometric random variable with parameter 1 −
e−u, independent of Xεn and Y . Denote also by γu some independent exponential
random variable with parameter u. Then as in [T1], we can deduce from the
previous results the

Corollary 1.3. For any λ ≥ 0, Xεn(θλ/(4n2))/(2n) converges in law toward Yγλ
,

when n → ∞.

Finally we get the following:

Theorem 1.4. For t ≥ 0, set X(n)(t) := Xεn([4n
2t])/(2n). Then under the hy-

potheses of Theorem 1.1,

(X(n)(t), t ≥ 0)
L

=⇒
n→∞

(Y (t), t ≥ 0).

To obtain this result we need to prove the tightness of the sequenceXεn([4n
2·])/(2n),

n ≥ 1. This is done by using a coupling between different branching processes, simi-
lar as what we use for proving Corollary 1.2. The convergence of finite-dimensional
distributions follows from the multi-dimensional extension of Theorem 1.1 men-
tioned above.
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As for Theorem 1.1 an extension of this result to the non homogeneous setting can
be proved (see Remark 5.4 at the end of the paper).

Let us mention now a related result of Dolgopyat [D]. He proved a functional central
limit theorem for excited random walks when ε is fixed, and in the recurrent regime;
more precisely when εi ≥ 0 for all i and α :=

∑
i εi < 1. In this case the limiting

process is a perturbed Brownian motion, i.e. the process defined by

Xt = Bt + α

(
sup
s≤t

Xs − inf
s≤t

Xs

)
for all t ≥ 0,

with B a Brownian motion.

We will prove Theorem 1.1 in Section 2, Corollaries 1.2 and 1.3 respectively in
Section 3 and 4, and Theorem 1.4 in Section 5.

2. Proof of Theorem 1.1

To fix ideas we assume that a ≤ 0. The case a ≥ 0 is similar. Moreover we only

prove the convergence of Λ
(n)
a,v on the time interval [a,∞), since the proofs of the

convergence on (−∞, a] and on [0,+∞) are the same.

2.1. A criterion of Ethier and Kurtz. It is now a standard fact and not difficult
to check (see however [BaS] or [KZ] for more details) that for all a ∈ N

− and v ∈ N,
the sequence (Sε,a,v(a), . . . , Sε,a,v(0)) has the same law as (Vε,v(0), . . . , Vε,v(−a)),
where (Vε,v(k), k ≥ 0) is some Markov chain starting from v, independent of
a. Similarly (Sε,a,v(k), k ≥ 0) has the same law as some other Markov chain

(Ṽε,w(k), k ≥ 0) starting from w = Sε,a,v(0), and (Sε,a,v(a − k), k ≥ 1) has the

same law as (Ṽ−ε,v+1(k), k ≥ 1), where by definition (−ε)i = −εi for all i ≥ 1.
The laws of these Markov chains will be described in Subsection 2.2 in terms of

another Markov chain Wε, see in particular (7) and (8).

In the following, in order to lighten the presentation we will forget about the de-
pendence in the starting point (which does not play any serious role here) in the

notation for Vε and Ṽε. Thus Vε and Vεn should be understood respectively as Vε,v

and Vεn,[nv], where the v will be clear from the context, and similarly for Ṽε and

Ṽεn .

Now we first prove the convergence of Λ
(n)
a,v on [a, 0]. The proofs of the convergence

on [0,+∞) and on the full interval [a,+∞) are similar and will be explained in
Subsection 2.6.

So on [a, 0], Λ
(n)
a,v can be decomposed as a sum of a martingale part M

(n)
a,v and a

drift part B
(n)
a,v :

(3) Λ(n)
a,v(x) =

[nv]

n
+M (n)

a,v (x) +B(n)
a,v (x) for all x ∈ [a, 0],

with the following equalities in law:

M (n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

{
Vεn(k)− E[Vεn(k) | Vεn(k − 1)]

}
,(4)
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and

B(n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

{
E[Vεn (k) | Vεn(k − 1)]− Vεn(k − 1)

}
.(5)

Let also A
(n)
a,v be the previsible compensator of (M

(n)
a,v )2 given by

(6) A(n)
a,v(x) =

1

n2

[2nx]−[2na]∑

k=1

{
E[Vεn(k)

2 | Vεn(k − 1)]− E[Vεn(k) | Vεn(k − 1)]2
}
,

for all x ∈ [a, 0].

We will deduce the convergence of Λ
(n)
a,v from a criterion of Ethier and Kurtz [EK],

namely Theorem 4.1 p.354. According to this result the convergence on [a, 0] in
Theorem 1.1 follows from Propositions 2.1 and 2.2 below. In addition we need to
verify that the martingale problem associated to the operator 2λd2/(dλ)2 + 2(1 +
h(λ))d/dλ is well posed. This follows from Theorem 2.3 p.372 in [EK] (with the
notation of [EK] take r0 = 0 and r1 = +∞).

Proposition 2.1. Let R > 0 be given. Set τRn := inf{x ≥ a : Λ
(n)
a,v(x) ≥ R}.

Then for a ≤ x ≤ 0 ∧ τRn ,

B(n)
a,v (x) = 2

∫ x

a

(1 + h(Λ(n)
a,v(y))) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a and R.

Proposition 2.2. Let R > 0 be given. Then for a ≤ x ≤ 0 ∧ τRn ,

A(n)
a,v(x) = 4

∫ x

a

Λ(n)
a,v(y) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a and R.

These propositions will be proved in the Subsections 2.2–2.5.

2.2. An auxiliary Markov chain. Let ε and v ≥ 0 be given. We express here

(see in particular (7) and (8) below) the laws of Vε = Vε,v and Ṽε = Ṽε,v in terms
of the law of another Markov chain Wε. A similar representation already appeared
in Tóth’s paper [T1] on ”true” self-avoiding walks. So let us first define (sε,i, i ≥ 0)
by sε,0 = 0 and for i ≥ 1,

sε,i :=
i∑

j=1

1{Uj≥pε,j},

where (Uj , j ≥ 1) is a sequence of i.i.d random variables with uniform distribution
in [0, 1]. This sε,i is equal in law to the number of times the excited random walk
jumps from level k to k − 1, for some arbitrary k ∈ Z, after i visits at this level k.
For m ≥ 0, set

Wε(m) := inf{i ≥ 0 : sε,i = m}.
Then Wε(m) is equal in law to the number of visits to level k before the m-th jump
from k to k− 1. Moreover (Wε(m),m ≥ 0) is a Markov chain on N starting from 0
and with transition operator Qε defined for any function f by

Qεf(r) =
∑

ℓ≥1

f(r + ℓ)2−ℓ(1 + εr+1) . . . (1 + εr+ℓ−1)(1− εr+ℓ),
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for all r ∈ N. Furthermore it is immediate that the law of Vε(k + 1) conditionally
to {Vε(k) = m} is equal to the law of Wε(m+ 1)− (m+ 1):

L(Vε(k + 1) | Vε(k) = m) = L(Wε(m+ 1)− (m+ 1)).(7)

Similarly the law of Ṽε(k + 1) conditionally to {Ṽε(k) = m} is equal to the law of
Wε(m)−m:

L(Ṽε(k + 1) | Ṽε(k) = m) = L(Wε(m)−m).(8)

By convention we denote by Q0 the transition operator associated to the sequence
(εi, i ≥ 1), where εi = 0 for all i. In other words

Q0f(r) = E[f(r + ξ)] for all r ∈ N,

where ξ is a geometric random variable with parameter 1/2, i.e. P(ξ = ℓ) = 2−ℓ,
for all ℓ ≥ 1. Note that E(ξ) = 2 and V(ξ) = 2. In particular, if u is defined by
u(r) = r for all r ∈ N, then for all m ≥ 1,

Qm
0 u(0) = E[ξ1 + · · ·+ ξm] = 2m,

where ξ1, . . . , ξm are i.i.d. geometric random variables with parameter 1/2. Note
also that for all m ≥ 1, E[Wε(m)] = Qm

ε u(0). Thus (7) shows that

(9) E[Vε(k) | Vε(k − 1)]− Vε(k − 1) = QVε(k−1)+1
ǫ u(0)−Q

Vε(k−1)+1
0 u(0) + 1,

for all k ≥ 1. So in view of (5) and (9), our strategy for proving Proposition 2.1
will be to estimate terms of the form Qm

ε u(0) − Qm
0 u(0). Note that since x < τRn

by hypothesis, we can restrict us to the case when m ≤ Rn+ 1. Likewise
(10)

E[V 2
ε (k) | Vε(k− 1)]−E[Vε(k) | Vε(k− 1)]2 = QVε(k−1)+1

ε u2(0)− (QVε(k−1)+1
ε u(0))2,

for all k ≥ 1. So in view of (6) and (10) we will have also to estimate terms of the
form Qm

ε u2(0)− (Qm
ε u(0))2, for proving Proposition 2.2.

2.3. Some elementary properties of the operators Qε and Q0. For f : N →
R, we set

|f |∞ = sup
r∈N

|f(r)| and Lip(f) = sup
r 6=r′

|f(r)− f(r′)|
|r − r′| .

If ε ∈ [−1, 1]N is given we set

|ε|∞ := sup
i≥1

|εi| and Lip(ε) = sup
i6=j

|εi − εj|
|i− j| .

Throughout this section we will always assume that |ε|∞ ≤ 1/2. Let Rε := Qε−Q0.
Observe that Qε1 = Q01 = 1, where 1 is the constant function on N. In particular
Rε1 = 0. Observe also that for any function f , |Qεf |∞ ≤ |f |∞, and

|Qεf − f |∞ ≤ CLip(f),(11)

where C =
∑

ℓ≥1 ℓ(4/3)
−ℓ. As a corollary we get the

Lemma 2.3. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all j ≥ 0
and all functions f ,

|Qj
εf − f |∞ ≤ CjLip(f).
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Proof. Write

Qj
εf − f =

j∑

i=1

Qi−1
ε (Qεf − f),

and then use (11) for each term of the sum. �

Set for all r ≥ 0 and ℓ ≥ 1,

ε̃r,ℓ := −εr+ℓ +

ℓ−1∑

i=1

εr+i,

and define R̃ε by

R̃εf(r) =
∑

ℓ≥1

f(r + ℓ)2−ℓε̃r,ℓ.

The next result is immediate.

Lemma 2.4. For any function f and any r,

R̃εf(r) = −
∑

ℓ≥1

εr+ℓ

(
f(r + ℓ)2−ℓ −

∞∑

i=ℓ+1

f(r + i)2−i

)
.

In particular R̃ε1 = 0 since
∑∞

i=ℓ+1 2
−i = 2−ℓ. We also get the following

Lemma 2.5. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2 and all f ,

|R̃εf |∞ ≤ CLip(f)× |ε|∞.

Proof. By using that f(r)R̃ε1(r) = 0 for all r, we get

R̃εf(r) = −
∑

ℓ≥1

εr+l

(
(f(r + l)− f(r))2−ℓ −

∞∑

i=ℓ+1

(f(r + i)− f(r))2−i

)
.

Thus

|R̃εf |∞ ≤ Lip(f)× |ε|∞ ×
∑

ℓ≥1

(
ℓ2−ℓ +

∞∑

i=ℓ+1

i2−i

)
.

The lemma follows. �

Next we have

Lemma 2.6. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2 and all f ,

|Rεf − R̃εf |∞ ≤ CLip(f)× |ε|2∞,

Proof. Recall that

(Rε − R̃ε)f(r) =
∑

ℓ≥1

f(r + ℓ)2−ℓ(εr,ℓ − ε̃r,ℓ),

where for all r and ℓ,

εr,ℓ := (1 + εr+1) . . . (1 + εr+ℓ−1)(1− εr+ℓ)− 1.

Since f(r)Rε1(r) = f(r)R̃ε1(r) = 0 for all r, we get

(Rε − R̃ε)f(r) =
∑

ℓ≥1

(f(r + ℓ)− f(r))2−ℓ(εr,ℓ − ε̃r,ℓ).
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But for any r, εr,0 = ε̃r,0, and for ℓ ≥ 1,

|εr,ℓ − ε̃r,ℓ| ≤ (1 + |ε|∞)ℓ − 1− ℓ|ε|∞.

≤ ℓ2(1 + |ε|∞)ℓ−2|ε|2∞(12)

≤ ℓ2(3/2)ℓ−2|ε|2∞.

The lemma follows. �

We will need also the following

Lemma 2.7. We have Lip(Qi
0f) ≤ Lip(f), for all i ≥ 0, and

|Qi
0f(r)− f(r + 2i)| ≤

√
2Lip(f)

√
i for all r.

Proof. Just recall that for all i and r, Qi
0f(r) = E[f(r + ξ1 + · · · + ξi)], where

ξ1, . . . , ξi are i.i.d. geometric random variables with parameter 1/2. The first claim
of the lemma follows. Next write

|Qi
0f(r)− f(r + 2i)| ≤ E[|f(r + ξ1 + · · ·+ ξi)− f(r + 2i)|]

≤ Lip(f)E[|ξ1 + · · ·+ ξi − 2i|]
≤

√
2Lip(f)

√
i,

by using Cauchy-Schwarz inequality and the fact that E(ξi) = 2 and V(ξi) = 2, for
all i. �

Lemma 2.8. There exists a constant C > 0 such that for all |ε|∞ ≤ 1/2, all i ≥ 0
and all f ,

|(Qi
ε −Qi

0)f |∞ ≤ CiLip(f)× |ε|∞.

Proof. First write

Qi
ε −Qi

0 =

i∑

j=1

Qi−j
ε RεQ

j−1
0 .

Then by using that |Qj
εf |∞ ≤ |f |∞, for all j, we get

|(Qi
ε −Qi

0)f |∞ ≤
i−1∑

j=0

|RεQ
j
0f |∞

≤
i−1∑

j=0

|R̃εQ
j
0f |∞ +

i−1∑

j=0

|(Rε − R̃ε)Q
j
0f |∞

≤ C

i−1∑

j=0

Lip(Qj
0f)|ε|∞ (by using Lemma 2.5 and 2.6).

We conclude the proof of the lemma by using that Lip(Qj
0f) ≤ Lip(f) for all j. �

Recall now that u is defined by u(r) = r for all r ∈ N.

Lemma 2.9. We have Lip(R̃εu) ≤ Lip(ε).

Proof. By using Lemma 2.4 and the fact that R̃ε1 = 0, we get for all r,

R̃εu(r) = rR̃ε1(r) + R̃ε(r)u(0) = R̃ε(r)u(0),

where ε(r) is defined by (ε(r))i = εr+i for all i. The result of the lemma follows
immediately by using for instance Lemma 2.4. �
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Our last result in this subsection is the following

Lemma 2.10. There exists a constant C > 0 such that for all m ≥ 0 and all

|ε|∞ ≤ 1/2,

|Qm
ε u−Qm

0 u−
m∑

i=1

Qm−i
0 R̃εu|∞ ≤ C(m|ε|2∞ +m2|ε|∞Lip(ε)).

Proof. First observe that for all j ≥ 0, Qj
0u = u + 2j. Since R̃ε is linear and

R̃ε1 = 0, we get R̃εQ
i−1
0 u = R̃εu for all i ≥ 1. Thus

m∑

i=1

Qm−i
0 R̃εu =

m∑

i=1

Qm−i
0 R̃εQ

i−1
0 u.

Next we have

Qm
ε u−Qm

0 u−
m∑

i=1

Qm−i
0 R̃εQ

i−1
0 u =

m∑

i=1

Qm−i
0 (Rε − R̃ε)Q

i−1
0 u

+

m∑

i=1

(Qm−i
ε −Qm−i

0 )R̃εQ
i−1
0 u.

By using Lemma 2.6 and the fact that Lip(Qi
0u) ≤ Lip(u) = 1 for all i, we get

m∑

i=1

|Qm−i
0 (Rε − R̃ε)Q

i−1
0 u|∞ ≤ C

m∑

i=1

Lip(Qi−1
0 u)|ε|2∞

≤ Cm|ε|2∞.

Then by using Lemma 2.8 we obtain
m∑

i=1

|(Qm−i
ε −Qm−i

0 )R̃εQ
i−1
0 u|∞ ≤ C|ε|∞

m∑

i=1

(m− i)Lip(R̃εu).

We conclude the proof of the lemma by using Lemma 2.9. �

2.4. Proof of Proposition 2.1. Recall that εn = (εi(n), i ≥ 1), with εi(n) =
ϕ(i/2n)/(2n). Since ϕ is bounded, we can always assume by taking large enough
n if necessary, that |εn|∞ ≤ 1/2. Note also that Lip(εn) = O(1/n2). Assume now
that m = O(n). Then Lemma 2.10 shows that

Qm
εnu−Qm

0 u =

m−1∑

i=0

Qi
0R̃εnu+O

(
1

n

)
.

Next write
m−1∑

i=0

Qi
0R̃εnu(0) =

m−1∑

i=0

R̃εnu(2i) +

m−1∑

i=0

(Qi
0R̃εnu(0)− R̃εnu(2i)).

By using Lemma 2.7 we get

m−1∑

i=0

|Qi
0R̃εnu(0)− R̃εnu(2i)| ≤

√
2
m−1∑

i=0

Lip(R̃εnu)
√
i

≤ Cm3/2Lip(εn)

≤ C√
n
.
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On the other hand, set

aℓ := −ℓ2−ℓ +

∞∑

j=ℓ+1

j2−j = 2−ℓ+1.(13)

Then by using Lemma 2.4 we get

m−1∑

i=0

R̃εnu(2i) =

m−1∑

i=0

∞∑

ℓ=1

aℓ(εn)2i+ℓ

=

∞∑

ℓ=1

2−ℓ+1 × 1

2n

m−1∑

i=0

ϕ

(
2i+ ℓ

2n

)
.

But
∑∞

ℓ=1 2
−ℓ+1 = 2, and since ϕ is Lipschitz and bounded

1

n

m−1∑

i=0

ϕ

(
2i+ ℓ

2n

)
=

∫ m/n

0

ϕ(s) ds+O
(
ℓ

n

)
.

Thus putting the pieces together we get

Qm
εnu(0)−Qm

0 u(0) = h
(m
n

)
+O

(
1√
n

)
.

Finally (9) gives for a ≤ x ≤ 0 ∧ τRn ,

B(n)
a,v (x) =

1

n

[2nx]−[2na]∑

k=1

(E[Vεn(k) | Vεn(k − 1)]− Vεn(k − 1))

=
1

n

[2nx]−[2na]∑

k=1

(
1 +Q

Vεn(k−1)+1
εn u(0)−Q

Vεn (k−1)+1
0 u(0)

)

=
1

n

[2nx]−[2na]∑

k=1

{
1 + h

(
Λ(n)
a,v

(
a+

k − 1

2n

))}
+O

(
1√
n

)

= 2

∫ x

a

{
1 + h(Λ(n)

a,v(y))
}
dy +O

(
1√
n

)
,

which proves Proposition 2.1. �

2.5. Proof of Proposition 2.2. We assume throughout this subsection that m =
O(n). Then on the one hand by using Lemma 2.10, we get

Qm
εnu(0) = 2m+

m∑

i=1

Qm−i
0 R̃εnu(0) +O

(
1

n

)
.

Moreover Lemma 2.5 shows that |Qm−i
0 R̃εnu(0)| = O(1/n) uniformly in i. Thus

(Qm
εnu(0))

2 = 4m2 + 4m

m∑

i=1

Qm−i
0 R̃εnu(0) +O(1).

On the other hand we have for all ε,

Qm
ε u2 = Qm

0 u2 +

m∑

i=1

Qm−i
ε RεQ

i−1
0 u2.
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A variance calculus shows that

Qi−1
0 u2 = u2 + 4(i− 1)u+ 4(i− 1)2 + 2(i− 1),

which implies that for all ε,

RεQ
i−1
0 u2 = Rεu

2 + 4(i− 1)Rεu,

since Rε1 = 0. Thus

Qm
ε u2(0) = 4m2 + 2m+ Eε,m + Fε,m,

where

Eε,m =

m∑

i=1

Qm−i
ε Rεu

2(0),

and

Fε,m = 4

m∑

i=1

(i− 1)Qm−i
ε Rεu(0).

We now prove the following

Lemma 2.11. We have

Eεn,m =

m∑

i=1

Qm−i
0 R̃εnu

2(0) +O(1),(14)

and

Fεn,m = 4
m∑

i=1

(i− 1)Qm−i
0 R̃εnu(0) +O(1).(15)

Proof. We have

(Rε − R̃ε)u
2(r) =

∑

ℓ≥1

(2rℓ+ ℓ2)2−ℓ(εr,ℓ − ε̃r,ℓ) for all r.(16)

Thus, by using (12), we see that there exists a constant C > 0 such that

|(Rεn − R̃εn)u
2(r)| ≤ C|εn|2∞(x + 1) ≤ C

r + 1

n2
for all r.(17)

By using Lemma 2.3 (applied to f(x) = x+1), we see that there exists C > 0 such
that

|Eεn,m −
m∑

i=1

Qm−i
εn R̃εnu

2(0)| ≤ C

n2

m∑

i=1

(1 +m− i)

≤ C
m2

n2
= O(1).

Next by using Lemma 2.8, we get for all ε,

|(Qm−i
ε −Qm−i

0 )R̃εu
2|∞ ≤ C(m− i)|ε|∞Lip(R̃εu

2).(18)

Recall the formula for aℓ given in (13) and let

bℓ := −ℓ22−ℓ +

∞∑

i=ℓ+1

i22−i.
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Then Lemma 2.4 shows that

R̃εnu
2(r) = 2r

∑

ℓ≥1

aℓ(εn)r+ℓ +
∑

ℓ≥1

bℓ(εn)r+ℓ

= 2
∑

ℓ≥1

aℓ
r + ℓ

n
ϕ

(
r + ℓ

n

)
+
∑

ℓ≥1

(bℓ − 2ℓaℓ)(εn)r+ℓ.

We deduce that if (s 7→ sϕ(s)) is Lipschitz, then

Lip(R̃εnu
2) = O

(
1

n

)
.(19)

Thus (18) implies that

|(Qm−i
εn −Qm−i

0 )R̃εnu
2|∞ = O

(
1

n

)
.

This proves (14). Now Lemma 2.6, 2.8 and 2.9 show that

|Qm−i
εn Rεnu−Qm−i

0 R̃εnu|∞ ≤ |Qm−i
εn (Rεnu− R̃εn)u|∞ + |(Qm−i

εn −Qm−i
0 )R̃εnu|∞

= O
(
|εn|2∞ + (m− i)|εn|∞Lip(εn)

)
= O

(
1

n2

)
.

This proves (15) and finishes the proof of the lemma. �

We can now write

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+

m−1∑

j=0

Qj
0R̃εnu

2(0)

+4
m−1∑

j=0

(m− j − 1)Qj
0R̃εnu(0)

−4m

m−1∑

j=0

Qj
0R̃εnu(0) +O(1).

By using Lemma 2.7 and 2.9 and (19), we get for j ≤ m− 1,

Qj
0R̃εnu

2(0) = R̃εnu
2(2j) +O(n−1/2),

and

Qj
0R̃εnu(0) = R̃εnu(2j) +O(n−3/2).

Therefore

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+

m−1∑

j=0

R̃εnu
2(2j)

−4
m−1∑

j=0

(j + 1)R̃εnu(2j) +O(n1/2).

Lemma 2.4 shows that

R̃εnu
2(2j) = 4j

∑

ℓ≥1

aℓ(εn)2j+ℓ +O
(
1

n

)
,
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and

R̃εnu(2j) =
∑

ℓ≥1

aℓ(εn)2j+ℓ.

Thus

Qm
εnu

2(0)− (Qm
εnu(0))

2 = 2m+O(n1/2).

Then (10) shows that for a ≤ x ≤ 0 ∧ τRn ,

A(n)
a,v(x) =

1

n2

[2nx]−[2na]∑

k=1

(
Q

Vεn(k−1)+1
εn u2(0)− (Q

Vεn (k−1)+1
εn u(0))2

)

=
2

n

[2nx]−[2na]∑

k=1

Λ(n)
a,v

(
a+

k − 1

2n

)
+O

(
1√
n

)

= 4

∫ x

a

Λ(n)
a,v(y) dy +O

(
1√
n

)
.

This finishes the proof of Proposition 2.2. �

2.6. Proof of the convergence on [0,+∞). The proof of the convergence of

Λ
(n)
a,v on [0,+∞) is essentially the same as the proof on [a, 0]. Namely we can define

M̃
(n)
a,v , B̃

(n)
a,v and Ã

(n)
a,v , respectively as in (4), (5) and (6) with Ṽ everywhere instead

of V . Let also{
w

(n,−)
a,v := 1

2n sup{k ≤ 0 : Sεn,[2na],[nv](k) = 0}
w

(n,+)
a,v := 1

2n inf{k ≥ a : Sεn,[2na],[nv](k) = 0}.
(20)

Then

Λ(n)
a,v(x) = Λ(n)

a,v(0) + M̃ (n)
a,v (x) + B̃(n)

a,v (x) for all x ∈ [0, w(n,+)
a,v ).

Moreover (8) shows that

E[Ṽε(k) | Ṽε(k − 1)]− Ṽε(k − 1) = QṼε(k−1)
ǫ u(0)−Q

Ṽε(k−1)
0 u(0),

and

E[Ṽε(k)
2 | Ṽε(k − 1)]− E[Ṽε(k) | Ṽε(k − 1)]2 = QṼε(k−1)

ε u2(0)− (QṼε(k−1)
ε u(0))2,

for all k ≥ 1. Then by following the proofs given in the previous subsections we get
the analogues of Proposition 2.1 and 2.2:

Proposition 2.12. Let R > 0 and T > 0 be given. Then for 0 ≤ x ≤ T ∧ τRn ∧
w

(n,+)
a,v ,

B̃(n)
a,v (x) = 2

∫ x

0

h(Λ(n)
a,v(y)) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a, T and R.

Proposition 2.13. Let R > 0 and T > 0 be given. Then for 0 ≤ x ≤ T ∧ τRn ∧
w

(n,+)
a,v ,

Ã(n)
a,v(x) = 4

∫ x

0

Λ(n)
a,v(y) dy +O

(
1√
n

)
,

where the O(n−1/2) is deterministic and only depends on a, T and R.
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So according again to the criterion of Ethier and Kurtz (Theorem 4.1 p.354 in

[EK]), we deduce the convergence in law of Λ
(n)
a,v on [0,+∞).

Actually one can deduce the convergence on [a,+∞) as well. For this we just need
to observe that the criterion of Ethier and Kurtz applies in the same way for non
homogeneous operators. For reader’s convenience let us recall the main steps of its
proof. First Propositions 2.1, 2.2, 2.12 and 2.13 imply the tightness of the sequence

(Λ
(n)
a,v , n ≥ 1) on [a,+∞). Next Itô Formula shows that any limit of a subsequence

is a solution of the non-homogeneous martingale problem (see the definition in [EK]
p.221) associated to the operator

Gxf(λ) :=

{
2λf ′′(λ) + 2(1 + h(λ))f ′(λ) if x ∈ [a, 0]
2λf ′′(λ) + 2h(λ)f ′(λ) if x ∈ [0,+∞).

Then Theorem 2.3 p.372 in [EK] (with their notation replace t by x, x by λ and
take r0 = 0 and r1 = +∞) shows that this martingale problem is well posed
(in particular it has a unique solution). This proves the desired convergence on
[a,+∞). Since the proof of the convergence on (−∞, a] is the same as on [0,+∞),
this concludes the proof of Theorem 1.1. �

2.7. Extension to the non homogeneous setting. We give here an extension
of Theorem 1.1 when ϕ is allowed to be space dependent. Apart from its own
interest, we will use this extension in the proof of Theorem 1.4.

We now define non homogeneous cookies random walks. If

ε = (εi,x, i ≥ 1, x ∈ Z),

is given, we set

pε,i,x :=
1

2
(1 + εi,x),

for all i and x. Then Xε is defined by

P[Xε(n+ 1)−Xε(n) = 1 | Fε,n] = 1− P[Xε(n+ 1)−Xε(n) = −1 | Fε,n] = pε,i,x,

if #{j ≤ n : Xε(j) = Xε(n)} = i and Xε(n) = x. Similarly non homogeneous
excited Brownian motions are defined by

dYt = dBt + ϕ(Yt, L
Yt

t ) dt,

for some bounded and measurable ϕ. Such generalized version of excited BM was
already studied in [NRW2] and [RS]. In particular Ray-Knight results were obtained
in this context and a sufficient condition for recurrence is given in [RS] (see below).
Now let ϕ be fixed. Assume that for each n ≥ 1, a function ϕn : Z× [0,∞) → R is
given, and assume that

(ϕn([2nx], ℓ), x ∈ R, ℓ ≥ 0) → (ϕ(x, ℓ), x ∈ R, ℓ ≥ 0) when n → ∞,(21)

uniformly in ℓ and in the Skorokhod space D(R) in the x variable. Assume moreover
that supk,ℓ |ϕn(k, ℓ)| ≤ 2n for n large enough and define εn = (εi,x(n), i ≥ 1, x ∈ Z)
by

εi,x(n) =
1

2n
ϕn

(
x,

i

2n

)
,

for all i ≥ 1 and x ∈ Z. Finally define Λ
(n)
a,v and Λa,v as in the homogeneous

setting (see the introduction). We can state now the following natural extension of
Theorem 1.1:
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Theorem 2.14. Assume that ϕ is bounded, Lipschitz in both variables, and that

for each x, (ℓ 7→ ℓϕ(x, ℓ)) is also Lipschitz. Assume further that for n large enough,

Xεn is recurrent and that Y is recurrent. Assume eventually that (21) holds. Then

for any a ∈ R and v ≥ 0,

(Λ(n)
a,v(x), x ∈ R)

L
=⇒
n→∞

(Λa,v(x), x ∈ R) .

The proof of this result is exactly the same as the proof of Theorem 1.1. Note in
particular that if ϕ is Lipschitz in both variables, then the convergence in (21) is
actually uniform in x on any compact. Note also that as at the end of the previous
subsection, we need to use here a non homogeneous version of Ethier–Kurtz’s result
(Theorem 4.1 p.354 in [EK]). This time we just have to verify that the martingale
problem associated to the operator

Gxf(λ) :=

{
2λf ′′(λ) + 2(1 + h(x, λ))f ′(λ) if x ∈ [a, 0]
2λf ′′(λ) + 2h(x, λ)f ′(λ) if x ∈ [0,+∞),

is well posed, where h(x, λ) =
∫ λ

0 ϕ(x, µ) dµ, for any x and λ. But again this follows
from Theorem 2.3 p.372 in [EK].

In particular the above theorem applies to the following situation, which we will use
in the proof of Theorem 5.1. Assume that ϕ : [0,∞) → R satisfies the hypotheses
of Theorem 1.1. Let us give for each n ≥ 1, a function (λ(n, x), x ∈ Z). Set
λn := λ(n, [2n·]). Assume that λn converges to some other function λ in D(R),
when n → ∞. For any λ, set

ϕλ(x, ℓ) := ϕ(λ(x) + ℓ) for all x ∈ R and ℓ ≥ 0.

Set also
ϕn(x, ℓ) := ϕ(λ(n, x) + ℓ) for all x ∈ Z and ℓ ≥ 0.

Then λ 7→ ϕλ is continuous on D(R) and thus ϕλn
= ϕn([2n·], ·) converges to ϕλ

as in (21). Let now εn,λn
= (εi,x(n, λn), i ≥ 1, x ∈ Z) be defined by

εi,x(n, λn) :=
1

2n
ϕn

(
x,

i

2n

)
.

Let Λ(n,λn) and Λ(λ) be the processes associated to εn,λn
and ϕλ as in the intro-

duction. The following is an immediate application of Theorem 2.14:

Corollary 2.15. Assume that the hypotheses of Theorem 2.14 are satisfied. Then

with the above notation, for any a and v,
(
Λ(n,λn)
a,v (x), x ∈ R

)
L

=⇒
n→∞

(
Λ(λ)
a,v(x), x ∈ R

)
.

To finish this subsection, we recall some sufficient condition for recurrence of Xε

and Y proved respectively in [Z, Corollary 7] and [RS, Corollary 5.6] in the non
homogeneous case. We notice that it applies only when for all i and x, εi,x, respec-
tively ϕ, is nonnegative. We only state the result in the continuous setting, the
result for Xε being analogous. So if for x ∈ R,

δx(ϕ) :=

∫ ∞

0

ϕ(x, ℓ) dℓ,

then Y is recurrent as soon as

lim inf
z→+∞

1

z

∫ z

0

δx(ϕ) dx < 1.
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3. Proof of Corollary 1.2

Note that

τεn,[2na]([nv]) = [2na] + 2
∑

k∈Z

Sεn,[2na],[nv](k).

Thus

τεn,[2na]([nv])

4n2
=

∫

R

Λ(n)
a,v(y) dy + o(1).

On the other hand, the occupation times formula ([RY] p.224) gives

τa(v) =

∫

R

Λa,v(y) dy.

Now Theorem 1.1 shows that for any fixed A > 0, the following convergence in law
holds:

∫ A

−A

Λ(n)
a,v(y) dy

L
=⇒
n→∞

∫ A

−A

Λa,v(y) dy.

So Corollary 1.2 follows from the following lemma (recall that w
(n,±)
a,v is defined in

(20)):

Lemma 3.1. Let ǫ > 0 be given. Then there exists A > 0, such that

P

[
|w(n,±)

a,v | ≥ A
]
≤ ǫ,

for all n large enough.

Proof. We prove the result for w
(n,+)
a,v . The proof for w

(n,−)
a,v is the same. First

observe that w+
a,v is nonnegative and a.s. finite: it is equal to sup{Yt : t ≤ τa(v)}

and τa(v) is a.s. finite since Y is recurrent. So for any ǫ > 0, there exists A > a
such that

P[w+
a,v ≥ A] ≤ ǫ.

Moreover by using Theorem 1.1 and Skorokhod’s representation Theorem, it is

possible to define Λ
(n)
a,v and Λa,v on the same probability space, such that for any

η > 0,

P

[
sup

0≤x≤A
|Λ(n)

a,v(x) − Λa,v(x)| ≥ η

]
≤ ǫ,

for n large enough. Thus

P[Tn(η) ≥ A] ≤ 2ǫ,(22)

where

Tn(η) = inf{x > 0 : Λ(n)
a,v(x) ≤ η}.

Recall now that on [0,+∞), Λ
(n)
a,v(·) is equal in law to Ṽεn([2n·])/n (see the begin-

ning of Section 2.1). But since |εn|∞ = O(1/n), (Ṽεn(k), k ≥ 0) is stochastically
dominated by a Galton-Watson process (Wn(k), k ≥ 0) with offspring distribution
a geometrical law with parameter 1 − pn = 1/2 − c/n, for some constant c > 0.
Moreover, when Wn(0) = 1, the probability for Wn to extinct before time [nA] can

be computed explicitly. If f
(n)
k (·) is the generating function of Wn(k), then this
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probability is equal to f
(n)
[nA](0). An expression for f

(n)
k (0) is given for instance in

[AN] p.6-7:

f
(n)
k (0) = 1−mk

n

1− sn
mk

n − sn
for all k ≥ 1,

where

mn =
pn

1− pn
= 1 +

4c

n
+O

(
1

n2

)
,

and

sn = {1−mn(1− pn)}/pn = 1− 4c

n
+O

(
1

n2

)
.

It follows that f
(n)
[nA](0) = 1 − c′/n+ O(1/n2), with c′ = 4c/(1− e−4cA) > 0. Now

the law of Wn starting from [ηn] is equal to the law of the sum of [ηn] independent
copies of Wn starting from 1. Thus if Wn(0) = [ηn], the probability for Wn to

extinct before time [nA] is f
(n)
[nA](0)

[ηn]. If η is small enough and n large enough,

this probability is larger than (1 − ǫ). By using now that Ṽεn is stochastically
dominated by Wn, (22) and the strong Markov property, we get

P

[
w(n,+)

a,v ≥ 2A
]

≤ P

[
w(n,+)

a,v ≥ 2A and Tn(η) ≤ A
]
+ P [Tn(η) ≥ A]

≤ P [Wn([nA]) > 0 | Wn(0) = [ηn]] + 2ǫ ≤ 3ǫ.

This concludes the proof of the lemma. �

4. Proof of Corollary 1.3

First note that the law of Yγλ
has for density the function a 7→ λE[La

γλ
]. Indeed,

for any bounded and measurable function φ,

E[φ(Yγλ
)] = E

[∫ ∞

0

φ(Ys)λe
−λs ds

]

= E

[∫

0<s<t

λ2φ(Ys)e
−λt ds dt

]

= E

[∫

R

∫ ∞

0

λ2φ(a)La
t e

−λt dt da

]

=

∫

R

E[φ(a)λLa
γλ
] da,

where in the third equality we have used the occupation times formula (see Corollary
(1.6) p.224 in [RY]).

We now follow the argument given by Tóth in [T2]. First observe that if

τ̃ε,a(v) := inf {j : #{i ≤ j : Xε(i) = a and Xε(i+ 1) = a+ 1} = v + 1} ,

then exactly as we proved Corollary 1.2, we can show that τ̃εn,[2na]([nv])/(4n
2)

converges in law toward τa(v) for any a ∈ R and v ≥ 0. Next observe that for any
a ∈ Z and k ∈ N,

P[Xεn(k) = a] =
∑

v∈N

{P[τεn,a(v) = k] + P[τ̃εn,a(v) = k]} .
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Thus for any a ∈ R,

2nP
(
Xεn(θλ/(4n2)) = [2na]

)
= 2n(1− e−λ/(4n2))

∑

k≥0

e−kλ/(4n2)

×
∑

v∈N

{
P[τεn,[2na](v) = k] + P[τ̃εn,[2na](v) = k]

}

∼ λ

2n

∑

v∈N

{
E

[
e−λ

τεn,[2na](v)

4n2

]
+ E

[
e−λ

τ̃εn,[2na](v)

4n2

]}
,

since 2n(1− e−λ/(4n2)) ∼ λ/(2n). Note now that

1

n

∑

v∈N

E

[
e−λ

τεn,[2na](v)

4n2

]
=

∫ ∞

0

E

[
e−λ

τεn,[2na]([nv])

4n2

]
dv,

and that for any v ∈ R
+, Corollary 1.2 implies

E

[
e−λ

τεn,[2na]([nv])

4n2

]
→ E

[
e−λτa(v)

]
,

when n → ∞. The same remark applies with τ̃ instead of τ . Thus by application
of Fatou’s lemma, for every a ∈ R,

lim inf
n→∞

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
≥ λ

∫ ∞

0

E

[
e−λτa(v)

]
dv.(23)

But notice that for every a ∈ R and v ≥ 0,

E

[
e−λτa(v)

]
= λ

∫ ∞

0

e−λs
P[τa(v) ≤ s] ds

= λ

∫ ∞

0

e−λs
P[La

s ≥ v] ds

= P[La
γλ

≥ v].

Therefore

λ

∫

R

∫ ∞

0

E

[
e−λτa(v)

]
dv da = λ

∫

R

E[La
γλ
] da = λE[γλ] = 1.(24)

On the other hand for any n,
∫

R

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
da = 1.(25)

It follows now from (23) (24) and (25) that for almost every a ∈ R,

lim
n→∞

(2n)P
(
Xεn(θλ/(4n2)) = [2na]

)
= λE[La

γλ
].

The corollary is then a consequence of Sheffé’s lemma. �

5. Proof of Theorem 1.4

Tightness: We first need to show that the sequence (X(n)(·), n ≥ 1) is tight. All we
have to prove (see e.g. Lemma (1.7) p.516 in [RY]) is that for each T > 0, α > 0
and η > 0, there are n0 and κ > 0, such that for n ≥ n0,

P

[
sup

t≤s≤t+κ
|X(n)(s)−X(n)(t)| ≥ η

]
≤ ακ for all t ≤ T.(26)
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We first prove the above inequality for t = 0. For this it suffices to find κ > 0 such
that

P
[
τεn,[2nη](0) ≤ 4n2κ

]
≤ ακ,(27)

for n large enough (η > 0 and α being arbitrary and fixed), since the analogous
result for η < 0 is similar (use the same proof with the process −X(n) instead of
X(n)). But Corollary 1.2 shows that as n tends to ∞, the left hand side in (27)
converges toward P[τη(0) ≤ κ]. Since ϕ is bounded, the excited Brownian motion Y
is stochastically dominated by a Brownian motion with some constant drift. Thus
this last term in turn is bounded by the analogous quantity for the Brownian motion
with drift. But it is well known that for such process P[τη(0) ≤ κ] is a o(κ) (see
for instance Proposition (3.7) p.105 in [RY]). This proves (27). To obtain (26) it
suffices to observe that after time t, X(n) is equal in law to a renormalized non-
homogeneous cookie random walk starting from X(n)(t) and evolving in a shifted
cookie environment (see also (30) below). So we can apply the same proof and
we obtain the same result with the same constants everywhere. This finishes to
prove the tightness of (X(n)(·), n ≥ 0). It remains to prove the convergence of the
finite-dimensional distributions. For reader’s convenience we first present a proof
of the convergence of one-dimensional distributions.

Convergence of one-dimensional distributions: Let (Wt, t ≥ 0) be some limit in law
of (X(nk)(t), t ≥ 0), for a subsequence (nk, k ≥ 0). Then for any bounded and
measurable function φ,

E

[
φ

(
Xεnk

(θλ/(4nk
2))

2nk

)]
∼k→∞ λ

∫ ∞

0

e−λt
E

[
φ(X(nk)(t))

]
dt

→k→∞ λ

∫ ∞

0

e−λt
E[φ(Wt)] dt

= E[φ(Wγλ
)].

On the other hand Corollary 1.3 shows that the term on the left hand side converges
toward E[φ(Yγλ

)]. Since this holds for any λ and any φ, we deduce that Wt and
Yt have the same law for every t ≥ 0 (see [F, Theorem 1a p.432]). This proves the
convergence of one-dimensional distributions.

Convergence of finite-dimensional distributions: We first need to show that for any
finite set I, ai, vi ≥ 0, i ∈ I,

(
τεn,[2nai]([nvi])

4n2
, i ∈ I

)
L

=⇒
n→∞

(τai
(vi), i ∈ I).(28)

For this it is sufficient to prove (see the proof of Corollary 1.2) that:

Theorem 5.1. Under the hypotheses of Theorem 1.1, for any finite set I, any

ai ∈ R and vi ≥ 0, i ∈ I,
(
Λ(n)
ai,vi , i ∈ I

)
L

=⇒
n→∞

(Λai,vi , i ∈ I) .

Proof. Note that when the cardinality of I equals 1 the result is given by Theorem
1.1. The general case can then be proved by induction on the cardinality of I.
To simplify the notation we only make the proof of the induction step when the
cardinality of I equals 2, but it would work similarly in general. So let a, a′, v and



EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 21

v′ be given. All we have to prove is that for any continuous and bounded functions

H and H̃ ,

E

[
H
(
Λ
(n)
a′,v′

)
H̃
(
Λ(n)
a,v

)]
→ E

[
H (Λa′,v′) H̃ (Λa,v)

]
,(29)

when n → ∞. Consider the events

An :=
{
Λ(n)
a,v(a

′) < v′
}
,

for n ≥ 1, and

A := {Λa,v(a
′) < v′} .

Observe that conditionally to Λ
(n)
a,v and on the set An we have the equality in law:

Λ
(n)
a′,v′ − Λ(n)

a,v = Λ
(n,Λ(n)

a,v(a+ ·))

a′−a,v′−Λ
(n)
a,v(a′)

,(30)

with the notation of Corollary 2.15. This identity is straightforward. Maybe less
immediate is the analogous equality in the continuous setting, so we state it as a
lemma:

Lemma 5.2. Let a, a′, v and v′ be given. Conditionally to Λa,v and on A, we

have the equality in law:

Λa′,v′ − Λa,v = Λ
(Λa,v(a+ ·))

a′−a,v′−Λa,v(a′).(31)

Proof. One just has to observe (see also (2) in [RS]) that conditionally to Λa,v and
on A, the law of (Yt+τa(v), t ≥ 0) is equal to the law of an excited BM starting from
a and associated to the nonhomogeneous function ϕ̃ defined by

ϕ̃(x, ℓ) = ϕ(Λa,v(x) + ℓ).

The lemma follows. �

It follows from (30) that for any continuous and bounded H ,

E

[
H
(
Λ(n)
a,v + (Λ

(n)
a′,v′ − Λ(n)

a,v)
) ∣∣∣ Λ(n)

a,v

]
1An

= Hn

(
Λ(n)
a,v

)
1An

,

where

Hn (λ) := E

[
H
(
λ+ Λ

(n,λ(a+·))
a′−a,v′−λ(a′)

)]
,

for any λ in the Skorokhod space D(R) such that λ(a′) ≤ v′. Define similarly H by

H(λ) := E

[
H
(
λ+ Λ

(λ(a+·))
a′−a,v′−λ(a′)

)]
,

for any λ ∈ D(R) such that λ(a′) ≤ v′. Now Corollary 2.15 shows that for any
sequence of functions λn, satisfying λn(a

′) ≤ v′, and converging to some λ (in
D(R)), Hn(λn) converges to H(λ). We recall now a standard result in analysis:

Lemma 5.3. Let E be a metric space. Let (hn, n ≥ 0) be some sequence of real

functions on E and let h be some other function. If for any sequence (λn, n ≥ 0)
converging to some λ ∈ E, hn(λn) converges toward h(λ), then hn converges to h
uniformly on compact subsets.

By using this result we deduce that Hn converges to H uniformly on compact
subsets of the space of functions f ∈ D(R) such that f(a′) ≤ v′ . Moreover by
using the Skorokhod’s representation theorem (see Theorem 6.7 in [Bil]), we can

assume that Λ
(n)
a,v converges almost surely toward Λa,v. This implies in particular
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that 1An
also converges a.s. to 1A. So if H and H̃ are two continuous and bounded

functions, we deduce from the dominated convergence theorem that

E

[
H
(
Λ
(n)
a′,v′

)
H̃
(
Λ(n)
a,v

)
1An

]
→ E

[
H (Λa′,v′) H̃ (Λa,v) 1A

]
,(32)

when n → ∞. We claim moreover that if (a′, v′) 6= (a, v), then P[Λa,v(a
′) = v′] = 0.

Indeed the set {Λa,v(a
′) = v′} is included in the set {ea′(v′) 6= 0}, where ea′(v′)

denotes the excursion of Y out of level a′ starting from τa′(v′−), and this last
event has probability 0 (this is well known to be the case for the Brownian motion,
and can be deduced for Y by an absolute continuity argument, see also [RS]). We

deduce that P[Λ
(n)
a,v(a′) = v′] → 0 when n → +∞. Thus the convergence in (32)

also holds if we replace An and A respectively by Ac
n and Ac. Then (29) follows

and this concludes the proof of Theorem 5.1. �

Now with (28) in hand, we can mimic the rest of the proof of the convergence of
one-dimensional distributions. This concludes the proof of Theorem 1.4. �

Remark 5.4. Notice that the whole proof works as well in the setup of Theorem
2.14. So, as Theorem 1.1, Theorem 1.4 can be extended in the non homogeneous
setting.

Remark 5.5. The notation Λa,v(x) is taken from Tóth and Werner [TW]. We
notice by the way that here also the set

Λ = {(Λa,v(x), x ≥ a)}(a,v)∈R×[0,∞) ,

forms a family of reflected/absorbed coalescing processes. In [TW] the Λa,v’s were
moreover independent Brownian motions (reflected or absorbed in 0 depending on
the time interval) and therefore Λ was called (in their Section 2.1) a FICRAB
(for family of independent coalescing reflected and absorbed Brownian motions).
Such family of coalescing Brownian motions seems to have been first studied by
Arratia [Arr] and is now better known under the name of Brownian web (see for
instance [FINR]). Here the situation is slightly different: first each Λa,v is some
diffusion which is not a Brownian motion and before they coalesce two Λa,v’s are
not independent. For instance if v < v′, then (Λa,v,Λa,v′) satisfies the following
system of stochastic differential equations:





dΛa,v(x) = 2
√
Λa,v(x) dBx + 2(1{a≤x≤0} + h(Λa,v(x))) dx

dΛa,v′(x) = 2
√
Λa,v(x) dBx + 2

√
Λa,v′(x)− Λa,v(x) dB̃x

+2(1{a≤x≤0} + h(Λa,v′(x))) dx,

(33)

for all x ∈ [a,+∞), where B and B̃ are two independent Brownian motions. This
result follows from (31) and the Ray-Knight theorem (see for instance [RS, Theorem
6.1]). Note that we could describe similarly the law of (Λai,vi , i ∈ I), for any finite
set I, and any (ai, vi), i ∈ I. In [TW], the family Λ was called a sequence of forward
lines and the dual sequence, the sequence of backward lines, was defined by

Λ∗ =
{
Λ∗
a,v(·) = (Λ−a,v(−x), x ≥ a)

}
(a,v)∈R×[0,∞)

.

As in [TW] we can define Λ∗ here and it is also a deterministic function of Λ:

Λ∗
a,v(x) = sup {w : Λ−x,w(−a) < v},(34)

for almost all x ≥ a and v ≥ 0. It is important to observe that

(35) (Λa,v(x), x ∈ R) is a function of ((Λa,v(x), x ≥ a), (Λ∗
−a,v(x)), x ≥ −a)).
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We notice now some other notable differences with the situation in [TW]. First
if we denote by Qh the law of Λ, then the law of Λ∗ is Q−h. In particular Λ
and Λ∗ do not have the same law (in other words Λ is not self-dual), except if
h = 0. Moreover, for any a (say a < 0) and v ≥ 0, the process Λa,v will almost
surely not hit 0 in the time interval [a, 0]. The reason is that in the time interval
[0, τa(v)] the excited BM will cross each level x ∈ [a, 0] and strictly increase its
local time on these levels (by using the absolute continuity between the laws of a
standard BM and the excited BM). Similarly given any a < a′, v and v′, we have
Λa,v(x) 6= Λ∗

−a′,v′(−x) = Λa′,v′(x) for all x ∈ [a, a′] almost surely. Let us also notice

that couples of processes such as (Λa,v(x), a ≤ x ≤ 0) and (Λ∗
0,v′(x), 0 ≤ x ≤ −a), if

a < 0, are conjugate diffusions (see [T3] for a definition). Similarly (Λ0,v(x), x ≥ 0)
and (Λ∗

a,v′(x), x ≥ −a), if a < 0, are also conjugate.
Now we can sketch another proof of Theorem 5.1 which bypass the use of Corollary
2.15 and uses instead these notions of forward and backward lines. The idea is to
first prove that

{
(Λ(n)

ai,vi(x), x ≥ ai), i ∈ I
}

L
=⇒
n→∞

{(Λai,vi(x), x ≥ ai), i ∈ I} .(36)

This can be done by using Ethier-Kurtz’s result (Theorem 4.1 p.354 in [EK]), (30)
and (33). One can next define analogues Λ(n) and Λ(n),∗ respectively of Λ and Λ∗,
in the discrete setting and it then suffices to use (34) (and its discrete counterpart),
(35) and (36) to deduce the desired convergence. Since we already gave another
proof, we omit the details here.

References

[ABK] Amir G., Benjamini I, Kozma G.: Excited random walk against a wall, Probab.
Theory and Related Fields 140, (2008), 83–102.

[Arr] Arratia R. A.: Coalescing Brownian motions on the line, Ph.D. Thesis, University of
Wisconsin, Madison, (1979).

[AN] Athreya K., Ney P.: Branching processes, Die Grundlehren der mathematischen Wis-
senschaften, Band 196. Springer-Verlag, New York-Heidelberg, (1972), xi+287 pp.

[BaS] Basdevant A.-L., Singh A.: On the speed of a cookie random walk, Probab. Theory
Related Fields 141, (2008), 625–645.

[Bil] Billingsley P.: Convergence of probability measures, Second edition. Wiley Series in Proba-
bility and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley
& Sons, Inc., New York, (1999), x+277 pp.

[BKS] Benjamini I., Kozma G., Schapira Br.: A balanced excited random walk, preprint,
arXiv:1009.0741.

[BW] Benjamini I., Wilson D. B.: Excited random walk, Electron. Comm. Probab. 8 (elec-
tronic), (2003), 86–92.

[CLJ] Cranston M., Le Jan Y.: Self-attracting diffusions: Two case studies, Math. Ann. 303,
(1995), 87–93.

[Dav] Davis B.: Weak limits of perturbed Brownian motion and the equation Yt = Bt+α sup{Ys :
s ≤ t} + β inf{Ys : s ≤ t}, Ann. Probab. 24, (1996), 2007–2023.

[D] Dolgopyat D.: Central limit theorem for excited random walk in the recurrent regime,
preprint, http://www.math.umd.edu/ dmitry/papers.html

[DCS] Duminil-Copin H., Smirnov S.: The connective constant of the honeycomb lattice

equals
√

2 +
√
2, arXiv:1007.0575.

[EK] Ethier N., Kurtz G.: Markov processes. Characterization and convergence, Wiley Series
Probab. Math. Stat., New York, (1986), x+534 pp.

[F] Feller W.: An introduction to probability theory and its applications. Vol. II., Second edition
John Wiley & Sons, Inc., New York-London-Sydney (1971), xxiv+669 pp.



EXCITED BROWNIAN MOTIONS AS LIMITS OF EXCITED RANDOM WALKS 24

[FINR] Fontes L. R. G., Isopi M., Newman C. M., Ravishankar K.: The Brownian web:

characterization and convergence, Ann. Probab. 32, (2004), 2857–2883.
[HRo] Herrmann S., Roynette B.: Boundedness and convergence of some self-attracting dif-

fusions, Math. Ann. 325, (2003), 81–96.
[KRS] Kesten H., Raimond O., Schapira Br.: Random walks with occasionally modified

transition probabilities, arXiv:0911.3886.
[K] Kozma G.: Problem session, in: Oberwolfach report 27/2007, Non-classical interacting

random walks. www.mfo.de
[KZ] Kosygina E., Zerner M. P. W.: Positively and negatively excited random walks on

integers, with branching processes, Electron. J. Probab. 13, (2008), 1952–1979.
[LSW] Lawler G., Schramm O., Werner W.: On the scaling limit of planar self-avoiding

walk, Fractal geometry and application, A jubilee of Benoit Mandelbrot, Proc. Sympos. Pure
Math. 72, Part 2, Amer. Math. Soc., Providence, RI, (2004), 339–364.

[MR] Merkl F., Rolles S.W.W.: Linearly edge-reinforced random walks, Dynamics & stochas-
tics, 66–77, IMS Lecture Notes Monogr. Ser. 48, Inst. Math. Statist., Beachwood, OH, (2006).

[MPRV] Menshikov M., Popov S., Ramirez A., Vachkovskaia M.: On a general many-

dimensional excited random walk, arXiv:1001.1741.
[NRW1] Norris J.R., Rogers L.C.G., Williams D.: An excluded volume problem for Brow-

nian motion, Phys. Letters A., 112, (1985), 16–18.

[NRW2] Norris J.R., Rogers L.C.G., Williams D.: Self-avoiding random walk: a Brownian

motion model with local time drift, Probab. Theory and Related Fields 74, (1987), 271–287.
[Pem] Pemantle R.: A survey of random processes with reinforcement, Probab. Surv. 4 (elec-

tronic), (2007), 1–79.
[PemV] Pemantle R., Volkov S.: Vertex-reinforced random walk on Z has finite range, Ann.

Probab. 27, (1999), 1368–1388.
[R] Raimond O.: Self-attracting diffusions: Case of the constant interaction, Probability The-

ory and Related Fields 107, (1997), 177–196.
[RS] Raimond O., Schapira Br.: Excited Brownian motion, arXiv:0810.3538.
[RY] Revuz D., Yor M.: Continuous martingales and Brownian motion, Springer-Verlag, third

ed. (1999).
[Sel] Sellke T.: Recurrence of reinforced random walk on a ladder, Electron. J. Probab. 11,

(2006), 301–310.
[Tar] Tarrès P.: Vertex-reinforced random walk on Z eventually gets stuck on five points, Ann.

Probab. 32, (2004), 2650–2701.
[T1] Tóth B.: The “true” self-avoiding walk with bond repulsion on Z: limit theorems, Ann.

Probab. 23, (1995), 1523–1556.
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