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ON MODULAR BALL-QUOTIENT SURFACES

WITH KODAIRA DIMENSION ONE

ALEKSANDER MOMOT

Abstract. Let Γ ⊂ PU(2, 1) be a lattice which is not co-compact, of finite
Bergman-covolume and acting freely on the open unit ball B ⊂ C2. Then

the compactification X = Γ \B is a smooth projective surface with an elliptic
compactification divisor D = X \ (Γ \ B). In this short note we discover a
new class of unramified ball-quotients X. We consider ball-quotients X with

kod(X) = h1(X,OX) = 1. We prove that all minimal surfaces with finite
Mordell-Weil group in the class described are pull-backs of the elliptic modular
surface which parametrizes triples (E, x, y) of elliptic curves E with 6-torsion
points x, y ∈ E[6] such that Zx+ Zy = E[6].

1. Introduction

Let the symbol T denote the class of complex projective smooth surfaces X
which contain pairwise disjoint elliptic curves D1, ..., DhX

such that U = X \
⋃

Di

admits the open unit ball B ⊂ C2 as universal holomorphic covering; as explained
in [7], T forms the ’generic’ class of compactified ball-quotient surfaces. There are
several motivations to study surfaces in T without assuming that π1(U, ∗) with its
Poincaré action on B is an arithmetic lattice of PU(2, 1); we refer to [1] or to the
introduction of [7]. Since the discovery of blown-up abelian surfaces in T by Hirze-
bruch and Holzapfel some years ago (cf. [2]) there have been no further examples of
surfaces of special type in T . In this short note we present a new class of modular
surfaces X ∈ T with kod(X) = 1.

In what follows we only consider complex projective smooth surfaces. Recall that
a minimal elliptic surface π : X −→ C with finite Mordell-Weil group MW (X) of
sections and fulfilling the identity rank NS(X) = h1,1(X) is said to be extremal.
Particular examples arise in the following way. To each pair of positive integers

(m,n) /∈ {(1, 1), (1, 2), (2, 2), (1, 3), (1, 4), (2, 4)}

there exists a modular elliptic surface over Q in the sense of Shioda [10]

πn(m) : Xn(m) −→ Cn(m)

such that πn(m) admits no multiple fibers and has a non-constant j-invariant. By
[10], Xn(m) is an extremal elliptic surface with the following properties.

• MW (Xn(m)) = Z/mZ× Z/nZ
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• Cn(m) is the (compactified) curve Γm(n) \H where Γn(m) ⊂ Sl2(Z) is the
group

{(

a b
c d

)

;

(

a b
c d

)

≡

(

1 ∗
0 1

)

modm, b ≡ 0modn

}

.

• Cn(m) parametrizes triples
(

(E, eE), x, y
)

of elliptic curves E with neutral
element eE ∈ E(C) and elements x ∈ E[m], y ∈ E[n] such that |Zx+Zy| =
mn.

• All singular fibers of πn(M) are of type Ik in Kodaira’s notation; they lie
over the cusps of c ∈ Cn(m). A representant of c in Q ∪ {∞} is stabilized
by a matrix γ ∈ Γ which is a Sl2(Z)-conjugate of

(

1 k
0 1

)

.

Here, x and y arise from to the intersection of E with generators of MW (Xn(m)).
More generally, by [8, Thm. 1.2, Thm. 1.3] each extremal elliptic surface π : X −→ C

with non-constant j-invariant, no multiple fibers and MW (X̃) = Z/mZ × Z/nZ,
(m,n) as above, allows a cartesian diagram (where v is an isogeny)

X
π //

��

C

v

��
Xn(m)

πn(m) // Cn(m)

With this perspective we are able to formulate our main result. We call a complex
projective smooth surface X irregular if h1(X,OX) > 1.

Theorem 1.1. Let X be an irregular minimal surface in T with kod(X) = 1. If X
has a finite Mordell-Weil group then X is an extremal elliptic surface fibered over

an elliptic curve C such that:

(1) The j-invariant of π induces a cartesian diagram defined over Q

X
π //

��

C

��
X6(6)

π6(6) // C6(6)

(2) The compactification divisor D of X consists of 36 sections of π, each hav-

ing self-intersection number −χ(X). The fibration π admits 2χ(X) singular
fibers of type I6, and each component of an I6 intersects D in precisely 6
points. We have rank NS(X) = 10χ(X) + 2.

Conversely, X6(6) is an extremal elliptic and irregular surface in T .

2. Some basic properties of surfaces in T

We cite two results on ball-quotient surfaces needed for the proof of the theorem.
The first result is essentially [9, Thm. 3.1] specified to dim X = 2 with attention to
sign conventions, except the assertion on semi-stability. The latter assertion follows
from [5]. Thereby, a reduced effective divisor is called semi-stable if it has normal
crossings and if every rational smooth prime component intersects the remaining
components in more than one point.
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Theorem 2.1 (Tian-Yau/Miyaoka-Sakai). Let X be a smooth projective surface

and D ⊂ X a divisor with normal crossings. Suppose that KX + D is big and

ample modulo D. Then

c21(Ω
1
X(log D)) ≤ 3c2(Ω

1
X(log D)),

with equality holding if an only if X \D is an unramified ball quotient Γ \ B and

D is semi-stable.

There is a canonical exact sequence

0 −→ Ω1
X −→ Ω1

X(log D)
res
−→ OD −→ 0

where res is the Poincaré residue map. With this one proves that c1(Ω
1
X(log D)) =

[D] − c1(X) ∈ H2(X,C) and c2(Ω
1
X(log D)) = c2(X) − (c1(X), [D]) + ([D], [D]) ∈

H4(X,C). Therefore,

c21(Ω
1
X(log D)) = (KX +D)2.

In fact, it is interesting to note that if equality holds in the theorem then D is
smooth. Namely, if Γ′ ⊂ Γ is a neat normal subgroup with finite index in Γ then
Γ′ \B is compactified by a smooth elliptic divisor, and Γ \B is compactified by a
divisor D. As D is the quotient D′/G, G = Γ/Γ′, it is a normal curve. Hence, D
is smooth and consists of elliptic curves, for rational curves cannot appear because
of semi-stability. The next is proved verbatim as [7, Lemma 3.2].

Lemma 2.2. Let X be in T with compactification divisor D and consider an irre-

ducible curve L ⊂ X. If L is smooth rational then |L ∩ D| ≥ 3. If L is a smooth

elliptic curve then |L ∩D| ≥ 1.

3. Proof of the results

General theory asserts that X admits an elliptic fibration π : X −→ C which is
the Albanese morphism. As KX +D is ample modulo D, it follows that a general
fiber F has positive self-intersection with D. Thus, a component of D dominates
C. Hence, C is an elliptic curve and h1(X,OX) = 1. Moreover, after transition

to an etale cover C̃ of C and performing a base change, we can achieve that every
Di is a section, as soon as it dominates C ([7, Lemma 3.3]). We will assume this
for the time being. Since the curves Di are pair-wise disjoint, in fact all must be
sections.

Claim 3.1. We have 36χ(X) = DF · χ(X) = −D2 and 36 = DF .

Proof. According to the canonical bundle-formula we haveKX = π∗(c) for a divisor
Weil divisor c ∈ Div(C) and h0(X,mKX) = h0(C,mc). Riemann-Roch on C yields
h0(X,KX) = deg c > 0. Adjunction formula implies that

D2
i = − deg c = −h0(X,KX) = −χ(X).

Hence, −D2 = −
∑

D2
i = DFχ(X). Furthermore, 12χ(X) = c2(X) by Noether’s

formula. So, Thm. 2.1 yields the remaining identities. �

We consider the Mordell-Weil group MW (X) = MWtor(X). It follows that
|MWtor(X)| ≥ 36. We prove the following lemma of general interest.
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Lemma 3.2. Let π : X −→ C be a minimal elliptic surface over an elliptic curve

C and assume that kod(X) ≥ 1 and that each rational curve L ⊂ X meets at

least three sections of π. Suppose moreover that D = MWtor(X) ≥ 33. Then all

singular fibers of π are semi-stable of type I6, X has 2χ(X) singular fibres and

MW (X) = MWtor(X) = Z/6Z × Z/6Z and the rank of the Neron severi group

NS(X) equals h1,1(X) = 10χ(X) + 2.

Proof. The assertion concerning MW (X) follows directly from [4, (4.8)] (in fact, it
is sufficient to assume ’≥ 33’). [4, Lemma 1.1] implies then that all singular fibers
are of type In. If Hn ⊂ M(X) is the non-trivial isotropy group of a node x ∈ In
then MWtor(X)/Hn is cyclic by [4, Lemma 2.2]. Moreover, all nodes from one
and the same fiber admit the same isotropy group by [4, Lemma 2.1, (c)], and this
isotropy group is non-trivial by [4, Lemma 2.1, (b)] and because a component of
In meets at least three sections. Thus, always |Hn| ≥ 6. On the other hand, by [4,
p. 251] and [4, Lemma 2.3, (f)],

∑

In
n = c2(X) and

36c2(X) = |MWtor(X)|c2(X) =
∑

In

n|Hn|
2.

Hence, always |Hn| = 6. Let S ∈ MW (X) be the neutral element. By the proof of
[4, Lemma 2.2],Hn consists of precisely those sections meeting the prime component
L ⊂ In which contains S ∩ In. However, since we may take any section to be the
neutral element of MW (X), for each component L ⊂ In we have LD = 6. As
DIn = 36, we get n = 6. Finally, recalling that

∑

In
n = c2(X), we find for the

number t of singular fibers:

t = 2χ(X) = 2g(C)− 2 + rankMW (X) + 2χ(X).

According to [4, Prop. 1.6] this happens precisely when rank NS(X) = h1,1(X),
and an easy calculation shows that h1,1(X) = 10χ(X) + 2. �

It follows that X is isomorphic to a pull-back X6(6) ×C6(6) C. However, we re-
member that in the beginning of the proof we assumed that all curvesDi dominating
C are sections. A priori, this additional assumption holds only after performing
an etale base change. In the final part of the proof we are going to withdraw the
additional assumption:
Assume that X̃ = X6(6) ×C6(6) C̃ arises from X by a non-trivial base change

v : C̃ −→ C. Let D̃i, D̃j ∈ MW (X̃) be two generators of MW (X̃) and view X̃ as
a parameter space of level structures

F̃ =
(

(F̃ , eF̃ = D̃1 ∩ F̃ ), aF̃ = D̃i ∩ F̃ , bF̃ = D̃j ∩ F̃
)

.

Choose a smooth fiber F ⊂ X and let eF ⊂ F ∩ D be a point in the image
of the neutral element D̃1 ∩ F̃ ∈ MW (F̃ ) for some smooth fiber F̃ with neutral

element eF̃ = D̃1 ∩ F̃ . Let xF , yF ∈ F be the images of D̃i ∩ F̃ and D̃j ∩ F̃
respectively. Consider the unique group structure on F with neutral element eF .
Then F ∩ D = F [6] and xF , yF generate F [6]. Let U ⊂ C be a connected open
neighborhood of π(F ) with local sections σ, σ1, σ2 : U −→ D ⊂ X such that
eF ∈ σ(U), xF ∈ σ1(U), yF ∈ σ2(U). For each u ∈ U lying over a smooth fiber Fu,
we consider the elliptic curve Fu with neutral element eFu

= σ(u), so that again
Fu ∩ D = F [6] with generators σ1(u), σ2(u). Write V = π−1(U). We receive an
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unique commutative modular diagram

X̃ = X6(6)×C6(6) C̃

��

// C̃

v

��

ṽ

��.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X
π // C

V

inc.

OO

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

π|V // U

inc.

OO

$$I

I

I

I

I

I

I

I

I

X6(6)
π6(6) // C6(6)

We view V as a parameter space of level structures F =
(

(F, eF ), xF , yF
)

. Over F

there lie level structures F̃ on X̃ which are easily seen to be isomorphic to F. By the
universal modular property of X6(6) and the modularity of ṽ, all level structures F̃

on X̃, which are isomorphic to F, are mapped to one and the same level structure
on X6(6). It follows that ṽ factors through v. This means that π results from a
pull-back of π6(6). As explained in the introduction, π and fulfills (1) and (2) in
Thm. 1.1. Conversely, it is known that X6(6) is fibred over an elliptic curve. It is
then clear from the above that X6(6) satisfies the equality in Thm. 2.1. Thm. 1.1
follows.
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