ON MODULAR BALL-QUOTIENT SURFACES WITH KODAIRA DIMENSION ONE

ALEKSANDER MOMOT

Abstract

Let $\Gamma \subset \mathbf{P U}(2,1)$ be a lattice which is not co-compact, of finite Bergman-covolume and acting freely on the open unit ball $\mathbf{B} \subset \mathbb{C}^{2}$. Then the compactification $X=\overline{\Gamma \backslash \mathbf{B}}$ is a smooth projective surface with an elliptic compactification divisor $D=X \backslash(\Gamma \backslash \mathbf{B})$. In this short note we discover a new class of unramified ball-quotients X. We consider ball-quotients X with $\operatorname{kod}(X)=h^{1}\left(X, \mathcal{O}_{X}\right)=1$. We prove that all minimal surfaces with finite Mordell-Weil group in the class described are pull-backs of the elliptic modular surface which parametrizes triples (E, x, y) of elliptic curves E with 6 -torsion points $x, y \in E[6]$ such that $\mathbb{Z} x+\mathbb{Z} y=E[6]$.

1. Introduction

Let the symbol \mathcal{T} denote the class of complex projective smooth surfaces X which contain pairwise disjoint elliptic curves $D_{1}, \ldots, D_{h_{X}}$ such that $U=X \backslash \bigcup D_{i}$ admits the open unit ball $\mathbf{B} \subset \mathbb{C}^{2}$ as universal holomorphic covering; as explained in [7, \mathcal{T} forms the 'generic' class of compactified ball-quotient surfaces. There are several motivations to study surfaces in \mathcal{T} without assuming that $\pi_{1}(U, *)$ with its Poincaré action on \mathbf{B} is an arithmetic lattice of $\mathbf{P U}(2,1)$; we refer to [1] or to the introduction of 77 . Since the discovery of blown-up abelian surfaces in \mathcal{T} by Hirzebruch and Holzapfel some years ago (cf. [2]) there have been no further examples of surfaces of special type in \mathcal{T}. In this short note we present a new class of modular surfaces $X \in \mathcal{T}$ with $\operatorname{kod}(X)=1$.

In what follows we only consider complex projective smooth surfaces. Recall that a minimal elliptic surface $\pi: X \longrightarrow C$ with finite Mordell-Weil group $M W(X)$ of sections and fulfilling the identity $\operatorname{rank} N S(X)=h^{1,1}(X)$ is said to be extremal. Particular examples arise in the following way. To each pair of positive integers

$$
(m, n) \notin\{(1,1),(1,2),(2,2),(1,3),(1,4),(2,4)\}
$$

there exists a modular elliptic surface over $\overline{\mathbb{Q}}$ in the sense of Shioda 10

$$
\pi_{n}(m): X_{n}(m) \longrightarrow C_{n}(m)
$$

such that $\pi_{n}(m)$ admits no multiple fibers and has a non-constant j-invariant. By [10], $X_{n}(m)$ is an extremal elliptic surface with the following properties.

- $M W\left(X_{n}(m)\right)=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$

[^0]- $C_{n}(m)$ is the (compactified) curve $\overline{\Gamma_{m}(n) \backslash \mathbb{H}}$ where $\Gamma_{n}(m) \subset \mathbf{S l}_{2}(\mathbb{Z})$ is the group

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ;\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right) \bmod m, b \equiv 0 \bmod n\right\}
$$

- $C_{n}(m)$ parametrizes triples $\left(\left(E, e_{E}\right), x, y\right)$ of elliptic curves E with neutral element $e_{E} \in E(\mathbb{C})$ and elements $x \in E[m], y \in E[n]$ such that $|\mathbb{Z} x+\mathbb{Z} y|=$ $m n$.
- All singular fibers of $\pi_{n}(M)$ are of type I_{k} in Kodaira's notation; they lie over the cusps of $c \in C_{n}(m)$. A representant of c in $\mathbb{Q} \cup\{\infty\}$ is stabilized by a matrix $\gamma \in \Gamma$ which is a $\mathbf{S l}_{2}(\mathbb{Z})$-conjugate of

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right) .
$$

Here, x and y arise from to the intersection of E with generators of $M W\left(X_{n}(m)\right)$. More generally, by [8, Thm. 1.2, Thm. 1.3] each extremal elliptic surface $\pi: X \longrightarrow C$ with non-constant j-invariant, no multiple fibers and $M W(\tilde{X})=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, (m, n) as above, allows a cartesian diagram (where v is an isogeny)

With this perspective we are able to formulate our main result. We call a complex projective smooth surface X irregular if $h^{1}\left(X, \mathcal{O}_{X}\right)>1$.

Theorem 1.1. Let X be an irregular minimal surface in \mathcal{T} with $\operatorname{kod}(X)=1$. If X has a finite Mordell-Weil group then X is an extremal elliptic surface fibered over an elliptic curve C such that:
(1) The j-invariant of π induces a cartesian diagram defined over $\overline{\mathbb{Q}}$

(2) The compactification divisor D of X consists of 36 sections of π, each having self-intersection number $-\chi(X)$. The fibration π admits $2 \chi(X)$ singular fibers of type I_{6}, and each component of an I_{6} intersects D in precisely 6 points. We have rank $N S(X)=10 \chi(X)+2$.
Conversely, $X_{6}(6)$ is an extremal elliptic and irregular surface in \mathcal{T}.

2. Some basic properties of surfaces in \mathcal{T}

We cite two results on ball-quotient surfaces needed for the proof of the theorem. The first result is essentially [9, Thm. 3.1] specified to $\operatorname{dim} X=2$ with attention to sign conventions, except the assertion on semi-stability. The latter assertion follows from [5]. Thereby, a reduced effective divisor is called semi-stable if it has normal crossings and if every rational smooth prime component intersects the remaining components in more than one point.

Theorem 2.1 (Tian-Yau/Miyaoka-Sakai). Let X be a smooth projective surface and $D \subset X$ a divisor with normal crossings. Suppose that $K_{X}+D$ is big and ample modulo D. Then

$$
c_{1}^{2}\left(\Omega_{X}^{1}(\log D)\right) \leq 3 c_{2}\left(\Omega_{X}^{1}(\log D)\right)
$$

with equality holding if an only if $X \backslash D$ is an unramified ball quotient $\Gamma \backslash \mathbf{B}$ and D is semi-stable.

There is a canonical exact sequence

$$
0 \longrightarrow \Omega_{X}^{1} \longrightarrow \Omega_{X}^{1}(\log D) \xrightarrow{\text { res }} \mathcal{O}_{D} \longrightarrow 0
$$

where res is the Poincaré residue map. With this one proves that $c_{1}\left(\Omega_{X}^{1}(\log D)\right)=$ $[D]-c_{1}(X) \in H^{2}(X, \mathbb{C})$ and $c_{2}\left(\Omega_{X}^{1}(\log D)\right)=c_{2}(X)-\left(c_{1}(X),[D]\right)+([D],[D]) \in$ $H^{4}(X, \mathbb{C})$. Therefore,

$$
c_{1}^{2}\left(\Omega_{X}^{1}(\log D)\right)=\left(K_{X}+D\right)^{2} .
$$

In fact, it is interesting to note that if equality holds in the theorem then D is smooth. Namely, if $\Gamma^{\prime} \subset \Gamma$ is a neat normal subgroup with finite index in Γ then $\Gamma^{\prime} \backslash \mathbf{B}$ is compactified by a smooth elliptic divisor, and $\Gamma \backslash \mathbf{B}$ is compactified by a divisor D. As D is the quotient $D^{\prime} / G, G=\Gamma / \Gamma^{\prime}$, it is a normal curve. Hence, D is smooth and consists of elliptic curves, for rational curves cannot appear because of semi-stability. The next is proved verbatim as [7, Lemma 3.2].

Lemma 2.2. Let X be in \mathcal{T} with compactification divisor D and consider an irreducible curve $L \subset X$. If L is smooth rational then $|L \cap D| \geq 3$. If L is a smooth elliptic curve then $|L \cap D| \geq 1$.

3. Proof of the results

General theory asserts that X admits an elliptic fibration $\pi: X \longrightarrow C$ which is the Albanese morphism. As $K_{X}+D$ is ample modulo D, it follows that a general fiber F has positive self-intersection with D. Thus, a component of D dominates C. Hence, C is an elliptic curve and $h^{1}\left(X, \mathcal{O}_{X}\right)=1$. Moreover, after transition to an etale cover \tilde{C} of C and performing a base change, we can achieve that every D_{i} is a section, as soon as it dominates C ([7, Lemma 3.3]). We will assume this for the time being. Since the curves D_{i} are pair-wise disjoint, in fact all must be sections.

Claim 3.1. We have $36 \chi(X)=D F \cdot \chi(X)=-D^{2}$ and $36=D F$.
Proof. According to the canonical bundle-formula we have $K_{X}=\pi^{*}(\mathfrak{c})$ for a divisor Weil divisor $\mathfrak{c} \in \operatorname{Div}(C)$ and $h^{0}\left(X, m K_{X}\right)=h^{0}(C, m \mathfrak{c})$. Riemann-Roch on C yields $h^{0}\left(X, K_{X}\right)=\operatorname{deg} \mathfrak{c}>0$. Adjunction formula implies that

$$
D_{i}^{2}=-\operatorname{deg} \mathfrak{c}=-h^{0}\left(X, K_{X}\right)=-\chi(X) .
$$

Hence, $-D^{2}=-\sum D_{i}^{2}=D F \chi(X)$. Furthermore, $12 \chi(X)=c_{2}(X)$ by Noether's formula. So, Thm. 2.1 yields the remaining identities.

We consider the Mordell-Weil group $M W(X)=M W_{t o r}(X)$. It follows that $\left|M W_{t o r}(X)\right| \geq 36$. We prove the following lemma of general interest.

Lemma 3.2. Let $\pi: X \longrightarrow C$ be a minimal elliptic surface over an elliptic curve C and assume that $\operatorname{kod}(X) \geq 1$ and that each rational curve $L \subset X$ meets at least three sections of π. Suppose moreover that $D=M W_{\text {tor }}(X) \geq 33$. Then all singular fibers of π are semi-stable of type I_{6}, X has $2 \chi(X)$ singular fibres and $M W(X)=M W_{\text {tor }}(X)=\mathbb{Z} / 6 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$ and the rank of the Neron severi group $N S(X)$ equals $h^{1,1}(X)=10 \chi(X)+2$.

Proof. The assertion concerning $M W(X)$ follows directly from [4, (4.8)] (in fact, it is sufficient to assume ' $\geq 33^{\prime}$). [4, Lemma 1.1] implies then that all singular fibers are of type I_{n}. If $H_{n} \subset M(X)$ is the non-trivial isotropy group of a node $x \in I_{n}$ then $M W_{t o r}(X) / H_{n}$ is cyclic by [4, Lemma 2.2]. Moreover, all nodes from one and the same fiber admit the same isotropy group by [4, Lemma 2.1, (c)], and this isotropy group is non-trivial by [4, Lemma 2.1, (b)] and because a component of I_{n} meets at least three sections. Thus, always $\left|H_{n}\right| \geq 6$. On the other hand, by [4, p. 251] and [4, Lemma 2.3, (f)], $\sum_{I_{n}} n=c_{2}(X)$ and

$$
36 c_{2}(X)=\left|M W_{\text {tor }}(X)\right| c_{2}(X)=\sum_{I_{n}} n\left|H_{n}\right|^{2}
$$

Hence, always $\left|H_{n}\right|=6$. Let $S \in M W(X)$ be the neutral element. By the proof of [4. Lemma 2.2], H_{n} consists of precisely those sections meeting the prime component $L \subset I_{n}$ which contains $S \cap I_{n}$. However, since we may take any section to be the neutral element of $M W(X)$, for each component $L \subset I_{n}$ we have $L D=6$. As $D I_{n}=36$, we get $n=6$. Finally, recalling that $\sum_{I_{n}} n=c_{2}(X)$, we find for the number t of singular fibers:

$$
t=2 \chi(X)=2 g(C)-2+\operatorname{rank} M W(X)+2 \chi(X)
$$

According to [4, Prop. 1.6] this happens precisely when $\operatorname{rank} N S(X)=h^{1,1}(X)$, and an easy calculation shows that $h^{1,1}(X)=10 \chi(X)+2$.

It follows that X is isomorphic to a pull-back $X_{6}(6) \times_{C_{6}(6)} C$. However, we remember that in the beginning of the proof we assumed that all curves D_{i} dominating C are sections. A priori, this additional assumption holds only after performing an etale base change. In the final part of the proof we are going to withdraw the additional assumption:
Assume that $\tilde{X}=X_{6}(6) \times_{C_{6}(6)} \tilde{C}$ arises from X by a non-trivial base change $v: \tilde{C} \longrightarrow C$. Let $\tilde{D}_{i}, \tilde{D}_{j} \in M W(\tilde{X})$ be two generators of $M W(\tilde{X})$ and view \tilde{X} as a parameter space of level structures

$$
\tilde{\mathfrak{F}}=\left(\left(\tilde{F}, e_{\tilde{F}}=\tilde{D}_{1} \cap \tilde{F}\right), a_{\tilde{F}}=\tilde{D}_{i} \cap \tilde{F}, b_{\tilde{F}}=\tilde{D}_{j} \cap \tilde{F}\right)
$$

Choose a smooth fiber $F \subset X$ and let $e_{F} \subset F \cap D$ be a point in the image of the neutral element $\tilde{D}_{1} \cap \tilde{F} \in M W(\tilde{F})$ for some smooth fiber \tilde{F} with neutral element $e_{\tilde{F}}=\tilde{D}_{1} \cap \tilde{F}$. Let $x_{F}, y_{F} \in F$ be the images of $\tilde{D}_{i} \cap \tilde{F}$ and $\tilde{D}_{j} \cap \tilde{F}$ respectively. Consider the unique group structure on F with neutral element e_{F}. Then $F \cap D=F[6]$ and x_{F}, y_{F} generate $F[6]$. Let $U \subset C$ be a connected open neighborhood of $\pi(F)$ with local sections $\sigma, \sigma_{1}, \sigma_{2}: U \longrightarrow D \subset X$ such that $e_{F} \in \sigma(U), x_{F} \in \sigma_{1}(U), y_{F} \in \sigma_{2}(U)$. For each $u \in U$ lying over a smooth fiber F_{u}, we consider the elliptic curve F_{u} with neutral element $e_{F_{u}}=\sigma(u)$, so that again $F_{u} \cap D=F[6]$ with generators $\sigma_{1}(u), \sigma_{2}(u)$. Write $V=\pi^{-1}(U)$. We receive an
unique commutative modular diagram

We view V as a parameter space of level structures $\mathfrak{F}=\left(\left(F, e_{F}\right), x_{F}, y_{F}\right)$. Over \mathfrak{F} there lie level structures $\tilde{\mathfrak{F}}$ on \tilde{X} which are easily seen to be isomorphic to \mathfrak{F}. By the universal modular property of $X_{6}(6)$ and the modularity of \tilde{v}, all level structures $\tilde{\mathfrak{F}}$ on \tilde{X}, which are isomorphic to \mathfrak{F}, are mapped to one and the same level structure on $X_{6}(6)$. It follows that \tilde{v} factors through v. This means that π results from a pull-back of $\pi_{6}(6)$. As explained in the introduction, π and fulfills (1) and (2) in Thm. 1.1 Conversely, it is known that $X_{6}(6)$ is fibred over an elliptic curve. It is then clear from the above that $X_{6}(6)$ satisfies the equality in Thm. 2.1. Thm. 1.1 follows.

References

[1] Holzapfel, R.-P., Ball and Surface Arithmetics, Aspects vol. E29 (Vieweg, Braunschweig, 1998)
[2] Holzapfel, R.-P., Jacobi theta embedding of a hyperbolic 4-space with cusps, in: Geometry, integrability and quantization (Coral Press Sci. Publ., Sofia, 2002).
[3] Kodaira, K., On stability of compact submanifolds of compact complex manifolds, Am. J. Math. vol. 85 (1963), 79-94
[4] Miranda, R.; Persson, U., Torsion groups of elliptic surfaces, Comp. Math. tome 72 (1989), 249-267
[5] Miayoka, Y., The maximal number of quotient singularities on surfaces with given numerical invariants, Math Ann. 268 (1984)
[6] Mostow, G.D., Strong Rigidity of Locally Symmetric Spaces, Annals of Mathematics Studies, No. 78 (Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973)
[7] Momot, A., Irregular ball-quotient surfaces with non-positive Kodaira dimension, to appear
[8] Kloostermann, R., Extremal elliptic surfaces and infinitesimal Torelli, Michigan Math. J. 52 (2004)
[9] Tian, G., Yau, S.T., Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, in: Yau (ed.), Mathematical Aspects of String Theory, Advanced Series in Mathematical Physics vol. 1 (World Scientific, Singapore, 1987)
[10] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59
Departement Mathematik, ETH Zürich, HG J65, Rämistrasse 101, 8092 Zürich, SwitzerLAND

E-mail address: aleksander.momot@math.ethz.ch

[^0]: 2000 Mathematics Subject Classification. Primary 11J25; Secondary 14G35.
 Key words and phrases. special surfaces, modular and Shimura varieties, Picard modular surfaces.

