Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants

J. Dolbeault* and M.J. Esteban**

Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine,
Place de Lattre de Tassigny, F-75775 Paris Cédex 16, France
*E-mail: dolbeaul@ceremade.dauphine.fr, **E-mail: esteban@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~dolbeaul/, http://www.ceremade.dauphine.fr/~esteban/

This contribution is devoted to a review of some recent results on existence, symmetry and symmetry breaking of optimal functions for Caffarelli-Kohn-Nirenberg (CKN) and weighted logarithmic Hardy (WLH) inequalities. These results have been obtained in a series of papers^{1–5} in collaboration with M. del Pino, S. Filippas, M. Loss, G. Tarantello and A. Tertikas and are presented from a new viewpoint.

Keywords: Caffarelli-Kohn-Nirenberg inequality; Gagliardo-Nirenberg inequality; logarithmic Hardy inequality; logarithmic Sobolev inequality; extremal functions; radial symmetry; symmetry breaking; Emden-Fowler transformation; linearization; existence; compactness; optimal constants

1. Two families of interpolation inequalities

Let $d \in \mathbb{N}^*$, $\theta \in [0, 1]$, consider the set \mathcal{D} of all smooth functions which are compactly supported in $\mathbb{R}^d \setminus \{0\}$ and define $\vartheta(d, p) := d \frac{p-2}{2p}$, $a_c := \frac{d-2}{2}$, $\Lambda(a) := (a - a_c)^2$ and $p(a, b) := \frac{2d}{d-2+2(b-a)}$. We shall also set $2^* := \frac{2d}{d-2}$ if $d \geq 3$ and $2^* := \infty$ if d = 1 or 2. For any $a < a_c$, we consider the two families of interpolation inequalities:

(CKN) Caffarelli-Kohn-Nirenberg inequalities^{3,4,6} – Let $b \in (a+1/2,a+1]$ and $\theta \in (1/2,1]$ if $d=1, b \in (a,a+1]$ if d=2 and $b \in [a,a+1]$ if $d \geq 3$. Assume that p=p(a,b), and $\theta \in [\vartheta(d,p),1]$ if $d \geq 2$. There exists a finite positive constant $\mathsf{C}_{\mathrm{CKN}}(\theta,p,a)$ such that, for any $u \in \mathcal{D}$,

$$\||x|^{-b}\,u\|_{\mathbf{L}^p(\mathbb{R}^d)}^2 \leq \mathsf{C}_{\mathsf{CKN}}(\theta,p,a)\,\||x|^{-a}\,\nabla u\|_{\mathbf{L}^2(\mathbb{R}^d)}^{2\,\theta}\,\||x|^{-(a+1)}\,u\|_{\mathbf{L}^2(\mathbb{R}^d)}^{2\,(1-\theta)}\,.$$

(WLH) Weighted logarithmic Hardy inequalities^{3,4} – Let $\gamma \geq d/4$ and $\gamma > 1/2$ if d=2. There exists a positive constant $\mathsf{C}_{\mathrm{WLH}}(\gamma,a)$ such that, for any $u \in \mathcal{D}$, normalized by $|||x|^{-(a+1)}u||_{\mathbf{L}^2(\mathbb{R}^d)} = 1$,

$$\int_{\mathbb{R}^d} \frac{|u|^2 \, \log \left(|x|^{d-2-2\, a} \, |u|^2\right)}{|x|^{2\, (a+1)}} \, dx \leq 2\, \gamma \, \log \Big[\mathsf{C}_{\mathrm{WLH}}(\gamma, a) \, \| \, |x|^{-a} \, \nabla u \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \Big] \, \, .$$

(WLH) appears as a limiting case^{3,4} of (CKN) with $\theta = \gamma (p-2)$ as $p \to 2_+$. By a standard completion argument, these inequalities can be extended to the set

 $\mathcal{D}_a^{1,2}(\mathbb{R}^d) := \{u \in \mathcal{L}^1_{loc}(\mathbb{R}^d) : |x|^{-a} \nabla u \in \mathcal{L}^2(\mathbb{R}^d) \text{ and } |x|^{-(a+1)} u \in \mathcal{L}^2(\mathbb{R}^d) \}.$ We shall assume that all constants in the inequalities are taken with their optimal values. For brevity, we shall call *extremals* the functions which realize equality in (CKN) or in (WLH).

Let $\mathsf{C}^*_{\mathrm{CKN}}(\theta,p,a)$ and $\mathsf{C}^*_{\mathrm{WLH}}(\gamma,a)$ denote the optimal constants when admissible functions are restricted to the radial ones. *Radial extremals* are explicit and the values of the constants, $\mathsf{C}^*_{\mathrm{CKN}}(\theta,p,a)$ and $\mathsf{C}^*_{\mathrm{WLH}}(\gamma,a)$, are known.³ Moreover, we have

$$C_{\text{CKN}}(\theta, p, a) \ge C_{\text{CKN}}^*(\theta, p, a) = C_{\text{CKN}}^*(\theta, p, a_c - 1) \Lambda(a)^{\frac{p-2}{2p} - \theta},$$

$$C_{\text{WLH}}(\gamma, a) \ge C_{\text{WLH}}^*(\gamma, a) = C_{\text{WLH}}^*(\gamma, a_c - 1) \Lambda(a)^{-1 + \frac{1}{4\gamma}}.$$
(1)

Radial symmetry for the extremals of (CKN) and (WLH) implies that $C_{CKN}(\theta, p, a) = C_{CKN}^*(\theta, p, a)$ and $C_{WLH}(\gamma, a) = C_{WLH}^*(\gamma, a)$, while symmetry breaking only means that inequalities in (1) are strict.

2. Existence of extremals

Theorem 2.1. Equality⁴ in (CKN) is attained for any $p \in (2, 2^*)$ and $\theta \in (\vartheta(p, d), 1)$ or $\theta = \vartheta(p, d)$ and $a \in (a_{\star}^{\text{CKN}}, a_c)$, for some $a_{\star}^{\text{CKN}} < a_c$. It is not attained if p = 2, or a < 0, $p = 2^*$, $\theta = 1$ and $d \ge 3$, or d = 1 and $\theta = \vartheta(p, 1)$.

Equality⁴ in (WLH) is attained if $\gamma \ge 1/4$ and d = 1, or $\gamma > 1/2$ if d = 2, or for $d \ge 3$ and either $\gamma > d/4$ or $\gamma = d/4$ and $a \in (a_{\star}^{\text{WLH}}, a_c)$, where $a_{\star}^{\text{WLH}} := a_c - \sqrt{\Lambda_{\star}^{\text{WLH}}}$ and $\Lambda_{\star}^{\text{WLH}} := (d-1) e (2^{d+1} \pi)^{-1/(d-1)} \Gamma(d/2)^{2/(d-1)}$.

Let us give some hints on how to prove such a result. Consider first Gross' logarithmic Sobolev inequality in Weissler's form⁷

$$\int_{\mathbb{R}^d} |u|^2 \log |u|^2 dx \le \frac{d}{2} \log \left(\mathsf{C}_{\mathrm{LS}} \| \nabla u \|_{\dot{\mathbf{L}}^2(\mathbb{R}^d)}^2 \right) \quad \forall \ u \in \mathrm{H}^1(\mathbb{R}^d) \ \mathrm{s.t.} \ \| u \|_{\dot{\mathbf{L}}^2(\mathbb{R}^d)} = 1 \ .$$

The function $u(x) = (2\pi)^{-d/4} \exp(-|x|^2/4)$ is an extremal for such an inequality. By taking $u_n(x) := u(x+n\,\mathrm{e})$ for some $\mathrm{e} \in \mathbb{S}^{d-1}$ and any $n \in \mathbb{N}$ as test functions for (WLH), and letting $n \to +\infty$, we find that $\mathsf{C}_{\mathrm{LS}} \leq \mathsf{C}_{\mathrm{WLH}}(d/4,a)$. If equality holds, this is a mechanism of loss of compactness for minimizing sequences. On the opposite, if $\mathsf{C}_{\mathrm{LS}} < \mathsf{C}_{\mathrm{WLH}}(d/4,a)$, which is the case if $a \in (a_\star^{\mathrm{WLH}}, a_c)$ where $a_\star^{\mathrm{WLH}} = a$ is given by the condition $\mathsf{C}_{\mathrm{LS}} = \mathsf{C}_{\mathrm{WLH}}^*(d/4,a)$, we can establish a compactness result which proves that equality is attained in (WLH) in the critical case $\gamma = d/4$.

A similar analysis for (CKN) shows that $\mathsf{C}_{\mathsf{GN}}(p) \leq \mathsf{C}_{\mathsf{CKN}}(\theta, p, a)$ in the critical case $\theta = \vartheta(p, d)$, where $\mathsf{C}_{\mathsf{GN}}(p)$ is the optimal constant in the Gagliardo-Nirenberg-Sobolev interpolation inequalities

$$\|u\|_{\mathbf{L}^p(\mathbb{R}^d)}^2 \leq \mathsf{C}_{\mathrm{GN}}(p) \|\nabla u\|_{\mathbf{L}^2(\mathbb{R}^d)}^{2\,\vartheta(p,d)} \|u\|_{\mathbf{L}^2(\mathbb{R}^d)}^{2\,(1-\vartheta(p,d))} \quad \forall \ u \in \mathrm{H}^1(\mathbb{R}^d)$$

and $p \in (2, 2^*)$ if d = 2 or $p \in (2, 2^*]$ if $d \ge 3$. However, extremals are not known explicitly in such inequalities if $d \ge 2$, so we cannot get an explicit interval of existence in terms of a, even if we also know that compactness of minimizing sequences

for (CKN) holds when $\mathsf{C}_{\mathrm{GN}}(p) < \mathsf{C}_{\mathrm{CKN}}(\vartheta(p,d),p,a)$. This is the case if $a > a_{\star}^{\mathrm{CKN}}$ where $a = a_{\star}^{\mathrm{CKN}}$ is defined by the condition $\mathsf{C}_{\mathrm{GN}}(p) = \mathsf{C}_{\mathrm{CKN}}^*(\vartheta(p,d),p,a)$.

It is very convenient to reformulate (CKN) and (WLH) inequalities in cylindrical variables.⁸ By means of the Emden-Fowler transformation

$$s = \log |x| \in \mathbb{R}$$
, $\omega = x/|x| \in \mathbb{S}^{d-1}$, $y = (s, \omega)$, $v(y) = |x|^{a_c - a} u(x)$,

(CKN) for u is equivalent to a Gagliardo-Nirenberg-Sobolev inequality on the cylinder $\mathcal{C} := \mathbb{R} \times \mathbb{S}^{d-1}$ for v, namely

$$\|v\|_{\mathbf{L}^p(\mathcal{C})}^2 \leq \mathsf{C}_{\mathrm{CKN}}(\theta, p, a) \left(\|\nabla v\|_{\mathbf{L}^2(\mathcal{C})}^2 + \Lambda \|v\|_{\mathbf{L}^2(\mathcal{C})}^2 \right)^{\theta} \|v\|_{\mathbf{L}^2(\mathcal{C})}^{2(1-\theta)} \quad \forall \ v \in \mathrm{H}^1(\mathcal{C})$$

with $\Lambda = \Lambda(a)$. Similarly, with $w(y) = |x|^{a_c - a} u(x)$, (WLH) is equivalent to

$$\int_{\mathcal{C}} |w|^2 \log |w|^2 dy \le 2 \gamma \log \left[\mathsf{C}_{\mathrm{WLH}}(\gamma, a) \left(\|\nabla w\|_{\mathrm{L}^2(\mathcal{C})}^2 + \Lambda \right) \right]$$

for any $w \in H^1(\mathcal{C})$ such that $||w||_{L^2(\mathcal{C})} = 1$. Notice that radial symmetry for u means that v and w depend only on s.

Consider a sequence $(v_n)_n$ of functions in $H^1(\mathcal{C})$, which minimizes the functional

$$\mathcal{E}^p_{\theta,\Lambda}[v] := \left(\|\nabla v\|_{\operatorname{L}^2(\mathcal{C})}^2 + \Lambda \, \|v\|_{\operatorname{L}^2(\mathcal{C})}^2 \right)^{\theta} \|v\|_{\operatorname{L}^2(\mathcal{C})}^{2\,(1-\theta)}$$

under the constraint $||v_n||_{\mathbf{L}^p(\mathcal{C})} = 1$ for any $n \in \mathbb{N}$. As quickly explained below, if bounded, such a sequence is relatively compact and converges up to translations and the extraction of a subsequence towards a minimizer of $\mathcal{E}^p_{\theta,\Lambda}$.

Assume that $d \geq 3$, let $t := \|\nabla v\|_{\mathbf{L}^2(\mathcal{C})}^2 / \|v\|_{\mathbf{L}^2(\mathcal{C})}^2$ and $\Lambda = \Lambda(a)$. If v is a minimizer of $\mathcal{E}_{\theta,\Lambda}^p[v]$ such that $\|v\|_{\mathbf{L}^p(\mathcal{C})} = 1$, then we have

$$(t+\Lambda)^{\theta} = \mathcal{E}_{\theta,\Lambda}^{p}[v] \frac{\|v\|_{\mathbf{L}^{p}(\mathcal{C})}^{2}}{\|v\|_{\mathbf{L}^{2}(\mathcal{C})}^{2}} = \frac{\|v\|_{\mathbf{L}^{p}(\mathcal{C})}^{2}}{\mathsf{C}_{\mathrm{CKN}}(\theta,p,a) \|v\|_{\mathbf{L}^{2}(\mathcal{C})}^{2}} \leq \frac{\mathsf{S}_{d}^{\vartheta(d,p)}}{\mathsf{C}_{\mathrm{CKN}}(\theta,p,a)} \left(t+a_{c}^{2}\right)^{\vartheta(d,p)}$$

where $S_d = C_{CKN}(1, 2^*, 0)$ is the optimal Sobolev constant, while we know from (1) that $\lim_{a\to a_c} C_{CKN}(\theta, p, a) = \infty$ if $d \ge 2$. This provides a bound on t if $\theta > \vartheta(p, d)$. An estimate can be obtained also for v_n , for n large enough, and standard tools of the concentration-compactness method allow to conclude that $(v_n)_n$ converges towards an extremal. A similar approach holds for (CKN) if d = 2, or for (WLH).

The above variational approach also provides an existence result of extremals for (CKN) in the critical case $\theta = \vartheta(p,d)$, if $a \in (a_1,a_c)$ where $a_1 := a_c - \sqrt{\Lambda_1}$ and $\Lambda_1 = \min\{(\mathsf{C}^*_{\mathrm{CKN}}(\theta,p,a_c-1)^{1/\theta}/\mathsf{S}_d)^{d/(d-1)}, (a_c^2\,\mathsf{C}^*_{\mathrm{CKN}}(\theta,p,a_c-1)^{1/\theta}/\mathsf{S}_d)^d.$

If symmetry is known, then there are (radially symmetric) extremals.³ Anticipating on the results of the next section, we can state the following result which arises as a consequence of Schwarz' symmetrization method (see Theorem 3.2, below).

Proposition 2.1. Let $d \geq 3$. Then (CKN) with $\theta = \vartheta(p,d)$ admits a radial extremal if $a \in [a_0, a_c)$ where $a_0 := a_c - \sqrt{\Lambda_0}$ and $A = \Lambda_0$ is defined by the condition $\Lambda^{(d-1)/d} = \vartheta(p,d) \, \mathsf{C}^*_{\mathrm{CKN}}(\theta, p, a_c - 1)^{1/\vartheta(d,p)} / \, \mathsf{S}_d$.

A similar estimate also holds if $\theta > \vartheta(d, p)$, with less explicit computations.⁵

3. Symmetry and symmetry breaking

Define

$$\underline{a}(\theta, p) := a_c - \frac{2\sqrt{d-1}}{p+2} \sqrt{\frac{2p\theta}{p-2} - 1} , \quad \tilde{a}(\gamma) := a_c - \frac{1}{2} \sqrt{(d-1)(4\gamma - 1)} ,$$

$$\Lambda_{\mathrm{SB}}(\gamma) := \frac{1}{8} (4\gamma - 1) e^{\left(\frac{\pi^{4\gamma - d-1}}{16}\right)^{\frac{1}{4\gamma - 1}} \left(\frac{d}{\gamma}\right)^{\frac{4\gamma}{4\gamma - 1}} \Gamma\left(\frac{d}{2}\right)^{\frac{2}{4\gamma - 1}} .$$

Theorem 3.1. Let $d \geq 2$ and $p \in (2,2^*)$. Symmetry breaking holds in (CKN) if either^{3,5} $a < \underline{a}(\theta, p)$ and $\theta \in [\vartheta(p, d), 1]$, or⁵ $a < a_*^{\text{CKN}}$ and $\theta = \vartheta(p, d)$.

Assume that $\gamma > 1/2$ if d = 2 and $\gamma \geq d/4$ if $d \geq 3$. Symmetry breaking holds in (WLH) if 3,5 $a < \max\{\tilde{a}(\gamma), a_c - \sqrt{\Lambda_{\rm SB}(\gamma)}\}$.

When $\gamma = d/4$, $d \geq 3$, we observe that $\Lambda_{\star}^{\text{WLH}} = \Lambda_{\text{SB}}(d/4) < \Lambda(\tilde{a}(d/4))$ with the notations of Theorem 2.1 and there is symmetry breaking if $a \in (-\infty, a_{\star}^{\text{WLH}})$, in the sense that $\mathsf{C}_{\text{WLH}}(d/4, a) > \mathsf{C}_{\text{WLH}}^*(d/4, a)$, although we do not know if extremals for (WLH) exist when $\gamma = d/4$.

Results of symmetry breaking for (CKN) with $a < \underline{a}(\theta, p)$ have been established first^{1,8,9} when $\theta = 1$ and later³ extended to $\theta < 1$. The main idea in case of (CKN) is consider the quadratic form associated to the second variation of $\mathcal{E}^p_{\theta,\Lambda}$ around a minimizer among functions depending on s only and observe that the linear operator $\mathcal{L}^p_{\theta,\Lambda}$ associated to the quadratic form has a negative eigenvalue if $a < \underline{a}$. Results³ for (WLH), $a < \tilde{a}(\gamma)$, are based on the same method.

For any $a < a_{\star}^{\text{CKN}}$, we have $\mathsf{C}_{\text{CKN}}^*(\vartheta(p,d),p,a) < \mathsf{C}_{\text{GN}}(p) \leq \mathsf{C}_{\text{CKN}}(\vartheta(p,d),p,a)$, which proves symmetry breaking. Using well-chosen test functions, it has been proved⁵ that $\underline{a}(\vartheta(p,d),p) < a_{\star}^{\text{CKN}}$ for p-2>0, small enough, thus also proving symmetry breaking for $a-\underline{a}(\vartheta(p,d),p)>0$, small, and $\theta-\vartheta(p,d)>0$, small.

Theorem 3.2. For all $d \geq 2$, there exists^{2,5} a continuous function a^* defined on the set $\{(\theta,p) \in (0,1] \times (2,2^*) : \theta > \vartheta(p,d)\}$ such that $\lim_{p\to 2_+} a^*(\theta,p) = -\infty$ with the property that (CKN) has only radially symmetric extremals if $(a,p) \in (a^*(\theta,p),a_c) \times (2,2^*)$, and none of the extremals is radially symmetric if $(a,p) \in (-\infty,a^*(\theta,p)) \times (2,2^*)$.

Similarly, for all $d \geq 2$, there exists⁵ a continuous function $a^{**}: (d/4, \infty) \rightarrow (-\infty, a_c)$ such that, for any $\gamma > d/4$ and $a \in [a^{**}(\gamma), a_c)$, there is a radially symmetric extremal for (WLH), while for $a < a^{**}(\gamma)$ no extremal is radially symmetric.

Schwarz' symmetrization allows to characterize⁵ a subdomain of $(0, a_c) \times (0, 1) \ni (a, \theta)$ in which symmetry holds for extremals of (CKN), when $d \geq 3$. If $\theta = \vartheta(p, d)$ and p > 2, there are radially symmetric extremals⁵ if $a \in [a_0, a_c)$ where a_0 is given in Propositions 2.1.

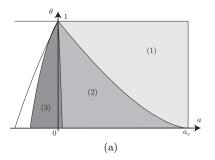
Symmetry also holds if $a - a_c$ is small enough, for (CKN) as well as for (WLH), or when $p \to 2_+$ in (CKN), for any $d \ge 2$, as a consequence of the existence of the spectral gap of $\mathcal{L}^p_{\theta,\Lambda}$ when $a > \underline{a}(\theta,p)$.

For given θ and p, there is^{2,5} a unique $a^* \in (-\infty, a_c)$ for which there is symmetry breaking in $(-\infty, a^*)$ and for which all extremals are radially symmetric when $a \in$

 (a^*,a_c) . This follows from the observation that, if $v_{\sigma}(s,\omega):=v(\sigma\,s,\omega)$ for $\sigma>0$, then $(\mathcal{E}^p_{\theta,\sigma^2\Lambda}[v_{\sigma}])^{1/\theta}-\sigma^{(2\,\theta-1+2/p)/\theta^2}\,(\mathcal{E}^p_{\theta,\Lambda}[v])^{1/\theta}$ is equal to 0 if v depends only on s, while it has the sign of $\sigma-1$ otherwise.

From Theorem 3.1, we can infer that radial and non-radial extremals for (CKN) with $\theta > \vartheta(p, d)$ coexist on the threshold, in some cases.

Numerical results illustrating our results on existence and on symmetry / symmetry breaking have been collected in Fig. 1 below in the critical case for (CKN).



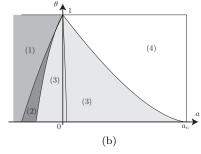


Fig. 1. Critical case for (CKN): $\theta = \vartheta(p, d)$. Here we assume that d = 5.

(a) The zones in which existence is known are (1) in which $a \ge a_0$, because extremals are achieved among radial functions, (2) using the *a priori* estimates: $a > a_1$, and (3) by comparison with the Gagliardo-Nirenberg inequality: $a > a_*^{\text{CKN}}$.

(b) The zone of symmetry breaking contains (1) by linearization around radial extremals: $a < \underline{a}(\theta,p)$, and (2) by comparison with the Gagliardo-Nirenberg inequality: $a < a_{\star}^{\text{CKN}}$; in (3) it is not known whether symmetry holds or if there is symmetry breaking, while in (4) symmetry holds by Schwarz' symmetrization: $a_0 \le a < a_c$.

Numerically, we observe that \underline{a} and a_{\star}^{CKN} intersect for some $\theta \approx 0.85$.

Acknowledgements. The authors have been supported by the ANR projects CBDif-Fr and EVOL. © 2010 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

References

- 1. J. Dolbeault, M. J. Esteban and G. Tarantello, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7, 313 (2008).
- J. Dolbeault, M. J. Esteban, M. Loss and G. Tarantello, Adv. Nonlinear Stud. 9, 713 (2009).
- M. del Pino, J. Dolbeault, S. Filippas and A. Tertikas, Journal of Functional Analysis 259, 2045 (2010).
- 4. J. Dolbeault and M. J. Esteban, Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Preprint, (2010).
- 5. J. Dolbeault, M. J. Esteban, G. Tarantello and A. Tertikas, Radial symmetry and symmetry breaking for some interpolation inequalities, Preprint, (2010).
- 6. L. Caffarelli, R. Kohn and L. Nirenberg, Compositio Math. 53, 259 (1984).
- 7. F. B. Weissler, Trans. Amer. Math. Soc. 237, 255 (1978).
- 8. F. Catrina and Z.-Q. Wang, Comm. Pure Appl. Math. 54, 229 (2001).
- 9. V. Felli and M. Schneider, J. Differential Equations 191, 121 (2003).