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Abstract. Due to its great ability of conquering clutters, which is es-
pecially useful for high-dimensional tracking problems, particle filter be-
comes popular in the visual tracking community. One remained difficulty
of applying the particle filter to high-dimensional tracking problems is
how to propagate particles efficiently considering complex motions of the
target. In this paper, we propose the idea of approximating the complex
motion model using a set of simple motion models to deal with the track-
ing problems cumbered by complex motions. Then, we provide a practical
way to do inference on the set of simple motion models instead of original
complex motion model in the particle filter. This new variation of parti-
cle filter is termed as Multi-Model Particle Filter (MMPF). We apply our
proposed MMPF to the problem of head motion tracking. Note that the
defined head motions include both rigid motions and non-rigid motions.
Experiments show that, when compared with the standard particle filter,
the MMPF works well for this high-dimensional tracking problem with
reasonable computational cost. In addition, the MMPF may provide a
possible solution to other high-dimensional sequential state estimation
problems such as human body pose estimation and sign language esti-
mation and recognition from video.

1 Introduction

Many researchers make extensive efforts in the visual tracking area and two
decades of research have yielded many powerful tracking systems [1,3,4,5,6,8,
e.g.]. One remained challenging problem for visual tracking is how to deal with
tracking problems cumbered by high-dimensional complex motions robustly and
efficiently, such as non-rigid head motion estimation, hand pose and body pose
recognition.

Due to doing inference under the Bayesian framework and not assuming the
distribution form of the posterior, particle filter, also known as CONDENSION
in the computer vision community [1,4], becomes popular and is one of the
promising techniques to deal with complex tracking problems with the ability
of integrating different cues of information. When applying particle filter to a
specific task, one key component need to be carefully defined is dynamic models,
which characterize the motion of the target and determines how the particles are
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propagated in the state space. Only when the particles are properly propagated,
satisfied posterior may be obtained sequentially.

Previous works either choose complex dynamic models or simple dynamic
models to characterize the target dynamics and to propagate particles [4,6,8,9].
The advantages of simple models are that they can be easily obtained and
adapted to a specific application. Compared with complex models, simple mod-
els often show more elastic and robust with respect to noise since the states that
can be reached are not carved tightly. Nevertheless, for high-dimensional track-
ing problems, simple models result in the most of particles with low weights and
the efficiency of computation is low. As the dimension goes high, the exponen-
tial increasing computational burden quickly becomes prohibitly high to prevent
simple models into practical use.

On the other hand, complex dynamic models incorporate more specific knowl-
edge of how the object behaves than simple dynamic models. Therefore, it is
more suitable for the high-dimensional tracking problems since computational
cost is the key factor. Nevertheless, the complex dynamic models are typically
learned from training examples or handcrafted using empirical knowledge. They
are therefore very specific to the given task and are not easy to be obtained and
adapted. Therefore, complex dynamic models are often learned by restricting
the range of movement of the object and are easy to violate from the truth, e.g.
assuming only walking or cycle motion can be handled for human body pose
estimation [10]. These restrictions greatly reduce the generality of the resulting
trackers.

In this paper, we propose a practical way to approaching the high-dimensional
tracking problems which cumbered by complex motions. The main contributions
of this paper can be concluded as follows:

First, we propose to using a set of simple motion models to approximating
original strong motion models to ease the high dimensional curse.;

Then, we provide a practical solution of how to do inference by integrating
multiple simple models in the particle filter.

Finally, we apply our proposed MMPF to the head motion tracking ap-
plication. The experimental results show that the MMPF works well to this
high-dimensional head motion tracking problem with reasonable computational
resource.

The rest paper is organized as follows: In Section 2, We propose to approx-
imate complex motion models using a set of simple motion models and to do
integrated inference under the particle filter framework. We give the experiment
results in Section 3 and conclude our work in Section 4.

2 Multi-model Particle Filter

Particle Filter is a technique for implementing a recursive temporal Bayesian
filter by Monte Carlo simulations. The key idea is to represent the required
posterior by a set of random samples and their associated weights. As the number
of samples becomes sufficiently large, this Monte Carlo characterization becomes
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an equivalent representation to the usual functional description of the posterior,
and the particle filter approaches the optimal Bayesian estimate.

The power of the particle filter is in that it maintains a pool of hypotheses
by sampling the proposal distribution P (xi+1|xi) under the Bayesian framework.
Generally, the more the hypotheses, the more chances to get accurate tracking
results but the more computational resource is required. As the state of the
object goes high, the computational cost quickly becomes prohibitively heavy
due to the exponential computational complexity.

Following analysis can make this problem clear. To evaluate the efficiency of
some particle set {xi, πi|i = 1, ..., n} , two measurements are defined [4]. One is
the survival diagnostic D = (

∑n
i=1 π2

i )−1, another is the survival rate α ≈ D
n ,

where n is the number of particles. To guarantee the performance, it can be
inferred that the required number n of particles should be n ≥ Dmin

αd , where Dmin

is the minimum acceptable survival diagnostic considering performance. It’s clear
that αd is the determining factor of required particle number n and where the
computational difficulties mainly arise from the dimension d. Therefore, directly
apply the particle filter to high-dimensional tracking problem is computational
intractable.

The particle filter’s property of generating a set of hypotheses provides a
natural way to approximating complex motion model using a set of simple mo-
tion models to generate several kinds of hypotheses in the pool instead of only
one kind: instead of propagate all particles using the original complex motion
model, the particle set are branched and each sub set of particles are propagated
using one simple motion model. The final result is obtained by composite all the
estimates using graphical model probabilistically.

In the following paragraph, the proposed MMPF is described in detail math-
ematically. We first define the following terms:

P i−
mn : The probability at time i that the complex motion will be explained

from simple model m to simple model n due to variation of target dynam-
ics. These probabilities are assumed to be known in prior here and satisfy∑M

m=1 P i−
mn = 1, where M is the number of simple models. A state transition

matrix M i−
mat, which stacks the P i−

mn, combines M simple models according to a
graphic model under the Markov assumption:

M i−
mat =




P i−

11 ... P i−
1M

... ... ...

P i−
M1 ... P i−

MM



 . (1)

P i+
mn: The conditional probability that the target dynamics was explained

from simple motion model m to simple motion model n at time i. Previous two
probabilities describe how the simple models interact with each other to explain
the complex motion model together.

P i−
m : The probability that the target’s dynamic will be explained by simple

model m during time interval [i, i + 1) and satisfy
∑M

m=1 P i−
m = 1.

P i+
m : The probability after simple models’ interaction that the target dynam-

ics can be explained by simple model m and satisfy
∑M

m=1 P i+
m = 1.
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Let si = {xk
i , wk

i , mk
i |k = 1, ..., N} denote a particle set at time i, where mk

i

means the simple model according to which the particle k evolves in the state
space at time i. For each particle, we define its private dynamic model according
to the model probability P i−

m and approximately there have the relation that
the number of particles that will translate according to the simple model m is
proportional to P i−

m . That means all particles are divided into M groups prob-
abilistically. Then, each group of particles behaves like a standard particle filter
and M filtered states are obtained. Then the MMPF does an interaction between
all filtered estimates and gets the final output by weighting all estimates statis-
tically. After that, the model probability is updated according to the statistical
property of residual error. The distance dm

i+1 which measures the residual error is
application dependent and the distance we adopt to solve face tracking problem
can be found in section 3.

Details of the algorithm are shown in Figure 1.

3 Application to Head Motion Tracking

In this section, we apply the MMPF method to head motion tracking with both
rigid and non-rigid motions considered. Two difficulties are anticipated to be
well handled under such a framework: one is that the method can work well
with low quality image sequences and the other is that the tracker hold a high
probability to recover from drift without manual re-initialization.

Experiments are performed on the real videos to test the tracker’s ability of
conquering clutters. The difficulties of tasks lie in that the states of the head need
to be tracked are as high as 66 dimensions, which make the task is very challeng-
ing. While using MMPF, the original high-dimensional motions are factorized
into eight simple models and make the problem tractable.

The experimental results show that the merits of this method can be con-
cluded as follows:

1). The MMPF can be deal with low quality images due to the top-down
matching scheme and stochastic search scheme (note that the experimental data
we use are recorded using common hand held cameras and it was not high
quality).

2). It is very robust to clutter. Even several frames are not well estimated
and drift happen, the tracker holds a high probability to recover from the error.
This is the essential merit for long sequence tracking in heavy clutter.

3.1 Face State Representation

A MPEG-4 compatible 3D parametric head model is implemented for synthesiz-
ing photo-realistic facial animations. One set of parameters can totally control
the head motion and facial animations, named as Facial Animation Parameter
(FAP) [11]. Here 66 low level FAPs are adopted instead of all 68 FAPs. In the
experiments, we have made a try to use the CONDENSATION to do inference
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on the 66 dimensional state space directly and stabilized results are not ob-
tained even 108 particles are employed. The main reason is that most particles
are wasted to generate useless hypotheses due to poor guidance. [2] has pointed
out that when in spaces of dimensions much greater than about 10, good results
are extremely difficult to get.

Iterate

Prediction: Sample Nm particles si = {xk
i , wk

i , mk
i = m|k = 1, ..., Nm}

from simple model Pm(xt|xt−1), satisfying that Nm
N

is proportional to

P i−
m and

∑M

m=1 Nm = N .
Verification: Evaluate weights of Nm particles according to the

likelihood model wk
t = Pm(yt|xk,−

t )wk
t−1 .

Interaction: 1). Compute an estimated state x̂m
t =

∑Nm

j=1

wk
j xk

j

wk
j

for
sub-model Pm(xt|xt−1). 2). Compute the model probability

P t+
m =

∑M

m=1 P t−
mnP t−

m . 3). Compute the particle translation

probability P t+
mn = P t−

mnP t−
m /P t+

m . 4). Compute M filtered estimated

states x̃n
t+1 =

∑M

m=1 P
(t+1)+
mn x̂m

t+1. 5). Then the final result is

xt+1 =
∑M

n=1 P
(t+1)+
n x̃n

t+1.
Updating Mode Probability: Compute distance dm

t according to

Pm(zt|xt)for each model m and update its probability

P
(t+1)−
m = V m

t+1P
t+
m /C, where V m

t+1 =
exp(−(dm

t+1)2/2)
√

(2π)Rσm
t+1

and C is
a normalizing constant.

Re-sampling: Compute the covariance of the normalized weights.

If this variance exceeds some threshold, then construct a new set of

samples by drawing, with replacement, N samples from the old set,

using the weights as the probability that a sample will be drawn.

The weight of each sample is now 1
N

.

Fig. 1. The process of Multi-Model Particle Filter

Since previous experiment denied the particle filter with the original high-
dimensional state representation as a practical solution. We first do a dimension
reduction using PCA to get intrinsic representations of the face motion state
with that the head pose parameters are canceled out by setting them to zero.
The first five eigen-values in descending order are retained to accommodate 99%
variation of the training data set. (The training data are obtained by manu-
ally turned). The head pose dynamics are modeled using three Nearly Constant
Velocity Models (NCVM). Therefore, the final state is the coefficients of the
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five eigen-vectors, which characterize facial expressions and three coefficients of
NCVM models, span an eight dimensional sub-space. We combine two kinds of
simple dynamic models to approximate the original complex motion models in
the MMPF algorithm.

3.2 The Set of Simple Dynamic Models

In previous sub-section, five eigen-vectors obtained by dimension reduction tech-
nique and three NCVMs which corresponding to head yaw, tilt and roll re-
spectively are chosen as sub models in the MMPF. Consequently, the original
unknown motion model is factorized into eight simple models and each simple
model varies only in one dimension,

P (xi|xi−1) =
8∑

m=1

wmPm(xi|xi−1) (2)

where Pm(xi|xi−1) represents one simple model and P (xi|xi−1) is the original
strong motion model.

One step of the estimation process in experiments can be roughly repre-
sented by figure 2. The simple models are chained to do estimation in a cascade
manner and construct a degenerate case of the MMPF. The previous estimated
weight wm−1 of one simple model provides a starting point for the weight wm’s
estimation of next sub-model on the chain.

The model interaction matrix is assumed to be constant in the estimation
process and set as that the diagonal elements of the matrix are 0.72 and the
non-diagonal elements are set to 0.04 (In our experiments, the results are not
sensitive to the small variation of these parameters). The prior probability P−

m is
initially set to 1

M . In the tracking process, the distance measuring residual error
of simple model m in frame i + 1 is set to

dm
i+1 =

1
|wi

m − wi−1
m | (3)

where wi
m is the estimated weight of the simple model m in frame i.

Fig. 2. The inference structure used for face tracking problem
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3.3 Evaluating the Particles’ Weights

In this sub-section, the likelihood model is constructed to relate the face states
and face images and particles’ weights are evaluated. When a frame It comes,
the different image �It = It − It−1 is first computed with the non-face area
segmented out, where the It−1 is the previous frame (all images are aligned
manually according to the key feature points). Furthermore, �It is normalized
like a matched filter to satisfy that: ||�It|| = 0 and var(�It) = 1 . Then,
the tracker propagates particles to generate a pool of hypotheses. For each new
hypothesis hi

t generated by particle ki, an observation image Oi
t is generated by

the previous mentioned 3D face model. Also, a difference image �Oi
t between

the Oi
t and It−1 is computed considering the face area for each Oi

t. Then a
dot product between �Oi

t and �It is calculated as the corresponding particle’s
weight

wi
t = �It · �Oi

t = 〈�It, �Oi
t〉 (4)

3.4 Qualitative Performance Evaluation Using Real Video Data

Four video footages corresponding to four persons’ facial animation are recorded
to test our algorithm’s ability to conquer clutter and the performance under real
world conditions. For the limit of space, only one video is shown in figure.3. It
has 189 frames and is at the resolution of 320X240. Note that there are some
difference between the reconstructed 3D face model and the person himself due
to the reconstruction error. The stabilized results are obtained by employing
6800 particles. The top row of figure 3 shows the sample frames of the recorded
video and the bottom row shows the corresponding re-synthesizing frames by
estimated parameters.

To test the tracker’s ability to conquer clutter, we also disturb the tracker’s
estimates with the noise during tracking. Averagely, for each coefficients, 18% of
the 3σ violation from the right value parameters value, the tracker can quickly
recover from the drift within three frames with the probability of 90.5% during
500 times tests, where the σ is the standard variance learned from the training
set.

Fig. 3. Comparing original frames with re-synthesized frames
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4 Conclusions and Future Work

In this paper, we propose a novel method to deal with the tracking problem
suffered from high-dimensional complex motions. Do inference in Bayesian fil-
ter frame-work, more information can be incorporated under this framework to
promote the performance of the tracker.

Future works includes:
1) Composing low level cues, such as optical flow or other motion estimation

techniques to guiding how to propagate particles and thus accelerate the running
speed of the system to achieve near real-time performance;

2) Using 3D facial morphable model [12] to automatic initialization of the
head motion tracking system.
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