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The idea of orthogonal polynomials is well established and has many appli-

cations. For any commutative moments {Si}, it is known that a sequence of

orthogonal polynomials can be generated by the formula

pn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sn · · · S2n−1 xn

...
. . .

...
...

S0 · · · Sn−1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The idea of orthogonal polynomials and this method of generating them has been

generalized in two ways to achieve new types of polynomials: noncommutative

orthogonal polynomials and biorthogonal polynomials.

In 1994, Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon[2] extended the

theory to situations in which the moments do not commute with one another.

This paper generates noncommutative polynomials by setting pn equal to the

quasideterminant of a similar matrix. It also shows that the 3-term recur-

rence relation, which is well-known for commutative orthogonal polynomials,

still holds in this case. As a special case, some work has been done for orthog-

onal polynomials with matrix coefficients.

Second, orthogonal polynomials have been generalized in several ways to biorthog-

onal polynomials. Bertola, Gekhtman and Szmigielski[1] describe a family of
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biorthogonal polynomials as a set of two sequences of real polynomials {pn(x)}

and {qm(y)} so that
∫ ∫

pn(x) ∗ qm(y) ∗K(x, y)dα(x)dβ(y) = 0 when n 6= m for

particular K, α and β. In their paper, it is shown that these polynomials may be

generated by taking determinants of matrices whose entries are bimoments and,

for a specific K(x, y), a 4-term recurrence relation is obtained. In this paper,

we define biorthogonal polynomials in a similar way which can be generalized to

noncommutative rings. For our purposes, a biorthogonal family is a set consist-

ing of two sequences of polynomials {pn(x)} and {qn(y)}, over a division ring

R, along with a function < ·, · >: R[x]×R[y] → R so that < pn(x), qm(y) >= 0

for all n 6= m

In this paper, we bring these two different generalizations together to present

a completely algebraic definition of noncommutative biorthogonal polynomials.

We then go on to obtain recurrence relations for some types of biorthogonal

polynomials as a generalization to the 4-term recurrence relations mentioned in

[1] and conclude with a broad extension of Favard’s theorem.
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1 Set-Up and Definitions

Let R be a division ring with center C. We will view R[x] as an R-C bimodule

of R and R[y] as a C-R bimodule of R. That is, elements of R[x] will be of the

form
∑

aix
i and elements of R[y] will be of the form

∑

yjbj so that xc = cx

and yc = cy for all c ∈ C. Let < ·, · >: R[x]×R[y] → R so that

<
∑

aix
i,
∑

yjbj >=
∑

ai < xi, yj > bj .

A system of polynomials {pn}, {qn}n∈N is biorthogonal with respect to < ·, · >

if < pn(x), qm(y) >= 0 for all n 6= m.

Let Ia,b =< xa, yb > . The set {Ia,b}a,b∈N is called the set of bimoments for

< ·, · > . The bimoments completely define the function < ·, · > so we will say

that a set of polynomials is biorthogonal with respect to the bimoments.

In keeping wit the notation of [1], we will let I be the matrix of bimoments and

write Id for the identity matrix. Note in these cases, and below, all matrices

and vectors are infinite, with rows and columns indexed by Z≥0.

We extend < ·, · > to R[x]n ×R[y] and to R[x]×R[y]n in the following way:

If B =













b1
...

bn













∈ R[x]n and g ∈ R[y], then < B, g >=













< b1, g >

...

< bn, g >













.

Similarly, if f ∈ R[x] and D =













d1
...

dn













∈ R[y]n, then < f,D >=













< f, d1 >

...

< f, dn >













.

If C ∈ Matr×n(R), B ∈ R[x]n and g ∈ R[y], then < CB, g >= C < B, g >.
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For an (n+1)x(n+1) matrix A, let Ai,j denote the nxn matrix formed by remov-

ing the ith row and jth column. Then(c.f. [2], def. 2.1) the i,j-quasideterminant of A

|A|i,j is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 · · · a1,j · · · a1,n+1

...
. . .

...
. . .

...

ai,1 · · · ai,j · · · ai,n+1

...
. . .

...
. . .

...

an+1,1 · · · an+1,j · · · an+1,n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ai,j −
[

ai,1 · · · ai,j−1 ai,j+1 · · · ai,n+1

]

· (Ai,j)−1 ·































a1,j

· · ·

ai−1,j

ai+1,j

· · ·

an+1,j































.

2 Constructing Biorthogonal Polynomials Using

Bimoments

Throughout, we will assume that several quasideterminants exist. This is our

only restriction on the set of bimoments.

Theorem: Let {Ia,b|a, b ∈ Z≥0} ⊆ R. For all n ∈ N, define

pn(x) = |I|1,n+1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In,0 · · · In,n−1 xn

...
. . .

...
...

I1,0 · · · I1,n−1 x

I0,0 · · · I0,n−1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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and

qn(y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y · · · yn

In−1,0 In−1,1 · · · In−1,n

...
...

. . .
...

I0,0 I0,1 · · · I0,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then {pn}, {qn} is a (monic) biorthogonal system of polynomials with respect

to the set of bimoments {Ia,b}.

To prove the theorem we need the following lemma:

Lemma: Let n ∈ Z≥0 and pn, qn be as defined as in the proposition. Then

< xi, qn >=< pn, y
i >= 0 for all 0 ≤ i ≤ n− 1.

Proof of Lemma:

Let n ∈ N and 0 ≤ i ≤ n− 1. We see that

< pn, y
i >=< xn −

[

In,0 · · · In,n−1

]

· (I1,n+1)−1 ·













xn−1

...

1













, yi >

=

In,i −
[

In,0 · · · In,n−1

]

· (I1,n+1)−1 ·













In−1,i

...

I0,i













.

Applying the definition of quasideterminant, we see that this is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In,0 · · · In,n−1 In,i

...
. . .

...
...

I0,0 · · · I0,n−1 I0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, since 0 ≤ i ≤ n− 1, < pn, y
i > is the quasideterminant of a matrix whose

nth column is equal to its (i+1)st column and hence is 0 (c.f. [3], prop. 1.4.6).
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Similarly,

< xi, qn >=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ii,0 · · · Ii,n

In−1,0 · · · In−1,n

...
. . .

...

I0,0 · · · I0,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, since 0 ≤ i ≤ n − 1, the top row will be equal to the (n − i + 1)th row,

again making the quasideterminant 0 (c.f. [3], prop. 1.4.6).

Proof of Proposition:

Let n,m ∈ N so that n 6= m. Suppose n < m. Now pn(x) =
∑n

k=0 akx
k for some

a0, · · · , an ∈ R. Thus < pn, qm >=
∑n

k=0 ak < xk, qm >. For all 0 ≤ k ≤ n,

k < m so by the lemma, < xk, qm >= 0. Thus < pn, qm >= 0. The case for

n > m is similar.

3 Connections to Orthogonal Polynomials:

We note here that we can recover the orthogonal polynomials of Gelfand, Krob,

Lascoux, Leclerc, Retakh and Thibbon [2] from the construction above. Let R

be the free associative algebra on generators S0, S1, · · · with Sa+b = Ia,b for all

a, b ∈ N. Following the notation of Gelfand, Krob, Lascoux, Leclerc, Retakh

and Thibbon let * be the anti-automorphism so (Sk)
∗ = Sk and (

∑

cix
i)∗ =

∑

(ci)
∗xi. A little examination shows that qn = p∗n. The collection {pn} is

orthogonal with respect to the (very similar) inner product < ·, · >∗ where

<
∑

cix
i,
∑

djy
j >∗=

∑

ciSi+j(dj)
∗. Thus < pn, qm >=< pn, pm >∗.

4 Banded Matrices:

Let a ≤ 0 and b ≥ 0. M[a,b] is defined to be span{Ei,j : a ≤ i− j ≤ b}. We will

refer to these matrices as “banded”. For example, the set of diagonal matrices

is M[0,0]. Let X ∈ M[a,b] and Y ∈ M[c,d].
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Claim: X + Y ∈ M[min(a,c),max(b,d)] and XY ∈ M[a+c,b+d].

Proof:

The proof that X + Y ∈ M[min(a,c),max(b,d)] is trivial. Suppose [XY ]u,v 6= 0.

Then [X ]u,w 6= 0 and [Y ]w,v 6= 0 for some w. This implies a ≤ w − u ≤ b and

c ≤ v −w ≤ d. Adding these equations shows that a+ c ≤ v − u ≤ b+ d. Thus

XY ∈ M[a+c,b+d].

5 Recurrence Relations:

In the commutative case, Bertola, Gekhtman and Szmigielski [1] achieve a 4

term recurrence relation when Ia+1,b + Ia,b+1 = αaβb. This means there is

a formula for pn+1 in terms of pn, pn−1, and pn−2 and a similar formula for

qn+1.This condition corresponds to what they called the “Cauchy kernel”. K

is called the kernel of a system of biorthogonal polynomials if < a(x), b(y) >

=
∫ ∫

a(x)b(y)K(x, y)dxdy. The Cauchy kernel is
1

x+ y
. Below, we achieve

similar, but longer, recurrences that would correspond to kernels of the form
1

f(x) + g(y)
where f and g are polynomials.

For all n ∈ N, let

pn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In,0 · · · In,n

...
. . .

...

I0,0 · · · I0,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In,0 · · · In,n−1 xn

...
. . .

...
...

I0,0 · · · I0,n−1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and let

qn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · yn

In−1,0 · · · In−1,n

...
. . .

...

I0,0 · · · I0,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

These are scalar multiples of the orthogonal polynomials constructed earlier in

Section 2. Therefore they are still biorthogonal. A quick check will show that
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we also have that < pn, qn >= 1 for all n ∈ N. Thus this system of polynomials

is biorthonormal.

Theorem: Let {pk}, {qk} be any biorthonormal polynomials. Suppose there

exist polynomials over the center of R f(x) =
∑n

i=0 aix
i and g(y) =

∑m

j=0 y
jbj

so that
∑n

i=0 aiIr+i,s +
∑m

j=0 Ir,s+jbj = αrβs for all r, s ∈ N. Then there exist

n+m+2 term recurrence relations for pi and qi. That is, we can express pi+1 in

terms of pi, · · · , pi−n−m−2 and qi+1 can be expressed likewise. The recurrences

we achieve for pi+1 and qi+1 have polynomial coefficients for pi, pi−1, qi, and

qi−1 and scalar coefficients for all other terms.

Proof:

Let

Λ =













0 1 0 · · ·

0 0 1
. . .

...
...

. . .
. . .













.

Let p(x) and q(y) be column vectors with entries pk and qk respectively. Note

that for each k ∈ Z≥0, pk and qk are polynomials of degree k so for each

so the products pkf(x) and g(y)qk can be written as a linear combination of

pn+k, · · · , p1, p0 and qm+k, · · · , q1, q0 respectively.

Let X and Y be the infinite scalar matrices so that p(x)f(x) = Xp(x) and

g(y)qT (y) = qT (y)Y T . Since< p(x), qT (y) >= Id, we know that< p(x)f(x), qT (y) >=

X and < p(x), g(y)qT (y) >= Y T .

Suppose pk(x) =
∑k

i=0 cix
i and ql(y) =

∑l

i=0 y
idi. Let πk =

∑k

i=0 ciαi and

ηl =
∑l

i=0 βidi.

(X + Y T )k,l =< pk(x)f(x), ql(y) > + < pk(x), g(y)ql(y) >=
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∑

i,j

ci < f(x)xi, yj > dj +
∑

i,j

ci < xi, yjg(y) > dj =
∑

i,j

ciαiβjdj = πkηl.

If π and η are vectors with entries πn and ηn respectively, then X+Y T = πηT =

Dπ(1)(1
T )Dη where Dπ and Dη are diagonal matrices with (i,i) entries πi and

ηi, respectively.

Let A = (Λ − Id)D−1
π X and BT = Y TD−1

η (ΛT − Id). Since 1 is a null vector

of Λ − Id, (Λ− Id)D−1
π (X + Y T ) = 0 and (X + Y T )D−1

η (ΛT − Id) = 0. Then

A = −(Λ− Id)D−1
π Y T and BT = −XD−1

η (ΛT − Id).

We claim that A and B are banded matrices. Note that X ∈ M[−∞,n] since

Xi,j =< pi(x)f(x), qj(y) >= 0 if i+ n < j (because the degree pi ∗ f(x) is less

than the degree of qj) and that Y T ∈ M[−m,∞] since Y
T
i,j =< pi(x), g(y)qj(y) >=

0 if i > m+ j. Note also that (Λ− I) ∈ M[0,1].

Applying the results we obtained for banded matrices, we see that A = (Λ −

Id)D−1
π X ∈ M[−∞,n+1] and that A = −(Λ− Id)D−1

π Y T ∈ M[−m,∞]. Thus A ∈

M[−m,n+1]. Similarly, BT ∈ M[−∞,m+1] and BT ∈ M[−n,∞] so BT ∈ M[−n,m+1]

and B ∈ M[−m−1,n].

Recall that p(x)f(x) = Xp(x) and g(y)qT (y) = qT (y)Y T . Then (Λ−Id)D−1
π p(x)f(x) =

(Λ− Id)D−1
π Xp(x) = Ap(x) and g(y)qT (y)D−1

η (ΛT − Id) = qT (y)Y TD−1
η (ΛT −

Id) = qT (y)BT .

Thus examining the k-1th row of these equations gives the following n+m+2
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term recurrence relations, as desired:

(π−1
k pk − π−1

k−1pk−1)f(x) =

k+n+1
∑

i=k−m

Ak−1,ipi,

g(y)(η−1
k qk − η−1

k−1qk−1) =

k+m+1
∑

i=k−n

Bk−1,iqi.

6 Biorthogonal Analogue of Favard’s Theorem:

Favards theorem states that if {pn(x)} is a sequence of polynomials which obeys

the usual 3-term recurrence relation then there exists an inner product for which

these polynomials are orthogonal. Here we show that any set of two sequences

of polynomials are biorthogonal with respect to some function, for which we

construct the bimoments. It is important to note that no recurrence relation is

required here.

Theorem: Let {pn}, {qn} be any set of polynomials over any division ring R

so that pn and qn are of degree n for all n ∈ N. For any {ck}k∈Z≥0
in R, there

exists a unique set of bimoments for which {pn}, {qn} is a biorthogonal system

of polynomials and < pk, qk >= ck.

Proof:

It is equivalent to show that there is a set of bimoments so that for all a, b ∈ N,

the following conditions hold:

1) If a < b then < xa, qb(y) >= 0.

2) If a > b then < pa(x), y
b >= 0.

3) If a = b, then < pa(x), qb(y) >= ca.

We will define Ia,b inductively on a+ b. It is pivotal to note that the equations

< xa, qb(y) >= 0, < pa(x), y
b >= 0, and < pa(x), qb(y) >= ca do not involve
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bimoments of the form Ii,j where i + j > a + b. Recall that p0, q0 ∈ R. Let

I0,0 = p−1
0 c0q

−1
0 . Then < p0, q0 >= p0I0,0q0 = 1 as desired.

Let n ≥ 1 and suppose for all a,b such that a + b < n, we have defined Ia,b to

satisfy the previous conditions. For each 0 ≤ i ≤ n define Ii,n−i as follows:

Case 1: If i < n− i then the equation < xi, qn−i >=0 is a linear equation whose

variables (the bimoments) have all been defined except for Ii,n−i due to the

order in which the Ia,b’s are defined. Therefore there is a unique solution which

we must define Ii,n−i to be.

Case 2: Similarly, if i > n−i, the equation< pi, y
n−i >=0 has only one unknown

and thus has a unique solution which we define Ii,n−i to be.

Case 3: If i = n− i then, again, the equation < pi, qn−i >= ci has one unknown

and we define Ii,n−i to be the unique solution to this linear equation.

At each step we satisfy all the necessary conditions and have no choice so the

bimoments constructed are the unique set for which {pn}, {qn} is a biorthogonal

system with < pk, qk >= ck.

7 Connections to Favard’s Theorem for

Orthogonal Polynomials:

Claim: Suppose {pn}, {qn} is a system of monic commutative polynomials so

that p−1 = 0, p0 = 1, pn = qn and

xpn(x) = pn+1(x) + cn+1pn(x) + dn+1pn−1(x)

for all n ∈ N. If the inner product < ·, · > is constructed as in the previous

proof and so that

< pn, qn >= Πn+1
i=1 di

then the inner product will obey all the properties of an orthogonal inner prod-

uct, namely that Ia+1,b = Ia,b+1. Then let Sa+b+1 = Ia+1,b = Ia,b+1.
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Proof:

We will proceed by induction on a+ b.

Suppose a = b = 0. We would like to show I0,1 = I1,0. In the construction of the

bimoments, I0,1 was chosen so that < 1, p1 >=< 1, x− c1 >= I0,1 − c1I0,0 = 0.

Thus I0,1 = c1I0,0. I1,0 was chosen so that < p1, 1 >=< x−c1, 1 >= I1,0−c1I0,0.

Thus I1,0 = c1I0,0 = I0,1 as desired.

Now suppose a + b > 0, and for all n,m so that n + m < a + b we have that

In+1,m = In,m+1.

Case 1: a = b. We want to show Ia+1,a = Ia,a+1. Ia+1,a was chosen so that

< pa+1, x
a >=< xpa−ca+1pa−da+1pa−1, x

a >=< xpa, x
a > −ca+1 < pa, x

a >= 0.

Suppose pa =
∑a

i=0 rix
i. Then Ia+1,a was chosen so that

a
∑

i=0

riIi+1,a − ca+1 ·

a
∑

i=0

riIi,a

= raIa+1,a +
a−1
∑

i=0

riSa+i+1 − ca+1 ·
a

∑

i=0

riSi+a = 0.

Similarly, Ia,a+1 was chosen so that

< xa, pa+1 >=< xa, xpa − ca+1pa− da+1pa−1 >=< xa, xpa > −ca+1 < xa, pa >

=

a
∑

i=0

riIa,i+1−ca+1 ·

a
∑

i=0

riIa,i = raIa,a+1+

a−1
∑

i=0

riSi+1+a−ca+1 ·

a
∑

i=0

riSi+a = 0.

We can see that Ia,a+1 and Ia+1,a were determined by the same equation and

are thus equal.

Case 2: a + 1 = b. Suppose also that pa =
∑

rix
i and pb =

∑

tix
i. We chose

Ia+1,b = Ia+1,a+1 so < pa+1, pa+1 >=< xpa − ca+1pa − da+1pa−1, pa+1 >=<

xpa, pa+1 >=
∑

0≤i≤a,0≤j≤a+1 riIi+1,jtj =
∑

riSi+j+1tj+raIa+1,a+1ta = Πa+1
i=0 di.

Ia,b+1 was chosen so that < xa, pb+1 >= 0. Multiplying the equation by the

ath coefficient of pa we chose Ia,b+1 so that < pa, pb+1 >=< pa, pa+2 >=<

pa, xpa+1−ca+2pa+1−da+1pa >=< pa, xpa+1 > −da+1 < pa, pa >=< pa, xpa+1 >
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− < pa+1, pa+1 >= 0. Under our initial assumptions, Ia,b+1 was chosen so

that < pa, xpa+1 >=
∑

0≤i≤a,0≤j≤a+1 riIi,j+1tj =
∑

riSi+j+1tj + raIa,a+2ta =

Πa+1
i=0 di. Again, examining the equations which determine Ia,b+1 and Ia+1,b, we

see that they are equal.

Case 3: |a − b| ≥ 2 and a < b. We have that < xa+1, pb >= 0. Suppose again

that pb =
∑

tix
i. < xa+1, pb >=

∑b

i=0 Ia+1,iti =
∑b−1

i=0 Sa+i+1ti + Ia+1,btb = 0.

We have that < xa, pb+1 >=< xa, xpb − cb+1pb − db+1pb−1 >=< xa, xpb >=
∑b

i=0 Ia,i+1ti =
∑b−1

i=0 Sa+i+1ti + Ia,b+1tb = 0. We can see once again that

Ia+1,b = Ia,b+1 as desired.

The cases for a > b are very similar to cases 2 and 3.

By induction we have shown that Ia+1,b = Ia,b+1 for all a, b ∈ N.

Note that the mirror of this inner product < a, b >−1=< b, a > has all of the

above properties and so, by uniqueness, the inner product < ·, · > is symmetric.

8 Conclusion

This paper has established the beginnings of a theory of noncommutative biorthog-

onal polynomials. The generalization of Favard’s theorem given in section 7 sug-

gests both that the theory could be of use and that this is as general as should

ever be necessary. There are still many other ideas from the theory of commu-

tative orthogonal polynomials that may apply to noncommutative biorthogonal

polynomials. In particular, it maybe possible to identify other constraints that

allow for a finite-term recurrence relation or it may be possible to generalize

some identities that apply to orthogonal polynomials.
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