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Invariance of the Barycentric Subdivision of a Simplicial

Complex

Rashid Zaare-Nahandi

Abstract

In this paper we show that a simplicial complex can be determined uniquely up

to isomorphism by its barycentric subdivision or comparability graph. At the end, it

is summarized several algebraic, combinatorial and topological invariants of simplicial

complexes.

1 Introduction and Preliminaries

Stanley-Reisner rings of simplicial complexes, which have had fantastic application in com-

binatorics [7], possess a rigidity property in the sense that they determine their underlying

simplicial complexes uniquely up to isomorphism [4, 8]. Barycentric subdivision of a sim-

plicial complex is another very important and applicable object [1,2,3,7] which we want to

prove that possess the same rigidity property.

Following, there are some basic definitions and facts on simplicial complexes and related

topics which we will need later. See [3], [5] and [7] for details and more.

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices, is a system of

subsets of [n] such that the following conditions hold:

a) {i} ∈ ∆ for any i ∈ [n],

b) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.

An element of ∆ is called a face and a maximal face with respect to inclusion is called a

facet. The set of all facets is denoted by F(∆). In the set of non-faces of ∆ (those subsets

of [n] who are not in ∆), the set of minimal elements is denoted by N (∆). The dimension

of a face F ∈ ∆ is defined to be |F | − 1 and dimension of ∆ is maximum of dimensions of

its faces.

Let ∆ be a simplicial complex on [n] and of dimension d− 1. For each 0 ≤ i ≤ d− 1 the

ith skeleton of ∆ is the simplicial complex ∆(i) on [n] whose faces are those faces F of ∆

with |F | ≤ i+1. In particular the 1-skeleton ∆(1) of ∆ is the finite graph on [n] whose edges

are the 1-dimensional faces {i, j} of ∆. We say that a simplicial complex ∆ is connected if

the finite graph ∆(1) is connected.

Let ∆ be a simplicial complex on [n]. Let S = K[x1, . . . , xn] be the polynomial ring in n

indeterminates and with coefficients in a field K. Let I∆ be the ideal of S generated by all
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square free monomials xi1 · · ·xis , provided that {i1, . . . , is} 6∈ ∆. It is clear that the minimal

generating set of I∆ is all square free monomials xi1 · · ·xis , such that {i1, . . . , is} ∈ N (∆).

The quotient ring K[∆] = S/I∆ is called the Stanley-Reisner ring of the simplicial complex

∆.

The facet ideal of ∆ is the ideal I(∆) of S which is generated by those square free

monomials xi1 · · ·xis , provided that {i1, . . . , is} is a facet in ∆. The quotient ring KF [∆] =

S/I(∆) is called facet ring of ∆.

For a given simplicial complex ∆ on [n], define ∆∨ by

∆∨ = {[n] \ F : F 6∈ ∆}.

It is clear that ∆∨ is a simplicial complex and (∆∨)∨ = ∆. The simplicial complex ∆∨ is

called the Alexander dual of ∆. Note that

F(∆∨) = {[n] \ F : F ∈ N (∆)}. (1)

Define the complement simplicial complex ∆c of ∆ to be the simplicial complex whose facets

are complements of facets of ∆. One has

I∆∨ = I(∆c) (2)

.

A partially ordered set (poset) is a nonempty set P with an order ≤ such that the

followings hold

for each x, y and z in P ,

a) x ≤ x,

b) x ≤ y and y ≤ x implies x = y,

c) x ≤ y and y ≤ z implies x ≤ z.

A simplicial complex can be assumed as a poset by order of inclusion.

Let ∆ be a simplicial complex on vertex set [n]. The barycentric subdivision of ∆,

denoted by ∆♭ is a simplicial complex which its vertex set is all elements of ∆ other than

the empty set, and two vertices are in a face if and only if one of them is subset of the other.

In other words, facets of ∆♭ are maximal chains in ∆ assumed as a poset.

It is easy to check that the minimal non-faces of ∆♭ are subsets of ∆ with exactly two

non-comparable elements. Therefore, ∆♭ is a flag complex or a clique complex and the

ideal I∆♭ is generated by square-free quadrics. It is known that dimensions (and depths,

respectively) of a simplicial complex and its barycentric subdivision are equal [6].

The 1-skeleton of ∆♭ is called comparability graph of ∆ and is denoted by G(∆). The

complement G(∆) of G(∆) is called non-comparability graph of ∆. The ideal I∆♭ can be

assumed as edge ideal of the graph G(∆), and then the simplicial complex ∆♭ is the complex

of independent sets of this graph.

It is not true that any graph is comparability graph of some simplicial complex. For

example there is no any complex whose comparability graph is a cycle of length 3, 4 or

5. A necessary condition for a graph to be comparability graph of some complex is to be
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transitively orientable. That is, there is an orientation on the graph such that if (x, y) and

(y, z) be oriented edges, the there is oriented edge (x, z).

A (convex) polytope is the convex hull of a finite point set in Euclidean n dimensional

space, for some n. A proper face of a polytope is the intersection of the polytope with a

supporting hyperplane. The empty set and the polytope itself are called improper faces. A

polyhedral complex is the union of a finite set of polytopes such that, intersection of any

two being a face of each.

It is known that geometric realizations of ∆ and ∆♭ are homeomorphic as topological

spaces and therefore, they share topological properties as Cohen-Macauleyness (see [7, p.

101]).

2 The Main Result

It is natural to ask whether a given graph is comparability graph of some simplicial complex

and how many non isomorphic simplicial complexes are there with the same comparability

graph. In this paper, we will prove that there is only one simplicial complex with a given

comparability graph (up to isomorphism). Here, an isomorphism of simplicial complexes

∆1 and ∆2 is a bijection between their vertex sets who preserves faces and facets. It is

enough to check that image and inverse image of any facet is again a facet. Face lattice

of a polyhedral complex is a generalization of notion of simplicial complexes (see [1] for

definitions). In the case of polyhedral complexes with at least two maximal faces, M. Bayer

has proved the following.

Theorem 2.1 (Bayer [1]) Let P be the face lattice of a connected polyhedral complex with

at least two maximal faces, and let P ∗ be its dual poset. If Q is a poset with Q♭ = P ♭, then

either Q = P or Q = P ∗.

A simplicial complex is face lattice of the polyhedral complex of its geometric realization

and so, by the above theorem, for a given connected simplicial cimplex with at least two

facets, there are at most one other simplicial complex with the same barycentric subdivision.

Let ∆ be a simplicial complex, barycentric subdivision ∆♭ is clique complex of the compara-

bility graph G(∆) and G(∆) is 1-skeleton of ∆♭. Therefore, knowing one of them is enough

to construct the other. Therefore, two barycentric subdivisions are isomorphic as simplicial

complexes if and only if their 1-skeletons are isomorphic as graphs. If ∆1 and ∆2 are two

simplicial complexes, then they are isomorphic if and only if there is a rearrangement of their

connected components such that the corresponding components are isomorphic separately.

Therefore, in the isomorphism problem of simplicial complexes, it is enough to consider only

connected complexes, which is equivalent to have connected barycentric subdivision.

In the proof of the above theorem, M. Bayer has shown that, for a given P with the

mentioned conditions, there are exactly two transitive orientations on the graph of 1-skeleton

of P ♭, each reverse of the other. We will show that in case of simplicial complexes there is

no need to the conditions and, either only one of the orientations on the graph admits a
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simplicial complex or, two simplicial complexes corresponding to these two orientations are

isomorphic.

Theorem 2.2 Let ∆1 and ∆2 be simplicial complexes. Let two graphs G(∆1) and G(∆2)

are isomorphic. Then, ∆1 and ∆2 are isomorphic.

Proof. As mentioned above, it is enough to consider connected simplicial complexes.

Therefore, let ∆1 and ∆2 be connected. Without loss of generality we may assume that

G(∆1) = G(∆2) = G. If ∆1 is of dimension 0, then it is a single point and the theorem

holds. Suppose that dimension of ∆1 = d ≥ 1. If ∆1 has only one facet, then it is a simplex

and in the graph G, there is a unique vertex corresponding the facet, which is connected to

all other vertices. The only possibility for ∆2 with a non empty face comparable with all

others is to be a simplex. Therefore, ∆2 is a simplex of dimension d and any two simplexes

of the same dimension are isomorphic.

Now, we consider the case that ∆1 is not a simplex and has at least two facets. In

this case, by the Theorem 2.1 of Bayer, there are at most two simplicial complexes with

comparability graph G. One of them is ∆1. Let
−→
G be the orientation of G corresponding

to ∆1 such that (x, y) is a directed edge if x ⊂ y in ∆1. Give a grade to each vertex x of
−→
G

equal to the dimension of x in ∆1. Note that, there is no any edge connecting two vertices

with the same grade. The graph
−→
G is (d+1)-partite with each part consisting of all vertices

of the same grade. In fact, there is a part consisting of all vertices which all arrows are going

out of them. This is the set of vertices of the underlying simplicial complex. All vertices of
−→
G such that all their connecting arrows are coming in, are facets and then the underlying

simplicial complex can be uniquely determined. In the rest of proof, we investigate how a

simplicial complex ∆2 may exist with comparability graph G with revers orientation of
−→
G ,

indicated by
←−
G .

Suppose that there is such a simplicial complex ∆2. In a directed graph we call a vertex

v to be initial if there is no any edge connected to v by direction with end point v. We call

a vertex v to be terminal if there is no any edge connected to it by direction with starting

point v. In the above situation, terminal vertices of
−→
G are exactly initial vertices of

←−
G and

vice versa.

First we show that
−→
G and

←−
G are ”pure” in the sense that all maximal chains of them

have a fixed length. In contrary, suppose there are two facets F1 and F2 in ∆1 with

dim(F1) <dim(F2). Denote their corresponding vertices in the graph G also with the same

names F1 and F2. These vertices are terminal points in
−→
G and initial points in

←−
G . The

complex ∆2 is connected, so, its 1-skeleton is connected. F1 and F2 are of dimension 0 in ∆2

and so there is no edge connecting them directly. Therefore, there is a vertex E in G with

dimension one less than dimension of F1 in ∆1 such that F1 is connected directly to E and

it is connected directly to F2 or another vertex with dimension equals to dim F2. Therefore,

E is a proper subset of F2 in ∆1 and so, it has an edge connecting to one of maximal proper

subsets of F2 as E′ which has dimension equal to dimF2 − 1. But, it is impossible because

E and E′ both have dimension 1 in ∆2 and can not have a common edge.
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Now, suppose ∆1 is a pure simplicial complex with facets F1, F2, . . . , Fr and sub-facets

(maximal proper subsets of facets) E1, E2, . . . , Et. The 1-skeleton of ∆2 consists of F1, F2, . . . , Fr

as zero dimensional faces and E1, E2, . . ., Et as one dimensional faces. Therefore, the in-

duced subgraph of G to 1-skeleton of ∆2, consists of two parts F1, F2, . . . , Fr, all of the same

degree and E1, E2, . . . , Et, all of degree 2. The induced graph has to be connected. Let

A = E1 ∪ · · · ∪Et = F1 ∪ · · · ∪Fr where, Fis and Ejs are considered as sets in ∆1. We claim

that F1, F2, . . . , Fr are all maximal proper subsets of A. The claim is clearly true because

only in this case we get a connected 2 partite graph with one part consisting of vertices of

degree 2 and vertices of the other part all have the same degree. Therefore, the simplicial

complex ∆1 is (d − 1)-skeleton of a simplex. So is ∆2, and because they have the same

dimensions, they are isomorphic. �

Inverse of the above theorem is clearly true. That is, if ∆1 and ∆2 are isomorphic

as simplicial complexes, then their barycentric subdivisions and comparability graphs will

be isomorphic. Therefore, barycentric subdivision and comparability graph are invariants

of a simplicial complex, and vise versa, underlying simpicial complex is invariant of its

barycentric subdivision and comparability graph. In the following theorem we summarize

more invariants of simplicial complexes.

Theorem 2.3 Let ∆1 and ∆2 be two simplicial complexes. The following conditions are

equivalent.

1. ∆1 and ∆2 are isomorphic as simplicial complexes.

2. ∆∨
1 and ∆∨

2 are isomorphic as simplicial complexes.

3. ∆c
1 and ∆c

2 are isomorphic as simplicial complexes.

4. ∆♭
1 and ∆♭

2 are isomorphic as simplicial complexes.

5. ∆♭n

1 and ∆♭n

2 are isomorphic as simplicial complexes for some positive integer n.

6. K[∆1] and K[∆2] are isomorphic as K algebras.

7. KF [∆1] and KF [∆2] are isomorphic as K algebras.

8. G(∆1) and G(∆2) are isomorphic as graphs.

Proof. Equivalences of 1, 2 and 3 are clear form equations (1) and (2). Equivalence

of 1 and 4 is proved in Theorem 2.2 above. Items 4 and 5 are equal because of 1 and 4.

Equivalences of 1, 6 and 7 are proved in [4] and [8]. By the argument just after Theorem

2.1, equivalence of 4 and 8 is clear. �
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