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A remark on the Generalized Hodge

Conjecture ∗

Dario Portelli

1 The results

Let X denote a smooth, projective, connected algebraic variety over C, of
dimension n.

The space F ′ pH i(X,Q) of the arithmetic filtration of H i(X,Q) can be
defined as follows. A class ξ ∈ H i(X,Q) is in F ′ pH i(X,Q) if and only
if there are a closed algebraic subset Y ⊂ X, of codimension ≥ p , and a
(2n − i)-cycle Γ ⊂ Y ( this forces p ≤ i/2 ) such that the Poincaré dual
PD(ξ) of ξ is [Γ] . Hodge observed ( [7],[8] ) that for any cycle Γ satisfying
these conditions we have the equality

(1)

∫

Γ

α = 0

for every [α] ∈ F n−p+1H 2n−i(X,C) . This happens because dim(Y ) ≤ n − p
and α contains too many dz’s to be supported by Y ; in fact we already have
α|Y ≡ 0 ( all the algebraic subsets Y ⊂ X will be considered with their
reduced structure, to have the set Ysm of their smooth points everywhere
dense in Y ). Since α is closed, this is actually a property of [Γ] , or, equiv-
alently, of ξ . Hodge also asked ( loc. cit. ) if this condition is sufficient for
ξ ∈ F ′ pH i(X,Q) .

To express this differently, recall that, if ξ is the class of the closed form
η , then for every closed (2n− i)-form α we have the equality

(2)

∫

X

α ∧ η =

∫

Γ

α
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Putting toghether (1) and (2) we get

(3) F ′ pH i(X,Q) ⊂ (F n−p+1H 2n−i(X,C) )⊥ = F pH i(X,C)

where the orthogonal is with respect to the non degenerate pairing

H 2n−i(X,C) ×H i(X,C) → C ([α], [β]) 7→
∫

X

α ∧ β

Hence

(4) F ′ pH i(X,Q) ⊆ F pH i(X,C) ∩ H i(X,Q)

Hodge’s original problem was whether this inclusion is an equality or not
( [7] ). Grothendieck showed that the answer is negative ( [5] ).

This paper arises from the remark that the vanishing in (1) depends only
on dim(Y ) and the type of α , not on the property for α of being closed. To
formalize, we introduce the pairing ( to simplify notation we set r := 2n− i )

(5) A r(X,C) × ( Zr ⊗Q
C )

∫

// C

still given by integration, where A r(X,C) denotes the C-vector space of all
complex valued r-forms, with C ∞ coefficients, not necessarily closed, and Zr

is the Q-module of the topological r-cycles which are rational combinations of
real-analytic, embedded r-simplexes ( it is known that X can be triangulated
by such simplexes; details will be given in the next section ). Since there
is the decomposition by types A r(X,C) = ⊕a+b=r A

a,b(X) , inclusion (3)
suggests to consider the orthogonal with respect to (5) of

(6) G :=
⊕

a≥n−p+1

A a,r−a(X)

Then, if T denotes the image by the canonical map Zr ⊗Q
C →→ Hr(X,C) of

G⊥, set S p,i := PD(T ) . With this definition

(7) F ′ pH i(X,Q) ⊆ S p,i ∩ H i(X,Q)

Moreover, the identification of cohomology classes with the unique harmonic
form they contain implies F n−p+1H r(X,C) ⊆ G , hence S p,i ⊆ F pH i(X,C) ,
which shows that (7) improves (4). The main result of the paper is

Theorem 1. For any integers i and p we have the equality

(8) F ′ pH i(X,Q) = S p,i ∩ H i(X,Q)

2



As a first step toward the proof of Theorem 1 we will characterize the
classes into S p,i by a ‘ geometric ’ condition on the cycles representing their
Poincaré duals. For any ξ ∈ H i(X,C) , let

(9) Γ :=
∑

h

mh σh ∈ Zr ⊗Q
C

be such that PD([Γ]) = ξ . Recall that we assumed all the singular r-
simplexes σh to be real-analytic embeddings. Fix such a h .

If ∆ denotes the image of σh , then our assumptions ensure that the set
of points of ∆ which are in the image of some other σj is nowhere dense in
∆. Let U ⊂ ∆ denote the complementary set. For every P ∈ U the tangent
space T

P
∆ is a subspace of T

P
X, where X is considered as a differentiable

manifold, of real dimension 2n. Recall that multiplication by
√
−1 on T

P
X

defines a complex structure J : T
P
X → T

P
X and T

P
∆ + J( T

P
∆ ) is the

smallest complex subspace of T
P
X which contains T

P
∆ .

Proposition 2. We have ξ ∈ S p,i if and only if there is a singular cycle
(9) representing PD(ξ) such that, for every singular simplex σh in it and for
every P in the corresponding open subset U ⊂ ∆ , the following relation
holds true

(10) dim
C

(
T

P
∆ + J( T

P
∆ )

)
≤ n− p

Notice that condition (10) is meaningful on the individual simplexes in
(9). This will be the basic ingredient to prove

Proposition 3. The spaces S p,i are rational, namely there is a Q-subspace
W ⊆ H i(X,Q) such that S p,i = W ⊗

Q
C .

By general facts on the rationality of subspaces, equality (8) then implies
W = F ′ pH i(X,Q) , hence

(11) S p,i = F ′ pH i(X,Q) ⊗
Q
C

In other words, the definition of S p,i is a geometric characterization of the
complexification of F ′ pH i(X,Q) .

Finally, the proof of Theorem 1 never uses the fact that the homology
and cohomology spaces considered are with rational coefficients. Hence the
same argument yields

Corollary 4. A r-cycle Γ with integral coefficients is contained into an
algebraic subset Y ⊂ X, of codimension ≥ p , if and only if (1) is true for
every α ∈ ⊕a≥n−p+1A

a,r−a(X) .
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Notice that, since the integral of a non closed form on a torsion cycle does
not vanish a priori, the condition imposed on Γ is not vacuous also in the
case of torsion cycles.

These results leave untouched Grothendiek’s Generalized Hodge Conjec-
ture. On the other hand, it seems to me that the method described here to
build algebraic supports for suitable cohomology classes is of some interest.

After a section devoted to various preparations, the proofs of Proposition
2, Theorem 1 and Proposition 3 are given respectively in §§ 3 , 4 and 5 .

2 Preparations

Throughout this section we will fix an embedding X ⊂ PN and a system of
homogeneous coordinates ( ζ0 : ζ1 : . . . : ζN ) for the ambient projective space.

First of all, we introduce some restriction on the systems of local holo-
morphic coordinates (z1, . . . , zn) on X we will use in the sequel.

Fix a point P ∈ X and let Λ ⊂ PN be any linear subvariety of dimension
N − n − 1 , which is disjoint from X and from the ( projectivized ) tangent
space of X at P. Let π : X → Pn denote the projection from Λ onto a general
linear subvariety Pn ⊂ PN . The differential map of π at P is an isomorphism
by construction. Hence the restriction of π to a suitable euclidean neigh-
borhood V of P is biholomorphic onto π(V ) . We will use affine coordinates
z1, . . . , zn on π(V ) as holomorphic coordinates on V. It is clear that these co-
ordinates have an immediate algebro-geometricic meaning. In fact, assume
that any point of a locus L ⊂ V satisfies a set of algebraic equations ϕj = 0 ,
with j = 1, . . . , k , between z1, . . . , zn . These equations define an algebraic
subset Z inside Pn, and L is clearly contained into the intersection of V with
the cone C projecting Z from Λ . More precisely, if codimπ(P )(Z,P

n) = t ,
then codimP (C ∩X,X) = t . This follows easily from the fact that π is étale
at P.

Assumption 1. We will fix once and for all an open covering V of X,
whose open sets are all domains of holomorphic coordinates as above, and
every V ∈ V is contained for some k in the Zariski open set of PN

Uk := { ( ζ0 : ζ1 : . . . : ζN ) ∈ PN | ζk 6= 0 }

Our next task will be the justification of the assumptions about the sin-
gular simplexes to be used on X we made in Introduction. They follow from
the fact that every projective variety can be suitably triangulated. To clarify
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this and to further exploit the triangulation, we recall here for the reader
convenience the complete statement of this theorem ( see [6] and [11] ).

The first step is the replacement of PN and X with homeomorphic spaces.
If we assume that the homogeneous coordinates ( ζ0 : ζ1 : . . . : ζN ) for a

point P in PN satisfy the normalization

(12) ζ0ζ̄0 + ζ1ζ̄1 + . . .+ ζN ζ̄N = 1

then the hermitian (N + 1) × (N + 1) matrix ( ζhζ̄k ) depends only on P.
Therefore the real and imaginary parts of all the entries

ζhζ̄k = σhk + iτhk 0 ≤ h ≤ k ≤ N

allow us to define a map ρ : PN
C → R(N+1)2 by setting

ρ : ( ζ0 : ζ1 : . . . : ζN ) 7→ (σ00 , σ01, . . . , σNN , τ01, . . . , τN−1,N)

It is easily seen that ρ is a real-analytic embedding. The image R of ρ is
compact, and homeomorphic to PN . Moreover, R is a real algebraic subset
of R(N+1)2 . In fact, a complete set of equations for R is given by

σ00 + σ11 + . . .+ σNN = 1

which translates (12), and the equations obtained by separating the real and
imaginary part from all the obvious relations 1

(13) ζj ζ̄k ζu ζ̄v − ζj ζ̄v ζu ζ̄k = 0

when they are written in terms of the σ’s and τ ’s.

The image by ρ of any complex algebraic subset Z ⊂ PN is a real algebraic
subset of R . We will need this only when Z is the hypersurface ζk = 0 . In
this simple case the k-th row and the k-th column of the matrix ( ζhζ̄k ) are
both zero, and this supplies several algebraic equations in the σ’s and τ ’s.
Among them we find also σkk = 0 , which in turn implies ζk = 0 .

What is actually triangulated is R ( both in [11] and [6] ). For our set-
up X ⊂ PN , the precise statement of the theorem ( see [6] ) says that we
have a simplicial decomposition R(N+1)2 = ∪a∆a and a semi-algebraic ( see
below ) automorphism κ of R(N+1)2 such that both R and ρ(X) are a finite
union of some of the κ(∆a) ; hence the triangulation of R(N+1)2 induces a

1 Notice that these relations can be summarized by requiring that rk ( ζhζ̄k ) = 1 . In
fact, a more conceptual ( but not shorter ) definition of R and description of its properties
can be given in terms of a suitable Segre embedding.
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triangulations for R and ρ(X) . Moreover, κ(∆a) is a locally closed smooth
real-analytic submanifold of R(N+1)2 , and κ induces a real-analytic isomor-
phism ∆a ≃ κ(∆a) , for any a . The whole set-up is as follows

(14)

R(N+1)2
∼
κ

// R(N+1)2

R

?�

OO

ρ−1
// PN

∆a

?�

OO

κ
// ρ(X)

?�

OO

ρ−1
// X

?�

OO

It is clear that all the singular simplexes σa := ρ−1 ◦κ : ∆a → X triangulate
directly X. These simplexes are real-analytic embeddings. To see this, we
have to write explicitly the map ρ−1. It is enough to do it locally.

In fact, let us remark that, by iterated barycentric subdivision we can
assume that the following requirement will be fulfilled from now on.

Assumption 2. The image ∆a of any singular simplex σa is contained in
some open V of the covering V of X introduced in Assumption 1.

By Assumption 1, any V ∈ V is contained in some Uk = { ζk 6= 0 } . Now, for
any (σ00 , σ01, . . . , σNN , τ01, . . . , τN−1,N) ∈ Wk := ρ(Uk) we can construct the
hermitian matrix ( ζaζ̄b ) . Therefore, on Wk the map ρ−1 is given by ( we will
not care anymore about the normalization (12) )

(σ00 , σ01, . . . , σNN , τ01, . . . , τN−1,N) 7→
(
ζ0
ζk

=
ζ0ζ̄k
ζkζ̄k

, . . . ,
ζ̂k
ζk
, . . . ,

ζN
ζk

)

To use real coordinates on Uk we set as usual ( just to simplify somewhat the
notations we assume here k = 0 )

ζj
ζ0

=: zj = xj + iyj j = 1, 2, . . . , N

where xj and yj are real. Therefore we have

xj + iyj =
ζj
ζ0

=
ζj ζ̄0
ζ0ζ̄0

=
σ0j − iτ0j

σ00

hence

(15) xj =
σ0j

σ00

yj = − τ0j
σ00

6



A first consequence of these relations is that ρ−1 is real-analytic. Hence all
the singular simplexes σa = ρ−1 ◦ κ : ∆a → X are real-analytic as well;
moreover, it is clear that they are embeddings.

To conclude this section we will exploit the fact that κ is a semi-algebraic
automorphism of R(N+1)2 . The reader is referred to [1] for a detailed account
about these sets; a brief summary of their main properties is in [6].

Semi-algebraic sets are the subsets of some RM which can be obtained
by finite union, finite intersection and complementation starting from the
family of sets { x ∈ RM | f(x) ≥ 0 } , where f is a polinomial with real
coefficients. To see some elementary example, we checked above that both
ρ(X) ⊂ R(N+1)2 and ρ(Z) , where Z denotes the hyperplane ζk = 0 of PN ,
are real algebraic. Hence they are, in particular, semi-algebraic. But then
also Wk = ρ(X) \ ρ(Z) is semi-algebraic.

A map between semi-algebraic sets is semi-algebraic if its graph is semi-
algebraic. Not continuous semi-algebraic maps are not interesting, so usually
one restricts to deal with the continuous ones.

Consider now a singular simplex σ = ρ−1 ◦ κ : ∆r → X as above, except
that here ∆r ⊂ R(N+1)2 denotes a linear r-simplex. By Assumptions 2 and
1, the image ∆ of σ is contained in some open V ∈ V , which, in turn, is
contained in some Uk = { ζk 6= 0 } ⊂ PN . Here again we will assume k = 0
to simplify notations. Hence we can factorize σ more precisely as

∆r
κ // W0

ρ−1
// U0 = R2N

p // V = R2n

where p is essentially a linear projection because of the peculiar local holo-
morphic coordinates we use on X.

Lemma 5. The map σ : ∆r → R2n described above is semi-algebraic.

Proof. First of all, ∆r is clearly semi-algebraic and linear projections as p are
known to be semi-algebraic. Since the composition of semi-algebraic maps
is still semi-algebraic, it remains, therefore, to show that ρ−1 enjoys this
property.

We remarked above that W0 is semi-algebraic. Moreover, by (15) the
graph of ρ−1 is contained inside the algebraic subset K of W0 ×U0 , which is
defined by the equations

σ00 xj − σ0j = 0 σ00 yj + τ0j = 0 j = 1, 2, . . . , N

Conversely, if (A,B) ∈ K, then trivially B = ρ−1(A) because of the (15). We
conclude that K is the graph of ρ−1, and the proof is complete.
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Therefore, from now on we will strengthen our assumptions on the sin-
gular r-cycles we will deal with by requiring

Assumption 3. Zr is the Q-module of the topological r-cycles which are
rational combinations of real-analytic, embedded singular r-simplexes σ :
∆r → X such that σ(∆r) is contained in some V ∈ V , and σ : ∆r → R2n is
semi-algebraic.

We have implicitly proved that the elements of Zr as defined above still
represent any homology class on X.

3 Proof of Proposition 2

If (10) is satisfied, then the pull-back to ∆ of any form α in the space G
defined in (6) is clearly ≡ 0 , hence ξ ∈ S p,i.

Conversely, assume that ξ = PD([Γ]) , where

(16) Γ ∈
( ⊕

a≥n−p+1

A a,r−a(X)

)⊥

We already remarked that condition (10) is meaningful on the individual
simplexes of Γ. Therefore we will deal with one of them σ : ∆r → X, of
image ∆ . Here ∆r ⊂ Rr is the standard ( open ) r-simplex.

First of all, we write (10) in coordinates. Let V be a domain of holomor-
phic coordinates (z1, . . . , zn) ∈ Cn on X. By decomposing any zh into its real
and imaginary parts we get the real coordinate chart (V, x1, . . . , xn, y1 . . . , yn)
for X. The complex structure J is given as follows. If we write the tangent
vectors to X at P with respect to the base ∂/∂ x1, . . . , ∂/∂ yn , then

(17) J : (c1, . . . , cn, cn+1, . . . , c2n) 7→ (−cn+1,−cn+2, . . . ,−c2n, c1, . . . , cn)

Moreover, let (U, u1, u2, . . . , ur) be local coordinates for U , and assume
that U ⊂ V. Denoting by f the inclusion ∆ ⊂ X, we can assume more
precisely that U = ∆∩ V because σh is an embedding. If spt(Γ) denotes the
closure of the union of all r-simplexes of Γ, it is then harmless to require that

(18) U = spt(Γ) ∩ V

Writing f |
U

in coordinates, for every P ∈ U the subspace T
P

∆ is generated
inside T

P
X by the columns of the jacobian matrix

(19) J
P

=
∂ ( x1, . . . , xn, y1 . . . , yn )

∂ ( u1, u2, . . . , ur )
(P ) =

(
A
B

)

8



where both A,B are n× r real matrices, whose entries are smooth functions
on U. Now, by (17) the subspace T

P
∆ +J( T

P
∆ ) of T

P
X is generated by the

columns of (
A −B
B A

)

By elementary transformations on rows and columns, with complex coeffi-
cients, this matrix is transformed into

(
A + iB 0

0 A− iB

)

Hence dim
R

(
T

P
∆ + J( T

P
∆ )

)
= 2 rk(A+ iB ) , and (10) becomes

(20) rk(A+ iB ) ≤ n− p

Before checking that this condition is satisfied at every point of U, we
have to settle a minor point. If p = 0 there is nothing to prove, hence we
assume p ≥ 1 . Moreover, if i > n , then by the Weak Lefschetz theorem we
can always assume that Γ ⊆ Y, where Y is the complete intersection of i− n
general very ample divisors on X. Hence p ≥ i − n holds true in general in
this case, and to have something to prove we assume p > i− n . In any case
k := n− i+ p > 0 .

Fix an arbitrary P ∈ U , and let ϕ : V → R be a function ≥ 0 , of class
C ∞, with compact support K and such that ϕ(P ) > 0 .

Fix also arbitrarily n−p+1 indices 1 ≤ h1 < . . . < hn−p+1 ≤ n . Moreover,
for any choice of natural numbers a, b such that a+ b = k − 1 , set

β = dzk1 ∧ dzk2 ∧ . . . ∧ dzka ∧ dz̄ l1 ∧ . . . ∧ dz̄ lb

Then

α :=





ϕdzh1 ∧ dzh2 ∧ . . . ∧ dzhn−p+1 ∧ β on V

≡ 0 outside V

is an element of ⊕a≥n−p+1A
a,r−a(X) . By construction, the support of α is

contained in V, and then by (18) and (16) we get

0 =

∫

Γ

α =

∫

U

f ∗ α

9



Now f ∗ α = ϕ|
U

det (M) du1 ∧ . . . ∧ dur , where M is a r × r matrix which
can be written in block form as ( recall the jacobian matrix (19) )

M =

the rows h1, . . . , hn−p+1

from A+ iB

a rows from A+ iB

b rows from A− iB

Let us denote by H and I the functions U → R which are respectively the
real and imaginary part of det (M) : U → C . Then

∫

U

ϕ|
U
H du1 ∧ . . . ∧ dur + i

∫

U

ϕ|
U
I du1 ∧ . . . ∧ dur = 0

But the two integrals above are real numbers, hence

(21)

∫

U

ϕ|
U︸︷︷︸

≥0

H du1 ∧ . . . ∧ dur =

∫

U

ϕ|
U
I du1 ∧ . . . ∧ dur = 0

Assume now that for the point P ∈ U considered above we have

(detM)(P ) = H(P ) + iI(P ) 6= 0

To fix ideas, suppose that H(P ) 6= 0 . Then we can choose the support K of
ϕ so small that the sign of H on K ∩ Γ is constant ( notice that M does not
depend upon α , but it depends only from the inclusion f : ∆ ⊂ X ). This
contradicts (21) because ϕ(P ) > 0 . Therefore necessarily (detM)(P ) = 0 .
This argument works for any P ∈ U, hence

(22) detM ≡ 0 on U

To conclude the proof of the theorem we have to show that the deter-
minants ν

I
of all the maximal minors of the first n − p + 1 rows of M are

zero. Because of (22), if we write the expansion of det(M) based on the first
n− p+ 1 rows, we get ( the signs are embodied into the ν

I
’s )

∑

I=( 0≤ i1 <...< in−p+1 ≤ r )

ν
I
γ

I
= 0

10



This means that the last a+ b rows of M ( which correspond to the (k − 1)-
form β ) allow us to construct a solution of the homogeneous linear equation

(23)
∑

I

ν
I
X

I
= 0 in the

(
r

n− p+ 1

)
indeterminates X

I

To show that all the ν
I

vanish we have just to produce enough independent
solutions of (23). This can be done by using different β ’s.

In fact, since σh is an embedding, the rank of J
P

is r at any point, and
therefore the rows of the matrix (19) generate Rr. Hence they generate the
complexified space Cr of Rr as well. This implies that Cr can be generated
also by the rows of A+ iB toghether with those of A− iB .

Now, it is clear that (γ
I
)
I

can be thought as an element of ∧ k−1Cr, and
the above remark says that this space is generated by all possible wedge
products of k − 1 among the rows of A + iB and those of A− iB . In other
words, by changing β we can construct

(
r

n−p+1

)
independent solutions of (23),

hence this equation is trivial and the proof of Proposition 2 is complete.

4 Proof of Theorem 1

Let ξ ∈ S p,i ∩ H i(X,Q) , and let Γ =
∑

h mh σh ∈ Zr be a r-cycle whose
class is the Poincaré dual of ξ , and which satisfies (16). We want to construct
an algebraic subset of X, of codimension ≥ p , containing Γ. For this it is
sufficient to construct an algebraic subset of codimension ≥ p containing the
image ∆h of σh , for any singular simplex σh of Γ .

Let σ : ∆r → X be one of the singular simplexes of Γ, and denote its
image by ∆ . In the coordinates u1, u2, . . . , ur of R r the map σ is given by

xj = fj(u1, u2, . . . , ur) yj = fj+n(u1, . . . , ur) j = 1, . . . , n

where any fk : ∆r → R is real-analytic because σ is. Then we define a
real-analytic map g : ∆r → Cn by setting for any j = 1, . . . , n

(24) zj = gj(u1, u2, . . . , ur) := fj(u1, . . . , ur) + i fj+n(u1, . . . , ur)

It is well known that any gj extends to a holomorphic function Fj , defined
on a suitable neighborhood of ∆r inside C r ( on C r we will use complex
coordinates w1, w2, . . . , wr where wk = uk + ivk is the decomposition of wk

into its real and imaginary parts, and the uk’s are as above ). Therefore, there
is an open set E ⊂ C r containing ∆r , such that every Fj is defined on E, and
the Fj are the components of a holomorphic map F : E → Cn. Moreover, we
can also assume ( with a slight abuse of notation ) that F (E) ⊆ V. The proof
of the following lemma is completely standard and left to the reader.

11



Lemma 6. The jacobian matrix of F is A + iB ( see (19) ), its rank is
≤ n− p at any point of E, and reaches its maximum at some point of ∆r .

Another basic property of the map F : E → Cn is

Lemma 7. If E0 ⊆ E is any open semi-algebraic set, then the restriction
F : E0 → Cn = R2n is semi-algebraic.

Proof. We know by Lemma 5 that σ : ∆r → R2n is semi-algebraic. It is
easily seen that this is equivalent to have fj : ∆r → R semi-algebraic for
every j = 1, . . . , 2n . In turn, this amounts ( see [1], Prop. 8.1.7 ) to the
existence for any j of a polynomial Pj(U1, . . . , Ur, T ) with real coefficients
and positive degree with respect to T, such that for every u ∈ ∆r

(25) Pj(u, fj(u)) = 0

holds true; this is usually expressed by saying that fj is a Nash function on
∆r . The left hand side of the above relation can be thought as a real-analytic
function of u . Hence, if we replace u by u + iv in (25) we get, by a variant
of the Identity Principle ( see e.g. [10], pag. 21 )

(26) Pj(u+ iv, fj(u+ iv)) = 0

for every u+ iv ∈ E .
This relation says that fj(u + iv) is algebraic over the field of fractions

C(u, v) of the ring of polynomials C[u, v] = C[u1, . . . , ur, v1, . . . , vr] . But
C(u, v) is algebraic over R(u, v) , hence fj(u + iv) is algebraic over R(u, v)
as well, and there is Qj ∈ R[u, v, T ] , with positive degree with respect to T,
such that for every (u, v) = u+ iv ∈ E

Qj(u, v, fj(u+ iv)) = 0

Since Qj has real coefficients, this implies Qj(u, v, fj(u+ iv) ) = 0 , and also

fj(u+ iv) is algebraic over R(u, v) . If we set

fj(u+ iv) = ϕj(u+ iv) + i ψj(u+ iv)

where ϕj and ψj are real valued functions defined on E, then we can conclude
that both ϕj(u+ iv) and ψj(u+ iv) are algebraic over R(u, v) , i.e. they are
Nash functions on E. Therefore these functions are semi-algebraic on every
open semi-algebraic subset E0 of E ⊂ R 2r ( loc. cit. ). Finally, by (24) we
have

Fj(u+ iv) = fj(u+ iv) + i fj+n(u+ iv) =

= ϕj(u+ iv) − ψj+n(u+ iv) + i
(
ψj(u+ iv) + ϕj+n(u+ iv)

)

12



Hence, for any j = 1, . . . , n , both the real and imaginary components of
the functions Fj are semi-algebraic on E0 , and the proof of Lemma 7 is
complete.

Let P0 ∈ ∆r be a point where the rank of the Jacobian matrix of F
reaches its maximum. By the Rank Theorem, locally at P = F (P0) the set
F (E) is a complex analytic manifold Y, locally closed in X. The dimension
of Y is n− t ≤ n− p , by Lemma 6.

The crucial point in the proof of Theorem 1 is to check that the Zariski
closure of Y in X has codimension ≥ p , or, roughly speaking, that ‘Y is
algebraic ’. Several results are known which assert that a complex-analytic
subset Z of Cm is algebraic, under suitable conditions. For example, this is
true whenever Z ⊂ Cm = R2m is semi-algebraic ( [3] ).

In the beautyful paper [2] it was recognized that the property for a
complex-analytic subset Z of some algebraic ambient complex manifold to be
itself algebraic is of local nature. Below we will use locally the semi-algebraic
condition to see that ‘Y is algebraic ’ 2.

The semi-algebraic condition is concretely attained on Y as follows. The
refined form of the Rank Theorem says that, with respect to suitable local
holomorphic coordinates ( not necessarily of the kind introduced in § 2 ), the
map F can be written as a linear projection. Hence, in particular, F :
E → F (E) is an open map locally at P0 , and the image F (W ) of a suitably
small open polydisk W centered at P0 will be open in Y, and semi-algebraic
by Lemma 7. Since we are going to perform a local argument at P, we
will just assume Y = F (W ) . To simplify notations, we assume also that
P = (0, . . . , 0) .

Let O denote the ring of germs at P of holomorphic functions on X, and
let I ⊂ O be the ideal of germs representing functions whose restriction to
Y vanishes identically around P. It is easily seen that I is a prime ideal.
Moreover, ht(I ) = t because the dimension of Y is n− t . Now, the ring of
polynomials C[ z ] = C[z1, . . . , zn] can be thought as a subring of O. Consider
the prime ideal I := I ∩C[ z ] . To conclude the proof of Theorem 1 we have
only to check that

(27) ht(I) ≥ t

( actually, also ht(I) ≤ t holds true, so that we have an equality ). In fact,
thanks to the restriction on the systems of local holomorphic coordinates on
X we made in § 2, Y is contained in the irreducible algebraic subvariety Z of

2After the paper was completed, I learned that similar results were obtained in [4].
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X defined locally at P by I, and (27) implies that this algebraic subvariety
has codimension t ≥ p in X.

To summarize and conclude, we started from a singular simplex σ : ∆r →
X of Γ. Then σ(W ∩ ∆r) ⊆ Z because W was defined above as an open
polydisk centered at P0 ∈ ∆r such that Y = F (W ) . But W ∩∆r is open into
∆r and σ is real-analytic. Hence the whole image ∆ of σ is contained into Z.

To use the additional information that Y is semi-algebraic, we have to
complete the above algebraic set-up. Let A denote the ring of germs at P of
real-analytic, complex valued functions on X. Notice that O is a subring of A .
Both A and O are regular local rings, of dimension 2n and n respectively.
Moreover, C[ x , y ] = C[x1, . . . , xn, y1, . . . , yn] is a subring of A . Hence, to
start we have the commutative diagram of rings

(28)

O // A

C[ z ]

OO

// C[ x , y ]

OO

where all the maps are inclusions. Now, denote by J ⊂ A the ideal of germs
representing functions whose restriction to Y vanishes identically around P.
It is easily seen that J is a prime ideal and that I = J ∩ O . Moreover,
we set J := J ∩ C[ x , y ] .

To prove (27), we start by applying the ‘ dimension formula ’ ( [9], p. 119 )
to the ring extension C[ z ] ⊂ C[ x , y ] , thus getting ( notice that C[ x , y ] =
C[ z , x ] )

ht(J) + tr.deg.
κ(I)

κ(J) = ht(I) + tr.deg.
C[ z ]

C[ x , y ]

where the trascendence degree in the right hand side is that of the quotient
field of C[ x , y ] over that of C[ z ] , and κ(J) is the quotient field of C[ x , y ]/J .

Lemma 8. ht(J) = 2 t

Proof. The real-analytic manifold underlying Y has dimension 2(n− t) , and
this is the dimension of Y as a semi-algebraic set ( [1], Prop. 2.8.13 ).

The ideal K ⊂ R[ x , y ] of all the polynomials vanishing on Y defines the

Zariski closure Y of Y inside R 2n. It is clear that K = J ∩ R[ x , y ] , which

implies that K is a prime ideal. By [1], Prop. 2.8.2, the dimension of Y is
2(n− t) , and then ht(K) = 2 t .

Finally, since the extension R[ x , y ] ⊂ C[ x , y ] is integral and flat, we can
conclude ht(J) = ht(K) = 2 t .

14



This lemma implies that (27) is equivalent to

(29) tr.deg.
κ(I)

κ(J) ≥ n− t

We will apply now the ‘ dimension formula ’ again, this time to the ring
extension O → O[ x ] (⊂ A ). This is possible because O is universally
catenarian, being a regular local ring, and O[ x ] is an O-algebra of finite
type. Set H := J ∩ O[ x ] . Then

ht(H ) + tr.deg.
κ(I )

κ(H ) = ht(I ) + tr.deg.
O
O[ x ]

The rings O and A can be thought as the rings of convergent power se-
ries with complex coefficients, respectively in the variables z1, . . . , zn and
z1, . . . , zn, x1, . . . , xn . This shows that x1, . . . , xn are algebraically indepen-
dent over O . Hence, if we assume for a moment

Lemma 9. ht(H ) = 2 t

we conclude tr.deg.
κ(I )

κ(H ) = n− t .

Finally, consider the commutative diagram of integral domains and injec-
tive ring maps, and the corresponding diagram of quotient fields

O/I // O[ x ]/H

C[ z ]/I

OO

// C[ z , x ]/J

OO
κ(I ) // κ(H )

κ(I)

OO

// κ(J)

OO

It is clear that a trascendence base for κ(H ) over κ(I ) can be extracted
from the set of the residue classes mod H of x1, . . . , xn . Say such a base is
x̄1, . . . , x̄n−t , the number of its elements was determined above. It is also clear
that these elements are, a fortiori, algebraically independent over κ(I) . But
x̄1, . . . , x̄n−t actually belong to C[ z , x ]/J, and the proof of (29) is complete,
except for the proof of Lemma 9.

Proof of Lemma 9. First of all, we construct a suitable system of generators
for the ideal Jloc ⊂ C[ z , x ]loc , where ‘ loc ’ denotes the localization with
respect to ( z , x ) . Recall that we assumed that P = (0, . . . , 0) ; we can also
assume that Y is defined locally at P by holomorphic equations like

z1 + higher order terms = 0 . . . . . . zt + h.o.t. = 0

Hence, if we consider Y ⊂ V ⊆ Cn, then the embedded tangent space to
the complex manifold Y at P is defined by z1 = . . . = zt = 0 . Therefore

15



the embedded tangent space to the semi-algebraic set Y inside R2n = Cn is
defined by

x1 = 0 . . . . . . xt = 0 y1 = 0 . . . . . . yt = 0

It is then well known that we can define Y in a suitable Zariski neighborhood
of P by a set of polynomial equations ( with real coefficients ) of the following
kind, where j runs between 1 and t

(30) Pj = xj + h.o.t. = 0 Pt+j = yj + h.o.t. = 0

The polynomials P1, . . . , Pt , Pt+1 , . . . , P2 t generate inside C[ z , x ]loc a prime
ideal of height 2 t because their list can be completed by (30) to a minimal
system of generators for the maximal ideal of the regular local ring C[ z , x ]loc .
Now the ideal (P1, . . . , P2 t) is clearly contained into Jloc , hence the two ideals
coincide having the same height, and we have the desired system of generators
for Jloc .

Claim The polynomials P1, . . . , P2 t generate the ideal J in A .

Clearly these polynomials are contained in J . Conversely, let ϕ : T → C a
real-analytic function, with T ⊂ R2n a neighborhood of P in X, such that its
germ belongs to J . By definition of J this means that the restriction of ϕ
to Y vanishes identically.

Consider now the algebraic subset Z of C2n, defined by the equations
(30). Locally at 0 := (0, . . . , 0) ∈ C2n it is a complex manifold, of dimension
2n − 2 t . We already remarked that A can be thought as the ring of germs
at 0 of holomorphic functions C2n → C . The holomorphic extension ϕ̃ of ϕ
is the holomorphic function defined in a suitable neighborhood of 0 inside
C2n by the same power series of ϕ . Therefore, to prove that the germ of ϕ
belongs to the ideal of A generated by P1, . . . , P2 t we have only to check that
the restriction of ϕ̃ to Z vanishes identically. In fact,

√
(P1, . . . , P2 t)A = (P1, . . . , P2 t)A

because of the same argument used above shows that P1, . . . , P2 t generate a
prime ideal of the regular local ring A .

If we apply the Implicit Function Theorem for real-analytic functions
to (30), we get a neighborhood H of (0, . . . , 0) ∈ R2n−2t, with coordinates
xt+1 , . . . , xn, yt+1 , . . . , yn , and a real-analytic map α : H → R2n which
parametrizes Y locally at P. Therefore the holomorphic extension α̃ of α
parametrizes Z locally at 0 .

The holomorphic function ϕ̃◦ α̃− ϕ̃ ◦ α is defined in a neighborhood H ′ of
H inside C2n−2t; if H is connected, say an open ball, it is harmless to assume
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that H ′ is connected as well. But the restriction of ϕ̃◦α̃−ϕ̃ ◦ α to H vanishes
identically, hence ϕ̃ ◦ α̃ = ϕ̃ ◦ α on H ′ ( [10], pag. 21 ). Now, since ϕ ≡ 0 on
Y, we have ϕ ◦ α ≡ 0 , hence ϕ̃ ◦ α̃ ≡ 0 . In other words, the restriction of ϕ̃
to Z vanishes identically around 0 . As we said above, this implies that the
germ of ϕ belongs to (P1, . . . , P2 t)A , and therefore the Claim is completely
proved.

We can complete the proof of Lemma 9.
Let M denote the maximal ideal of O . Then N := M +( x ) is a maximal

ideal of O[ x ] , and we have a local homomorphism O[ x ]N → A . Both rings
are regular local rings of dimension 2n, whose respective maximal ideals are
both generated by the germs of the coordinate functions z1, . . . , zn, x1, . . . , xn .
We can then conclude that O[ x ]N → A is flat ( [9], Thm. 23.1 ), hence it is
a faithfully flat extension. But then, by the Claim and [9], Thm. 7.5

(P1, . . . , P2 t)O[ x ]N = (P1, . . . , P2 t)A ∩ O[ x ]N = J ∩ O[ x ]N = HN

The usual argument shows that (P1, . . . , P2 t)O[ x ]N is a prime ideal of height
2 t, hence Lemma 9 is completely proved, as well as Theorem 1.

5 Proof of Proposition 3

The obvious actions of the Galois group G (C/Q) on Hr(X,Q) ⊗
Q
C and

H i(X,Q) ⊗
Q
C can be transported respectively on Hr(X,C) and H i(X,C)

by the canonical isomorphisms of complex vector spaces

µ
h

: Hr(X,Q) ⊗
Q
C → Hr(X,C) µ

c
: H i(X,Q) ⊗

Q
C → H i(X,C)

supplied by the corresponding universal coefficients theorems. More precisely,
given ϕ ∈ G (C/Q) we define ϕ i : H i(X,C) → H i(X,C) by setting

ϕ i := µ
c
◦ ( id⊗ ϕ ) ◦ µ−1

c

We will follow the usual convention to denote ϕ i(ξ) by ξ ϕ. Similar definition
and notational convention are also assumed for the homology spaces.

Now, the following diagram is clearly commutative

H i(X,Q) ⊗
Q
C

µc

��

PD
Q
⊗id

C // Hr(X,Q) ⊗
Q
C

µ
h

��
H i(X,C)

PD
C

// Hr(X,C)
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and it is easily seen that this implies

(31) PD
C
◦ ϕ i = ϕr ◦ PDC

i.e. the actions of G (C/Q) on Hr(X,C) and H i(X,C) commute with the
Poincaré duality.

Take now ξ ∈ S p,i, and assume that ξ is the Poincaré dual of [Γ] , where
any singular simplex of Γ satisfies (10). Then, for every ϕ ∈ G (C/Q)

ξ ϕ = PD
(

[Γ]ϕ
)

because of (31). Moreover, the commutative diagram

Zr ⊗Q
C can. // //

id⊗ϕ

��

Hr(X,Q) ⊗
Q
C

id⊗ϕ

��

µ
h // Hr(X,C)

ϕr

��
Zr ⊗Q

C
can.

// // Hr(X,Q) ⊗
Q
C

µ
h

// Hr(X,C)

clearly implies [Γ]ϕ =
[

Γϕ
]
. The cycle Γ can be written as Γ =

∑
h zh Γh

where Γh ∈ Zr and zh ∈ C for any h . Note that we can use the same finite
set of singular simplexes to represent any Γh , namely

Γh = ah1 σ1 + . . .+ ahs σs where ahj ∈ Q for any h, j

Hence

Γ =

s∑

j=1

(
a1j z1 + . . .+ atj zt

)
σj

Therefore our assumption on Γ can be restated as : σj satisfies (10) whenever
a1j z1 + . . .+ atj zt 6= 0 . Finally

Γϕ =
∑

h

ϕ(zh) Γh =

s∑

j=1

ϕ
(
a1j z1 + . . .+ atj zt

)
σj

which shows that also all the singular simplexes of Γϕ satisfy (10). Hence
ξ ϕ ∈ S p,i, and then, for every ϕ ∈ G (C/Q) we have (S p,i )ϕ ⊆ S p,i.

The rationality of S p,i follows by descente galoisienne.
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Verlag, Berlin Heidelberg New York London Paris Tokyo, 1987;

[2] W. L. Chow, On compact complex analytic varieties, Amer. J. Math. 71
(1949), 893–914;

[3] E. Fortuna - S.  Lojasiewicz, Sur l’algébraicité des ensembles analytiques
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