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Abstract

A graph G is called well-covered if all maximal independent sets of vertices have the

same cardinality. A well-covered graph G is called uniformly well-covered if there is a

partition of the set of vertices of G such that each maximal independent set of vertices

has exactly one vertex in common with each part in the partition. The problem of

determining which graphs is well-covered, was proposed in 1970 by M.D. Plummer.

Let G be the class of graphs with some disjoint maximal cliques covering all vertices.

In this paper, some necessary and sufficient conditions are presented to recognize which

graphs in the class G are well-covered or uniformly well-covered. This characterization

has a nice algebraic interpretation according to zero-divisor elements of edge ring of

graphs which is illustrated in this paper.
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Introduction

A graph G is said to be well-covered if every maximal independent sets of vertices have the

same cardinality. In some texts, well-covered graphs are called unmixed. These graphs were

introduced by M.D. Plummer [16] in 1970. Although the recognition problem of well-covered

graphs in general is Co-NP-complete ([22]), it is characterized for certain classes of graphs.

For instance, claw-free well-covered graphs [20], well-covered graphs which have girth at

least 5 [4], (4-cycle, 5-cycle)-free [5] or chordal graphs [18] are all recognizable in polynomial

time. An excellent survey of the work on well-covered graphs is given in Plummer [17] and

a survey of recent activities is presented in Hartnell [8]. There are also many other papers

studying special properties of well-covered or very well-covered graphs. For example see

references [1], [2], [3], [9], [12], [13], [14], [18], [19], [20], [25] and [27].

Let G be a graph with no loop and multiple edge. Denote the set of vertices of G by

V (G) and the set of edges by E(G). A subset A of V (G) is called an independent set if

there is no any edge between vertices of A. A subset C of V (G) is called a clique if any two

vertices in C are connected by an edge in E(G). A subset B ⊆ V (G) is called a vertex cover

if any edge in E(G) has at least one vertex in B.
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Let A and B be subsets of V (G). We say A dominates B if for any vertex v in B there

is at least one vertex in A connected to v by an edge in E(G). A subset A of V (G) is called

a dominating set if any vertex of G is in A or adjacent to some vertices in A. It is called

minimal dominating set if there is no proper subset of A dominating G. A graph G is called

well-dominated if all minimal dominating sets of G are of the same cardinality.

A subset of E(G) is called a matching if there is not any common vertex in any two edges

in this set. A matching is called perfect matching if it covers all vertices of G.

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices, is a system of

subsets of [n] such that the following conditions hold:

a) {i} ∈ ∆ for any i ∈ [n],

b) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.

An element of ∆ is called a face and a maximal face with respect to inclusion is called a

facet. The set of all facets is denoted by F(∆). The dimension of a face F ∈ ∆ is defined to

be |F |−1 and dimension of ∆ is maximum of dimensions of its faces. A simplicial complex is

called pure if all its facets have the same cardinality. For more details on simplicial complexes

see [24].

Let G be a graph. The set of all independent sets of vertices of G is a simplecial

complex, because, any single vertex is independent and any subset of an independent set is

again independent. This simplicial complex is denoted by ∆G. With the above definitions,

a graph G is well-covered means that the simplicial complex ∆G is pure.

A simplicial complex ∆ is called balanced if it is pure and there is a partition of the set

of vertices as V1, . . . , Vs such that any facet of ∆ has exactly one vertex in common with

each Vi, i = 1, . . . , s. This definition is introduced by R. Stanley in [23]. In literature of

graph theory there is a classical definition for balanced graphs which is different with the

above definition of balanced simplicial complex of independent sets of a graph. To avoid

any confusion, we present the following definition.

Definition 1. A graph G is called uniformly well-covered if the simplicial complex ∆G is

balanced. Equivalently, a graph G is uniformly well-covered if it is well-covered and there is

a partition of V (G) as V1, . . . , Vs such that any maximal independent set of G has exactly

one vertex in common with each Vi, i = 1, . . . , s.

Example. As an example, in the following figure, from left to right,

i) The first graph is not well-covered: {1, 3, 5} and {1, 4} are among maximal independent

sets with different cardinalities.

ii) The second is well-covered but not uniformly well-covered: {1, 3}, {1, 4}, {1, 5}, {2, 5},

{2, 6}, {3, 6}, {4, 6} are all maximal independent sets which are all of size 2 but, there

is no any partition of vertices to satisfy the definition of uniformly well-covered.

iii) The third graph is uniformly well-covered: {1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 6}, {4, 6}

are all maximal independent sets and {{1, 5, 6}, {2, 3, 4}} is a partition of vertices such
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that each maximal independent set has exactly one vertex in intersection with each of

these parts.
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Well-covered and uniformly well-covered graphs

Lemma 2. Let G be a graph. Then G is uniformly well-covered if and only if there are

maximal cliques C1, . . . , Cs in G satisfying the following conditions.

i) Ci ∩ Cj = ∅ for each i and j, 1 ≤ i < j ≤ s, and C1 ∪ · · · ∪ Cs = V (G).

ii) For each 1 ≤ i ≤ s, if A ⊆ V (G) \ Ci is a dominating set of Ci, then A is not an

independent set.

Proof. Let G be uniformly well-covered . Then, there is a partition of V (G) as V1, . . . , Vs

such that any maximal independent set of G has exactly one vertex in common with each

Vi, i = 1, . . . , s. Let Ci = Vi for i = 1, . . . , s. Let v be a vertex in Vi for some 1 ≤ i ≤ s. By

the fact that any independent set in G can be extended to a maximal independent set, it is

clear that there is no other vertex in Vi independent to v. Therefore, each two vertices of Vi

are adjacent and Vi is a clique. Also, Vi is a maximal clique because, in other case, there is a

maximal clique C in G strictly containing Vi. Let w ∈ C \Vi. Then, there is some 1 ≤ j ≤ s,

j 6= i such that w ∈ Vj , and for any maximal independent set containing w, there is not

any vertex in Vi belonging to the maximal independent set. Therefore, cardinality of this

set is at most s − 1 which is a contradiction. This proves existence of the maximal cliques

satisfying the condition i). To prove condition ii), let 1 ≤ i ≤ s be given and A ⊆ V (G) \Ci

be a dominating set of Ci. If A is independent, then there is a maximal independent set B

containing A. But, B ∩ Ci = ∅ because any vertex of Ci has a common edge with some

vertices in A ⊆ B. This is a contradiction with uniformly well-coveredness of G. Therefore,

taking Ci = Vi, i = 1, . . . , s, both conditions are satisfied.

Now, let there are maximal cliques C1, . . . , Cs in G satisfying conditions i) and ii).

Take Vi = Ci, i = 1, . . . , s. It is clear that V1, . . . , Vs is a partition of V (G) and any

maximal independent set in G has at most one vertex in common with each Vi. Let A be an

independent set in G. If A∩ Vi = ∅ for some i, then A ⊆ V (G) \Vi and by hypothesis, A is

not a dominating set of Vi and so, there is a vertex v ∈ Vi not dominated by any vertex in A.

Therefore, A∪ {v} is an independent set. This means that any maximal independent set in

G has exactly one vertex in common with each Vi. Therefore, G is uniformly well-covered.

�
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We interest to find conditions equivalent to well-covered in some classes of graphs. Using

proof of the above lemma, we do such a classification in the following.

Corollary 3. Let G be a graph with a maximal independent set of size s and s max-

imal cliques C1, . . . , Cs satisfying condition i) of Lemma 2. The following conditions are

equivalent.

i) G is well-covered.

ii) G is uniformly well-covered.

iii) For each 1 ≤ i ≤ s, if A ⊆ V (G) \ Ci is a dominating set of Ci, then A is not an

independent set.

Proof. It is clear that conditions ii) and iii) are equivalent and each of them implies

condition i). Therefore, it is enough to prove that condition i) implies one of the others. By

the Lemma 2, the condition i) implies iii). �

Lemma 4. Let G be a graph such that G, the complement graph of G, is s-partite with

partitions V1, . . . , Vs. The following conditions are equivalent.

i) For each 1 ≤ i ≤ s, Vi is a minimal dominating set of G, and any minimal dominating

set of G is of size s.

ii) G is uniformly well-covered.

iii) G is well-covered with a maximal independent set of size s.

Proof. The graph G is s-partite, means that G has s cliques V1, . . . , Vs which cover all

vertices. Let i) holds. The first statement of condition i) implies that for a given vertex

v 6∈ Vi, there is a vertex in Vi connected to v by an edge in G. This means that Vi is

a maximal independent set in G and hence a maximal clique in G. Let A ⊆ V (G) \ Vi

dominates Vi. If A is an independent set, then intersection of A with each Vj has at most

one element. Adding an element from each Vj , j 6= i, with empty intersection with A, to

A, finally yields a dominating set of G of cardinality less than s, which is a contradiction

to the second statement of i). Therefore, A is not an independent set. By Corollary 3,

This implies conditions ii) and iii). In other hand, we know that uniformly well-coveredness

always implies well-coveredness. Therefore, to complete the proof, it is enough to prove

that iii) implies i). Let iii) holds. Then, G is well-covered and any maximal independent

set in G has cardinality s. This means that Vi is a maximal clique in G because otherwise,

for some i 6= j, V ′
i ∩ V ′

j 6= ∅, where V ′
i and V ′

j are maximal cliques containing Vi and Vj

respectively. In this case, any maximal independent set containing an element of V ′
i ∩ V ′

j ,

has cardinality of size less than s. Therefore, Vi is a maximal independent set in G and any

vertex v ∈ V (G) \ Vi is not independent to all vertices of Vi in G and so it is connected to
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at least one vertex of Vi by an edge in G. This means that Vi is a dominating set of G. It is

minimal because it is independent. This proves the first statement of i). Let A ⊆ V (G) be

a minimal dominating set of G. A has at most one element from each Vi, so, it has at most

s elements. If |A| < s, then A ∩ Vi = ∅ for some 1 ≤ i ≤ s, and A is an independent set in

V (G) \ Vi dominating Vi which is a contradiction by Corollary 3. �

Now, we summarize the above results in the following theorem.

Theorem 5. Let G be a graph with a maximal independent set of size s. The following

conditions are equivalent.

i) G is well-covered and has a cliques cover C1, . . . , Cs.

ii) G is s-partite such that any part is a dominating set of G, and, G is well dominated

with domination number s.

iii) G has a cliques cover C1, . . . , Cs, such that for each 1 ≤ i < j ≤ s, Ci ∩ Cj = ∅ and

any dominating set of Ci in V (G) \ Ci is not independent.

iv) G is uniformly well-covered.

Proposition 6. Let G be a s-partite well-covered graph such that all maximal cliques are

of size s. Then all parts have the same cardinality and there is a perfect matching between

each two parts.

Proof. Let the s parts of G be V1, . . . , Vs. Let 1 ≤ i ≤ s and v ∈ Vi. Each vertex belongs

to some maximal clique and each maximal clique intersects each part in exactly one vertex.

Therefore, the vertex v is adjacent to some vertices in each part Vj , 1 ≤ j ≤ s, j 6= i. Then

the part Vi is a maximal independent set because for each vertex out of Vi, there is an edge

connecting it to some vertex in Vi. The graph G is well-covered therefore, cardinality of

parts are the same. Let 1 ≤ i < j ≤ s be two given integers. Let A ⊆ Vi be a nonempty

set and Nj(A) be the set of all vertices in Vj adjacent to some vertices in A. Suppose

|Nj(A)| < |A|. There is no any edge between A and Vj \Nj(A). Therefore, A∪ (Vj \Nj(A))

is an independent set and its size is strictly greater than size of Vj , which is a contradiction

with well-coveredness of G. Therefore, |Nj(A)| ≥ |A| for each nonempty subset A of Vi.

Therefore, by Theorem of Hall [7], there is a set of distinct representatives (SDR) for the

set {Nj({v}) : v ∈ Vi}, which is a perfect matching between Vi and Vj . �

Example 6. It is not true that in a well-covered graph, there are maximal cliques satisfying

condition i) of Lemma 2. For instance, consider the following graph which is 3-partite, well-

covered with maximal independent sets of size 2. But, there are no disjoint maximal cliques

covering V (G).
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Stating many examples motivates to have the following conjecture.

Conjecture. Let G be a s-partite well-covered graph with all maximal cliques of size s.

Then, G is uniformly well-covered.

At the end of this section, we restate the result of Ravindra about well-coveredness of

bipartite graphs.

Proposition 7. [21] Let G be a bipartite graph with no vertex of degree zero. Then, G is

well covered if and only if there is a perfect matching and for each {x, y} in this matching,

the induced subgraph on N [{x, y}] is a complete bipartite graph.

Proof. By Proposition 6, cardinality of both parts are the same and there is a perfect

matching in G. Then, condition i) of Lemma 2 is satisfied. Let {x, y} be an edge in the

matching. By Corollary 3, G is well-covered if and only if any dominating set of {x, y} is

dependent. The last statement is equal to say that any vertex in N(x) is adjacent to any

vertex in N(y), i. e., the induced subgraph on N [{x, y}] is a complete bipartite graph. �

An algebraic interpretation

There is a very interesting algebraic interpretation of well-coveredness of a special class of

graphs, which we state in this section. First we recall some definitions in commutative

algebra.

Let G be a graph with vertex set {v1, . . . , vn}. Let K be a field. In the polynomial

ring K[x1, . . . , xn], consider I(G) be the ideal generated by all monomials of the form xixj

where vi and vj are adjacent in G. This ideal is called edge ideal of the graph G and the

quotient ring R(G) = K[x1, . . . , xn]/I(G) is called edge ring of G. This ring is introduced

by R. Villarreal [26] and has been extensively studied by several mathematicians.

Let R be a commutative ring. An element a 6= 0 in R is called zero-divisor if there is a

nonzero element b ∈ R such that ab = 0. An ideal in R is called monomial ideal if it can be

generated by a set of monomials. For example, edge ideal of a graph is a monomial ideal.

In a ring of polynomials, it is well known and easy to check that a polynomial belongs to

a monomial ideal if and only if each monomial of the polynomial belongs to the ideal. If

the monomial ideal is also square-free, then a monomial of K[x1, . . . , xn] belongs to I if and

only if its square-free part (its radical) belongs to I. As an example of zero-divisor element,

let R(G) be the edge ring of a graph G. Let vi be adjacent to vj in G. The elements xi and

xj are not zero in R(G) but xixj = 0 because xixj belongs to the ideal I(G). Here, with

abuse of notation, we have written xi as same as its image in R(G).

6



A term order on K[x1, . . . , xn] is a linear order � on the set of terms {xa1

1
xa2

2
. . . xan

n :

ai ∈ Z≥0, i = 1, 2, . . . n}, such that for each terms α, α1, α2, the following conditions hold.

• α1 � α2 then α1α � α2α.

• 1 � α.

Lexicographic, degree lexicographic and degree reverse lexicographic orders are examples of

term order. There is a rich literature about term orderings, for instance see [11].

Lemma 8. Let K be a field, I ⊆ K[x1, . . . , xn] an ideal generated by square-free monomi-

als. Let f be a nonzero linear polynomial in R = K[x1, . . . , xn]/I. Then, f is zero-divisor

on R if and only if there is a nonzero square-free monomial m ∈ R such that mf = 0.

Proof. Let f be zero-divisor in R, then, there is a nonzero polynomial g in R such that

fg = 0. We may rearrange variables such that f = x1+a2x2+ · · ·+asxs, aj ∈ K. Let ≺ be

the lexicographic order on terms of K[x1, . . . , xn] with respect to x1 ≻ x2 ≻ · · · ≻ xn.

Let g = m1 + m2 + · · · + mt be decomposition of G to nonzero monomials such that

m1 ≻ m2 ≻ · · · ≻ mt. Then, in fg, the monomial x1m1 is strictly greater than all other

monomials. Therefore, x1m1 must be zero in R. The ideal I is square-free and x1m1 ∈ I,

therefore, we may assume that x1 ∤ m1. By the lexicographic order, we have x1 ∤ mi for all

1 ≤ i ≤ t. In other hand, fg − x1m1 ∈ I. The greatest term of fg − x1m1 is x1m2 and

then x1m2 ∈ I and fg − (x1m1 + x1m2) ∈ I. Continuing this process, we have x1mi ∈ I

for all 1 ≤ i ≤ t. In the polynomial fg − x1g ∈ I the greatest term is x2m1 which must be

in I. Similarly, x2mi ∈ I for all 1 ≤ i ≤ t. Finally, we get ximj ∈ I for each 1 ≤ i ≤ s and

1 ≤ j ≤ t. It means that mif = 0 in R for each 1 ≤ i ≤ t. Specially m1f = 0, and as I is

square-free and f is linear, we may assume m1 to be square-free. �

Note that in the above lemma, assuming that I is square-free is essential. Because for

example in K[x1, x2] assume that I = 〈x2

1
, x1x2, x

2

2
〉. Then, (x1 + x2)(x1 − x2) ∈ I, that

is (x1 + x2)(x1 − x2) = 0 in K[x1, x2]/I, and (x1 ± x2) 6∈ I but, there is no any nonzero

monomial eliminating (x1 + x2) or (x1 − x2).

Proposition 9. Let G be a graph with a maximal independent set of size s and maximal

cliques C1, . . . , Cs such that Ci∩Cj = ∅ for each i and j, 1 ≤ i < j ≤ s, and C1∪· · ·∪Cs =

V (G). Consider

θi =
∑

xj∈Ci

xj

for i = 1, . . . , s. Then, the following conditions are equivalent.

i) G is uniformly well-covered.

ii) G is well-covered.

iii) For each i = 1, . . . , s, the polynomial θi is not zero-divisor in the ring R(G).

7



Proof. It is enough to show that the condition iii) of this proposition is equal to the con-

dition iii) in the Corollary 3 above. Let θi is zero-divisor in R(G). By the Lemma 8, there is

a nonzero square-free monomial m in R(G) such that mθi = 0. According to the fact that I

is a monomial ideal, then, for each xj in Ci, we have mxj = 0 in R(G). Let m = xi1 · · ·xir .

Therefore, mxj = 0 means that there is a vertex xil such that xil |m and xil is adjacent to

xj in G. This means that the set of vertices deviding m is a dominating set of Ci. Note

that this set is independent if and only ofm is not zero in R(G). This completes the proof. �

Let G be the class of uniformly well-covered graphs with some disjoint maximal cliques

covering all vertices such that the number of these cliques is equal to cardinality of an

independent set of vertices of G. The next natural question is when a graph in this class is

Cohen-Macaulay. With the notations above, Cohen-Macaulayness of G is equal to regularity

of the sequence θ1, θ2, . . . , θs in R(G). It means that θ1 is not zero-divisor in R(G) and for

i = 2, . . . , s, the element θi is not zero-divisor in R(G)/〈θ1, . . . , θi−1〉. This is not an easy

task and so far, only for class of bipartite Cohen-Macaulay graphs a nice combinatorial

characterization has been presented [10].

References

[1] S.R. Campbell, Some results on cubic well-covered graphs, Ph.D. thesis, Vanderbilt

University, 1987.

[2] S.R. Campbell, M.D. Plummer, On well-covered 3-polytopes, Ars Combin. 25A (1988)

215-242.

[3] S.R. Campbell, M.N. Ellingham, G.F. Royle, A characterization of well-covered cubic

graphs, J. Combin. Math. Combin. Comput. 13 (1993) 193-212.

[4] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered graphs of

girth 5 or greater, J. Combin. Theory Ser. B 57 (1993) 44-68.

[5] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered graphs that

contain neither 4-nor 5-cycles, J. Graph Theory 18 (1994) 713-721.

[6] S. Gasquoine, B. Hartnell, R. Nowakowski, C. Whitehead, Techniques for constructing

well-covered graphs with no 4-cycles, J. Combin. Math. Combin. Comput. 17 (1995)

65-87.

[7] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.

[8] B.L. Hartnell, Well-Covered Graphs, J. Combin. Math. Combin. Comput. 29 (1999)

107-115.

[9] B.L. Hartnell, On the local structure of well-covered graphs without 4-cycles, Ars Com-

bin. 45 (1997) 77-86.

8



[10] J. Herzog and T. Hibi, Distributive lattices, bipartite, graphs, and Alexander duality,

J. Algebraic Comb. 22 (2005) 289-302.

[11] M. Kreuzer and L. Robbiano, Computational Commutative Algebra I, Springer, 2000.

[12] V. Levit, E. Mandrescu, Well covered and Knig-Egervary graphs, Congr. Numer. 130

(1998) 209-218.

[13] M. Pinter, Planar regular one-well-covered graphs, Cong. Numer. 91 (1992) 159-187.

[14] M. Pinter, A class of planar well-covered graphs with girth four, J. Graph Theory 19

(1995) 69-81.

[15] M. Pinter, A class of well-covered graphs with girth four, Ars Combin. 45 (1997) 241-

255.

[16] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98.

[17] M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993) 253-287.

[18] E. Prisner, J. Topp, P.D. Vestergaard, Well-covered simplicial, chordal and circular arc

graphs, J. Graph Theory 21 (1996) 113-119.

[19] B. Randerath, P.D. Vestergaard, On well-covered graphs of odd girth 7 or greater,

Discuss. Math. Graph Theory 22 (2002) 159-172.

[20] B. Randerath, L. Volkmann, A characterization of well-covered block-cactus graphs,

Australas. J. Combin. 9 (1994) 307-314.

[21] G. Ravindra, Well covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20-21.

[22] R.S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered graphs,

Networks 22 (1992) 247-262.

[23] R. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979)

139-157.

[24] R. Stanley, Combinatorics and Commutative Algebra, 2nd ed., Progress in Math.,

Birkhauser, 1996.

[25] D. Tankus, M. Tarsi, Well-covered claw-free graphs, J. Combin. Theory Ser. B 66 (1996)

293-302.

[26] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990) 277-293.

[27] C.A. Whitehead, A characterization of well-covered claw-free graphs containing no 4-

cycles, Ars Combin. 39 (1995) 189-198.

9


