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BRAUER GROUP OF MODULI SPACES OF PAIRS

INDRANIL BISWAS, MARINA LOGARES, AND VICENTE MUÑOZ

Abstract. We show that the Brauer group of any moduli space of stable pairs with
fixed determinant over a curve is zero.

1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A
holomorphic pair (also called a Bradlow pair) is an object of the form (E, φ), where E is
a holomorphic vector bundle over X , and φ is a nonzero holomorphic section of E. The
concept of stability for pairs depends on a parameter τ ∈ R. Moduli spaces of τ -stable
pairs of fixed rank and degree were first constructed using gauge theoretic methods in
[4], and subsequently using Geometric Invariant Theory in [3]. Since then these moduli
spaces have been extensively studied.

Fix an integer r ≥ 2 and a holomorphic line bundle Λ over X . Let d = deg(Λ). Let
Mτ (r,Λ) be the moduli space of stable pairs (E, φ) such that rk (E) = r and det(E) =∧r E = Λ. This is a smooth quasiprojective variety; it is empty if d ≤ 0. Therefore,
H2

ét(Mτ (r,Λ),Gm) is torsion, and it coincides with the Brauer group of Mτ(r,Λ), defined
by the equivalence classes of Azumaya algebras over Mτ (r,Λ). Let Br(Mτ(r,Λ)) denote
the Brauer group of Mτ (r,Λ).

We prove the following (see Theorem 3.3 and Corollary 3.5):

Theorem 1.1. Assume that (r, g, d) 6= (3, 2, 2). Then Br(Mτ (r,Λ)) = 0.

Let M(r,Λ) be the moduli space of stable vector bundles over X of rank r and deter-
minant Λ. There is a unique universal projective bundle over X ×M(r,Λ). Restricting
this projective bundle to {x} × M(r,Λ), where x is a fixed point of X , we get a pro-
jective bundle Px over M(r,Λ). We give a new proof of the following known result (see
Corollary 3.4).

Corollary 1.2. Assume (r, g, d) 6= (2, 2, even). The Brauer group of M(r,Λ) is gener-
ated by the Brauer class of Px.

This was first proved in [2]. We show that it follows as an application of Theorem 1.1.

For convenience, we work over the complex numbers. However, the results are still
valid for any algebraically closed field of characteristic zero.
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2. Moduli spaces of pairs

We collect here some known results about the moduli spaces of pairs, taken mainly
from [4], [5], [9], [11] and [13].

Let X be a smooth projective curve defined over the field of complex numbers, of
genus g ≥ 2. A holomorphic pair (E, φ) over X consists of a holomorphic bundle on
X and a nonzero holomorphic section φ ∈ H0(E). Let µ(E) := deg(E)/ rk (E) be the
slope of E. There is a stability concept for a pair depending on a parameter τ ∈ R. A
holomorphic pair (E, φ) is τ -stable whenever the following conditions are satisfied:

• for any subbundle E ′ ⊂ E, we have µ(E ′) < τ ,
• for any subbundle E ′ ⊂ E such that φ ∈ H0(E ′), we have µ(E/E ′) > τ .

The concept of τ -semistability is defined by replacing the above strict inequalities by
the weaker inequalities “≤” and “≥”. A critical value of the parameter τ = τc is one for
which there are strictly τ -semistable pairs. There are only finitely many critical values.

Fix an integer r ≥ 2 and a holomorphic line bundle Λ over X . Let d be the degree
of Λ. We denote by Mτ (r,Λ) (respectively, Mτ (r,Λ)) the moduli space of τ -stable
(respectively, τ -semistable) pairs (E, φ) of rank rk (E) = r and determinant det(E) = Λ.
The moduli space Mτ (r,Λ) is a normal projective variety, and Mτ(r,Λ) is a smooth
quasi-projective variety contained in the smooth locus of Mτ (r,Λ) (cf. [11, Theorem
3.2]).

For non-critical values of the parameter, there are no strictly τ -semistable pairs, so
Mτ (r,Λ) = Mτ (r,Λ) and it is a smooth projective variety. For a critical value τc, the
variety Mτc(r,Λ) is in general singular.

Denote τm := d
r
and τM := d

r−1
. The moduli space Mτ (r,Λ) is empty for τ 6∈ (τm, τM).

In particular, this forces d > 0 for τ -stable pairs. Denote by τ1 < τ2 < . . . < τL
the collection of all critical values in (τm, τM). Then the moduli spaces Mτ (r,Λ) are
isomorphic for all values τ in any interval (τi, τi+1), i = 0, . . . , L; here τ0 = τm and
τL+1 = τM .

However, the moduli space changes when we cross a critical value. Let τc be a critical
value. Denote τ+c := τc + ǫ and τ−c := τc − ǫ for ǫ > 0 small enough such that (τ−c , τ+c )
does not contain any critical value other than τc. We define the flip loci Sτ

±
c

as the
subschemes:

• Sτ
+
c
= {(E, φ) ∈ Mτ

+
c
(r,Λ) | (E, φ) is τ−c -unstable},

• Sτ−c
= {(E, φ) ∈ Mτ−c

(r,Λ) | (E, φ) is τ+c -unstable}.
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When crossing τc, the variety Mτ (r,Λ) undergoes a birational transformation:

Mτ
−
c
(r,Λ) \ Sτ

−
c

= Mτc(r,Λ) = Mτ
+
c
(r,Λ) \ Sτ

+
c
.

Proposition 2.1 ([10, Proposition 5.1]). Suppose r ≥ 2, and let τc be a critical value
with τm < τc < τM . Then

• codimSτ
+
c
≥ 3 except in the case r = 2, g = 2, d odd and τc = τm + 1

2
(in which

case codimSτ
+
c
= 2),

• codimSτ
−
c

≥ 2 except in the case r = 2 and τc = τM − 1 (in which case
codimSτ−c

= 1). Moreover we have that codimSτ−c
= 2 only for τc = τM − 2.

The codimension of the flip loci is then always positive, hence we have the following
corollary:

Corollary 2.2. The moduli spaces Mτ(r,Λ), τ ∈ (τm, τM), are birational.

The moduli spaces for the extreme values of the parameter τ+m and τ−M are known
explicitly. Let M(r,Λ) be the moduli space of stable vector bundles or rank r and fixed
determinant Λ. Define

(2.1) Um(r,Λ) = {(E, φ) ∈ Mτ
+
m
(r,Λ) |E is a stable vector bundle} ,

and denote
Sτ

+
m
:= Mτ

+
m
(r,Λ) \ Um(r,Λ) .

Then there is a map

(2.2) π1 : Um(r,Λ) −→ M(r,Λ), (E, φ) 7→ E ,

whose fiber over E is the projective space P(H0(E)). When d ≥ r(2g − 2), we have
that H1(E) = 0 for any stable bundle, and hence (2.2) is a projective bundle (cf. [9,
Proposition 4.10]).

Regarding the rightmost moduli space Mτ
−

M

(r,Λ), we have that any τ−M -stable pair

(E, φ) sits in an exact sequence

0 −→ O
φ

−→ E −→ F −→ 0 ,

where F is a semistable bundle of rank r − 1 and det(F ) = Λ. Let

UM (r,Λ) = {(E, φ) ∈ Mτ
−

M

(r,Λ) |F is a stable vector bundle} ,

and denote
Sτ

−

M

:= Mτ
−

M

(r,Λ) \ UM(r,Λ) .

Then there is a map

(2.3) π2 : UM (r,Λ) −→ M(r − 1,Λ), (E, φ) 7→ E/φ(O) ,

whose fiber over F ∈ M(r−1,Λ) is the projective spaces P(H1(F ∗)) (cf. [6]). Note that
H0(F ∗) = 0 since d > 0. So (2.3) is always a projective bundle.

In the particular case of rank r = 2, the rightmost moduli space is

(2.4) Mτ
−

M

(2,Λ) = P(H1(Λ−1)) ,
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since M(1,Λ) = {Λ}. In particular, Corollary 2.2 shows that all Mτ (2,Λ) are rational
quasi-projective varieties.

We have the following:

Lemma 2.3 ([11, Lemma 5.3]). Let S be a bounded family of isomorphism classes of
strictly semistable bundles of rank r and determinant Λ. Then dimM(r,Λ) − dimS ≥
(r − 1)(g − 1).

Proposition 2.4. The following two statements hold:

• codimSτ
+
m
≥ 2 except in the case r = 2, g = 2, d even (in which case codimSτ

+
m
=

1).
• Suppose r ≥ 3. Then codimSτ

−

M

≥ 2 except in the case r = 3, g = 2, d even (in

which case the codimSτ
−

M

= 1).

Proof. Let (E, φ) ∈ Sτ
+
m
, the vector bundle E is strictly semistable. Therefore, π1(Sτ

+
m
)

is a bounded family of strictly semistable bundles of rank r and degree d, and hence
Lemma 2.3 implies that codimSτ+m

≥ (r − 1)(g − 1). So the first statement follows.

As the dimension dimH1(F ∗) is constant, the codimension of Sτ
−

M

in Mτ
−

M

(r,Λ) is

at least the codimension of a locus of semistable bundles. Applying Lemma 2.3 to
M(r − 1,Λ) we have codimSτ

−

M

≥ (r − 2)(g − 1). Now the second result follows. �

3. Brauer group

The Brauer group of a scheme Z is defined as the equivalence classes of Azumaya
algebras on Z, that is, coherent locally free sheaves with algebra structure such that,
locally on the étale topology of Z, are isomorphic to a matrix algebra Mat(OZ). If Z is
a smooth quasiprojective variety, then the Brauer group Br(Z) coincides with H2

ét(Z),
and H2

ét(Z) is a torsion group.

Theorem 3.1. [8, VI.5 (Purity)] Let Z be a smooth complex variety and U ⊂ Z be a
Zariski open subset whose complement has codimension at least 2. Then Br(Z) = Br(U).

On the moduli space of stable vector bundles M(r,Λ), there are three natural projec-
tive bundles. We will describe them.

We first note that there is a unique universal projective bundle over X×M(r,Λ). Fix
a point x ∈ X . Restricting the universal projective bundle to {x} ×M(r,Λ) we get a
projective bundle

(3.1) Px −→ M(r,Λ) .

Secondly, if d ≥ r(2g − 2), then we have the projective bundle

(3.2) P0 −→ M(r,Λ) ,

whose fiber over any E ∈ M(r,Λ) is the projective space P(H0(E)); note that we have
H1(E) = 0 because d ≥ r(2g − 2).
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Finally, assuming d > 0, let

(3.3) P1 −→ M(r,Λ)

be the projective bundle whose fiber over any E ∈ M(r,Λ) is the projective space
P(H1(E∗)).

Proposition 3.2. The Brauer class cl(Px) ∈ Br(M(r,Λ)) is independent of x ∈ X.
Moreover,

cl(Px) = cl(P0) = −cl(P1) ,

when they are defined.

Proof. The moduli space M(r,Λ) is constructed as a Geometric Invariant Theoretic
quotient of a Quot scheme Q by the action of a linear group GLN(C) (see [12]). The
isotropy subgroup for a stable point of Q is the center C∗ ⊂ GLN(C). There is a
universal vector bundle

E −→ X ×Q ,

and any element λ of the center C∗ ⊂ GLN(C) acts on E as multiplication by λ.

Let Qs ⊂ Q be the stable locus. The restriction of E to X ×Qs will be denoted by
Es. Let

Ex := Es|{x}×Qs −→ Qs

be the restriction. Let p2 : X ×Qs −→ Qs be the natural projection. Define the vector
bundles

E0 := p2∗ E
s and E1 := R1p2∗((E

s)∗) .

The center C∗ ⊂ GLN (C) acts trivially on Ex⊗E1. Hence Ex⊗E1 descends to a vector
bundle over the quotient M(r,Λ) of Qs. Therefore,

cl(Px) = −cl(P1) .

Similarly, the center C∗ acts trivially on E0 ⊗ E1. Hence E0 ⊗ E1 descends to M(r,Λ),
implying

cl(P0) = −cl(P1) .

Finally, note that it follows that cl(Px) is independent of x ∈ X for d > 0. For d ≤ 0,
P0 and P1 are not defined. In this case, we take a line bundle µ or large degree, and use
the isomorphism M(r,Λ⊗µr) ∼= M(r,Λ). For any pair x, x′ ∈ X , since cl(Px) = cl(Px′)
in Br(M(r,Λ⊗ µr)), the same holds for Br(M(r,Λ)). �

Theorem 3.3. Assume that d ≥ r(2g−2). Then for the moduli space Mτ (r,Λ) of stable
pairs, we have that

Br(Mτ (r,Λ)) = 0 .

Proof. We will first prove it for r = 2. Recall from (2.4) that Mτ
−

M

(2,Λ) is a projective

space, hence
Br(Mτ

−

M

(2,Λ)) = 0 .

Moreover, all Mτ(2,Λ) are rational varieties. Thus

Br(Mτ(2,Λ)) = 0
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for non-critical values τ ∈ (τm, τM), since the Brauer group of a smooth rational projec-
tive variety is zero [1, p. 77, Proposition 1]. For a critical value τc, we have

Mτc(2,Λ) = Mτ+c
(2,Λ) \ Sτ+c

.

By Proposition 2.1, codimSτ
+
c
≥ 2, so the Purity Theorem implies that

Br(Mτc(2,Λ)) = 0 .

Now we assume that r ≥ 3. From Proposition 2.1 and Theorem 3.1 it follows that
the Brauer group Br(Mτ(r,Λ)) does not depend on the value of the parameter τ (for
fixed r and Λ).

As we are assuming that d ≥ r(2g − 2), we have a projective bundle

π1 : Um(r,Λ) −→ M(r,Λ)

(see (2.2)). Note that this projective bundle coincides with the projective bundle P0 in
(3.2). The projective bundle π1 gives an exact sequence

(3.4) Z · cl(P0) −→ Br(M(r,Λ)) −→ Br(Um(r,Λ)) −→ 0

(see [7, p. 193]). By Proposition 2.4 and the Purity Theorem,

Br(Um(r,Λ)) = Br(Mτ+m
(r,Λ)) ,

so we have

(3.5) Z · cl(P0) −→ Br(M(r,Λ)) −→ Br(Mτ
+
m
(r,Λ)) −→ 0 .

We will show that the theorem follows from (3.5) if we use [2]. From Proposition 3.2
we know that cl(P0) = cl(Px), and from [2, Proposition 1.2(a)] we know that cl(Px)
generates Br(M(r,Λ)). Therefore, from (3.5) it follows that

Br(Mτ
+
m
(r,Λ)) = 0 .

Since Br(Mτ (r,Λ)) is independent of τ , this completes the proof using [2]. But we
shall give a different proof without using [2], because we want to show that the above
mentioned result of [2] can be deduced from our Theorem 3.3 (see Corollary 3.4).

Consider the projective bundle π2 : UM(r − 1,Λ) −→ M(r − 1,Λ) from (2.3). Note
that this projective bundle coincides with the projective bundle P1 in (3.3) for rank
r − 1. The projective bundle π2 gives an exact sequence

(3.6) Z · cl(P1) −→ Br(M(r − 1,Λ)) −→ Br(UM(r,Λ)) = Br(Mτ−
M

(r,Λ)) −→ 0 ,

using Proposition 2.4, with the exception of the case (r, g, d) = (3, 2, even). Let us leave
this “bad” case aside for the moment.

Let

(3.7) Z ·cl(P0) −→ Br(M(r−1,Λ)) −→ Br(Um(r−1,Λ)) = Br(Mτ
+
m
(r−1,Λ)) −→ 0

be the exact sequence obtained by replacing r with r−1 in (3.5); the last equality holds
as (r − 1, g, d) 6= (2, 2, even), by Proposition 2.4.
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Since cl(P1) = −cl(P0) (see Proposition 3.2), comparing (3.6) and (3.7) we conclude
that the two quotients of Br(M(r − 1,Λ)), namely

Br(Mτ
−

M

(r,Λ)) and Br(Mτ
+
m
(r − 1,Λ)) ,

coincide. In particular, Br(Mτ
−

M

(r,Λ)) is isomorphic to Br(Mτ
+
m
(r − 1,Λ)). Therefore,

using induction, the group Br(Mτ
−

M

(r, d)) is isomorphic to Br(Mτ
+
m
(2,Λ)). We have

already shown that Br(Mτ+m
(2,Λ)) = 0. Hence the proof of the theorem is complete for

d ≥ r(2g − 2) and (r, g, d) 6= (3, 2, even).

Let us now investigate the missing case of (r, g, d) = (3, 2, 2k). Take a line bundle ν
of degree 1. Using (3.4) twice, we have

Z · cl(P0) −→ Br(M(3,Λ)) −→ Br(Um(3,Λ)) −→ 0
↓∼= ||

Z · cl(P0) −→ Br(M(3,Λ⊗ ν3)) −→ Br(Um(3,Λ⊗ ν3)) −→ 0

The second vertical map is induced by the isomorphism M(3,Λ) −→ M(3,Λ ⊗ ν3)
defined by E 7→ E ⊗ ν, hence it is an isomorphism. This isomorphism preserves the
class cl(Px), and hence the class cl(P0), by Proposition 3.2. Therefore, Br(Um(3,Λ)) =
Br(Um(3,Λ⊗ ν3)). But deg(Λ⊗ ν3) is odd, hence

Br(Um(3,Λ)) = Br(Um(Λ⊗ ν3)) = 0 .

By the Purity Theorem, Br(Mτ (3,Λ)) = 0 for any τ . �

Note that the proof of Theorem 3.3 works in the following cases:

• r = 2, any d ;
• r = 3, g = 2, d ≥ 6 ; and
• (r, g) 6= (3, 2), d ≥ (r − 1)(2g − 2).

Before proceeding to remove the assumption d ≥ r(2g − 2) in Theorem 3.3, we want
to show that Theorem 3.3 implies Proposition 1.2(a) of [2].

Corollary 3.4. Suppose that (r, g, d) 6= (2, 2, even). The Brauer group Br(M(r,Λ)) is
generated by the Brauer class cl(Px) ∈ Br(M(r,Λ)) in (3.1).

Proof. Without loss of generality we can assume that d is large (since we have an iso-

morphism M(r,Λ)
∼

−→ M(r,Λ ⊗ µr), E 7→ E ⊗ µ, where µ is a line bundle.

First, we have Br(Um(r,Λ)) = Br(Mτ
+
m
(r,Λ)) by the Purity Theorem and Proposition

2.4. Second, Br(Mτ
+
m
(r,Λ)) = 0 by Theorem 3.3, so Br(Um(r,Λ)) = 0. Finally, we

use the exact sequence in (3.4) to see that cl(P0) generates Br(M(r,Λ)). Now from
Proposition 3.2 it follows that cl(Px) generates Br(M(r,Λ)). �

Corollary 3.5. Suppose (r, g, d) 6= (3, 2, 2). Then we have that Br(Mτ(r,Λ)) = 0.

Proof. For r = 2, this result is proved as in Theorem 3.3. As we know it for d ≥ r(2g−2),
we assume that d < r(2g − 2)

Let r ≥ 3. Suppose first that (r, g, d) 6= (3, 2, even) (that is, (r, g, d) 6= (3, 2, 2), (3, 2, 4)).
As d > 0, we still have a projective bundle π2 : UM(r,Λ) −→ M(r − 1,Λ). Therefore
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there is an exact sequence as in (3.6). Note that Proposition 2.4 and the Purity Theorem
imply that Br(Mτ

−

M

(r,Λ)) = Br(UM(r,Λ)). Now using Proposition 3.2 and Corollary 3.4

and (3.6) it follows that Br(Mτ
−

M

(r,Λ)) = 0. The result follows.

Finally, let us deal with the missing case (r, g, d) = (3, 2, 4). Let

Z = {E ∈ M(3,Λ) |H1(E) 6= 0}.

For E ∈ M(3,Λ) \ Z, we have that dimH0(E) = 4 + 3(1 − g) = 1. So the projective
bundle

π1 : Um(3,Λ) \ π
−1
1 (Z) −→ M(3,Λ) \ Z

is actually an isomorphism. In this situation, the exact sequence

(3.8) Z · cl(P0) −→ Br(M(3,Λ) \ Z) −→ Br(Um(3,Λ) \ π
−1
1 (Z)) −→ 0

satisfies that cl(P0) = 0. The proof of Proposition 3.2 works also for M(3,Λ) \ Z, so
cl(Px) = 0. We shall see below that

codimZ ≥ 2 and codim π−1
1 (Z) ≥ 2 .

From this, Br(M(3,Λ)\Z) = Br(M(3,Λ)) and Br(Um(3,Λ)\π
−1
1 (Z)) = Br(Um(3,Λ)) =

Br(Mτ
+
m
(3,Λ)). By Corollary 3.4, cl(Px) = 0 generates Br(M(3,Λ)), so Br(M(3,Λ)) = 0

and Br(Mτ+m
(3,Λ)) = 0, as required.

To see the codimension estimates, we work as follows. If H1(E) 6= 0, then H0(E∗ ⊗
KX) 6= 0, so there is an exact sequence

(3.9) 0 −→ O −→ E ′ = E∗ ⊗KX −→ F −→ 0 ,

for some sheaf F . Note that deg(F ) = deg(E ′) = 2. Here F must be a rank 2 semistable
sheaf, since any quotient F → Q, with µ(Q) < µ(F ) = 1, satisfies that µ(Q) < µ(E ′) =
2

3
, violating the stability of E ′. In particular, F is a (semistable) bundle, and it is

parametrized by an irreducible variety of dimension 3(g− 1) = 3. Now the bundle E ′ in
(3.9) is given by an extension in P(H1(F ∗)). As H0(F ∗) = 0 (by semistability), we have
that dimP(H1(F ∗)) = −(−2 + 2(1 − g))− 1 = 3. So the bundles E ′ are parametrized
by a 6-dimensional variety, and therefore dimZ = 6 and codimZ = 3.

Now let us see that dim π−1
1 (Z) ≤ 7. Let E ∈ Z and F as in (3.9), and note that the

determinant of F is fixed. Recalling that dimH1(F ∗) = 4, we see that we have to check
that

dimF + 3 + dimH0(E)− 1 ≤ 7 ,

where F is the family of the bundles F . Now dimH0(E) = dimH1(E)+1 = dimH0(E ′)+
1 ≤ dimH0(F ) + 2. Hence we only need to show that

(3.10) dimFi + dimH0(F ) ≤ 3 ,

for F ∈ Fi, where F =
⊔

Fi is the family (suitably stratified) of the possible bundles F .

We have the following possibilities:

(1) F = L1⊕L2, where L1, L2 are line bundles of degree one, L2 = det(F )⊗L−1
1 . The

generic such F moves in a 2-dimensional family, and H0(F ) = 0. If dimH0(F ) 6=
0, then it should be either L1 = O(p) or L2 = O(q), p, q ∈ X . In this case F
moves in a 1-dimensional family, and dimH0(F ) ≤ 2, so (3.10) holds.
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(2) F is a non-trivial extension L → F → L, where L is a line bundle of degree
one. As det(F ) = L2 is fixed, then there are finitely many possible L. Now
dimExt 1(L, L) = 2, so the bundles F move in a 1-dimensional family. Again
dimH0(F ) ≤ 2, so (3.10) is satisfied.

(3) F is a non-trivial extension L1 → F → L2, where L1, L2 are non-isomorphic
line bundles of degree one. As dimExt 1(L2, L1) = 1, we have that F moves in
2-dimensional family. If dimH0(F ) = 1 then (3.10) holds. Otherwise, it must
be L1 = O(p) and L2 = O(q), hence F moves in a 1-dimensional family and
dimH0(F ) ≤ 2. So (3.10) holds again.

(4) F a rank 2 stable bundle and H0(F ) = 0. This is clear, since dimM(2,Λ) = 3.
(5) F a rank 2 stable bundle and H0(F ) = 1. Then we have an exact sequence

O → F → L, where L is a (fixed) line bundle of degree two. As dimH1(L∗) = 3,
we have that F moves in a 2-dimensional family and (3.10) holds.

(6) F a rank 2 stable bundle, O → F → L, dimH0(L) = 1 and dimH0(F ) = 2.
The connecting map H0(L) = C → H1(O) is given by multiplication by the
extension class in H1(L∗) defining F . To have dimH0(F ) = 2, this connecting
map must be zero, hence the extension class is in ker(H1(L∗) → H1(O)). This
kernel is one-dimensional (since the map is surjective). So the family of such F
is zero-dimensional, and (3.10) is satisfied.

(7) F a rank 2 stable bundle, O → F → L, dimH0(L) = 2 and dimH0(F ) ≥ 2.
Now it must be L = KX . The connecting map

cξ : H
0(KX) → H1(O) = H0(KX)

∗

is given by multiplication with the extension class ξ in H1(L∗) = H0(K2
X)

∗

defining F . Actually, cξ ∈ H0(KX)
∗ ⊗ H0(KX)

∗ corresponds to the element
ξ ∈ H0(K2

X)
∗ = Sym2H0(KX)

∗.
If dimH0(F ) = 2, cξ is not an isomorphism. The condition det(cξ) = 0 gives a

2-dimensional family of ξ ∈ H1(L∗). So the family of such F is one-dimensional
and (3.10) is satisfied. If dimH0(F ) = 3, then cξ = 0, which is not possible.

This completes the proof of the corollary. �

Remark 3.6. Note that Br(UM(r,Λ)) = 0 for (r, g, d) 6= (3, 2, even) (use Corollary 3.5
and Proposition 2.4).

Also, if d ≥ r(2g − 2), then Br(Um(r,Λ)) = 0 for (r, g, d) 6= (2, 2, even) (use Corollary
3.5 and Proposition 2.4). Actually, in the range d ≥ r(2g−2), the proof of Theorem 3.3
shows that Br(Um(r,Λ)) = Br(UM(r + 1,Λ)), for any (r, g, d).
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