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Abstract

We study the instability of standing waves for nonlinear Schrödinger

equations. Under a general assumption on nonlinearity, we prove that

linear instability implies orbital instability in any dimension. For that

purpose, we establish a Strichartz type estimate for the propagator

generated by the linearized operator around standing wave.

1 Introduction

In this paper we study the instability of standing waves for nonlinear Schrödinger

equations

i∂tu+∆u+ g(|u|2)u = 0, (t, x) ∈ R× R
N , (1)

where u is a complex-valued function of (t, x), and g is a real-valued function.

A typical example of nonlinearity is g(|u|2)u = |u|p−1u with 1 < p < 2∗ − 1,

where 2∗ = 2N/(N−2) ifN ≥ 3 and 2∗ = ∞ ifN = 1, 2. Precise assumptions

on the nonlinearity will be made later. By a standing wave we mean a solution

of (1) of the form u(t, x) = eiωtϕ(x), where ω ∈ R and ϕ ∈ H1(RN) \ {0} is

a solution of the stationary problem

−∆ϕ+ ωϕ− g(|ϕ|2)ϕ = 0, x ∈ R
N . (2)

For the special case g(|u|2)u = |u|p−1u with 1 < p < 2∗ − 1, the following

results are well-known. For each ω > 0, the stationary problem (2) has a
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unique positive radial solution in H1(RN) (see [32, 2] for existence, and [22]

for uniqueness). We call it ground state. When N ≥ 2, other than the

ground state, there exist infinitely many solutions of (2) in H1(RN). We call

them excited states. For the ground state ϕ of (2) with ω > 0, the standing

wave eiωtϕ is orbitally stable if 1 < p < 1+4/N , while it is orbitally unstable

if 1+4/N ≤ p < 2∗−1 (see [1, 4, 34]). For more general nonlinearity, Shatah

and Strauss [30] gave a general condition for orbital instability of ground

state-standing waves for (1) constructing suitable Lyapunov functionals (see

also [17] and [14, 24, 28, 29]). We remark that these results are mostly limited

to ground states and are not applicable to excited states. Here, we recall the

definition of orbital stability and instability of standing waves.

Definition 1. We say that the standing wave eiωtϕ is orbitally stable if for

any ε > 0 there exists δ > 0 such that if u0 ∈ H1(RN) and ‖u0 − ϕ‖H1 < δ,

then the solution u(t) of (1) with u(0) = u0 exists globally and satisfies

inf
(θ,y)∈R×RN

‖u(t)− eiθϕ(·+ y)‖H1 < ε

for all t ≥ 0. Otherwise, eiωtϕ is called orbitally unstable or nonlinearly

unstable.

While, eiωtϕ is said to be linearly unstable if the linearized operator A =

JH around the standing wave has an eigenvalue with positive real part (for

the definition of J and H , see (3) and (7) below). The linear instability of

standing waves for (1) was studied by Jones [20] and Grillakis [15, 16] (see also

[18, 25, 27]). In particular, for the case g(|u|2)u = |u|p−1u with 1+4/N < p <

2∗−1, it is proved in [15] that for any radially symmetric, real-valued solution

ϕ of (2) with ω > 0, eiωtϕ is linearly unstable. The result in [15] guarantees

that among radially symmetric solutions, one can find oscillating solutions

(i.e. solutions changing the sign) and these solutions shall generate excited

states eiωtϕ. On the other hand, Mizumachi [25, 27] considered complex-

valued solutions of (2) in R
2 of the form ϕm(x) = eimθφ(r), where m is a

positive integer, and r, θ are the polar coordinates in R2 (see [19, 23] for

existence of ϕm). It is proved that if p > 3 then for any m, eiωtϕm is linearly

unstable ([25]), and that if 1 < p < 3 then for sufficiently large m, eiωtϕm is

linearly unstable ([27]).

However, it is a highly nontrivial problem whether linear instability im-

plies orbital instability for (1), especially in higher dimensional case (see
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[10, 11, 26, 31]). Even in two dimensional case, some technical difficulties

arise from the estimates of nonlinear terms (see Lemma 13 of [6]). For the

case N ≤ 3, a satisfactory answer for this problem was given by Colin,

Colin and Ohta [7]. The main idea in [7] is to employ time derivative in the

estimates of nonlinear terms without using space derivatives directly, and

to apply the H2-regularity of H1-solutions for (1). However, the proof of

[7] is based on the L2-estimate on the propagator etA generated by the lin-

earized operator A, and the restriction N ≤ 3 comes from the embedding

H2(RN) →֒ L∞(RN).

The main goal of this work is to show that linear instability implies or-

bital instability for (1) in any dimension N ≥ 1 (see Theorem 2 below). In

particular, for the case g(|u|2)u = |u|p−1u with 1 + 4/N < p < 2∗ − 1, it

follows from the linear instability result of [15] and our Theorem 2 that for

any radially symmetric, real-valued solution ϕ of (2) with ω > 0, eiωtϕ is

orbitally unstable in any dimension.

Our approach is based on appropriate Strichartz type estimate for the

propagator etA and gives the possibilities for further generalization. We have

chosen the model of the nonlinear Schrödinger equation (1) for simplicity, but

even in this case one needs to apply spectral mapping result σ(eA) = eσ(A)

discussed in the work of Gesztesy, Jones, Latushkin and Stanislavova [12]. If

one considers complex-valued solutions of (2), then the assertion

linear instability =⇒ orbital instability

depends on the possible generalization of the property σ(eA) = eσ(A) for the

linearized operator A around complex-valued excited states. Since our goal is

to give general argument working for complex-valued excited states as well,

we have to make suitable generalization of the result in [12] (see Section 4).

Here, we give an outline of the paper more precisely. In what follows,

we often identify z ∈ C with t(ℜz,ℑz) ∈ R2, and write z = t(ℜz,ℑz). We

define f(z) = −g(|z|2)z for z ∈ R2. Then, (1) is rewritten as

∂tu = J(−∆u+ f(u)), J =

[

0 1

−1 0

]

, u =

[

ℜu

ℑu

]

. (3)

We assume that f ∈ C1(R2,R2), and denote the derivative of f at z ∈ R2 by

Df(z), which is a 2× 2-real symmetric matrix and is given by

Df(z) = −

[

2g′(|z|2)(ℜz)2 + g(|z|2) 2g′(|z|2)ℜzℑz

2g′(|z|2)ℜzℑz 2g′(|z|2)(ℑz)2 + g(|z|2)

]

. (4)
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For nonlinearity, we assume the following.

(H1) g is a real-valued continuous function on [0,∞), and f(z) = −g(|z|2)z

is decomposed as f = f1 + f2 with fj ∈ C1(R2,R2), fj(0) = 0, Dfj(0) = O,

j = 1, 2, and there exist constants C and 1 < pj < 2∗ − 1 such that

|Dfj(z1)−Dfj(z2)| ≤ C

{

|z1 − z2|
pj−1 if 1 < pj ≤ 2

(|z1|
pj−2 + |z2|

pj−2)|z1 − z2| if pj > 2
(5)

for all z1, z2 ∈ R2.

Remark that the typical example f(z) = −|z|p−1z satisfies (H1) for 1 <

p < 2∗ − 1 (see Lemma 2.4 of [13]). Moreover, the Cauchy problem for (1) is

locally well-posed in H1(RN) (see [21] and [3, Chapter 4]).

For a solution of (2), we assume the following.

(H2) ω > 0 is a constant and ϕ ∈ H1(RN) is a complex-valued nontrivial

solution of (2).

For the existence of solutions of (2), see, e.g., [2, 19, 23, 32]. By the

elliptic regularity theory, we see that ϕ ∈ H2(RN)∩C2(RN) and ϕ(x) decays

to 0 exponentially as |x| → ∞. Remark that we consider not only real-valued

solutions of (2) but also complex-valued solutions, and that by (4), Df(ϕ)

is a diagonal matrix if ϕ is real-valued, but not in general.

By a change of variables u(t) = eiωt (ϕ+ v(t)) in (1) or (3), we have

∂tv = Av + h(v), (6)

where v = t(ℜv,ℑv), A = JH , h(v) = J [f(ϕ+ v)− f(ϕ)−Df(ϕ)v], and

H = H0 +Df(ϕ), H0 =

[

−∆+ ω 0

0 −∆+ ω

]

. (7)

For the linearized operator A = JH , we assume the following.

(H3) The operator A has an eigenvalue λ0 such that ℜλ0 > 0.

As stated above, sufficient conditions for (H3) are studied by [15, 16, 18,

20, 25, 27]. See also [5, 8, 9, 35] for spectral properties of A. We now state

the main result of this paper.

Theorem 2. Assume (H1)–(H3). Then, the standing wave eiωtϕ of (1) is

orbitally unstable.
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The rest of the paper is organized as follows. In Section 2, assuming

that the propagator etA satisfies an exponential growth condition (11), we

introduce a suitable norm (12) and establish a Strichartz type estimate for

etA. In Section 3, we prove Theorem 2. In the proof, we apply the Strichartz

type estimate for etA proved in Section 2, and we employ time derivative

instead of space derivatives in the estimates of nonlinear terms as in [7].

Finally, in Section 4, we give some remarks on the spectral mapping theorem

for eA due to Gesztesy, Jones, Latushkin and Stanislavova [12].

2 Strichartz estimates

Let Vjk ∈ L∞(RN ,R) for j, k = 1, 2, and we consider linear operators

A = A0 + V, A0 = JH0, V =

[

V11 V12
V21 V22

]

(8)

on L2(RN) × L2(RN) with domains D(A0) = D(A) = H2(RN) × H2(RN),

where J and H0 are defined in (3) and (7). Let etA0 and etA be the strongly

continuous groups on L2(RN)×L2(RN ) generated by A0 and A respectively,

and we define

Γ0[f ](t) =

∫ t

0

e(t−s)A0f(s) ds, Γ[f ](t) =

∫ t

0

e(t−s)Af(s) ds.

Moreover, we denote Lr := Lr(RN)× Lr(RN) and Lq
TY := Lq((0, T ), Y ) for

a Banach space Y . Note that u(t) = etAψ + Γ[f ](t) satisfies

∂tu = Au+ f(t) = A0u+ V u+ f(t), u(0) = ψ, (9)

and u0(t) = etA0ψ + Γ0[f ](t) satisfies

∂tu0 = A0u0 + f(t) = Au0 + f(t)− V u0, u0(0) = ψ. (10)

We assume that there exist positive constants C and ν such that

‖etA‖B(L2) ≤ Ceνt (11)

for all t ≥ 0. For λ > 0, we define functions e+λ and e−λ by e±λ (t) = e±λt for

t ∈ R. Moreover, we define

‖f‖
L
q,λ
T Y

:= eλT‖e−λ f‖Lq
TY . (12)
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Note that ‖f‖Lq
TY ≤ ‖f‖

L
q,λ
T Y

≤ ‖f‖Lq,µ
T Y for 0 < λ < µ and T > 0. The

Hölder conjugate of q is denoted by q′. For the definition of admissible pairs

and the standard Strichartz estimates for eit∆, see, e.g., [3, Section 2.3].

Lemma 3. Assume V ∈ L∞(RN) and (11). Let 0 < ν < µ and let (q, r)

be any admissible pair. Then, there exists a constant C independent of ψ, f

and T such that u(t) = etAψ + Γ[f ](t) satisfies

‖u(t)‖L2 ≤ C
(

eνt‖ψ‖L2 + eµt‖e−µ f‖Lq′

T Lr′

)

for all t ∈ [0, T ].

Proof. Let u0(t) = etA0ψ + Γ0[f ](t). Then, by (9) and (10), we have

∂t(u− u0) = A(u− u0) + V u0, (u− u0)(0) = 0,

so u− u0 = Γ[V u0]. By the assumption (11), we have

‖u(t)− u0(t)‖L2 ≤

∫ t

0

‖e(t−s)AV u0(s)‖L2 ds

≤ C‖V ‖L∞

∫ t

0

eν(t−s)‖u0(s)‖L2 ds

for all t ∈ [0, T ]. Here, by the standard Strichartz estimate for eit∆, we have

‖u0(t)‖L2 ≤ C(‖ψ‖L2 + ‖f‖
L
q′

t Lr′ ) ≤ C(‖ψ‖L2 + eµt‖e−µ f‖Lq′

T Lr′ )

for all t ∈ [0, T ]. Thus,

‖u(t)‖L2 ≤ ‖u0(t)‖L2 + ‖u(t)− u0(t)‖L2

≤ ‖u0(t)‖L2 + C

∫ t

0

eν(t−s)‖ψ‖L2 ds+ Ceνt
∫ t

0

e(µ−ν)s‖e−µ f‖Lq′

T Lr′ ds

≤ C(eνt‖ψ‖L2 + eµt‖e−µ f‖Lq′

T Lr′ )

for all t ∈ [0, T ]. This completes the proof.

Proposition 4. Assume V ∈ L∞(RN) and (11). Let 0 < λ < ν < µ, and

let (q1, r1) and (q2, r2) be any admissible pairs. Then, there exists a constant

C independent of ψ, f and T such that u(t) = etAψ + Γ[f ](t) satisfies

‖u‖
L
q1,λ

T Lr1
≤ C

(

eνT ‖ψ‖L2 + ‖f‖
L
q′
2
,µ

T
L
r′
2

)

.
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Proof. We put v(t) = e−λtu(t). Then, by (9), we have

∂tv = A0v + (V − λ)v + e−λtf(t), v(0) = ψ.

By the standard Strichartz estimate for eit∆, we have

‖e−λ u‖Lq1
T Lr1 = ‖v‖Lq1

T Lr1 ≤ C(‖ψ‖L2 + ‖(V − λ)v‖L1

TL2 + ‖e−λ f‖Lq′
2

T L
r′
2

).

Here, by Lemma 3, we have

‖(V − λ)v‖L1

TL2 ≤ (‖V ‖L∞ + λ)‖v‖L1

TL
2 ≤ C

∫ T

0

e−λt‖u(t)‖L2 dt

≤ C

∫ T

0

{e(ν−λ)t‖ψ‖L2 + e(µ−λ)t‖e−µ f‖
L
q′
2

T L
r′
2

} dt

≤ C{e(ν−λ)T ‖ψ‖L2 + e(µ−λ)T ‖e−µ f‖
L
q′
2

T L
r′
2

}.

Moreover, since ‖e−λ f‖Lq′
2

T L
r′
2

≤ e(µ−λ)T ‖e−µ f‖
L
q′
2

T L
r′
2

, we obtain the desired

estimate.

3 Proof of Theorem 2

In this section we assume (H1)–(H3), and prove Theorem 2. For j = 1, 2, we

put

hj(v) = J [fj(ϕ+ v)− fj(ϕ)−Dfj(ϕ)v], rj = pj + 1,

and let (qj, rj) be the corresponding admissible pair. Note that h(v) =

h1(v) + h2(v) in (6).

Lemma 5. There exist λ∗ ∈ C and χ ∈ H2(RN ,C)2 such that ℜλ∗ > 0,

Aχ = λ∗χ and ‖χ‖L2 = 1. Moreover, etA satisfies (11) for some ν with

ℜλ∗ < ν < (1 + α)ℜλ∗, where

α := min{1, r1 − 2, r2 − 2}. (13)

Proof. Since Df(ϕ) decays exponentially at infinity, Weyl’s essential spec-

trum theorem implies that σess(A) ⊂ {z ∈ C : ℜz = 0}. Moreover, the

number of eigenvalues of A = JH in {z ∈ C : ℜz > 0} is finite (see, e.g.,

Theorem 5.8 of [18]). Therefore, by (H3), there exists an eigenvalue λ∗ of

A such that ℜλ∗ = max{ℜz : z ∈ σ(A)} > 0. Further, by the spectral
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mapping theorem due to Gesztesy, Jones, Latushkin and Stanislavova [12],

we have σ(eA) = eσ(A). Here we need some modification of [12] when ϕ is

not real-valued. We shall discuss it in Section 4. Then, the spectral radius

of eA is eℜλ∗

. Finally, by Lemma 3 of [31], we see that etA satisfies (11) for

some ν with ℜλ∗ < ν < (1 + α)ℜλ∗.

Lemma 6. There exists a constant C such that

‖hj(v)‖L2 + ‖hj(v)‖
L
r′
j
≤ C

(

‖v‖H2 + ‖v‖
rj−2

H2

)

‖v‖H2

for all v ∈ H2(RN).

Proof. Since

hj(v) = J

∫ 1

0

{Dfj(ϕ+ θv)−Dfj(ϕ)}v dθ,

it follows from (5) that

‖hj(v)‖L2 + ‖hj(v)‖
L
r′
j
≤ C

{

‖v‖
rj−1

H2 if 2 < rj ≤ 3,

(‖ϕ‖
rj−3

H2 + ‖v‖
rj−3

H2 )‖v‖2
H2 if rj > 3,

which implies the desired estimate.

In what follows, let λ and µ be numbers satisfying

0 < λ < ℜλ∗ < ν < µ < (1 + α)λ, (14)

and we define

‖v‖XT
= ‖v‖

L
∞,λ
T H2 + ‖∂tv‖Lq1,λ

T Lr1
+ ‖∂tv‖Lq2,λ

T Lr2
.

Lemma 7. Let v(t) be an H2-solution of (6) in [0,∞). Then, there exists

a constant C independent of v and T such that

‖v‖XT
≤ C

(

‖v‖
L
∞,λ
T

L2 + ‖∂tv‖L∞,λ
T

L2 + ‖∂tv‖Lq1,λ

T Lr1
+ ‖∂tv‖Lq2,λ

T Lr2

)

+ C
(

‖v‖2XT
+ ‖v‖r1−1

XT
+ ‖v‖r2−1

XT

)

.

Proof. By Lemma 6, we have

‖v(t)‖H2 ≤ C(‖v(t)‖L2 + ‖Av(t)‖L2)

≤ C(‖v(t)‖L2 + ‖∂tv(t)‖L2 + ‖h(v(t))‖L2)

≤ C(‖v(t)‖L2 + ‖∂tv(t)‖L2 + ‖v(t)‖2H2 + ‖v(t)‖r1−1
H2 + ‖v(t)‖r2−1

H2 )
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for all t ∈ [0, T ]. Thus,

‖v‖
L
∞,λ
T H2 ≤ C(‖v‖

L
∞,λ
T L2 + ‖∂tv‖L∞,λ

T L2)

+ C(‖v‖2
L
∞,λ
T H2

+ ‖v‖r1−1

L
∞,λ
T H2

+ ‖v‖r2−1

L
∞,λ
T H2

),

which implies the desired estimate.

Lemma 8. There exists a constant independent of v and T such that

‖hj(v)‖
L
q′
j
,µ

T L
r′
j
≤ C

(

‖v‖2XT
+ ‖v‖

rj−1
XT

)

.

Proof. By Lemma 6, we have

e−µt‖hj(v(t))‖
L
r′
j
≤ Ce(2λ−µ)t‖e−λ v‖

2
L∞

T H2 + Ce((rj−1)λ−µ)t‖e−λ v‖
rj−1

L∞

T H2

for all t ∈ [0, T ]. Moreover, by (13) and (14), we have

eµT ‖e−µhj(v)‖
L
q′
j

T L
r′
j
≤ Ce2λT‖e−λ v‖

2
L∞

T H2 + Ce(rj−1)λT ‖e−λ v‖
rj−1

L∞

T H2

≤ C(‖v‖2XT
+ ‖v‖

rj−1
XT

),

which implies the desired estimate.

Lemma 9. There exists a constant C independent of v and T such that

‖∂thj(v)‖
L
q′
j
,µ

T L
r′
j
≤ C

(

‖v‖2XT
+ ‖v‖

rj−1
XT

)

.

Proof. Since ∂thj(v(t)) = J{Dfj(ϕ + v(t)) −Dfj(ϕ)}∂tv(t), it follows from

(5) that

‖∂thj(v(t))‖
L
r′
j
≤ C(‖v(t)‖H2 + ‖v(t)‖

rj−2

H2 )‖∂tv(t)‖Lrj .

Thus we have

e−µt‖∂thj(v(t))‖
L
r′
j
≤Ce(2λ−µ)t‖e−λ v‖L∞

T H2 · e−λt‖∂tv(t)‖Lrj

+ Ce((rj−1)λ−µ)t‖e−λ v‖
rj−2

L∞

T H2 · e
−λt‖∂tv(t)‖Lrj

for all t ∈ [0, T ]. Moreover, by (13), (14) and the Hölder inequality,

eµT ‖e−µ ∂thj(v)‖
L
q′
j

T
L
r′
j

≤Ce2λT ‖e−λ v‖L∞

T H2‖e−λ ∂tv‖Lqj
T L

rj + Ce(rj−1)λT ‖e−λ v‖
rj−2

L∞

T H2‖e
−
λ ∂tv‖Lqj

T L
rj

≤C(‖v‖2XT
+ ‖v‖

rj−1
XT

).

This completes the proof.

9



Proof of Theorem 2. We use the argument in [18, Section 6] (see also [7, 31]).

Suppose that the standing wave eiωtϕ of (1) is orbitally stable. For small δ >

0, let uδ(t) be the solution of (1) with uδ(0) = ϕ+δℜχ, where χ ∈ H2(RN ,C)2

is the eigenfunction of A corresponding to the eigenvalue λ∗ given in Lemma

5. Note that Aχ = λ∗χ. Since either ℜχ 6∈ kerA or ℑχ 6∈ kerA, we may

assume that ℜχ 6∈ kerA. Since we assume that eiωtϕ is orbitally stable in

H1(RN), the H1-solution uδ(t) of (1) exists globally for sufficiently small

δ > 0. Moreover, since ϕ, χ ∈ H2(RN ), by the H2-regularity for (1), we see

that uδ ∈ C([0,∞), H2(RN))∩C1([0,∞), L2(RN)) and ∂tuδ ∈ Lq1
T L

r1∩Lq2
T L

r2

for all T > 0 (see [21, 33] and also [3, Section 5.2]). By the change of variables

uδ(t) = eiωt(ϕ+ vδ(t)), (15)

we see that vδ has the same regularity as that of uδ, and satisfies

∂tvδ(t) = Avδ(t) + h(vδ(t)), vδ(0) = δℜχ,

vδ(t) = δℜ(eλ
∗tχ) + Γ[h(vδ)](t), (16)

∂tvδ(t) = δℜ(λ∗eλ
∗tχ) + etAh(δℜχ) + Γ[∂th(vδ)](t) (17)

for all t ≥ 0. Let ε0 > 0 be a small positive number to be determined later,

let k = 1 if ℑλ∗ = 0, and k = exp(2πℜλ∗/|ℑλ∗|) if ℑλ∗ 6= 0, and define Tδ
by

log
ε0
kδ

≤ ℜλ∗Tδ ≤ log
ε0
δ
, ℑλ∗Tδ ∈ 2πZ. (18)

for small δ > 0. First, we prove that there exist constants C1 and ε0 inde-

pendent of δ such that

‖vδ‖XTδ
≤ C1ε0 (19)

for small δ. For T ∈ (0, Tδ], by (16), Proposition 4 and Lemma 8,

‖vδ‖L∞,λ
T L2 ≤ ‖δe+λ∗χ‖L∞,λ

T L2 + C(‖h1(v)‖
L
q′
1
,µ

T L
r′
1

+ ‖h2(v)‖
L
q′
2
,µ

T L
r′
2

)

≤ δeℜλ∗T‖χ‖L2 + C(‖vδ‖
2
XT

+ ‖vδ‖
r1−1
XT

+ ‖vδ‖
r2−1
XT

).

Moreover, by (17), Proposition 4 and Lemma 9,

‖∂tvδ‖L∞,λ
T L2 + ‖∂tvδ‖Lq1,λ

T Lr1
+ ‖∂tvδ‖Lq2,λ

T Lr2

≤ C
(

δeℜλ∗T‖χ‖H2 + eνT ‖h(δℜχ)‖L2 + ‖vδ‖
2
XT

+ ‖vδ‖
r1−1
XT

+ ‖vδ‖
r2−1
XT

)

.

10



Here, by Lemma 6 and by (13) and (14),

eνT‖h(δℜχ)‖L2 ≤ CeνT (δ2‖χ‖2H2 + δr1−1‖χ‖r1−1
H2 + δr2−1‖χ‖r2−1

H2 )

≤ C(δeℜλ∗T )1+α.

Therefore, by Lemma 7 and (18),

‖vδ‖XT
≤ C

(

ε0 + ε1+α
0 + ‖vδ‖

2
XT

+ ‖vδ‖
r1−1
XT

+ ‖vδ‖
r2−1
XT

)

(20)

for all T ∈ (0, Tδ]. Since lim supT→+0 ‖vδ‖XT
≤ Cδ and ‖vδ‖XT

is continuous

in T , by (20) we see that there exist constants C1 and ε0 independent of

δ such that (19) holds for small δ. Next, by (16), (19), Proposition 4 and

Lemma 8,

‖vδ(Tδ)− δℜ(eλ
∗Tδχ)‖L2 ≤ C(‖h1(v)‖

L
q′
1
,µ

Tδ
L
r′
1

+ ‖h2(v)‖
L
q′
2
,µ

Tδ
L
r′
2

)

≤ C(‖vδ‖
2
XTδ

+ ‖vδ‖
r1−1
XTδ

+ ‖vδ‖
r2−1
XTδ

) ≤ Cε1+α
0 . (21)

Let (ℜχ)⊥ be the projection of ℜχ onto the orthogonal complement of

span{iϕ,∇ϕ} in L2(RN ,R)2. Note that we identify iϕ = (0, ϕ) and ϕ =

(ϕ, 0). Since span{iϕ,∇ϕ} ⊂ kerA and ℜχ 6∈ kerA, we see that (ℜχ)⊥ 6= 0.

By (18) and (21), we have

∣

∣(vδ(Tδ), (ℜχ)
⊥)L2 − δeℜλ∗Tδ‖(ℜχ)⊥‖2L2

∣

∣

= |(vδ(Tδ)− δℜ(eλ
∗Tδχ), (ℜχ)⊥)L2| ≤ Cε1+α

0 ‖(ℜχ)⊥‖L2 ,

and we can take a small ε0 such that

(vδ(Tδ), (ℜχ)
⊥)L2 ≥

ε0
2k

‖(ℜχ)⊥‖2L2 . (22)

Finally, we put

Θδ = inf
(θ,y)∈R×RN

‖uδ(Tδ)− eiθϕ(·+ y)‖L2.

Then, by (15), Θδ = inf(θ,y)∈R×RN ‖vδ(Tδ)+ϕ−e
iθϕ(·+y)‖L2, and there exists

(θδ, yδ) ∈ R × RN such that Θδ = ‖vδ(Tδ) + ϕ− eiθδϕ(· + yδ)‖L2 . Moreover,

since Θδ ≤ ‖vδ(Tδ)‖L2 ≤ C1ε0, we have ‖ϕ− eiθδϕ(·+ yδ)‖L2 ≤ 2C1ε0. Thus,

|(θδ, yδ)| = O(ε0) and

eiθδϕ(·+ yδ)− ϕ = iθδϕ+ yδ · ∇ϕ + o(ε0),
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which together with (22) implies that

(vδ(Tδ) + ϕ− eiθδϕ(·+ yδ), (ℜχ)
⊥)L2

= (vδ(Tδ), (ℜχ)
⊥)L2 − (iθδϕ+ yδ · ∇ϕ, (ℜχ)

⊥)L2 − o(ε0)

≥
ε0
4k

‖(ℜχ)⊥‖2L2

for some small ε0. Therefore,

inf
(θ,y)∈R×RN

‖uδ(Tδ)− eiθϕ(·+ y)‖H1 ≥ Θδ ≥
ε0
4k

‖(ℜχ)⊥‖L2

for all δ small. This contradiction proves that eiωtϕ is orbitally unstable.

4 Remark on spectral mapping theorem

In this section, we assume that Vjk ∈ C(RN ,R) and there exist positive

constants ε and C such that

|Vjk(x)| ≤ Ce−2ε|x| (23)

for all x ∈ RN and j, k = 1, 2. We consider the linear operator A = A0 + V

defined by (8). Then we have the following.

Proposition 10. For each N ≥ 1 one has σ(eA) = eσ(A).

In [12], Proposition 10 is proved for the case V11 = V22 = 0. We modify

the proof of Theorem 1 of [12] to prove Proposition 10 for general case. As

we have stated in Section 1, this generalization is needed to treat the case

where a solution ϕ of (2) is not real-valued.

Proof of Proposition 10. For ξ = a + iτ with a, τ ∈ R \ {0}, we denote

L(ξ) =

[

ξ −D

D ξ

]

, D = −∆+ ω.

Then, we have −ξ2 /∈ σ(D2) and

L(ξ)−1 =

[

ξ[ξ2 +D2]−1 D[ξ2 +D2]−1

−D[ξ2 +D2]−1 ξ[ξ2 +D2]−1

]

.

We also have ξ − A = L(ξ) − V = L(ξ)[I − L(ξ)−1V ]. Here we decompose

V =WB by

W = eε|x|V, B = e−ε|x|I.

12



By (23), all entries of W and B are exponentially decaying continuous func-

tions. Moreover, each entry of BL(ξ)−1W has a form

P1(x)ξ[ξ
2 +D2]−1Q1(x) + P2(x)D[ξ2 +D2]−1Q2(x),

where P1, P2, Q1 and Q2 are real-valued continuous functions decaying ex-

ponentially. Therefore, by Lemma 6 of [12], we see that ‖BL(ξ)−1W‖ → 0

as |τ | → ∞. Then the rest of the proof of Proposition 10 is the same as in

the proof of Theorem 1 of [12].
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