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Abstract

Let K be the scalar field of all real or complex numbers, (€2, F, P) a prob-
ability space, and L°(F, K) the algebra of equivalence classes of K—valued
F—measurable random variables on ). This paper proves that every finitely
generated unitary L(F, K)-module can be decomposed into a direct sum of
finite quasi-free stratifications of finite rank.
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1. Introduction

Throughout this paper, (2, F, P) denotes a probability space, K the
scalar field R of real numbers or C' of complex numbers, and L°(F, K) the
algebra of equivalence classes of K—valued F—measurable random variables
on 2 under the ordinary scalar multiplication, addition and multiplication
operations on equivalence classes. In addition, all L°(F, K)-modules in this
paper are supposed to be unitary[12, Chapter 4, Definition 1.1].

Random metric theory including the theory of random normed spaces
originated from the theory of probabilistic metric spaces[13]. Since the no-
tions of random normed modules(briefly, RN modules) and random con-
jugate spaces for RN modules were presented[2, 4], the theory of random
locally convex modules(specially, RN modules) has undergone considerably
much of development[2, 3, 5, 6, 7, 10] and been applied to not only solving
a series of problems in measure theory[8, 9] but also introducing some new
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frames to financial mathematics[11]. All these motivate the study of the
algebraic structure of L°(F, K') modules.

A significant peculiarity of an L°(F, K) module E is that F has strat-
ification structures[5, 6, 7]. For a set A € F, the A-stratification of E is
defined by I,FE £ {I,x | x € E}, where I, is the equivalence class of the
characteristic function of A. The limitation of the module multiplication
LO(F,K)x E = E to I,L°(F,K) x I4£ — I,E makes I,F an unitary
I4L°(F, K)-module for any A € F and P(A) > 0. Moreover, I,E is called
a quasi-free stratification of finite rank of F for any A € F and P(A) > 0 if
I4E is a free module of finite rank over 1,L°(F, K)[3, Definition 1.1].

Notice that L°(F, K) is not a division ring unless (2, F, P) is a trivial
probability space. Thus modules over L°(F, K) may not be free. Neverthe-
less, we will show that if F is finitely generated, i.e. there exists a finite subset
{Il,LEQ, cee ,In} of F such that £ = {Z?:l é-zxz | 51 c LO(./_", K),l < 1 < n},
then F is a direct sum of finite quasi-free stratifications of finite rank.

The paper is organized as follows: in Section 2 we introduce some nec-
essary notions and preliminaries. In Section 3, we state and prove the main
result about the algebraic structure of finitely generated L°(F, K)-modules.
And section 4 gives two corollaries.

2. Preliminaries

It follows from [11, Lemma 2.9] that F is a complete lattice with respect
to the partial order of almost sure set inclusion. For a nonempty collection
E C F, we use ess.sup(€) to denote the essential supremum of £ as in [11].
Furthermore, if £ is directed upwards, ie. AUB € & for any A, B € &,
then there exists a nondecreasing sequence {A, € £ | n € N} such that
ess.sup€ = (J,cy An- And throughout this paper we distinguish characteris-
tic functions from their equivalence classes in L°(F, K) by means of symbols:
for example, 14 denotes the characteristic function of an F—measurable set
A, then we use 14 for its equivalence class in LO(F, K).

Besides, for any A € F, “¢ > n on A” means £°(w) > n°%w) a.s. on A for
any chosen representative £ and n° of £ and 7, respectively. As usual, £ > 7
means £ > n and £ # n.

Moreover, for any £ € LO(F,K), |¢] and £~ respectively stand for the
equivalence classes determined by the F-measurable function €% : Q@ — R



defined by [£°|(w) = [£°(w)], w € Q and (£°)~" defined by
(69)7 (w) :{ (W)™ Ow) £0;

0, otherwise,

where £% is an arbitrarily chosen representative of £. It is clear that |¢] €
LY ={ne L’(F,R) | n=0}and £ - £ = [eqie0w)-0}-

All the L°(F, K)-modules E in the sequel of this paper are assumed to
satisfy the following property: If x and y are two elements in £ and there
exists a countable partition {A, | n € N} of Q to F such that I,z = I,y

for each n € N, then « = y. Here I,z is called the A-stratification of z for
any A € F.

Definition 2.1 [1]. Let E be a left module over the algebra L°(F,K).
A countable concatenation of some sequence {z, | n € N} in E with re-
spect to some countable partition {4, | n € N} of Q is a formal sum
Yine NI AT Moreover, a countable concatenation X,,¢ NI A, T, is well defined
or EneNIA r, € F if there is x € F such that IA T = IA x, for any n € N.
A subset A of E is called having the countable concatenation property if
every countable concatenation ¥,,¢ Nf A, Ty With x,, € A for each n € N still
belongs to A, namely >,,c Nf A, %, is well defined and there exists z € A such
that x = ZneNfAnxn.

Definition 2.2 [1, 4]. An ordered pair (E, || -||) is called a random normed

module (briefly, an RN module) over K with base (Q, F, P) if E is a left
module over the algebra L(F, K) and || - || is a mapping from E to LY such
that the following three axioms are satisfied:

(1) ||z]| = 0 iff z = O(the null element of F);
(2) lI&]l = [€]ll=]], any € € LY(F, K) and x € E;
B3) llz+yll <zl +[lyll, any =,y € E.

Definition 2.3 [1, 4]. An ordered pair (£, (-,-)) is called a random inner
product module (briefly, an RIP module) over K with base (£, F, P) if £
is a left module over the algebra L°(F,K) and (-,-) : E x E — L°(F, K)
satisfies the following statements:



(1) (z,z) € LY and (z,z) =0 iff z = 0;

(2) (z,y) = (y,z), any x,y € E where (y, z) denotes the complex conjugate

of (y, r);
(3) (Cz,y) = &(x,y), any £ € L°(F,K) and z,y € E;
(4) (x+y,2) = (2,2) + (y,2), any z,y,2 € E.

where (z,y) is called the random inner product between x and y.

An RIP module (E, (-,-)) is also an RN module when || - || : E — LY is

defined by ||z|| = /(z,z) for x € E. And z is orthogonal to y if (x,y) =0
for z,y € E.

Example 2.4.  Denote by L°(F, K™) the linear space of equivalence classes
of K"—valued F—measurable functions on €2, where n is a positive integer. De-
fine - : LO(F, K)x LO(F, K™) — L°(F, K™) by A-x = (A1, Ao, -+, AE,) and
() 0 LNFKY) x I(F K" - L°F,K) by (n,y) = Sr&i,
for any A€ LO(F?K) and r = (517627"' 7§n)7 Yy = (7717772a"' 777n) <
L°(F,K™). Tt is easy to check that (L°(F,K"),(-,-)) is an RIP module
over K with base (2, F, P), and also an RN module. Specially, L°(F, K) is
an RN module and ||A|| = |A] for any X € LY(F, K).

3. The algebraic structure of finitely generated L°(F, K)-modules

The main purpose of this section is to prove the following theorem:

Theorem 3.1. Suppose E is a finitely generated left module over the algebra
L°(F,K), namely there exists a subset X = {xy, x5, -+ ,x,} of E such that
X generates E, where n is some fized positive integer. Then there ezists a
partition {Ag, Ay, -, Ay} of Q to F such that 14, E is a quasi-free strati-
fication of rank i of E for each i which satisfies 0 < i < n and P(A;) > 0.
Consequently, E = @;_, ]~A,L.E, where @ denotes the direct sum of modules.

PrROOF. The proof will be divided into three steps.

Step 1. Let N,, denote the set {1,2,---,n}. For any nonempty subset L of
N,,, let Fr, be the collection of all sets A € F such that if {\; € L°(F,K) | i €
L} satisfies I~A ZZEL Aix; = 6 then I~A)\Z- = 0 for each i € L. We begin by
proving that ess.sup(Fyr) € Fr.



Suppose A, B € F and {\; € L°(F, K) |ie L} satisfies [4 D oien ity =
0. Then we have I > e, NiTi = 0 since IAIAuB = [4. Tt follows from A € Fy,
that I4)\; = 0 for each ¢ € L. Similarly, we have Ig\; = 0 for each i € L.
Hence T4 g\ = ([~A—|—]~ACI~B))\Z~ = 0 for each 7 € L, which implies AUB € F,.
Thus Fp, is directed upwards. Consequently, there exists a nondecreasing se-
quence {A; | k € N} in Fy, such that ess.sup(Fr) = (J,ey Ax- Let 11, denote
the characteristic function of ess.sup(Fy), then {I, | K € N} converges to
I, in probability P.

If {¢ € L°(F,K) | i € L} satisfies I Y ier & = 0, then fAk& = 0 for
each k € N and each i € L. Since {fAk&}keN converges to I.&; in probabil-
ity P fori € L, hence I.§; = 0 for each i € L which implies ess.sup(Fr) € Fr.

Step 2. If Ly, Ly are two nonempty subsets of N, and L; C Ls, then
it is easy to check that ess.sup(Fy,) almost surely includes ess.sup(Fy,),
where Fr, and F, are defined as in Step 1. Let Ay, =ess.sup(Fy, ) and
Ap =ess.sup(Fu) \ U{ ess.sup(Fz) | H G L C N, } for each nonempty and
proper subset H of N,,. In this step, we will prove that if P(Ar) > 0 for some
nonempty subset L of N, then as a jLLO(]-", K)-module, J.E has a basis
Y & {Jpz; | i€ L}, ie J,E is a free module of rank |L| over J,L°(F, K).
Here J, denotes the characteristic function of Ay and |L| denotes the cardinal
number of L.

Obviously, Y is jLLO(]-" , K)-independent. Now we turn to prove that
Y spans J.E. Notice that {jo, | i € Nn} spans J E, thus to complete
this step it remains to show that if L C S Ny, then for any j € N, \ L,
Jra; can be written as a JLO(F, K )-combination of Y, i.e. there exists
{¢& € JLLO(F,K) | i € L} such that Jyz; =3 ,, £Z(JLx2)

Define

Fu; ={B€F|BC Ay and Ipx; is a J,L°(F, K) — combination of Y}.

Also F;; is a upward directed subset of F; and there exists a nondecreasing
sequence {By € F, | k € N} such that ess.sup(F,) = Uy Br-

Let {Cy | k € N } be a sequence of f—measurable sets such that Cy = By
and Cp = By \ By for k > 1. Clearly C} € F,, for each £ € N. Thus
there exists {¢F € JLLO(F,K) | i € L} for each k € N such that Io,x; =
Y il €8 (Jox;). Suppose I, is the characteristic function of ess.sup(F;,) and



£ =D ken fckgf for each ¢+ € L, then

= Z jckl’j = Z Z ngzkxz = Zgl(jol)a

keN keN i€l 1€

i.e. ess.sup(fy;) € Fu,.

Obviously ess.sup(F,) is almost surely included in Az. Let B denote the
set Ap\ess.sup(F,). If P(B) > 0, then it is easy to verify that {Igz; | i €
Lu{j}}isI BLO(.F , K)-independent. This contradicts with the chosen of
Ap. Thus Ap =ess.sup(Fy,), which completes Step 2.

Step 3. Define Ay = (J{ess.supA; | L C N, and |L| = k} for each k € N,,.
If P(A;) > 0 for some fixed k, then I4, E is a free module of rank k over
the algebra I 4, L°(F,K). In fact, suppose A is an F-measurable set such
that P(A) > 0 and I4E is a free module of rank k over IALO(]-" K); {y €
I4E | 1 <1<k} is a basis for the [,L°(F, K)-module I, E. Take a subset
L = {iy, iy, ,ig} of N, such that P(Ar) > 0, where Ay, is defined as in
step 2. Then {I4,x; | | € L} is a basis for the IALLO(]: K)-module 14, E.
Let J be the characteristic function of AUAL; 2 = Layi+1a,\a%;, 1 <1< E.
It is easy to check that {z1, 2o, -, 2} is a basis for the jLO(]: K)-module
JE, ie. JE is a free module of rank k over the algebra JL°(F, K). Thus
the assertion can be proved easily by using the induction method.

Let Ag = Q\ Ujen, Ak It is easy to check that I4,FE = {#}. The desired
partition can be obtained easily once we prove that P(A4; N A;) = 0 when
0 <i4,j <nandi# j. Suppose P(A4;NA;) >0,0<1475 < n Itis
easy to verify that I A,na; E 18 a free module of rank ¢ also j over the algebra
Layna, LO(F, K). Since Iyna, LO(F, K) is a commutative ring with identity,
it follows from [12, Chapter 4, Corollary 2.12] that 14, A, E has the invariant
dimension property, which implies i = j.

And it is easy to check that E = @, I 4,E. The proof is completed. O

Remark 3.2. Clearly the partition we obtained in Theorem 3.1 is unique
in the sense of P-equivalent. An F-measurable set A is called a support of
rank k for E| if P(A) > 0 and A is equivalent to Ay.
4. Two corollaries

In this section, we just generalize a couple of results about finite dimen-

sional linear spaces to finitely generated L°(F, K)-modules.
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Corollary 4.1. An L°(F, K)-module E is finitely generated iff it is module
isomorphic to a submodule of L°(F, K™) with the countable concatenation
property for some positive integer n.

PROOF. (1)Necessity: By Theorem 3.1, there exists a positive integer n and
a partition {Ag, Ay, -, A} of Q to F such that I, E is a free module of
rank i over the algebra I 4, L°(F, K) for each 7 which satisfies 0 <4 < n and
P(A;) > 0. Let L be the collection of ¢ such that 1 <7 < n and P(4;) > 0.
Then for each i € L, there exists a basis {z} € I4,E | 1 < k < i} for the free
I4,L°(F, K)-module I4 E. It follows that for any = € E, there exist unique
(& € I, L°(F,K) | i € L,1 < k < i} such that = 3, ., >, &t
For each k such that 1 <k <nlet & =Y . o & if {i € L i >k} #0;
otherwise let & = 0. Define T : E — LO(F, K") by T(z) = (&, &, -+, &) Tt
is easy to check that T is an embedding module homomorphism and T'(F) has
the countable concatenation property since T'(E) is also finitely generated.

(2)Sufficiency: Suppose M is a submodule of L°(F, K™) with the count-
able concatenation property. For any nonnegative integer k, define

Fr={A € F| I,M is a quasi-free statification of rank k of M}.

It is easy to check that Fp = () for k > n. Let By, =ess.sup(F) for 0 < k < n
and Fj, # (), then B;, € F}, since M has the countable concatenation property.
Moreover, P(B;NBy) = 01if j # k. Now we turn to prove that P(|J{Bj | 0 <
k < nand F, # (0}) = 1. Suppose this is not the case, i.e. P(A) > 0
for A=Q\U{Br | 0 < k <nand F, # (0}. Since A ¢ Fy, there exists
71, € I4M and an F-measurable set A; C A such that P(A;) >0and &x; =0
implies € = 0 for any & € I, L°(F, K). Again, since A; ¢ Fi, there exists
2olaM and Ay C Ay such that P(Ay) > 0 and Ia,xy, Ia,xy is 14, LO(F, K)-
independent. Consequently, we will obtain an F-measurable set A,,; and
{21,29, -, 2p41} such that P(A,.1) > 0 and {la,, 2 | 1 < i < n+ 1}
is I, ,L°(F, K)-independent. This is a contradiction. Thus M is a direct
sum of finite quasi stratifications of finite rank, which implies M is finitely
generated.O

Remark 4.2. There exist submodules of L°(F, K™) which do not have the
countable concatenation property and consequently could not be finitely gen-
erated. For example, let 2 = [0, 1], F be the collection of all Lebesgue mea-
surable subsets of [0, 1] and P the Lebesgue measure on [0, 1]. Suppose M =



{I}T(Ml),zfﬂ] Ine Ntand E = {7 &u; | & € LY(F,C),z; € M1 <i<n
and n € N}. Clearly E is a submodule of L°(F,C) without the countable
concatenation property. And it is easy to check that E could not be a finitely
generated L°(F,C)-module.

Recall that if X is a proper linear subspace of C™, then there exists y € C™
such that y # 0 and (z,y) = 0 for each € X. Here (-,-) denotes the usual
inner product defined on C™. A proper submodule of L°(F, K") with the
countable concatenation property has a similar property.

Corollary 4.3. Suppose M is a proper submodule of L°(F, K™) with the
countable concatenation property, then there exists x € L°(F, K™) such that
x # 0 and (z,y) = 0 for any y € M, where (-,-) is defined as in Example
2.4,

PROOF. Notice that M is a proper submodule of LY(F, K") and has the
countable concatenation property, thus there exists 7, 0 < ¢ < n such that
M has a support A of rank i. Since the case ¢ = 0 is trivial, suppose i > 0
and {2z, € [4M | 1 < k < i} is a basis for the [,L°(F, K™)-module I4M.
Now we use Schmidt orthonomal process to obtain an orthornomal basis for
I4M.

Let wi = z1, vy = ||wi|tw; and wy = 2z — Zf:_ll<zk,vl)vl, v =
|wy|| ~twy, for 2 < k < i. To prove {vy, | 1 < k < i} is an orthornomal basis for
T4 M, it only needs to show ||wy|| > 0 on A for 1 < k <. In fact, let ||wy]|° be
an arbitrarily chosen representative of [Jwy| and By, = {w € A | [Jw|°(w) =
0}. Then Ip,2z = Ipywy = 0 and Ip, 2z, — Ip, Y 1, (zk,v)v = Igwy = 0
for 2 < k < 4. Since Zf:_11<zk, v)vy is an 14 L°(F, K)-combination of {2}~
for 2 < k < i, and {z}F, is [4L°(F, K)-independent for 1 < k < 4, hence
Ip, =0,1<k<i.

Let xo be an element in L°(F, K™) such that Iaxg ¢ I4M. Define z =
Lazo — Yh_{(x0,v)vp. Clearly @ # 0, Iyex = 0 and (z,z) = 0 for any
z € I2M. Thus (z,y) = (Iax, I4y) = 0 for any y € M. Hence x is the
required element.O
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