The algebraic structure of finitely generated $L^0(\mathcal{F}, K)$ -modules

Guang Shi¹

LMIB and School of Mathematics and Systems Science, Beihang University, Beijing 100191, P.R. China

Abstract

Let K be the scalar field of all real or complex numbers, (Ω, \mathcal{F}, P) a probability space, and $L^0(\mathcal{F}, K)$ the algebra of equivalence classes of K-valued \mathcal{F} -measurable random variables on Ω . This paper proves that every finitely generated unitary $L^0(\mathcal{F}, K)$ -module can be decomposed into a direct sum of finite quasi-free stratifications of finite rank.

Keywords:

Finitely generated $L^0(\mathcal{F}, K)$ -modules, Stratification structure

1. Introduction

Throughout this paper, (Ω, \mathcal{F}, P) denotes a probability space, K the scalar field R of real numbers or C of complex numbers, and $L^0(\mathcal{F}, K)$ the algebra of equivalence classes of K-valued \mathcal{F} -measurable random variables on Ω under the ordinary scalar multiplication, addition and multiplication operations on equivalence classes. In addition, all $L^0(\mathcal{F}, K)$ -modules in this paper are supposed to be unitary[12, Chapter 4, Definition 1.1].

Random metric theory including the theory of random normed spaces originated from the theory of probabilistic metric spaces [13]. Since the notions of random normed modules (briefly, RN modules) and random conjugate spaces for RN modules were presented [2, 4], the theory of random locally convex modules (specially, RN modules) has undergone considerably much of development [2, 3, 5, 6, 7, 10] and been applied to not only solving a series of problems in measure theory [8, 9] but also introducing some new

¹Supported by NNSF No. 10871016

frames to financial mathematics[11]. All these motivate the study of the algebraic structure of $L^0(\mathcal{F}, K)$ modules.

A significant peculiarity of an $L^0(\mathcal{F}, K)$ module E is that E has stratification structures[5, 6, 7]. For a set $A \in \mathcal{F}$, the A-stratification of E is defined by $\tilde{I}_A E \triangleq \{\tilde{I}_A x \mid x \in E\}$, where \tilde{I}_A is the equivalence class of the characteristic function of A. The limitation of the module multiplication $L^0(\mathcal{F}, K) \times E \to E$ to $\tilde{I}_A L^0(\mathcal{F}, K) \times \tilde{I}_A E \to \tilde{I}_A E$ makes $\tilde{I}_A E$ an unitary $\tilde{I}_A L^0(\mathcal{F}, K)$ -module for any $A \in \mathcal{F}$ and P(A) > 0. Moreover, $\tilde{I}_A E$ is called a quasi-free stratification of finite rank of E for any $A \in \mathcal{F}$ and P(A) > 0 if $\tilde{I}_A E$ is a free module of finite rank over $\tilde{I}_A L^0(\mathcal{F}, K)$ [3, Definition 1.1].

Notice that $L^0(\mathcal{F}, K)$ is not a division ring unless (Ω, \mathcal{F}, P) is a trivial probability space. Thus modules over $L^0(\mathcal{F}, K)$ may not be free. Nevertheless, we will show that if E is finitely generated, i.e. there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of E such that $E = \{\sum_{i=1}^n \xi_i x_i \mid \xi_i \in L^0(\mathcal{F}, K), 1 \leq i \leq n\}$, then E is a direct sum of finite quasi-free stratifications of finite rank.

The paper is organized as follows: in Section 2 we introduce some necessary notions and preliminaries. In Section 3, we state and prove the main result about the algebraic structure of finitely generated $L^0(\mathcal{F}, K)$ -modules. And section 4 gives two corollaries.

2. Preliminaries

It follows from [11, Lemma 2.9] that \mathcal{F} is a complete lattice with respect to the partial order of almost sure set inclusion. For a nonempty collection $\mathcal{E} \subseteq \mathcal{F}$, we use ess.sup(\mathcal{E}) to denote the essential supremum of \mathcal{E} as in [11]. Furthermore, if \mathcal{E} is directed upwards, i.e. $A \cup B \in \mathcal{E}$ for any $A, B \in \mathcal{E}$, then there exists a nondecreasing sequence $\{A_n \in \mathcal{E} \mid n \in N\}$ such that ess.sup $\mathcal{E} = \bigcup_{n \in N} A_n$. And throughout this paper we distinguish characteristic functions from their equivalence classes in $L^0(\mathcal{F}, K)$ by means of symbols: for example, I_A denotes the characteristic function of an \mathcal{F} -measurable set A, then we use \tilde{I}_A for its equivalence class in $L^0(\mathcal{F}, K)$.

Besides, for any $A \in \mathcal{F}$, " $\xi > \eta$ on A" means $\xi^0(\omega) > \eta^0(\omega)$ a.s. on A for any chosen representative ξ^0 and η^0 of ξ and η , respectively. As usual, $\xi > \eta$ means $\xi \ge \eta$ and $\xi \ne \eta$.

Moreover, for any $\xi \in L^0(\mathcal{F}, K)$, $|\xi|$ and ξ^{-1} respectively stand for the equivalence classes determined by the \mathcal{F} -measurable function $|\xi^0| : \Omega \to R$

defined by $|\xi^0|(\omega) = |\xi^0(\omega)|, \omega \in \Omega$ and $(\xi^0)^{-1}$ defined by

$$(\xi^0)^{-1}(\omega) = \begin{cases} (\xi^0(\omega))^{-1}, & \xi^0(\omega) \neq 0; \\ 0, & \text{otherwise,} \end{cases}$$

where ξ^0 is an arbitrarily chosen representative of ξ . It is clear that $|\xi| \in L^0_+ = \{\eta \in L^0(\mathcal{F}, R) \mid \eta \ge 0\}$ and $\xi \cdot \xi^{-1} = \tilde{I}_{\{\omega \in \Omega \mid \xi^0(\omega) \neq 0\}}$.

All the $L^0(\mathcal{F}, K)$ -modules E in the sequel of this paper are assumed to satisfy the following property: If x and y are two elements in E and there exists a countable partition $\{A_n \mid n \in N\}$ of Ω to \mathcal{F} such that $\tilde{I}_{A_n}x = \tilde{I}_{A_n}y$ for each $n \in N$, then x = y. Here $\tilde{I}_A x$ is called the A-stratification of x for any $A \in \mathcal{F}$.

Definition 2.1 [1]. Let E be a left module over the algebra $L^0(\mathcal{F}, K)$. A countable concatenation of some sequence $\{x_n \mid n \in N\}$ in E with respect to some countable partition $\{A_n \mid n \in N\}$ of Ω is a formal sum $\sum_{n \in N} \tilde{I}_{A_n} x_n$. Moreover, a countable concatenation $\sum_{n \in N} \tilde{I}_{A_n} x_n$ is well defined or $\sum_{n \in N} \tilde{I}_{A_n} x_n \in E$ if there is $x \in E$ such that $\tilde{I}_{A_n} x = \tilde{I}_{A_n} x_n$ for any $n \in N$. A subset A of E is called having the countable concatenation property if every countable concatenation $\sum_{n \in N} \tilde{I}_{A_n} x_n$ with $x_n \in A$ for each $n \in N$ still belongs to A, namely $\sum_{n \in N} \tilde{I}_{A_n} x_n$ is well defined and there exists $x \in A$ such that $x = \sum_{n \in N} \tilde{I}_{A_n} x_n$.

Definition 2.2 [1, 4]. An ordered pair $(E, \|\cdot\|)$ is called a random normed module (briefly, an RN module) over K with base (Ω, \mathcal{F}, P) if E is a left module over the algebra $L^0(\mathcal{F}, K)$ and $\|\cdot\|$ is a mapping from E to L^0_+ such that the following three axioms are satisfied:

- (1) ||x|| = 0 iff $x = \theta$ (the null element of E);
- (2) $\|\xi x\| = |\xi| \|x\|$, any $\xi \in L^0(\mathcal{F}, K)$ and $x \in E$;
- (3) $||x + y|| \leq ||x|| + ||y||$, any $x, y \in E$.

Definition 2.3 [1, 4]. An ordered pair $(E, \langle \cdot, \cdot \rangle)$ is called a random inner product module (briefly, an *RIP* module) over *K* with base (Ω, \mathcal{F}, P) if *E* is a left module over the algebra $L^0(\mathcal{F}, K)$ and $\langle \cdot, \cdot \rangle : E \times E \to L^0(\mathcal{F}, K)$ satisfies the following statements:

- (1) $\langle x, x \rangle \in L^0_+$ and $\langle x, x \rangle = 0$ iff $x = \theta$;
- (2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$, any $x, y \in E$ where $\overline{\langle y, x \rangle}$ denotes the complex conjugate of $\langle y, x \rangle$;
- (3) $\langle \xi x, y \rangle = \xi \langle x, y \rangle$, any $\xi \in L^0(\mathcal{F}, K)$ and $x, y \in E$;
- (4) $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$, any $x,y,z\in E$.

where $\langle x, y \rangle$ is called the random inner product between x and y.

An *RIP* module $(E, \langle \cdot, \cdot \rangle)$ is also an *RN* module when $\|\cdot\| : E \to L^0_+$ is defined by $\|x\| = \sqrt{\langle x, x \rangle}$ for $x \in E$. And x is orthogonal to y if $\langle x, y \rangle = 0$ for $x, y \in E$.

Example 2.4. Denote by $L^0(\mathcal{F}, K^n)$ the linear space of equivalence classes of K^n -valued \mathcal{F} -measurable functions on Ω , where n is a positive integer. Define $\cdot : L^0(\mathcal{F}, K) \times L^0(\mathcal{F}, K^n) \to L^0(\mathcal{F}, K^n)$ by $\lambda \cdot x = (\lambda \xi_1, \lambda \xi_2, \cdots, \lambda \xi_n)$ and $\langle \cdot, \cdot \rangle : L^0(\mathcal{F}, K^n) \times L^0(\mathcal{F}, K^n) \to L^0(\mathcal{F}, K)$ by $\langle x, y \rangle = \sum_{i=1}^n \xi_i \overline{\eta}_i$, for any $\lambda \in L^0(\mathcal{F}, K)$ and $x = (\xi_1, \xi_2, \cdots, \xi_n), y = (\eta_1, \eta_2, \cdots, \eta_n) \in$ $L^0(\mathcal{F}, K^n)$. It is easy to check that $(L^0(\mathcal{F}, K^n), \langle \cdot, \cdot \rangle)$ is an *RIP* module over K with base (Ω, \mathcal{F}, P) , and also an *RN* module. Specially, $L^0(\mathcal{F}, K)$ is an *RN* module and $\|\lambda\| = |\lambda|$ for any $\lambda \in L^0(\mathcal{F}, K)$.

3. The algebraic structure of finitely generated $L^0(\mathcal{F}, K)$ -modules

The main purpose of this section is to prove the following theorem:

Theorem 3.1. Suppose E is a finitely generated left module over the algebra $L^0(\mathcal{F}, K)$, namely there exists a subset $X = \{x_1, x_2, \cdots, x_n\}$ of E such that X generates E, where n is some fixed positive integer. Then there exists a partition $\{A_0, A_1, \cdots, A_n\}$ of Ω to \mathcal{F} such that $\tilde{I}_{A_i}E$ is a quasi-free stratification of rank i of E for each i which satisfies $0 \leq i \leq n$ and $P(A_i) > 0$. Consequently, $E = \bigoplus_{i=0}^n \tilde{I}_{A_i}E$, where \bigoplus denotes the direct sum of modules.

PROOF. The proof will be divided into three steps.

Step 1. Let N_n denote the set $\{1, 2, \dots, n\}$. For any nonempty subset L of N_n , let \mathcal{F}_L be the collection of all sets $A \in \mathcal{F}$ such that if $\{\lambda_i \in L^0(\mathcal{F}, K) \mid i \in L\}$ satisfies $\tilde{I}_A \sum_{i \in L} \lambda_i x_i = \theta$ then $\tilde{I}_A \lambda_i = 0$ for each $i \in L$. We begin by proving that ess.sup $(\mathcal{F}_L) \in \mathcal{F}_L$.

Suppose $A, B \in \mathcal{F}_L$ and $\{\lambda_i \in L^0(\mathcal{F}, K) \mid i \in L\}$ satisfies $\tilde{I}_{A \cup B} \sum_{i \in L} \lambda_i x_i = \theta$. Then we have $\tilde{I}_A \sum_{i \in L} \lambda_i x_i = \theta$ since $\tilde{I}_A \tilde{I}_{A \cup B} = \tilde{I}_A$. It follows from $A \in \mathcal{F}_L$ that $\tilde{I}_A \lambda_i = 0$ for each $i \in L$. Similarly, we have $\tilde{I}_B \lambda_i = 0$ for each $i \in L$. Hence $\tilde{I}_{A \cup B} \lambda_i = (\tilde{I}_A + \tilde{I}_{A^c} \tilde{I}_B) \lambda_i = 0$ for each $i \in L$, which implies $A \cup B \in \mathcal{F}_L$. Thus \mathcal{F}_L is directed upwards. Consequently, there exists a nondecreasing sequence $\{A_k \mid k \in N\}$ in \mathcal{F}_L such that ess.sup $(\mathcal{F}_L) = \bigcup_{k \in N} A_k$. Let I_L denote the characteristic function of ess.sup (\mathcal{F}_L) , then $\{\tilde{I}_{A_k} \mid k \in N\}$ converges to \tilde{I}_L in probability P.

If $\{\xi_i \in L^0(\mathcal{F}, K) \mid i \in L\}$ satisfies $\tilde{I}_L \sum_{i \in L} \xi_i x_i = \theta$, then $\tilde{I}_{A_k} \xi_i = 0$ for each $k \in N$ and each $i \in L$. Since $\{\tilde{I}_{A_k} \xi_i\}_{k \in N}$ converges to $\tilde{I}_L \xi_i$ in probability P for $i \in L$, hence $\tilde{I}_L \xi_i = 0$ for each $i \in L$ which implies ess.sup $(\mathcal{F}_L) \in \mathcal{F}_L$.

Step 2. If L_1, L_2 are two nonempty subsets of N_n and $L_1 \subset L_2$, then it is easy to check that $\operatorname{ess.sup}(\mathcal{F}_{L_1})$ almost surely includes $\operatorname{ess.sup}(\mathcal{F}_{L_2})$, where \mathcal{F}_{L_1} and \mathcal{F}_{L_2} are defined as in Step 1. Let $A_{N_n} = \operatorname{ess.sup}(\mathcal{F}_{N_n})$ and $A_H = \operatorname{ess.sup}(\mathcal{F}_H) \setminus \bigcup \{ \operatorname{ess.sup}(\mathcal{F}_L) \mid H \subsetneqq L \subseteq N_n \}$ for each nonempty and proper subset H of N_n . In this step, we will prove that if $P(A_L) > 0$ for some nonempty subset L of N_n , then as a $\tilde{J}_L L^0(\mathcal{F}, K)$ -module, $\tilde{J}_L E$ has a basis $Y \triangleq \{ \tilde{J}_L x_i \mid i \in L \}$, i.e. $\tilde{J}_L E$ is a free module of rank |L| over $\tilde{J}_L L^0(\mathcal{F}, K)$. Here J_L denotes the characteristic function of A_L and |L| denotes the cardinal number of L.

Obviously, Y is $J_L L^0(\mathcal{F}, K)$ -independent. Now we turn to prove that Y spans $\tilde{J}_L E$. Notice that $\{\tilde{J}_L x_i \mid i \in N_n\}$ spans $\tilde{J}_L E$, thus to complete this step it remains to show that if $L \subsetneq N_n$, then for any $j \in N_n \setminus L$, $\tilde{J}_L x_j$ can be written as a $\tilde{J}_L L^0(\mathcal{F}, K)$ -combination of Y, i.e. there exists $\{\xi_i \in \tilde{J}_L L^0(\mathcal{F}, K) \mid i \in L\}$ such that $\tilde{J}_L x_j = \sum_{i \in L} \xi_i(\tilde{J}_L x_i)$.

Define

$$\mathcal{F}_{x_j} = \{ B \in \mathcal{F} \mid B \subseteq A_L \text{ and } \tilde{I}_B x_j \text{ is a } \tilde{J}_L L^0(\mathcal{F}, K) - \text{combination of } Y \}.$$

Also \mathcal{F}_{x_j} is a upward directed subset of \mathcal{F} ; and there exists a nondecreasing sequence $\{B_k \in \mathcal{F}_{x_j} \mid k \in N\}$ such that $\operatorname{ess.sup}(\mathcal{F}_{x_j}) = \bigcup_{k \in N} B_k$.

Let $\{C_k \mid k \in N\}$ be a sequence of \mathcal{F} -measurable sets such that $C_0 = B_0$ and $C_k = B_k \setminus B_{k-1}$ for $k \ge 1$. Clearly $C_k \in \mathcal{F}_{x_j}$ for each $k \in N$. Thus there exists $\{\xi_i^k \in \tilde{J}_L L^0(\mathcal{F}, K) \mid i \in L\}$ for each $k \in N$ such that $\tilde{I}_{C_k} x_j = \sum_{i \in L} \xi_i^k (\tilde{J}_L x_i)$. Suppose I_{x_j} is the characteristic function of ess.sup (\mathcal{F}_{x_j}) and $\xi_i = \sum_{k \in \mathbb{N}} \tilde{I}_{C_k} \xi_i^k$ for each $i \in L$, then

$$\tilde{I}_{x_j}x_j = \sum_{k \in N} \tilde{I}_{C_k}x_j = \sum_{k \in N} \sum_{i \in L} \tilde{J}_L \xi_i^k x_i = \sum_{i \in L} \xi_i(\tilde{J}_L x_i),$$

i.e. $\operatorname{ess.sup}(\mathcal{F}_{x_j}) \in \mathcal{F}_{x_j}$.

Obviously ess.sup (\mathcal{F}_{x_j}) is almost surely included in A_L . Let B denote the set A_L \ess.sup (\mathcal{F}_{x_j}) . If P(B) > 0, then it is easy to verify that $\{\tilde{I}_B x_i \mid i \in L \cup \{j\}\}$ is $\tilde{I}_B L^0(\mathcal{F}, K)$ -independent. This contradicts with the chosen of A_L . Thus A_L =ess.sup (\mathcal{F}_{x_j}) , which completes Step 2.

Step 3. Define $A_k = \bigcup \{ \text{ess.sup} A_L \mid L \subset N_n \text{ and } |L| = k \}$ for each $k \in N_n$. If $P(A_k) > 0$ for some fixed k, then $\tilde{I}_{A_k}E$ is a free module of rank k over the algebra $\tilde{I}_{A_k}L^0(\mathcal{F}, K)$. In fact, suppose A is an \mathcal{F} -measurable set such that P(A) > 0 and $\tilde{I}_A E$ is a free module of rank k over $\tilde{I}_A L^0(\mathcal{F}, K)$; $\{y_l \in$ $\tilde{I}_A E \mid 1 \leq l \leq k\}$ is a basis for the $\tilde{I}_A L^0(\mathcal{F}, K)$ -module $\tilde{I}_A E$. Take a subset $L = \{i_1, i_2, \cdots, i_k\}$ of N_n such that $P(A_L) > 0$, where A_L is defined as in step 2. Then $\{\tilde{I}_{A_L} x_l \mid l \in L\}$ is a basis for the $\tilde{I}_A y_l + \tilde{I}_{A_L \setminus A} x_{i_l}, 1 \leq l \leq k$. It is easy to check that $\{z_1, z_2, \cdots, z_k\}$ is a basis for the $\tilde{J}L^0(\mathcal{F}, K)$ -module $\tilde{J}E$, i.e. $\tilde{J}E$ is a free module of rank k over the algebra $\tilde{J}L^0(\mathcal{F}, K)$. Thus the assertion can be proved easily by using the induction method.

Let $A_0 = \Omega \setminus \bigcup_{k \in N_n} A_k$. It is easy to check that $\tilde{I}_{A_0}E = \{\theta\}$. The desired partition can be obtained easily once we prove that $P(A_i \cap A_j) = 0$ when $0 \leq i, j \leq n$ and $i \neq j$. Suppose $P(A_i \cap A_j) > 0, 0 \leq i, j \leq n$. It is easy to verify that $\tilde{I}_{A_i \cap A_j}E$ is a free module of rank *i* also *j* over the algebra $\tilde{I}_{A_i \cap A_j}L^0(\mathcal{F}, K)$. Since $\tilde{I}_{A_i \cap A_j}L^0(\mathcal{F}, K)$ is a commutative ring with identity, it follows from [12, Chapter 4, Corollary 2.12] that $\tilde{I}_{A_i \cap A_j}E$ has the invariant dimension property, which implies i = j.

And it is easy to check that $E = \bigoplus_{i=0}^{n} \tilde{I}_{A_i} E$. The proof is completed. \Box

Remark 3.2. Clearly the partition we obtained in Theorem 3.1 is unique in the sense of *P*-equivalent. An \mathcal{F} -measurable set *A* is called a support of rank *k* for *E*, if P(A) > 0 and *A* is equivalent to A_k .

4. Two corollaries

In this section, we just generalize a couple of results about finite dimensional linear spaces to finitely generated $L^0(\mathcal{F}, K)$ -modules. **Corollary 4.1.** An $L^0(\mathcal{F}, K)$ -module E is finitely generated iff it is module isomorphic to a submodule of $L^0(\mathcal{F}, K^n)$ with the countable concatenation property for some positive integer n.

PROOF. (1)Necessity: By Theorem 3.1, there exists a positive integer n and a partition $\{A_0, A_1, \dots, A_n\}$ of Ω to \mathcal{F} such that $\tilde{I}_{A_i}E$ is a free module of rank i over the algebra $\tilde{I}_{A_i}L^0(\mathcal{F}, K)$ for each i which satisfies $0 \leq i \leq n$ and $P(A_i) > 0$. Let L be the collection of i such that $1 \leq i \leq n$ and $P(A_i) > 0$. Then for each $i \in L$, there exists a basis $\{x_k^i \in \tilde{I}_{A_i}E \mid 1 \leq k \leq i\}$ for the free $\tilde{I}_{A_i}L^0(\mathcal{F}, K)$ -module $\tilde{I}_{A_i}E$. It follows that for any $x \in E$, there exist unique $\{\xi_k^i \in \tilde{I}_{A_i}L^0(\mathcal{F}, K) \mid i \in L, 1 \leq k \leq i\}$ such that $x = \sum_{i \in L} \sum_{1 \leq k \leq i} \xi_k^i x_k^i$. For each k such that $1 \leq k \leq n$ let $\xi_k = \sum_{i \in L, i \geq k} \xi_k^i$ if $\{i \in L \mid i \geq k\} \neq \emptyset$; otherwise let $\xi_k = 0$. Define $T : E \to L^0(\mathcal{F}, K^n)$ by $T(x) = (\xi_1, \xi_2, \dots, \xi_n)$. It is easy to check that T is an embedding module homomorphism and T(E) has the countable concatenation property since T(E) is also finitely generated.

(2)Sufficiency: Suppose M is a submodule of $L^0(\mathcal{F}, K^n)$ with the countable concatenation property. For any nonnegative integer k, define

 $\mathcal{F}_k = \{A \in \mathcal{F} \mid \tilde{I}_A M \text{ is a quasi-free statification of rank } k \text{ of } M\}.$

It is easy to check that $\mathcal{F}_k = \emptyset$ for k > n. Let $B_k = \text{ess.sup}(\mathcal{F}_k)$ for $0 \leq k \leq n$ and $\mathcal{F}_k \neq \emptyset$, then $B_k \in \mathcal{F}_k$ since M has the countable concatenation property. Moreover, $P(B_j \cap B_k) = 0$ if $j \neq k$. Now we turn to prove that $P(\bigcup \{B_k \mid 0 \leq k \leq n \text{ and } \mathcal{F}_k \neq \emptyset\}) = 1$. Suppose this is not the case, i.e. P(A) > 0for $A = \Omega \setminus \bigcup \{B_k \mid 0 \leq k \leq n \text{ and } \mathcal{F}_k \neq \emptyset\}$. Since $A \notin \mathcal{F}_0$, there exists $x_1 \in \tilde{I}_A M$ and an \mathcal{F} -measurable set $A_1 \subset A$ such that $P(A_1) > 0$ and $\xi x_1 = 0$ implies $\xi = 0$ for any $\xi \in \tilde{I}_{A_1} L^0(\mathcal{F}, K)$. Again, since $A_1 \notin \mathcal{F}_1$, there exists $x_2 \tilde{I}_A M$ and $A_2 \subset A_1$ such that $P(A_2) > 0$ and $\tilde{I}_{A_2} x_1, \tilde{I}_{A_2} x_2$ is $\tilde{I}_{A_2} L^0(\mathcal{F}, K)$ independent. Consequently, we will obtain an \mathcal{F} -measurable set A_{n+1} and $\{x_1, x_2, \cdots, x_{n+1}\}$ such that $P(A_{n+1}) > 0$ and $\{\tilde{I}_{A_{n+1}} x_i \mid 1 \leq i \leq n+1\}$ is $\tilde{I}_{A_{n+1}} L^0(\mathcal{F}, K)$ -independent. This is a contradiction. Thus M is a direct sum of finite quasi stratifications of finite rank, which implies M is finitely generated. \Box

Remark 4.2. There exist submodules of $L^0(\mathcal{F}, K^n)$ which do not have the countable concatenation property and consequently could not be finitely generated. For example, let $\Omega = [0, 1]$, \mathcal{F} be the collection of all Lebesgue measurable subsets of [0, 1] and P the Lebesgue measure on [0, 1]. Suppose M =

 $\{\tilde{I}_{[2^{-(n+1)},2^{-n}]} \mid n \in N\}$ and $E = \{\sum_{i=1}^{n} \xi_i x_i \mid \xi_i \in L^0(\mathcal{F},C), x_i \in M, 1 \leq i \leq n$ and $n \in N\}$. Clearly E is a submodule of $L^0(\mathcal{F},C)$ without the countable concatenation property. And it is easy to check that E could not be a finitely generated $L^0(\mathcal{F},C)$ -module.

Recall that if X is a proper linear subspace of C^n , then there exists $y \in C^n$ such that $y \neq 0$ and (x, y) = 0 for each $x \in X$. Here (\cdot, \cdot) denotes the usual inner product defined on C^n . A proper submodule of $L^0(\mathcal{F}, K^n)$ with the countable concatenation property has a similar property.

Corollary 4.3. Suppose M is a proper submodule of $L^0(\mathcal{F}, K^n)$ with the countable concatenation property, then there exists $x \in L^0(\mathcal{F}, K^n)$ such that $x \neq 0$ and $\langle x, y \rangle = 0$ for any $y \in M$, where $\langle \cdot, \cdot \rangle$ is defined as in Example 2.4.

PROOF. Notice that M is a proper submodule of $L^0(\mathcal{F}, K^n)$ and has the countable concatenation property, thus there exists $i, 0 \leq i < n$ such that M has a support A of rank i. Since the case i = 0 is trivial, suppose i > 0 and $\{z_k \in \tilde{I}_A M \mid 1 \leq k \leq i\}$ is a basis for the $\tilde{I}_A L^0(\mathcal{F}, K^n)$ -module $\tilde{I}_A M$. Now we use Schmidt orthonomal process to obtain an orthornomal basis for $\tilde{I}_A M$.

Let $w_1 = z_1$, $v_1 = ||w_1||^{-1}w_1$; and $w_k = z_k - \sum_{l=1}^{k-1} \langle z_k, v_l \rangle v_l$, $v_k = ||w_k||^{-1}w_k$ for $2 \leq k \leq i$. To prove $\{v_k \mid 1 \leq k \leq i\}$ is an orthornomal basis for $\tilde{I}_A M$, it only needs to show $||w_k|| > 0$ on A for $1 \leq k \leq i$. In fact, let $||w_k||^0$ be an arbitrarily chosen representative of $||w_k||$ and $B_k = \{\omega \in A \mid ||w_k||^0(\omega) = 0\}$. Then $\tilde{I}_{B_1}z_1 = \tilde{I}_{B_1}w_1 = 0$ and $\tilde{I}_{B_k}z_k - \tilde{I}_{B_k}\sum_{l=1}^{k-1} \langle z_k, v_l \rangle v_l = \tilde{I}_{B_k}w_k = 0$ for $2 \leq k \leq i$. Since $\sum_{l=1}^{k-1} \langle z_k, v_l \rangle v_l$ is an $\tilde{I}_A L^0(\mathcal{F}, K)$ -combination of $\{z_l\}_{l=1}^{k-1}$ for $2 \leq k \leq i$, and $\{z_l\}_{l=1}^k$ is $\tilde{I}_A L^0(\mathcal{F}, K)$ -independent for $1 \leq k \leq i$, hence $\tilde{I}_{B_k} = 0, 1 \leq k \leq i$.

Let x_0 be an element in $L^0(\mathcal{F}, K^n)$ such that $\tilde{I}_A x_0 \notin \tilde{I}_A M$. Define $x = \tilde{I}_A x_0 - \sum_{k=1}^i \langle x_0, v_k \rangle v_k$. Clearly $x \neq 0$, $\tilde{I}_{A^c} x = 0$ and $\langle x, z \rangle = 0$ for any $z \in \tilde{I}_A M$. Thus $\langle x, y \rangle = \langle \tilde{I}_A x, \tilde{I}_A y \rangle = 0$ for any $y \in M$. Hence x is the required element. \Box

References

 T.X. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal. 258(2010) 3024–3047.

- [2] T.X. Guo, Extension theorems of continuous random linear operators on random domains, J. Math. Anal. Appl. 193(1)(1995) 15–27.
- [3] T.X. Guo, S.L. Peng, A characterization for an L(μ, K)-topological module to admit enough canonical module homomorphisms, J. Math. Anal. Appl. 263(2001) 580–599.
- [4] T.X. Guo, Some basic theories of random normed linear spaces and random inner product spaces, Acta Anal. Funct. Appl. 1(2)(1999) 160– 184.
- [5] T.X. Guo, The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-Šmulian theorem in complete random normed modules to stratification structure, Sci China(Ser A)51(2008) 1651–1663.
- [6] T.X. Guo, H.X. Xiao, X.X. Chen, A basic strict separation theorem in random locally convex modules, Nonlinear Anal. 71(2009) 3794–3804.
- [7] T.X. Guo, L.H. Zhu, A characterization of continuous module homomorphisms on random seminormed modules and its applications, Acta Math. Sinica English Ser. 19(1)(2003) 201–208.
- [8] T.X. Guo, Representation theorems of the dual of Lebesgue-Bochner function spaces, Sci. China Ser. A-Math. 43(2000) 234–243.
- [9] T.X. Guo, Several applications of the theory of random conjugate spaces to measurability problems, Sci. China Ser. A-Math. 50(2007) 737–747.
- [10] T.X. Guo, and S.B. Li, The James theorem in complete random normed modules, J. Math. Anal. Appl. 308(2005) 257–265.
- [11] D.Filipović, M.Kupper, N.Vogelpoth, Separation and and duality in locally L⁰-convex modules, J. Funct. Anal. 256(2009) 3996–4029.
- [12] T.W. Hungerford, Algebra, Springer, New York, 1974.
- [13] B.Schweizer, A.Sklar, Probabilistic Metric Spaces, Dover Publications, New York, 2005.