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Abstract

Let K be the scalar field of all real or complex numbers, (Ω,F , P ) a prob-
ability space, and L0(F , K) the algebra of equivalence classes of K–valued
F–measurable random variables on Ω. This paper proves that every finitely
generated unitary L0(F , K)-module can be decomposed into a direct sum of
finite quasi-free stratifications of finite rank.
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1. Introduction

Throughout this paper, (Ω,F , P ) denotes a probability space, K the
scalar field R of real numbers or C of complex numbers, and L0(F , K) the
algebra of equivalence classes of K–valued F–measurable random variables
on Ω under the ordinary scalar multiplication, addition and multiplication
operations on equivalence classes. In addition, all L0(F , K)-modules in this
paper are supposed to be unitary[12, Chapter 4, Definition 1.1].

Random metric theory including the theory of random normed spaces
originated from the theory of probabilistic metric spaces[13]. Since the no-
tions of random normed modules(briefly, RN modules) and random con-
jugate spaces for RN modules were presented[2, 4], the theory of random
locally convex modules(specially, RN modules) has undergone considerably
much of development[2, 3, 5, 6, 7, 10] and been applied to not only solving
a series of problems in measure theory[8, 9] but also introducing some new
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frames to financial mathematics[11]. All these motivate the study of the
algebraic structure of L0(F , K) modules.

A significant peculiarity of an L0(F , K) module E is that E has strat-
ification structures[5, 6, 7]. For a set A ∈ F , the A-stratification of E is
defined by ĨAE , {ĨAx | x ∈ E}, where ĨA is the equivalence class of the
characteristic function of A. The limitation of the module multiplication
L0(F , K) × E → E to ĨAL

0(F , K) × ĨAE → ĨAE makes ĨAE an unitary
ĨAL

0(F , K)-module for any A ∈ F and P (A) > 0. Moreover, ĨAE is called
a quasi-free stratification of finite rank of E for any A ∈ F and P (A) > 0 if
ĨAE is a free module of finite rank over ĨAL

0(F , K)[3, Definition 1.1].
Notice that L0(F , K) is not a division ring unless (Ω,F , P ) is a trivial

probability space. Thus modules over L0(F , K) may not be free. Neverthe-
less, we will show that if E is finitely generated, i.e. there exists a finite subset
{x1, x2, · · · , xn} of E such that E = {

∑n

i=1 ξixi | ξi ∈ L0(F , K), 1 6 i 6 n},
then E is a direct sum of finite quasi-free stratifications of finite rank.

The paper is organized as follows: in Section 2 we introduce some nec-
essary notions and preliminaries. In Section 3, we state and prove the main
result about the algebraic structure of finitely generated L0(F , K)-modules.
And section 4 gives two corollaries.

2. Preliminaries

It follows from [11, Lemma 2.9] that F is a complete lattice with respect
to the partial order of almost sure set inclusion. For a nonempty collection
E ⊆ F , we use ess.sup(E) to denote the essential supremum of E as in [11].
Furthermore, if E is directed upwards, i.e. A ∪ B ∈ E for any A,B ∈ E ,
then there exists a nondecreasing sequence {An ∈ E | n ∈ N} such that
ess.supE =

⋃

n∈N An. And throughout this paper we distinguish characteris-
tic functions from their equivalence classes in L0(F , K) by means of symbols:
for example, IA denotes the characteristic function of an F–measurable set
A, then we use ĨA for its equivalence class in L0(F , K).

Besides, for any A ∈ F , “ξ > η on A” means ξ0(ω) > η0(ω) a.s. on A for
any chosen representative ξ0 and η0 of ξ and η, respectively. As usual, ξ > η
means ξ > η and ξ 6= η.

Moreover, for any ξ ∈ L0(F , K), |ξ| and ξ−1 respectively stand for the
equivalence classes determined by the F -measurable function |ξ0| : Ω → R
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defined by |ξ0|(ω) = |ξ0(ω)|, ω ∈ Ω and (ξ0)−1 defined by

(ξ0)−1(ω) =

{

(ξ0(ω))−1, ξ0(ω) 6= 0;
0, otherwise,

where ξ0 is an arbitrarily chosen representative of ξ. It is clear that |ξ| ∈
L0
+ = {η ∈ L0(F , R) | η > 0} and ξ · ξ−1 = Ĩ{ω∈Ω|ξ0(ω)6=0}.

All the L0(F , K)-modules E in the sequel of this paper are assumed to
satisfy the following property: If x and y are two elements in E and there
exists a countable partition {An | n ∈ N} of Ω to F such that ĨAn

x = ĨAn
y

for each n ∈ N , then x = y. Here ĨAx is called the A-stratification of x for
any A ∈ F .

Definition 2.1 [1]. Let E be a left module over the algebra L0(F , K).
A countable concatenation of some sequence {xn | n ∈ N} in E with re-
spect to some countable partition {An | n ∈ N} of Ω is a formal sum
Σn∈N ĨAn

xn. Moreover, a countable concatenation Σn∈N ĨAn
xn is well defined

or Σn∈N ĨAn
xn ∈ E if there is x ∈ E such that ĨAn

x = ĨAn
xn for any n ∈ N .

A subset A of E is called having the countable concatenation property if
every countable concatenation Σn∈N ĨAn

xn with xn ∈ A for each n ∈ N still
belongs to A, namely Σn∈N ĨAn

xn is well defined and there exists x ∈ A such
that x = Σn∈N ĨAn

xn.

Definition 2.2 [1, 4]. An ordered pair (E, ‖·‖) is called a random normed
module (briefly, an RN module) over K with base (Ω,F , P ) if E is a left
module over the algebra L0(F , K) and ‖ · ‖ is a mapping from E to L0

+ such
that the following three axioms are satisfied:

(1) ‖x‖ = 0 iff x = θ(the null element of E);

(2) ‖ξx‖ = |ξ|‖x‖, any ξ ∈ L0(F , K) and x ∈ E;

(3) ‖x+ y‖ 6 ‖x‖+ ‖y‖, any x, y ∈ E.

Definition 2.3 [1, 4]. An ordered pair (E, 〈·, ·〉) is called a random inner
product module (briefly, an RIP module) over K with base (Ω,F , P ) if E
is a left module over the algebra L0(F , K) and 〈·, ·〉 : E × E → L0(F , K)
satisfies the following statements:
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(1) 〈x, x〉 ∈ L0
+ and 〈x, x〉 = 0 iff x = θ;

(2) 〈x, y〉 = 〈y, x〉, any x, y ∈ E where 〈y, x〉 denotes the complex conjugate
of 〈y, x〉;

(3) 〈ξx, y〉 = ξ〈x, y〉, any ξ ∈ L0(F , K) and x, y ∈ E;

(4) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, any x, y, z ∈ E.

where 〈x, y〉 is called the random inner product between x and y.

An RIP module (E, 〈·, ·〉) is also an RN module when ‖ · ‖ : E → L0
+ is

defined by ‖x‖ =
√

〈x, x〉 for x ∈ E. And x is orthogonal to y if 〈x, y〉 = 0
for x, y ∈ E.

Example 2.4. Denote by L0(F , Kn) the linear space of equivalence classes
ofKn–valued F–measurable functions on Ω, where n is a positive integer. De-
fine · : L0(F , K)×L0(F , Kn) → L0(F , Kn) by λ ·x = (λξ1, λξ2, · · · , λξn) and
〈·, ·〉 : L0(F , Kn) × L0(F , Kn) → L0(F , K) by 〈x, y〉 = Σn

i=1ξiη̄i,
for any λ ∈ L0(F , K) and x = (ξ1, ξ2, · · · , ξn), y = (η1, η2, · · · , ηn) ∈
L0(F , Kn). It is easy to check that (L0(F , Kn), 〈·, ·〉) is an RIP module
over K with base (Ω,F , P ), and also an RN module. Specially, L0(F , K) is
an RN module and ‖λ‖ = |λ| for any λ ∈ L0(F , K).

3. The algebraic structure of finitely generated L0(F ,K)-modules

The main purpose of this section is to prove the following theorem:

Theorem 3.1. Suppose E is a finitely generated left module over the algebra

L0(F , K), namely there exists a subset X = {x1, x2, · · · , xn} of E such that

X generates E, where n is some fixed positive integer. Then there exists a

partition {A0, A1, · · · , An} of Ω to F such that ĨAi
E is a quasi-free strati-

fication of rank i of E for each i which satisfies 0 6 i 6 n and P (Ai) > 0.
Consequently, E =

⊕n

i=0 ĨAi
E, where

⊕

denotes the direct sum of modules.

Proof. The proof will be divided into three steps.

Step 1. Let Nn denote the set {1, 2, · · · , n}. For any nonempty subset L of
Nn, let FL be the collection of all sets A ∈ F such that if {λi ∈ L0(F , K) | i ∈
L} satisfies ĨA

∑

i∈L λixi = θ then ĨAλi = 0 for each i ∈ L. We begin by
proving that ess.sup(FL) ∈ FL.
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Suppose A,B ∈ FL and {λi ∈ L0(F , K) | i ∈ L} satisfies ĨA∪B

∑

i∈L λixi =

θ. Then we have ĨA
∑

i∈L λixi = θ since ĨAĨA∪B = ĨA. It follows from A ∈ FL

that ĨAλi = 0 for each i ∈ L. Similarly, we have ĨBλi = 0 for each i ∈ L.
Hence ĨA∪Bλi = (ĨA+ ĨAc ĨB)λi = 0 for each i ∈ L, which implies A∪B ∈ FL.
Thus FL is directed upwards. Consequently, there exists a nondecreasing se-
quence {Ak | k ∈ N} in FL such that ess.sup(FL) =

⋃

k∈N Ak. Let IL denote

the characteristic function of ess.sup(FL), then {ĨAk
| k ∈ N} converges to

ĨL in probability P .
If {ξi ∈ L0(F , K) | i ∈ L} satisfies ĨL

∑

i∈L ξixi = θ, then ĨAk
ξi = 0 for

each k ∈ N and each i ∈ L. Since {ĨAk
ξi}k∈N converges to ĨLξi in probabil-

ity P for i ∈ L, hence ĨLξi = 0 for each i ∈ L which implies ess.sup(FL) ∈ FL.

Step 2. If L1, L2 are two nonempty subsets of Nn and L1 ⊂ L2, then
it is easy to check that ess.sup(FL1) almost surely includes ess.sup(FL2),
where FL1 and FL2 are defined as in Step 1. Let ANn

=ess.sup(FNn
) and

AH =ess.sup(FH) \
⋃

{ ess.sup(FL) | H $ L ⊆ Nn} for each nonempty and
proper subset H of Nn. In this step, we will prove that if P (AL) > 0 for some
nonempty subset L of Nn, then as a J̃LL

0(F , K)-module, J̃LE has a basis
Y , {J̃Lxi | i ∈ L}, i.e. J̃LE is a free module of rank |L| over J̃LL

0(F , K).
Here JL denotes the characteristic function of AL and |L| denotes the cardinal
number of L.

Obviously, Y is J̃LL
0(F , K)-independent. Now we turn to prove that

Y spans J̃LE. Notice that {J̃Lxi | i ∈ Nn} spans J̃LE, thus to complete
this step it remains to show that if L $ Nn, then for any j ∈ Nn \ L,
J̃Lxj can be written as a J̃LL

0(F , K)-combination of Y , i.e. there exists
{ξi ∈ J̃LL

0(F , K) | i ∈ L} such that J̃Lxj =
∑

i∈L ξi(J̃Lxi).
Define

Fxj
= {B ∈ F | B ⊆ AL and ĨBxj is a J̃LL

0(F , K)− combination of Y }.

Also Fxj
is a upward directed subset of F ; and there exists a nondecreasing

sequence {Bk ∈ Fxj
| k ∈ N} such that ess.sup(Fxj

) =
⋃

k∈N Bk.
Let {Ck | k ∈ N} be a sequence of F -measurable sets such that C0 = B0

and Ck = Bk \ Bk−1 for k > 1. Clearly Ck ∈ Fxj
for each k ∈ N . Thus

there exists {ξki ∈ J̃LL
0(F , K) | i ∈ L} for each k ∈ N such that ĨCk

xj =
∑

i∈L ξ
k
i (J̃Lxi). Suppose Ixj

is the characteristic function of ess.sup(Fxj
) and
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ξi =
∑

k∈N ĨCk
ξki for each i ∈ L, then

Ĩxj
xj =

∑

k∈N

ĨCk
xj =

∑

k∈N

∑

i∈L

J̃Lξ
k
i xi =

∑

i∈L

ξi(J̃Lxi),

i.e. ess.sup(Fxj
) ∈ Fxj

.
Obviously ess.sup(Fxj

) is almost surely included in AL. Let B denote the

set AL\ess.sup(Fxj
). If P (B) > 0, then it is easy to verify that {ĨBxi | i ∈

L ∪ {j}} is ĨBL
0(F , K)-independent. This contradicts with the chosen of

AL. Thus AL =ess.sup(Fxj
), which completes Step 2.

Step 3. Define Ak =
⋃

{ess.supAL | L ⊂ Nn and |L| = k} for each k ∈ Nn.
If P (Ak) > 0 for some fixed k, then ĨAk

E is a free module of rank k over
the algebra ĨAk

L0(F , K). In fact, suppose A is an F -measurable set such
that P (A) > 0 and ĨAE is a free module of rank k over ĨAL

0(F , K); {yl ∈
ĨAE | 1 6 l 6 k} is a basis for the ĨAL

0(F , K)-module ĨAE. Take a subset
L = {i1, i2, · · · , ik} of Nn such that P (AL) > 0, where AL is defined as in
step 2. Then {ĨAL

xl | l ∈ L} is a basis for the ĨAL
L0(F , K)-module ĨAL

E.
Let J be the characteristic function of A∪AL; zl = ĨAyl+ ĨAL\Axil , 1 6 l 6 k.

It is easy to check that {z1, z2, · · · , zk} is a basis for the J̃L0(F , K)-module
J̃E, i.e. J̃E is a free module of rank k over the algebra J̃L0(F , K). Thus
the assertion can be proved easily by using the induction method.

Let A0 = Ω \
⋃

k∈Nn
Ak. It is easy to check that ĨA0E = {θ}. The desired

partition can be obtained easily once we prove that P (Ai ∩ Aj) = 0 when
0 6 i, j 6 n and i 6= j. Suppose P (Ai ∩ Aj) > 0, 0 6 i, j 6 n. It is
easy to verify that ĨAi∩Aj

E is a free module of rank i also j over the algebra

ĨAi∩Aj
L0(F , K). Since ĨAi∩Aj

L0(F , K) is a commutative ring with identity,

it follows from [12, Chapter 4, Corollary 2.12] that ĨAi∩Aj
E has the invariant

dimension property, which implies i = j.
And it is easy to check that E =

⊕n

i=0 ĨAi
E. The proof is completed. 2

Remark 3.2. Clearly the partition we obtained in Theorem 3.1 is unique
in the sense of P -equivalent. An F -measurable set A is called a support of
rank k for E, if P (A) > 0 and A is equivalent to Ak.

4. Two corollaries

In this section, we just generalize a couple of results about finite dimen-
sional linear spaces to finitely generated L0(F , K)-modules.
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Corollary 4.1. An L0(F , K)-module E is finitely generated iff it is module

isomorphic to a submodule of L0(F , Kn) with the countable concatenation

property for some positive integer n.

Proof. (1)Necessity: By Theorem 3.1, there exists a positive integer n and
a partition {A0, A1, · · · , An} of Ω to F such that ĨAi

E is a free module of
rank i over the algebra ĨAi

L0(F , K) for each i which satisfies 0 6 i 6 n and
P (Ai) > 0. Let L be the collection of i such that 1 6 i 6 n and P (Ai) > 0.
Then for each i ∈ L, there exists a basis {xi

k ∈ ĨAi
E | 1 6 k 6 i} for the free

ĨAi
L0(F , K)-module ĨAi

E. It follows that for any x ∈ E, there exist unique
{ξik ∈ ĨAi

L0(F , K) | i ∈ L, 1 6 k 6 i} such that x =
∑

i∈L

∑

16k6i ξ
i
kx

i
k.

For each k such that 1 6 k 6 n let ξk =
∑

i∈L,i>k ξ
i
k if {i ∈ L | i > k} 6= ∅;

otherwise let ξk = 0. Define T : E → L0(F , Kn) by T (x) = (ξ1, ξ2, · · · , ξn). It
is easy to check that T is an embedding module homomorphism and T (E) has
the countable concatenation property since T (E) is also finitely generated.

(2)Sufficiency: Suppose M is a submodule of L0(F , Kn) with the count-
able concatenation property. For any nonnegative integer k, define

Fk = {A ∈ F | ĨAM is a quasi-free statification of rank k of M}.

It is easy to check that Fk = ∅ for k > n. Let Bk =ess.sup(Fk) for 0 6 k 6 n
and Fk 6= ∅, then Bk ∈ Fk since M has the countable concatenation property.
Moreover, P (Bj∩Bk) = 0 if j 6= k. Now we turn to prove that P (

⋃

{Bk | 0 6
k 6 n and Fk 6= ∅}) = 1. Suppose this is not the case, i.e. P (A) > 0
for A = Ω \

⋃

{Bk | 0 6 k 6 n and Fk 6= ∅}. Since A /∈ F0, there exists
x1 ∈ ĨAM and an F -measurable set A1 ⊂ A such that P (A1) > 0 and ξx1 = 0
implies ξ = 0 for any ξ ∈ ĨA1L

0(F , K). Again, since A1 /∈ F1, there exists
x2ĨAM and A2 ⊂ A1 such that P (A2) > 0 and ĨA2x1, ĨA2x2 is ĨA2L

0(F , K)-
independent. Consequently, we will obtain an F -measurable set An+1 and
{x1, x2, · · · , xn+1} such that P (An+1) > 0 and {ĨAn+1xi | 1 6 i 6 n + 1}

is ĨAn+1L
0(F , K)-independent. This is a contradiction. Thus M is a direct

sum of finite quasi stratifications of finite rank, which implies M is finitely
generated.2

Remark 4.2. There exist submodules of L0(F , Kn) which do not have the
countable concatenation property and consequently could not be finitely gen-
erated. For example, let Ω = [0, 1], F be the collection of all Lebesgue mea-
surable subsets of [0, 1] and P the Lebesgue measure on [0, 1]. Suppose M =
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{Ĩ[2−(n+1),2−n] | n ∈ N} and E = {
∑n

i=1 ξixi | ξi ∈ L0(F , C), xi ∈ M, 1 6 i 6 n
and n ∈ N}. Clearly E is a submodule of L0(F , C) without the countable
concatenation property. And it is easy to check that E could not be a finitely
generated L0(F , C)-module.

Recall that ifX is a proper linear subspace of Cn, then there exists y ∈ Cn

such that y 6= 0 and (x, y) = 0 for each x ∈ X . Here (·, ·) denotes the usual
inner product defined on Cn. A proper submodule of L0(F , Kn) with the
countable concatenation property has a similar property.

Corollary 4.3. Suppose M is a proper submodule of L0(F , Kn) with the

countable concatenation property, then there exists x ∈ L0(F , Kn) such that

x 6= 0 and 〈x, y〉 = 0 for any y ∈ M , where 〈·, ·〉 is defined as in Example

2.4.

Proof. Notice that M is a proper submodule of L0(F , Kn) and has the
countable concatenation property, thus there exists i, 0 6 i < n such that
M has a support A of rank i. Since the case i = 0 is trivial, suppose i > 0
and {zk ∈ ĨAM | 1 6 k 6 i} is a basis for the ĨAL

0(F , Kn)-module ĨAM .
Now we use Schmidt orthonomal process to obtain an orthornomal basis for
ĨAM .

Let w1 = z1, v1 = ‖w1‖
−1w1; and wk = zk −

∑k−1
l=1 〈zk, vl〉vl, vk =

‖wk‖
−1wk for 2 6 k 6 i. To prove {vk | 1 6 k 6 i} is an orthornomal basis for

ĨAM , it only needs to show ‖wk‖ > 0 on A for 1 6 k 6 i. In fact, let ‖wk‖
0 be

an arbitrarily chosen representative of ‖wk‖ and Bk = {ω ∈ A | ‖wk‖
0(ω) =

0}. Then ĨB1z1 = ĨB1w1 = 0 and ĨBk
zk − ĨBk

∑k−1
l=1 〈zk, vl〉vl = ĨBk

wk = 0

for 2 6 k 6 i. Since
∑k−1

l=1 〈zk, vl〉vl is an ĨAL
0(F , K)-combination of {zl}

k−1
l=1

for 2 6 k 6 i, and {zl}
k
l=1 is ĨAL

0(F , K)-independent for 1 6 k 6 i, hence
ĨBk

= 0, 1 6 k 6 i.
Let x0 be an element in L0(F , Kn) such that ĨAx0 /∈ ĨAM . Define x =

ĨAx0 −
∑i

k=1〈x0, vk〉vk. Clearly x 6= 0, ĨAcx = 0 and 〈x, z〉 = 0 for any
z ∈ ĨAM . Thus 〈x, y〉 = 〈ĨAx, ĨAy〉 = 0 for any y ∈ M . Hence x is the
required element.2
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