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0 BEHAVIOR OF QUILLEN (CO)HOMOLOGY WITH RESPECT TO

ADJUNCTIONS

MARTIN FRANKLAND

Abstract. This paper aims to answer the following question: Given an adjunction between
two categories, how is Quillen (co)homology in one categoryrelated to that in the other?
We identify the induced comparison diagram, giving necessary and sufficient conditions for
it to arise, and describe the various comparison maps. Examples are given. Along the way,
we clarify some categorical assumptions underlying Quillen (co)homology: cocomplete
categories with a set of small projective generators provide a convenient setup.

1. Introduction

1.1. Motivation and goals. D. Quillen [14,§II.5] introduced a notion of cohomology that
makes use of homotopical algebra and simplicial methods to take derived functors in a non-
abelian context, generalizing the derived functors of homological algebra. One of the goals
was to solve problems in algebra using methods from homotopytheory, although Quillen
cohomology later found many applications to homotopy theory and topology [12, Rem
4.35].

Quillen cohomology works in a broad context which includes many interesting cat-
egories. The case of commutative algebras, the celebrated André-Quillen cohomology
[15, §4] [3] [12, §4.4], was one of the first examples studied. The analogue for associative
algebras [15,§3] is related to another well studied theory, namely Hochschild cohomology.
Quillen exhibited relations between the two [15,§8], which can be useful when cohomol-
ogy is easier to compute in one category or the other.

This paper investigates the question of relating Quillen (co)homology in different cat-
egories, more specifically when two categories are related by an adjunction. The author’s
motivating example was to compute some Quillen cohomology groups of truncatedΠ-
algebras controlling the obtructions to realization [7], which is done in section 4.3. How-
ever, the broader question seems natural, given that adjoint pairs abound in nature.

1.2. Organization and results. Section 2 clarifies the categorical assumptions underlying
Quillen cohomology. It consists mostly of category theory,with a short excursion into
universal algebra, all for the purposes of homotopical algebra. The main clarifications are
propositions 2.32, 2.39, and 2.40. Propositions 2.41 and 2.43 clarify conditions related to
Beck modules being abelian.
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Section 3 is the heart of the paper, describing the effect of an adjunction on Quillen
(co)homology. We first describe the comparison diagram consisting of Quillen pairs, and
work out various comparison maps from it. The main result is 3.8, from which 3.10 and
3.12 follow.

Section 4 studies examples of adjunctions where the right adjoint is the inclusion of
a regular-epireflective full subcategory. In other words, the right adjoint forgets certain
conditions satisfied by the objects, and the left adjoint is the quotient that freely imposes
the conditions. The main results are 4.13 and 4.15.

1.3. Notations and conventions.

Definition 1.1. For an objectX of C, the categoryModX of Beck modulesoverX is the
categoryAb(C/X) of abelian group objects in the slice categoryC/X.

Definition 1.2. If the forgetful functorUX : Ab(C/X)→ C/X has a left adjointAbX : C/X→
Ab(C/X), it is calledabelianizationoverX.

Definition 1.3. For a mapf : X → Y in C, thedirect image functor f! : C/X → C/Y is
postcomposition byf , which is left adjoint to thepullback functor f ∗ : C/Y→ C/X. Since
f ∗ preserves limits, it induces a functorf ∗ : Ab(C/Y) → Ab(C/X) also calledpullback.
Thepushforward by f is the left adjointf∗ : Ab(C/X)→ Ab(C/Y) of f ∗, if it exists.

Definition 1.4. Thecotangent complex LX of X is derived abelianization ofX, i.e. the
simplicial module overX given byL X ≔ AbX(C• → X), whereC• → X is a cofibrant
replacement ofX in sC, the category of simplicial objects inC.

Definition 1.5. The Quillen homology of X is derived functors of abelianization, given
by HQ∗(X) ≔ π∗(L X). If the categoryModX has a good notion of tensor product⊗, then
Quillen homology with coefficients in a moduleM overX is HQ∗(X; M) ≔ π∗(L X ⊗ M).

Definition 1.6. TheQuillen cohomologyof X with coefficients in a moduleM is (simpli-
cially) derived functors of derivations, given by HQ∗(X; M) ≔ π∗Hom(L X,M).

Definition 1.7. The abelian cohomologyof X with coefficients in a moduleM is de-
rived functors of derivations in the sense of homological algebra, given by HA∗(X; M) ≔
Ext∗(AbXX,M). The abelian homologyof X with coefficients in M is HA∗(X; M) ≔
Tor∗(AbXX,M). They can be viewed as abelian approximations of Quillen (co)homology,
with comparison maps HA∗(X; M)→ HQ∗(X; M) and HQ∗(X; M)→ HA∗(X; M)

Remark1.8. For ease of reading, we often abbreviate the word epimorphism to “epi”,
monomorphism to “mono”, isomorphism to “iso”. and weak equivalence to “weak eq”.

2. Setup for Quillen (co)homology

In this section, we study in more detail the categorical assumptions needed in order
to work with Quillen cohomology. Most importantly, we want the prolonged adjunction
AbX : sC/X⇄ sAb(C/X) : UX to be a Quillen pair.

2.1. Prolonged adjunctions as Quillen pairs.

Proposition 2.1. Assume we have an adjunction L: C⇄ D : R.

(1) If R preserves regular epis, then L preserves projectives.
(2) If, moreover, the categoryC has finite limits and enough projectives, then the con-

verse holds as well.
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Proof. 1. LetP be a projective inC. We want to showLP is projective inD. Let f : d→ d′

be any regular epi inD. Then we have:

HomD(LP, d)

�

��

f∗ // HomD(LP, d′)

�

��
HomC(P,Rd)

(R f)∗
// HomC(P,Rd′).

By assumption,R f : Rd→ Rd′ is a regular epi inC, andP is projective, hence the bottom
(and top) map is a surjection. ThusLP is projective.

2. Under the additional hypotheses, regular epis and projectives determine each other.
Indeed, [14,§II.4, Prop 2] asserts thatf : c→ c′ is a regular epi iff the map

f∗ : Hom(P, c)→ Hom(P, c′)

is a surjection for all projectiveP. Now we start with a regular epif : d→ d′ inD and want
to showR f : Rd→ Rd′ is a regular epi inC. Let P be any projective inC and consider:

HomC(P,Rd)

�

��

(R f)∗ // HomC(P,Rd′)

�

��
HomD(LP, d)

f∗
// HomD(LP, d′).

By assumption,LP is projective andf is a regular epi, hence the bottom (and top) map is
a surjection. Thus, by the criterion given above,R f is a regular epi. �

Proposition 2.2. AssumeC andD have finite limits and enough projectives, and satisfy
extra assumptions so that Quillen’s theorem 4 applies (e.g.they are cocomplete and have
sets of small projective generators). Assume we have an adjunction as above, and hence
an induced adjunction

(1) sC
L //

sD
R

oo

between model categories. If L preserves projectives, or equivalently, if R preserves regular
epis, then this is a Quillen pair.

Proof. We show a slightly stronger statement:R preserves fibrations and weak equiva-
lences. Recall that a mapf : X• → Y• is a fibration (resp. weak eq) if the induced map
f∗ : Hom(P,X•) → Hom(P,Y•) is a fibration (resp. weak eq) of simplicial sets for all
projectiveP. TakeP a projective inC and consider:

HomC(P,RX•)

�

��

(R f)∗ // HomC(P,RY•)

�

��
HomD(LP,X•)

f∗
// HomD(LP,Y•).

By assumption,LP is projective inD and f is a fibration (resp. weak eq) insD, hence the
bottom and top maps are fibrations (resp. weak eq) of simplicial sets. ThusR f : RX• →
RY• is a fibration (resp. weak eq). �
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Proposition 2.3. The converse also holds: If the prolonged adjunction (1) is aQuillen
pair, then R preserves regular epis.

Proof. Take a regular epif : X→ Y inD and view it as a map between constant simplicial
objects insD. Factoring it as a cofibration - acyclic fibration [14,§II.4, Prop 3], we produce
an acyclic fibrationf• : X• → Y• in sD satisfyingX0 = X, Y0 = Y, and f0 = f . SinceR
prolongs to a right Quillen functor,R f• is an acyclic fibration insC, and hence a regular
epi in each level. In particular,R f = R f0 is a regular epi inC. �

Remark2.4. We’ve seen that a prolonged right Quillen functor in 2.2 is particularly strong:
it preserves fibrations andall weak equivalences, not just between fibrant objects. How-
ever, the prolonged left Quillen functor does not enjoy thisadditional property in general,
i.e. it need not preserve all weak equivalences, only those between cofibrant objects.

Example2.5. Let R be a commutative ring and consider the functorR⊗ − from abelian
groups toR-modules. It preserves projectives (i.e. sends a free abelian group to a free
R-module), but the prolonged left Quillen functor does not preserve all weak equivalences
if R is not flat overZ.

2.2. Slice categories.Proposition 2.2 gives a simple criterion for when a prolonged ad-
junction is a Quillen pair. We want to know if the induced adjunction on slice categories is
also a Quillen pair. Let us first describe regular epis and projectives in the slice category. A
map inC/X is a regular epi iff the map of total spaces is, and an object ofC/X is projective
iff the total space is.

Proposition 2.6. If f : Y→ Z is a regular epi inC, then

Y

��?
??

??
??

f // Z

��
X

is a regular epi inC/X. The converse also holds ifC has coequalizers.

Proof. See [4, Chap 1, Prop 8.12]. It follows from the fact that the “source” functorC/X→
C creates colimits. �

Proposition 2.7. 1. If P is projective inC, then p: P→ X is projective inC/X.
2. The converse also holds ifC has enough projectives.

Proof. 1. Start with a regular epi

Y

y
��?

??
??

??
f // Z

z

��
X

in C/X, which meansf : Y→ Z is a regular epi inC, by 2.6. We want to know if the map

f∗ : HomC/X(P
p
−→ X,Y

y
−→ X)→ HomC/X(P

p
−→ X,Z

z
−→ X)
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is surjective. Letα be a map in the right-hand side which we are trying to reach and
consider the diagram:

Y

y

��/
//

//
//

//
//

//
/

f // Z

z

����
��
��
��
��
��
��

P

α̃

??�
�

�
�

α

44jjjjjjjjjjjjjjjjjjjjj

p
''OOOOOOOOOOOOOO

X

SinceP is projective inC, there is a lift̃α in the top triangle, meaningf α̃ = α. If α̃ is in

fact a map in HomC/X(P
p
−→ X,Y

y
−→ X), then it will be our desired lift. So it suffices to

check that the triangle on the left commutes:ỹα = z fα̃ = zα = p.

2. Let E
e
−→ X be projective inC/X. SinceC has enough projectives, pick a regular epi

π : P→ E from a projectiveP. Consider the diagram

P

eπ

��/
//

//
//

//
//

//
/

π // E

e

����
��
��
��
��
��
��

E

s
??�

�
�

�

id

44jjjjjjjjjjjjjjjjjjjjj

e
''OOOOOOOOOOOOOO

X

where there exists a liftssinceE
e
−→ X is projective inC/X. The relationπs= idE exhibits

E as a retract of a projective inC, hence itself projective. �

Now we can describe the standard Quillen model structure ons(C/X) � sC/X. A map

(2) Y•

y
  A

AA
AA

AA
A

f // Z•

z

��
X

is a fibration (resp. weak eq) ins(C/X) iff the map

HomC/X(P
p
−→ X,Y•

y
−→ X)

f∗ // HomC/X(P
p
−→ X,Z•

z
−→ X)

is a fibration (resp. weak eq) of simplicial sets for all projective P
p
−→ X in C/X. By

proposition 2.7, we can rephrase the latter as: for all projective P in C and mapp ∈
HomC(P,X).

However, in the framework of Quillen (co)homology, we decided to work with the
“slice” model structure onsC/X, where the map (2) is a fibration (resp. weak eq) iff the
map f∗ : HomC(P,Y•) → HomC(P,Z•) is a fibration (resp. weak eq) of simplicial sets for
all projectiveP in C. In fact, let us check that the two model structures agree.

Proposition 2.8. There is a natural iso of simplicial sets:

∐
p∈HomC(P,X) HomC/X(P

p
−→ X,Y•

y
−→ X)

� // HomC(P,Y•).
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Proof. Idea : For a fixedy: Y→ X, the data of a mapg: P→ Y is the same as the data of
the commutative diagram:

P

p
��?

??
??

??
g // Y

y

��
X

and thus we can partition all mapsg: P→ Y according to their compositep = yg: P→ X.
More precisely, we take the map

∐

p∈HomC(P,X)

HomC/X(P
p
−→ X,Y

y
−→ X)→ HomC(P,Y)

which is readily seen to be surjective and injective, i.e. aniso of sets. Moreover, it is natural
in y: Y→ X, i.e. the two sides define two naturally isomorphic functorsfromC/X to Set.
By naturality, it prolongs to a natural iso of simplicial sets. Since colimits of simplicial
objects are computed levelwise, the simplicial set whosenth level is



∐

p∈HomC(P,X)

HomC/X(P
p
−→ X,Yn

yn
−→ X)


n

equals the left-hand side in the statement. �

Proposition 2.9. The standard model structures on s(C/X) and sC/X are the same.

Proof. The top row in the diagram

HomC(P,Y•)
f∗ // HomC(P,Z•)

∐
p HomC/X(P

p
−→ X,Y•

y
−→ X) f∗

// ∐
p HomC/X(P

p
−→ X,Z•

z
−→ X)

is a fibration (resp. weak eq) of simplicial sets iff each summand is so. This meansf is a
fibration (resp. weak eq) insC/X iff it is so ins(C/X). Moreover, the model structures are
closed i.e. cofibrations are determined by fibrations and weak equivalences (as having the
LLP with respect to acyclic fibrations). Therefore the two model structures agree. �

2.3. Abelian group objects. In this section, we study the properties of the categoryAb(C)
of abelian group objects in a categoryC and the forgetful functorU : Ab(C)→ C.

It is convenient to work with regular categories, so we wouldlike to know if Ab(C)
is regular wheneverC is. The main feature of regular categories is that any map canbe
factored as a regular epi followed by mono; isos are precisely maps that are both a regular
epi and a mono. We will check that all three classes of maps arepreserved and reflected by
U.

First, recall thatU is faithful, it and creates limits, and it reflects isos: ifU f is an iso,
then (U f )−1 lifts to Ab(C).

Proposition 2.10. AssumeC has kernel pairs. Then U preserves monos.

Proof. In a category with kernel pairs, a mapf : X → Y is a mono iff the two projections
X ×Y X ⇉ X from its kernel pair are equal. Thus, any functor between categories with
kernel pairs which preserves kernel pairs also preserves monos. �

In [4, Chap 6, Prop 1.7], M. Barr shows the following.
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Proposition 2.11. AssumeC is regular. Then U lifts the regular epi - mono factorization
in C. In other words, if f: X → Y is a map in Ab(C) and UX։ UZ →֒ UY is a regular
epi - mono factorization of the underlying map U f , then we canlift it (uniquely) to a
factorization X→ Z→ Y in Ab(C).

Corollary 2.12. If C is regular, then U preserves regular epis.

In addition, we’d like to know ifU reflects regular epis.

Proposition 2.13. If C is regular, then Ab(C) has coequalizers of kernel pairs, created by
U.

Proof. Let f : X→ Y be any map inAb(C) and take its kernel pairX ×Y X⇉ X. SinceU
preserves limits, the underlying diagram is still a kernel pair, and we can take its coequal-
izer:

UX ×UY UX
pr1 //
pr2

// UX
U f //

"" ""D
DD

DD
DD

D UY

C.

h

OO

SinceC is regular, the maph: C → Y is a mono [4, Chap 1, Prop 8.10]. By 2.11, there
is a unique liftX → C̃ → Y of that regular epi - mono factorization. One can check that
X→ C̃ is the desired coequalizer inAb(C) of the kernel pair off . �

Proposition 2.14. If C is regular, then U reflects regular epis.

Proof. Let f : X → Y be a map inAb(C) such thatU f is a regular epi inC. We want
to show thatf is a regular epi. SinceU creates limits, the kernel pair off is the unique
lift of the kernel pairUX ×UY UX ⇉ UX of U f , and the latter has a coequalizer, namely
U f : UX → UY. SinceU creates coequalizers of kernel pairs, there is a unique cocone
lifting U f : UX→ UY and it is a coequalizer ofX×Y X⇉ X. But f : X→ Y is such a lift,
hencef is a regular epi. �

Corollary 2.15. The lifted factorization of 2.11 is a regular epi - mono factorization in
Ab(C).

Corollary 2.16. If C is regular, then Ab(C) is regular.

Proof. Ab(C) has kernel pairs (or any limits thatC has) and coequalizers of kernel pairs. It
remains to check that the pullback of a regular epi is a regular epi:

P

f ∗e

��

// X

e
����

W
f

// Y.

SinceU preserves regular epis,Ue is a regular epi. Since pullbacks are computed inC,
we haveU( f ∗e) = (U f )∗(Ue), which is a regular epi sinceC is regular. SinceU reflects
regular epis,f ∗e itself is a regular epi inAb(C). �

Now that we’ve discussed regularity, let us discuss more general colimits inAb(C); it
will become useful later. Recall a few definitions [8, Def 4.1.1, 4.1.2].

Definition 2.17. A subobject of an objectX in a categoryC is an equivalence class of
monomorphismsZ →֒ X, up to isomorphism overX. The equivalence class ofZ →֒ X is
denoted [Z →֒ X]. The collection of subobjects ofX is denoted Sub(X).
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Definition 2.18. A categoryC is well-powered if the subobjects of any object form a set.

Lemma 2.19. If C has finite limits and is well-powered, then Ab(C) is well-powered.

Proof. For any objectX of Ab(C), the functorU : Ab(C)→ C induces a map

U∗ : Sub(X)→ Sub(UX)

where the right-hand side is a set and the left-hand side is (apriori) a collection. Let us
show thatU∗ is injective.

Let [A →֒ X] and [B →֒ X] be subobjects ofX satisfyingU∗[A →֒ X] = U∗[B →֒ X] =
[Z →֒ UX], which means there is a diagram inC like such:

UA

ϕ ≃

��

� q

""E
EE

EE
EE

E

Z
� � // UX.

UB

ψ ≃

OO

- 


<<yyyyyyyy

One can check thatψ−1ϕ commutes with the structure maps; it follows from the fact that
the structure maps ofA andB are restricted from those ofX. Henceψ−1ϕ lifts to an iso in
Ab(C) and we have [A →֒ X] = [B →֒ X]. �

Lemma 2.20. If C is complete and well-powered, then one can form the equivalence rela-
tion (or effective equivalence relation) generated by a set of relations on an object X. More
generally, ifC has a limit-preserving functor U to some categoryS (sometimesSet), the
same conclusion holds with relations (or pseudorelations)on the underlying object UX.

Proof. Let {ρi} be a set of relations onUX, i.e. eachρi is a subobject ofUX × UX. The
notion of being an equivalence relation is a well defined property for subojects [R →֒
X × X]. So is the property of “containing” the relationρi , meaning there is a factorization
ρi → UR →֒ UX × UX; we writeρi ≤ URwhen this happens. Consider the collection

R := {R ∈ Sub(X × X) | R is an equivalence relation andρi ≤ UR for all i}

which is a set sinceC is well-powered. Take the intersection
⋂

R of all relations inR,
which is the limit of the diagram like such:

Ri1 � q

""F
FFFFFFF

Ri2� _

��

Ri3mM

||xxxxxxxx
. . .

X × X

and hence exists, by completeness ofC. The intersection is still an equivalence relation,
and still contains allρi (sinceU preserves limits). By construction, it is the desired equiv-
alence relation generated by allρi .

The analogous proof for effective equivalence relations works as well. Indeed, an in-
tersection of effective equivalence relations, i.e. kernel pairs of mapsf j : X → Yj , is the
kernel pair of the map (f j) : X→

∏
Yj .

Note that in both cases, the collectionR is non-empty, as it contains the terminal equiv-
alence relation id:X × X →֒ X × X, which is the kernel pair of the mapX → ∗ to the
terminal object. �
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Proposition 2.21. If C is complete, well-powered, and regular, thenC has coequalizers (of
parallel pairs).

Proof. Let f , g: X ⇉ Y be two maps, which we view as a pseudorelation onY, i.e. a
map (f , g) : X → Y × Y. SinceC is regular, factor it as a regular epi followed by a mono
X։ R →֒ Y× Y. Let R be the effective equivalence relation onY generated byR (lemma
2.20). ThenR⇉ Y has a coequalizerY → C, sinceC is regular. One readily checks that
Y→ C is also the coequalizer ofX⇉ Y. �

Corollary 2.22. Under the same assumptions, Ab(C) also has coequalizers of parallel
pairs.

Proof. Ab(C) is also complete (sinceU : Ab(C) → C creates limits), well-powered (by
2.19), and regular (by 2.16). �

2.4. Algebraic categories. In the classic [14,§II.4, Thm 4], Quillen introduces a standard
simplicial model structure on the categorysC of simplicial objects in a categoryC, assum-
ingC is nice enough. For example, the theorem applies whenC has finite limits, all (small)
colimits, and a set of small projective generators (in particular, enough projectives). This
leads us to the following definition.

Definition 2.23. A category is calledalgebraicif it is cocomplete and has a set of small
projective generators.

Remark2.24. The word “algebraic” is overused, and we arenot using it as in [9,§3.4],
namely Lawvere’s models of algebraic theories. The difference is that our algebraic cat-
egories are not necessarily exact. Note that our algebraic categories are locally finitely
presentable in the sense of [9, Def 5.2.1].

Algebraic categories have excellent properties: they are complete (by [1, Cor 2.12], us-
ing the fact that any set of small objects with coproducts is abstractly finite), well-powered
[8, Prop 4.5.15], and regular [14,§II.4, Cor after Prop 2].

Our goal is to show that algebraic categories provide a good setup for Quillen cohomol-
ogy in the following sense: abelianizations and pushforwards exist, and the abelianization
adjunction is a Quillen pair.

2.4.1. Slice categories are algebraic.

Proposition 2.25. LetC be an algebraic category with generator set S and let f: X→ Y
be a map inC.

(1) f is a mono iff f∗ : Hom(P,X)→ Hom(P,Y) is a injective (i.e. a mono inSet) for
all P ∈ S .

(2) f is a regular epi iff f∗ : Hom(P,X) → Hom(P,Y) is surjective (i.e. a regular epi
in Set) for all P ∈ S .

In particular, the family of functors Hom(P,−) (for all P ∈ S) collectively reflects isos,
as shown in [8, Prop 4.5.10].

Proof. Straightforward, using the fact that any objectA of C receives a regular epiπ : ∐
Pi ։ A from a coproduct of generatorsPi ∈ S. �

Proposition 2.26. In an algebraic categoryC, filtered colimits commute with finite limits.
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Proof. Let L be a filtered category,N a finite category, andF : L×N→ C a functor. There
is a natural comparison mapϕ : colimL limN F → limN colimL F which we want to show
is an iso. By 2.25, it suffices to show Hom(P, ϕ) is an iso (of sets) for all generatorP. From
the definition of limit and the smallness of the generators, we obtain:

Hom(P, colimL limN F)
ϕ∗ // Hom(P, limN colimL F)

colimL Hom(P, limN F) limN Hom(P, colimL F)

colimL limN Hom(P, F) � // limN colimL Hom(P, F).

The bottom map (and henceϕ∗) is an iso, since filtered colimits commute with finite limits
in Set. �

Proposition 2.27. Let C be an algebraic category. Then U: Ab(C) → C creates filtered
colimits. In particular, Ab(C) has filtered colimits and U preserves them.

Proof. Essentially the same reasonU creates limits. LetL be a filtered category and
F : L → Ab(C) a diagram whose underlying diagramUF : L → C admits a colimit. Then
there is a unique lift of the colimiting cocone inC to a cocone inAb(C). Indeed, there is at
most one way to endow colimL UF with structure maps, since they are prescribed on each
summand:

colimL(UF × UF) � colimL UF × colimL UF // colimL UF

UF(l) × UF(l)

OO

µ
// UF(l).

OO

Applying colimL to the structure maps ofUF produces those structure maps for colimL UF.
The result is the colimit ofF in Ab(C). �

Proposition 2.28. Let C be an algebraic category and X an object ofC. Then the slice
categoryC/X is algebraic.

Proof. 1. C/X has small colimits, since they are created by the “source” functorC/X→ C.
2. LetS be a set of small projective generators forC. Then

{
P

p
−→ X | P ∈ S, p ∈ HomC(P,X)

}

is a set of small projective generators forC/X. Smallness is a straightforward verification;
the rest follows from 2.7, 2.6, and the fact that (∐Pi) → X is the coproduct∐(Pi → X) in
C/X. (By the same argument, ifC has enough projectives, then so doesC/X.) �

2.4.2. Abelianizations exist.To show that an algebraic category has abelianizations, we
venture into universal algebra. By a characterization theorem [2, Thm 5.2], every algebraic
category is equivalent to a many-sorted finitary quasivariety. That is, a category where
objects have an underlying graded set indexed by some setS of “sorts”, equipped with
some operations, and satisfying some equations and implications [2,§1.1].
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More precisely, letΣ be a (many-sorted) signature, a set of finitary operations with
the data of their (many-sorted) arities. LetΣAlg denote the category ofΣ-algebras: ob-
jects areS-graded sets equipped with operations prescribed byΣ, and morphisms areΣ-
homomorphisms, i.e. maps of graded sets that respect all theoperations. It is known that
ΣAlg is complete and cocomplete, the forgetful functorΣAlg → SetS creates limits and
filtered colimits, and it has a left adjointFΣ, which freely adjoins the operations. A vari-
ety (resp. quasivariety)K is a full subcategory ofΣAlg whose objects are precisely those
satisfying a given set of equations (resp. equations and implications).

Example2.29. The (one-sorted) variety of abelian groups is the full subcategory of{e, ι, µ}-
algebras satisfying the usual equations for the neutral elemente, inverseι, and addition
µ, with arities 0, 1, and 2 respectively. The quasivariety of torsion-free abelian groups
is defined by the additional implications (nx = 0 ⇒ x = 0) for all n ∈ N. Likewise,
commutative rings form a (one-sorted) variety, while reduced commutative rings, i.e. those
without nilpotents, form a quasivariety defined by the additional implications (xn

= 0 ⇒
x = 0) for all n ∈ N.

The inclusionIK : K → ΣAlg has a left adjointπK : ΣAlg → K , which is essentially
quotienting by all the equations and implications that defineK . The unit maps are regular
epis and the counit maps are isomorphisms. In particular,K is cocomplete.

Lemma 2.30. If C is a variety (resp. quasivariety), then so is Ab(C)

Proof. LetΣ be the signature ofC. Objects ofAb(C) have the underlying graded set of their
underlying object inC, equipped with the additional structure mapse, ι, µ, satisfying the
conditions of associativity and so on, and the conditions that the structure maps be maps in
C. ThusAb(C) is the full subcategory ofΣ′Alg satisfying the equations and implications
that defineC, plus an additional set of equations. HereΣ′ is the signatureΣ⊔{e, ι, µ} where
the additional operations have arities 0, 1, and 2 respectively. In the many-sorted case,Σ′

is Σ ⊔ {es, ιs, µs}s∈S where the additional operations have arities (∅; s), (s; s), and (s, s; s)
respectively. �

Proposition 2.31. If C is algebraic, then U: Ab(C)→ C has a left adjoint.

Proof. Let us forget the equations definingC andAb(C) while keeping all the structure. In
other words, consider the diagram

Ab(C)

IAb(C)

��

U //
C

IC
��

Σ
′Alg

πAb(C)

OO

UΣ′ ,Σ //
ΣAlg

FΣ,Σ′
oo

πC

OO

where we have adjoint pairs on the left, bottom, and right sides. The right adjoints com-
mute. Let us check that the obvious candidateπAb(C)FΣ,Σ′ IC is in fact left adjoint toU. For
X in C andB in Ab(C), we have

HomAb(C)
(
πAb(C)FΣ,Σ′ ICX, B

)
� HomΣAlg

(
ICX,UΣ′,ΣIAb(C)B

)

= HomΣAlg (ICX, ICUB)

= HomC (X,UB)

sinceC is a full subcategory ofΣAlg. �

From 2.28 and 2.31, we obtain the following.
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Corollary 2.32. An algebraic categoryC has all abelianizations AbX : C/X→ Ab(C/X).

2.4.3. Beck modules are algebraic.Since we want to put the standard model structure on
the categorysAb(C/X) of simplicial Beck modules, we’d like to know thatAb(C/X) is
itself algebraic. By 2.28, it suffices to show that ifC is algebraic, then so isAb(C).

Lemma 2.33. AssumeC is regular and U: Ab(C) → C has a left adjoint. If a map
f : X ։ UB is a regular epi inC, then its adjunct map f♯ : AbX→ B is a regular epi in
Ab(C). In particular, the counit AbUA։ A is always a regular epi.

Proof. Recall thatAbX→ B is a regular epi inAb(C) iff UAbX→ UB is a regular epi in
C. The regular epif factors asf = (U f ♯) ◦ ηX : X→ UAbX→ UB, which impliesU f ♯ is
a regular epi sinceC is regular [8, Cor 2.1.5 (2)]. �

Remark2.34. The converse is false in general. For example, takeC = Set, X = {∗}, Y = Z,
and f (∗) = 1. The mapf is far from being a regular epi (i.e. surjection), but its adjunct
f ♯ : Ab(∗) = Z→ Z is a regular epi, even an iso.

Lemma 2.35. AssumeC is regular and has enough projectives, and U: Ab(C) → C has
a left adjoint. Then an object of Ab(C) is projective iff it is a retract of AbP for some
projective P ofC.

Proof. (⇐) Trying to lift a mapAb(P) → B along a regular epiA ։ B is the same as
trying to lift the adjunct map:

P

||y
y

y
y

y

��
UA // // UB.

The bottom map is a regular epi sinceU preserves them, and thus the lift exists. Therefore
Ab(P) is projective, and a retract of a projective is projective.

(⇒) Let Q be a projective inAb(C). SinceC has enough projectives, there is a projective
P of C with a regular epiP։ UQ. Take its adjunct mapAbP։ Q, which is still a regular
epi by 2.33. Lifting the identity ofQ along that regular epi exhibitsQ as a retract of
AbP. �

Proposition 2.36. If C is algebraic, then Ab(C) is also algebraic.

Proof. 1. Ab(C) is cocomplete since it is a quasivariety (2.30).
2. LetS be a set of small projective generators forC. Then{Ab(P) | P ∈ S} is a set of

small projective generators forAb(C). Smallness is a straightforward verification, using
2.27. EachAb(P) is projective, by 2.35. Let us show that they form a family ofgenerators.
For any objectX of Ab(C), take a regular epi∐Pi ։ UX from a coproduct of generators
in S. Then the adjunct map∐Ab(Pi) = Ab(∐Pi) ։ X is a regular epi. (By the same
argument, ifC has enough projectives, then so doesAb(C).) �

It would be worthwhile to know under which assumptions does cocompleteness ofC
guarantee cocompleteness ofAb(C). One may want to avoid the universal-algebraic argu-
ment used in the proof of 2.36.

Proposition 2.37. AssumeC is cocomplete and U: Ab(C)→ C has a left adjoint. If Ab(C)
has coequalizers, then Ab(C) is cocomplete.

Proof. Using Beck’s monadicity theorem, one can show thatU is monadic [13,§VI.8,
Thm 1]. The result follows from [9, Prop 4.3.4]. �



BEHAVIOR OF QUILLEN (CO)HOMOLOGY WITH RESPECT TO ADJUNCTIONS 13

From 2.22, we obtain the following.

Corollary 2.38. AssumeC is cocomplete and U: Ab(C) → C has a left adjoint. If more-
overC is complete, well-powered, and regular, then Ab(C) is cocomplete.

Note that in the case of algebraic categories, we did use the universal-algebraic argu-
ment in 2.31 to show thatU has a left adjoint.

2.4.4. Pushforwards exist.

Proposition 2.39. LetC be an algebraic category. ThenC has all pushforwards.

Proof. Let f : X→ Y be a map inC. Consider the diagram

Ab(C/Y)

UY

��

f ∗ // Ab(C/X)

UX

��
C/Y

AbY

OO

f ∗ //
C/X

f!
oo

AbX

OO

where the abelianizations exist by 2.32. The right adjointscommute. Starting from a Beck
moduleM in Ab(C/X), one naive candidate would beAbY f!UXM, which is much too big
for our purposes. However, we can trim it down to the right size by modding out some
relations. More precisely, we find a quotient ofAbY f!UXM which satisfies the solution set
condition of the adjoint functor theorem [13,§V.6, Thm 2].

We donot have a mapM → f ∗AbY f!UXM, although we DO have a map of underlying
objects

(3) η : UXM → UX f ∗AbY f!UXM = ( f ∗UY)(AbY f!)UXM

in C/X, which is the unit of the adjunctionAbY f! ⊣ f ∗UY. Let q: AbY f!UXM → Q be
the closest quotient inAb(C/Y) which makes the map (3) lift toAb(C/X), i.e. we have a
diagram inAb(C/X)

M //___

η̃

55f ∗AbY f!UXM
f ∗q // f ∗Q

satisfyingUXη̃ = (UX f ∗q) ◦ η, andQ is initial with that property. To showQ exists, note
that the equations forη to lift to Ab(C/X) are a set of pseudorelations onUX f ∗AbY f!UXM.
Take the effective equivalence relation onAbY f!UXM generated by those pseudorelations
as in 2.20. Its coequalizer is the desired quotient.

Let us check that̃η : M → f ∗Q satisfies the solution set condition. TakeN an object of
Ab(C/Y) andh: M → f ∗N a map inAb(C/X). Consider the underlying map

UXh: UXM → UX f ∗N = f ∗UYN

and its adjunct map (UXh)♯ : AbY f!UXM → N. By adjunction, the composite

UXM
η // f ∗UYAbY f!UXM

f ∗UY(UXh)♯ // f ∗UYN = UX f ∗N

is UXh, which lifts to Ab(C/X). By the universal property ofQ, we obtain a factorization
(UXh)♯ = ϕq for some mapϕ : Q → N in Ab(C/Y) and, upon applyingf ∗, the desired
factorizationh = ( f ∗ϕ)̃η. �
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2.5. The setup. Putting the ingredients together, we obtain a good setup forQuillen co-
homology. It is essentially an observation of Quillen [14,§II.5, (4) before Thm 5], which
we state and prove in more detail.

Proposition 2.40. Let C be an algebraic category and X an object ofC. ThenC/X and
Ab(C/X) are algebraic and the prolonged adjunction

sC/X
AbX // sAb(C/X)
UX

oo

is a Quillen pair.

Proof. BothC/X andAb(C/X) are algebraic, by 2.28 and 2.36. Moreover,C is regular and
thereforeC/X is also regular [4, Chap 1, Prop 8.12]. By proposition 2.12, the right adjoint
UX : Ab(C/X)→ C/X preserves regular epis, hence the prolonged adjunction is aQuillen
pair, by 2.2 and 2.9. �

The setup above is not quite enough to work with Quillen cohomology. There are
additional assumptions on the homotopy categoryHoAb(sC/X•): conditions (A) and (B)
at the beginning of [14, II.5]. The conditions are satisfied for example ifC has abelian
Beck modules, i.e. the categoryAb(C/X) is abelian for any objectX. One condition
guaranteeing abelian Beck modules is exactness [4, Chap 2, Thm 2.4]. In [15], at the
beginning of section 2, Quillen uses the word “algebraic” asin definition 2.23 and then
refers to Lawvere’s work, in which the categories are assumed to be exact (and in particular
have abelian Beck modules). This is not automatic.

Proposition 2.41. An algebraic category does not necessarily have abelian Beck modules
(and in particular is not necessarily exact).

Proof. As a counterexample, take the categoryAbt f of torsion-free abelian groups, viewed
as a full subcategory of abelian groups. The inclusionι : Abt f → Ab has a left adjoint,
which quotients out the torsion subgroup. ThusAbt f is cocomplete, and has a small pro-
jective generator, namelyZ, the same generator as forAb.

However,Ab t f is not exact: the mapn: Z → Z is a mono which is not the kernel of its
cokernel. Indeed, its cokernel isZ → 0, whose kernel is 1 :Z → Z. In other words, the
equivalence relation{(x, y) ∈ Z × Z | x ≡ y(n)} onZ is not effective.

Moreover,Abt f doesn’t have abelian Beck modules. Sinceι preserves limits, a Beck
moduleE→ G over a torsion-free abelian groupG is in particular a Beck module viewed
in Ab, i.e. a direct sumG ⊕ M ։ G. The only additional condition is thatG ⊕ M be
torsion-free, which happens iff M itself is torsion-free. Hence for every objectG, we have
Ab(Abt f /G) � Abt f , which is not an abelian category. �

Remark2.42. For an algebraic category, being exact is equivalent to the generators being
exact projective, and not merely regular projective [1, Def2.4]. Exact projective means
preserving coequalizers ofall equivalence relations, whereas regular projective means pre-
serving coequalizers of effective equivalence relations.

Since exactness is a convenient way of guaranteeing abelianBeck modules, one may
wonder if the two conditions are equivalent, perhaps with additional assumptions.

Proposition 2.43. Having abelian Beck modules does not imply exactness, even for an
algebraic category.
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Proof. As a counterexample, take the categoryComred of reduced commutative rings, i.e.
those without nilpotents, viewed as a full subcategory of all commutative (associative,
unital) rings. The inclusionι : Comred → Comhas a left adjoint, which quotients out the
nilradical. ThusComred is cocomplete, and the free commutative ring on one generator,
the polynomial ringZ[x], is still a small projective generator.

However,Comred is not exact. Consider the map 4:Z → Z which induces the equiv-
alence relationR = {(x, y) ∈ Z × Z | x ≡ y(4)} on the targetZ. The coequalizer ofR in
Comred is Z։ Z/2, whose kernel pair is{(x, y) ∈ Z × Z | x ≡ y(2)} soR is not effective.

A Beck module over a reduced commutative ringR is in particular a Beck module
viewed inCom, i.e. a square zero extensionR⊕M ։ Rwith multiplication (r,m)(r ′,m′) =
(rr ′, rm′ + mr′), where the left and right actions ofR on M coincide. The only additional
condition is forR⊕M to be a reduced ring, which happens iff M is zero, since the nilradical
is Nil(R⊕ M) = M. Hence for every objectR, we haveAb(Comred/R) � 0, which is an
abelian category. �

In short, an algebraic category has most of the ingredients for Quillen cohomology. If
moreover the category is exact, then it has all the ingredients.

3. Effect of an adjunction

In this section, we investigate the main question: What doesan adjunctionL : C ⇄
D : Rdo to Quillen (co)homology?

3.1. Effect on Beck modules.The right adjointR always passes to abelian group objects
R: Ab(D)→ Ab(C) since it preserves limits. A priori, we don’t know what its left adjoint
L̃ : Ab(C) → Ab(D) will look like, but if L preserves finite products, then it passes to
abelian group objectsL : Ab(C) → Ab(D) and the induced functors still form an adjoint
pair.

First, let us see how an adjunction passes to slice categories. There are two versions,
depending if one starts with a ground object inC or inD. A straightforward verification
yields the following proposition.

Proposition 3.1. (1) For any object c inC, there is an induced adjunction

(4) C/c
L //
D/Lc

η∗cR
oo

whereηc : c→ RLc is the unit map.
(2) For any object d inD, there is an induced adjunction

(5) C/Rd
ǫd! L //

D/d
R

oo

whereǫd : LRd→ d is the counit map.

Proposition 3.2. Assume L: C → D preserves kernel pairs of split epis.

(1) For any object c inC, there is an induced adjunction on Beck modules:

Ab(C/c)
L // Ab(D/Lc).
η∗cR

oo
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(2) For any object d inD, there is an induced adjunction on Beck modules:

Ab(C/Rd)
ǫd∗L // Ab(D/d).

R
oo

Proof. 1. The assumption guarantees that the left adjointL : C/c→ D/Lc preserves finite
products, and hence the adjunction (4) passes to abelian group objects.

2. Start with the natural equivalence

HomAb(D/d)
(
ǫd∗L(c′ → Rd), d′ → d

)
� HomAb(D/LRd)

(
Lc′ → LRd, ǫ∗d(d′ → d)

)
.

The right-hand side consists of mapsLc′ → d′ that make the diagram

Lc′

��

// d′

��
LRd ǫd

// d

commute and respect the structure maps of the columns. This is equivalent to mapsc′ →
Rd′ that make the adjoint diagram

c′

��

// Rd′

��
Rd

id
// Rd

commute and respect the structure maps of the columns. Theseare precisely maps from
(c′ → Rd) to R(d′ → d) in Ab(C/Rd). �

Remark3.3. The assumption thatL passes to Beck modules is not crucial. We only used
it to identify the induced left adjoint.

3.2. Effect on abelian cohomology.Before introducing any homotopical algebra, let us
study the problem at the level of homological algebra. AssumeC andD have abelian Beck
modules with enough projectives, which is the case for example if they are exact algebraic
categories. We want to describe the effect of the adjunction on abelian cohomology. Again,
assume the left adjointL passes to Beck modules. As we have seen in 3.2, there are two
induced adjunctions, depending if one starts with a ground object inC or inD.

3.2.1. Ground object inC. Pick a ground objectc in C. The induced adjunction on Beck
modules fits into the diagram

(6) C/c

L

��

Abc // Ab(C/c)
Uc

oo

L

��
D/Lc

η∗cR

OO

AbLc // Ab(D/Lc)
ULc

oo

η∗cR

OO

where the diagram of right adjoints commutes (on the nose), and thus the diagram of
left adjoints commutes as well. In particular, applying theleft adjoints to idc, we obtain
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LAbcc = AbLcLc. Take a moduleN overLc and consider:

HA∗(c; η∗cRN) = Ext∗(Abcc, η
∗
cRN)

= H∗HomModc(P•, η
∗
cRN)

= H∗HomModLc(LP•,N)(7)

whereP• → Abcc is a projective resolution. We want to compare this to:

HA∗(Lc; N) = Ext∗(AbLcLc,N)

= H∗HomModLc(Q•,N)

whereQ• → AbLcLc is a projective resolution. Assume the induced left adjointL : Modc→

ModLc preserves projectives (which is the case for example when its right adjointη∗cR
preserves epis, i.e. is exact). ThenLP• is projective but is not a resolution ofLAbcc.
However, the map factors asLP• →֒ Q•

∼
−→ LAbcc = AbLcLc and the first map induces

HomModLc(Q•,N) → HomModLc(LP•,N) which, upon passing to cohomology, induces a
well defined map. We sum up the argument in the following proposition.

Proposition 3.4. If the left adjoint L induces a functor on Beck modules which preserves
projectives, then we obtain a comparison map in abelian cohomology:

(8) HA∗(Lc; N)→ HA∗(c; η∗cRN).

Note that (7) exhibits HA∗(c; η∗cRN) as derived functors of HomModLc(−,N) ◦ L applied
to Abcc. SinceL sends projectives to projectives, we obtain a Grothendieckcomposite
spectral sequence:

Es,t
2 = Exts(LtL(Abcc),N)⇒ HAs+t(c; η∗cRN)

which is first quadrant, cohomologically graded. The comparison map (8) is the edge
morphism

HAs(Lc; N) = Exts(LAbcc,N) = Es,0
2 ։ Es,0

∞ →֒ HAs(c; η∗cRN).

If L : Modc → ModLc happens to be exact, thenLP• is a projective resolution ofLAbcc =
AbLcLc and the comparison map (8) is an iso.

Remark3.5. Starting with a moduleM overc, there is a map

HomModc(Abcc,M)→ HomModLc(LAbcc, LM) = HomModLc(Abcc, η
∗
cRLM)

given by applyingL, or equivalently, induced by the unitM → η∗cRLM. One might want to
compare HA∗(c; M) and HA∗(Lc; LM), but they both naturally map into HA∗(c; η∗cRLM),
respectively via the unit and the comparison map (8). There is no direct comparison.

3.2.2. Ground object inD. Pick a ground objectd inD. The induced adjunction on Beck
modules fits into the diagram

(9) C/Rd

ǫ! L

��

AbRd // Ab(C/Rd)
URd

oo

ǫd∗L

��
D/d

R

OO

Abd // Ab(D/d)
Ud

oo

R

OO
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where the diagram of right adjoints commutes, and thus the diagram of left adjoints com-
mutes as well. Take a moduleN overd and consider:

HA∗(d; N) = Ext∗(Abdd,N)

= H∗ HomModd(P•,N)

whereP• → Abdd is a projective resolution. We want to compare this to:

HA∗(Rd; RN) = Ext∗(AbRdRd,RN)

= H∗HomModRd(Q•,RN)

= H∗HomModd(ǫd∗LQ•,N)(10)

whereQ• → AbRdRd is a projective resolution. Here again, assume the induced left adjoint
ǫd∗L : ModRd → Modd preserves projectives. Thenǫd∗LQ• is projective and we have a
map:

ǫd∗LQ• → ǫd∗LAbRdRd= ǫd∗AbLRdLRd= Abd(Lrd
ǫd
−→ d)

Add(ǫd)
−−−−−→ Abdd.

It admits a factorizationǫd∗LQ• →֒ P•
∼
−→ Abdd and the first map induces

HomModd(P•,N)→ HomModd(ǫd∗LQ•,N)

which, upon passing to cohomology, induces a well defined map. We sum up the argument
in the following proposition.

Proposition 3.6. If the left adjoint L passes to Beck modules and the induced left adjoint
ǫd∗L : ModRd→ Modd preserves projectives, then we obtain a comparison map in abelian
cohomology:

(11) HA∗(d; N)→ HA∗(Rd; RN).

Note that (10) exhibits HA∗(Rd; RN) as derived functors of HomModd(−,N) ◦ ǫd∗L ap-
plied to AbRdRd. Sinceǫd∗L sends projectives to projectives, we obtain a Grothendieck
composite spectral sequence:

Es,t
2 = Exts (Lt(ǫd∗L)(AbRdRd),N)⇒ HAs+t(Rd; RN)

which is first quadrant, cohomologically graded. The comparison map (11) isAbd(ǫd)∗

followed by an edge morphism:

HAs(d; N) = Exts(Abdd,N)
Abd(ǫd)∗
−−−−−−→ Exts(ǫd∗LAbRdRd,N)

= Es,0
2 ։ Es,0

∞ →֒ HAs(Rd; RN).

If ǫd∗L : ModRd → Modd happens to be exact, thenǫd∗LQ• is a projective resolution of
ǫd∗LAbRdRd, and we obtain an iso Ext∗(ǫd∗LAbRdRd,N) � HA∗(Rd; RN). In that case, the
comparison map (11) is simplyAbd(ǫd)∗, which is not necessarily an iso.

Remark3.7. Starting with a moduleM overRd, one might want to compare HA∗(Rd; M)
and HA∗(d; ǫd∗LM). Again, there is no direct comparison. They both map naturally into
HA∗(Rd; Rǫd∗LM), the former via the unitM → Rǫd∗LM and the latter via the comparison
map (11).
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3.3. The comparison diagram. Now let us check that the adjunction behaves well at the
level of homotopical algebra, when we pass to simplicial objects.

Theorem 3.8. LetC andD be algebraic categories. Let L: C ⇄ D : R be an adjunction
that prolongs to a Quillen pair (equivalently, R preserves regular epis; equivalently, L pre-
serves projectives), and assume L passes to Beck modules. Then the commutative diagram
(6) simplicially prolongs to four Quillen pairs:

(12) sC/c

L

��

Abc // sAb(C/c)
Uc

oo

L

��
sD/Lc

η∗cR

OO

AbLc // sAb(D/Lc)
ULc

oo

η∗cR

OO

and so does the commutative diagram (9):

(13) sC/Rd

ǫ! L

��

AbRd // sAb(C/Rd)
URd

oo

ǫd∗L

��
sD/d

R

OO

Abd // sAb(D/d).
Ud

oo

R

OO

Proof. Case 1: Ground objectc in C. The induced right adjoint on slice categories is
η∗cR: D/Lc → C/c and it preserves regular epis. Indeed,R: D/Lc → C/RLc preserves
regular epis by assumption and 2.6. The pullbackη∗c also preserves regular epis sinceC is
regular and again by 2.6.

The induced right adjoint on Beck modulesη∗cR: Ab(D/Lc) → Ab(C/c) preserves reg-
ular epis. It follows from the same argument, and the fact that regular epis inAb(−) are
preserved and reflected by the forgetful functorU, by 2.12 and 2.14.

Case 2: Ground objectd in D. The induced right adjoint on slice categories is just
R: D/d → C/Rd, which preserves regular epis. The induced right adjoint onBeck mod-
ulesR: Ab(D/d)→ Ab(C/Rd) also preserves regular epis. �

Remark3.9. The result holds whether or not the left adjointL passes to Beck modules,
since the proof only relies on properties of the induced right adjoints. IfL does not pass to
Beck modules, the induced left adjoint is something else.

3.4. Effect on Quillen (co)homology.In this section, we describe the comparison maps
induced on Quillen (co)homology. The argument is similar tosection 3.2, except we start
with the comparison diagrams in 3.8.

3.4.1. Ground object c inC.

Proposition 3.10. Assume the setup of 3.8. Then the comparison diagram inducesthe
following comparison maps.

(1) A natural (up to homotopy) comparison map of cotangent complexes:

(14) L(L c)→ L Lc.

(2) A natural comparison map in Quillen homology:

(15) L (HQ∗(c))→ HQ∗(Lc).
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(3) If L preserves pullbacks, then we have L(HQ∗(c)) � π∗L(L c) and the map (15) is
just the effect of (14) onπ∗.

(4) If L preserves all weak equivalences, then (14) is a weak equivalence and (15) is
an iso.

Proof. 1. Starting with a cofibrant replacementqc : Qc
∼
−→ c of idc, we can applyL to

obtainLQc→ Lc, where the source is still cofibrant (sinceL is a left Quillen functor) but
the map is not a weak equivalence anymore. However, it factors (uniquely and functorially

up to homotopy) asLQc
ψ
−→ QLc

∼
−→ Lc and we obtain the comparison map

L(L c) = LAbc(Qc→ c) = AbLcL(Qc→ c)

= AbLc(LQc→ Lc)→ AbLc(QLc→ Lc) = L Lc

which is in factAbLc(ψ).
2. There is a homology comparison map [5, Thm 2.2 and 2.6] for the right exact functor

L, which we apply to the chain complexL c (using implicitly the Dold-Kan correspon-
dence):

L (HQ∗(c)) = LH∗(L c)→ H∗L(L c) = π∗L(L c).

Note that the map is an edge morphism in the composite spectral sequence ofL ◦ Abc

applied to idc. Following this homology comparison by the effect of (14) onπ∗, we obtain
the Quillen homology comparison:

L (HQ∗(c))→ π∗L(Lc)→ π∗L Lc = HQ∗(Lc).

3. If L preserves pullbacks, then the inducedL on Beck modules also preserves finite
limits, hence is left exact (and thus exact). In that case, the homology comparison is an iso.

4. If L preserves all weak equivalences, then the mapψ is a weak equivalence. Since
AbLc is a left Quillen functor, the map (14) is also a weak equivalence. The inducedL also
preserves weak equivalences, and in particular is exact so the homology comparison is an
iso. �

Proposition 3.11. Let N be a module over Lc.

(1) The comparison diagram induces a natural comparison map

(16) HQ∗(Lc; N)→ HQ∗(c; η∗cRN).

(2) If the comparison of cotangent complexes (14) is a weak equivalence, then (16) is
an iso. This holds in particular when L preserves all weak equivalences.

Proof. 1. Apply the functor HomModLc(−,N) to the comparison map (14)

HomModLc(L Lc,N)→ HomModLc(L(L c),N) � HomModc(Lc, η
∗
cRN)

and upon passing to cohomology, we obtain the map (16).
2. SinceL(L c) andL Lc are cofibrant, a weak equivalence (14) between them will induce

a weak equivalence upon applying Hom(−,N). �

3.4.2. Ground object d inD. A very similar reasoning yields the following propositions.

Proposition 3.12. Assume the setup of 3.8. Then the comparison diagram inducesthe
following comparison maps.

(1) A natural (up to homotopy) comparison map of cotangent complexes:

(17) ǫd∗L(LRd)→ Ld.
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(2) A natural comparison map in Quillen homology:

(18) ǫd∗L (HQ∗(Rd))→ HQ∗(d).

(3) If L preserves pullbacks andǫd∗ is exact, thenǫd∗L (HQ∗(Rd)) � π∗ǫd∗L(LRd) holds
and the map (18) is just the effect of (17) onπ∗.

(4) If L preserves all weak equivalences andǫd is an iso, then (17) is a weak equiva-
lence and (18) is an iso.

Proposition 3.13. Let N be a module over d.

(1) The comparison diagram induces a natural comparison map

(19) HQ∗(d; N)→ HQ∗(Rd; RN).

(2) If the comparison of cotangent complexes (17) is a weak equivalence, then (19) is
an iso.

4. Examples

In this section we study three examples. The first serves as a warmup. The second tries
to relate André-Quillen cohomology to Hochschild cohomology (4.7). The third shows
how Quillen cohomology of aΠ-algebra with coefficients in a truncated module can be
computed within the world of truncatedΠ-algebras (4.15), which have a much simpler
structure than (non-truncated)Π-algebras.

4.1. Abelian groups. Consider the functorCom: Gp → Ab that kills commutators, i.e.
Com(G) = G/[G,G], whose right adjoint is the inclusion functorι : Ab → Gp. Although
Comdoes not preserve kernel pairs in general, it does pass to Beck modules. Recall that
for a (left) G-moduleM, the semidirect productG ⋉ M is the group with underlying set
G× M and multiplication (g,m)(g′,m′) = (gg′,m+ gm′).

Proposition 4.1.Com passes to Beck modules, on which it induces the coinvariants functor
(−)G : ModG → Ab.

Proof. Let us first computeCom(G⋉ M). Commutators inG ⋉ M are given by
[
(g1,m1), (g2,m2)

]
=

(
[g1, g2],m1 − g1g2g−1

1 m1 + g1m2 − g1g2g
−1
1 g−1

2 m2

)
.

Applying Comto the split extensionG ⋉ M → G yields a split extensionCom(G ⋉ M) →
Com(G) in Ab whose kernel isM modulo the subgroup

〈
m1 − g1g2g

−1
1 m1 + g1m2 − g1g2g−1

1 g−1
2 m2 | gi ∈ G,mi ∈ M

〉

= 〈m− gm | g ∈ G,m∈ M〉 .

In other words, we haveCom(G ⋉ M) � Com(G) ⊕ MG, whereMG is the abelian group of
coinvariants ofM.

Moreover,Compreserves the pullback that defines the multiplication structure map:

Com((G ⋉ M) ×G (G ⋉ M)) = Com(G ⋉ (M × M))

= Com(G) ⊕ (M × M)G

= Com(G) ⊕ (MG ⊕ MG)

= (Com(G) ⊕ MG) ×Com(G) (Com(G) ⊕ MG)

= Com(G ⋉ M) ×Com(G) Com(G ⋉ M).

In Gp as well as inAb, we think of the module as the kernel of the split extension, and in
this case, aG-moduleM is sent to the abelian groupMG. �
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Remark4.2. In Ab, a Beck module consists only of a split extension with the data of the
splitting. Therefore, any functorF : C → Ab passes to Beck modules. We’ve shown it
explicitly for Comand identified the induced functor.

Let us describe the effect of the adjunctionCom: Gp ⇄ Ab : ι on Quillen homology.
Note that the right adjointι preserves regular epis, which are just surjections. Hence,the
prolonged adjunctions are Quillen pairs.

Note also that the unit of the adjunction isηG : G ։ G/[G,G] and the counit is the
identity. We work with a ground objectG in Gp, since we get nothing new from a ground
object inAb. The comparison diagram (6) becomes:

(20) sGp/G

Com

��

AbG // sModG
G⋉−

oo

(−)G

��
sAb/Com(G)

η∗Gι

OO

S rc //
sAb.

Com(G)⊕−
oo

Triv

OO

and by 3.8, it prolongs to four Quillen pairs. HereS rc is the “source” functor, which is
the abelianization over any abelian group, andTriv is the functor assigning to an abelian
group the trivialG-action. Indeed, the right adjoint on Beck modules isη∗Gι. Given a Beck
moduleCom(G) ⊕ A, view it as a split extension of groups, which meansA has a trivial
Com(G) action, and then pull the action back alongηG : G → G/[G,G], which endowsA
with the trivialG-action.

Remark4.3. In 4.1, we checked explicitly thatCom induces the functor (−)G on Beck
modules. Per remark 3.3, we could also look at the induced right adjointη∗Gι = Triv
and use its left adjoint to complete diagram (20). The left adjoint of Triv = ǫ∗ is indeed
(−)G = ǫ∗ = Z ⊗ZG (−), whereǫ : ZG→ Z is the augmentation.

We now formulate the result about Quillen homology.

Proposition 4.4. Let C• → G be a cofibrant replacement of G in groups and letLG denote
the cotangent complex of G. Then the following holds:

π∗ (C•/[C•,C•]) = π∗ ((LG)G) .

Proof. Starting from a cofibrant replacement ofG in Gp (or equivalently, of idG in Gp/G)
in the upper left corner of (20), going down then right yields

S rc◦Com(C• → G) = S rc(Com(C•)→ Com(G))

= Com(C•) = C•/[C•,C•]

whereas going right then down yields(AbG(C• → G))G = (LG)G. Takingπ∗ gives a well
defined equality, since the simplicialG-moduleLG is defined up to homotopy. �

In fact, one can compute both sides explicitly and check thatthey coincide. For groups,
abelianization isAbGG = IG = ker(ZG→ Z) and the cotangent complex is discrete, mean-
ing LG → IG is a cofibrant replacement, in particular a flat resolution. Taking coinvariants
results in the derived functors thereof, namely group homology:

π∗ ((LG)G) = L∗(−)G(IG) = H∗(G; IG).

Using the short exact sequence 0→ IG → ZG → Z → 0 of G-modules, the connect-
ing morphism Hi+1(G;Z) → Hi(G; IG) is an iso for alli ≥ 0, from which we conclude
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πi ((LG)G) = Hi+1(G;Z) for all i ≥ 0. On the other hand, [12, Ex 4.26] uses a different
argument to showπi (C•/[C•,C•]) = Hi+1(G;Z) for all i ≥ 0. Proposition 4.4 is consistent
with these computations.

4.2. Commutative algebras. Let R be some fixed commutative ring; denote byAlgR the
category of associativeR-algebras and byComR the category of commutativeR-algebras.
(All our rings and algebras are assumed associative and unital.) Consider the functor
Com: AlgR → ComR which kills the 2-sided ideal generated by commutators, that is
Com(A) = A/[A,A]. It is left adjoint to the inclusion functorι : ComR → AlgR, which
preserves regular epis (i.e. surjections).

Recall that Beck modules over an associativeR-algebraA are A-bimodules overR,
meaning that scalars inRact the same way on the left and the right; we denote this category
A− BimodR. Beck modules over a commutativeR-algebraA areA-modules in the usual
sense, which we denoteA−Mod.

Proposition 4.5. 1. The functor Com: AlgR→ ComR passes to Beck modules.
2. It induces the “central quotient” functor CQ: A−BimodR→ Com(A)−Mod which

coequalizes the two actions.

Proof. Start with a Beck module overA in AlgR, i.e. a split extensionp: A ⊕ M → A
satisfyingM2

= 0. ApplyingComto it yields a split extension

0 // K // Com(A⊕ M)
Com(p) // Com(A)
Com(s)
oo // 0

in ComR. It remains to show that its kernel has square zero.
Commutators in A⊕M. Using the decomposition (a,m) = (a, 0)+ (0,m), commutators

will be generated by those of the forms [(a, 0), (a′, 0)] = ([a, a′], 0) and [(a, 0), (0,m)] =
(0, a ·m−m · a). Thus the kernel is

(21) K ≃ M/ 〈a ·m−m · a〉

where we kill the sub-A-bimodule generated by all elements of that form.
K has square zero.Take two elementsx, x′ ∈ K = kerCom(p) ⊂ Com(A ⊕ M) and

choose representatives (c,m) and (c′,m′) in A⊕M, for c, c′ ∈ [A,A]. Thenxx′ is represented
by (c,m)(c′,m′) = (cc′, c ·m′ +m · c′). One readily checks that elements of the formc ·m
andm · c are zero inCom(A ⊕ M), for anym ∈ M andc ∈ [A,A]. This proves the first
assertion, and (21) proves the second. �

The adjunctionCom: AlgR ⇄ ComR : ι allows us to compare the two categories. Ac-
cording to 4.5, the comparison diagram 6 becomes

(22) AlgR/A

Com

��

A⊗I(−)⊗A // A− BimodR
A⊕−

oo

CQ

��
ComR/Com(A)

η∗Aι

OO

Com(A)⊗Ω(−)/R// Com(A) −Mod
Com(A)⊕−
oo

same action

OO

where “same action”, the right adjoint on the right, means that we view aCom(A)-module
as anA-bimodule by acting via the unitA→ Com(A) = A/[A,A] both on the left and the
right. Abelianization in associative algebras isAbA(B → A) = A ⊗B IB ⊗B A whereIB
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denotes the kernel of the multiplication mapm: B⊗R B→ B. Abelianization in commu-
tative algebras isAbS(T → S) = S ⊗T ΩT/R whereΩT/R denotes the module of Kähler
differentialsIT/I2

T . By 3.8, diagram (22) prolongs to four Quillen pairs.

Remark4.6. One can viewA − BimodR as the category of leftA ⊗R Aop modules, and
the “same action” functorCom(A) −Mod → A− BimodR as the restriction (ηAm)∗ along

A⊗RAop m
−→ A

ηA
−−→ Com(A). Its left adjoint is the pushforward (ηAm)∗ = (A⊗RAop)⊗Com(A)−

which is indeed the functor coequalizing the two actions.

Some special cases are of particular interest. When theR-algebraA is justR itself – and
is in particular commutative – the comparison diagram (22) becomes

(23) AlgR/R

Com

��

R⊗I(−)⊗R // R− BimodR
R⊕−

oo

id

��
ComR/R

ι

OO

R⊗Ω(−)/R //
R−Mod.

R⊕−
oo

id

OO

The diagram says that killing all products can be done in two steps, by killing all com-
mutators first. One could try to use the Grothendieck composite spectral sequence for the
non-abelian setting [6, Thm 4.4] to relate Quillen homologyin AlgR to Quillen homology
in ComR, i.e. André-Quillen homology. This approach would require the knowledge of
homotopy operations inComR, which are known notably forR= F2 [10] [11].

More generally, another interesting case is when the cotangent complex in associa-
tive algebras is discrete, i.e.L A → AbAA is a weak equivalence. Quillen [15, Prop 3.6]
shows that this happens under the condition TorR

i (A,A) = 0 for all i ≥ 1 (for example if
R is a field), in which case HA∗(A; M) � HQ∗(A; M) is essentially the same as the usual
Hochschild cohomology, and likewise for homology.

Proposition 4.7. Let A be a commutative R-algebra satisfyingTorRi (A,A) = 0 for all i ≥ 1.
Then for every j≥ 1, the Hochschild homology of A can be written as

HH j+1(A) = π j
(
A⊗Com(C• ) ΩCom(C• )/R

)

where C• → A is a cofibrant replacement of A inAlgR. In particular, there is a comparison
mapHH j+1(A)→ HQj(A) for j ≥ 1.

Proof. Starting from a cofibrant replacementC• → A in AlgR and going right in (22), one
obtainsL A → IA, which is a weak equivalence because of the flatness assumption onA.
Then going down yieldsA⊗A⊗RAop L A, whoseπ∗ is TorA⊗RAop

∗ (A, IA). Again by the flatness
assumption, Hochschild homology HH∗(A) is not just a relative Tor but the (absolute)
TorA⊗RAop

∗ (A,A). The short exact sequence of bimodules 0→ IA → A ⊗R Aop → A → 0
gives a natural iso TorA⊗RAop

i+1 (A,A) � TorA⊗RAop

i (A, IA) for all i ≥ 1.
On the other hand, going down in the diagram yieldsCom(C•) → A and then going

right yieldsA⊗Com(C• ) ΩCom(C• )/R. The comparison map isπ∗ of (17), which measures the
failure ofCom: AlgR→ ComR to preserve weak equivalences. �

4.3. Truncated Π-algebras. A Π-algebra is the algebraic structure best describing the
homotopy groups of a pointed spaceX. More details can be found in [7,§ 4] [16, § 4];
we recall the essentials. LetΠ denote the homotopy category of pointed spaces with the
homotopy type of a finite (possibly empty) wedge of spheres ofpositive dimensions.
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Definition 4.8. A Π-algebra is a contravariant functorA: Π → Set that sends wedges to
products, i.e. a product-preserving functorΠop→ Set(or equivalently to pointed sets).

The prototypical example is the functor [−,X]∗, the homotopyΠ-algebra of a pointed
spaceX. A Π-algebraA can be viewed as a graded group{πi = A(Si)} (abelian fori ≥ 2)
equipped with primary homotopy operations induced by maps between wedges of spheres,
such as precomposition operationsα∗ : πk → πn for everyα ∈ πn(Sk). The additional
structure is determined by operations of that form, Whitehead products, and theπ1-action
on higherπi , and there are classical relations between them.

LetΠAlg denote the category ofΠ-algebras, that is Fun×(Πop,Set), where Fun× denotes
product-preserving functors.

4.3.1. Postnikov truncation.We want to make precise the notion of Postnikov truncation
for Π-algebras.

Definition 4.9. A Π-algebraA is calledn-truncated if for all i > n, we haveA(Si) = ∗,
the trivial pointed set.

Denote byΠAlgn
1 the full subcategory ofΠAlg consisting ofn-truncatedΠ-algebras.

Denote byΠn the full subcategory ofΠ consisting of spaces with the homotopy type of
a wedge of spheres of dimension at mostn, and letIn : Πn → Π be the inclusion functor.
One can go the other way, by removing spheres above a certain dimension. Glossing over
technicalities, define a “truncation” functorTn : Π → Πn by Tn

(∨k
i=1 Sni

)
=
∨

ni≤n Sni . It
sends a mapf :

∨
i Sni →

∨
j Smj to the homotopy lift

∨
ni≤n Sni

**UUUUUUUUU
� � // ∨

i Sni
f // ∨ j Smj

∨
mj≤n Smj

?�

OO

which exists and is unique since
∨

mj≤n Smj →֒
∨

j Smj is an iso onπk for k ≤ n. By the
same argument,In is left adjoint toTn. The unit 1→ TnIn is the identity, and the counit
InTn → 1 is the inclusion of wedge summands of small dimension. Notethat bothIn and
Tn preserve coproducts (wedges).

Proposition 4.10. There is an equivalence of categories I∗
n : ΠAlgn

1 � Fun×(Πop
n ,Set) : T∗n.

Proof. If F is a product-preserving functorΠop
n → Set, then we haveI ∗nT∗nF = (TnIn)∗F =

F, sinceTnIn is the identity. On the other hand, ifA is ann-truncatedΠ-algebra, we have
T∗nI ∗nA = (InTn)∗A � A. Indeed,A sends all counit maps

InTn(
∨

i

Sni ) =
∨

ni≤n

Sni →֒
∨

i

Sni

to isos sinceA is n-truncated. �

SinceIn : Πop
n → Π

op andTn : Πop → Π
op
n preserve products, they induce restriction

functorsI ∗n : Fun×(Πop,Set) → Fun×(Πop
n ,Set) andT∗n. Write Pn : ΠAlg → ΠAlgn

1 for I ∗n,
which is the Postnikovn-truncation ofΠ-algebras, andιn : ΠAlgn

1 → ΠAlg for T∗n, which
is the inclusion ofn-truncatedΠ-algebras.

Proposition 4.11. Pn is left adjoint toιn.
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Proof. (Functor point of view) In : Πn → Π is the left adjoint, and thusIn : Πop
n → Π

op

is the right adjoint. Note that Fun(−,Set) is a (strict) 2-functorCatop → Cat, where the
superscript inCatop means that 1-cells have been reversed but 2-cells do not change. The
same holds for Fun×(−,Set), as long as we take only categories and product-preserving
functors between them. ThereforePn = I ∗n is left adjoint toιn = T∗n. �

Proof. (Graded group point of view)A map f : A→ ιnB of Π-algebras into ann-truncated
Π-algebra is determined by the map of graded group up to degreen. The additional con-
ditions are thatf respect the additional structure (π1-action, Whitehead products, and pre-
composition operations). The latter preserves or increases degree, which means all the
conditions coming from or landing in degree greater thann are vacuous. In other words,
the data of a mapf is the same data as the corresponding mapPnA→ B in ΠAlgn

1. �

BothΠAlg andΠAlgn
1 are categories of universal algebras – finitary many-sortedvari-

eties, to be more precise. The freeΠ-algebra on a graded set{Xi} is F{Xi} = π∗(
∨

i
∨

j∈Xi
Si).

By combining the two adjunctions

GrSet
F //
ΠAlg

U
oo

Pn //
ΠAlgn

1
ιn

oo

we see that the freen-truncatedΠ-algebra on{Xi} is

Fn{Xi} = Pnπ∗(
∨

i

∨

j∈Xi

Si) = π∗(Pn

∨

i

∨

j∈Xi

Si).

In both categories, projective objects are retracts of freeobjects and regular epis are surjec-
tions of underlying graded sets [14, II.4, Rem 1 after Prop 1]. In particular, the left adjoint
Pn preserves projectives and prolongs to a left Quillen functor. Note also that{π∗(PnS1),
π∗(PnS2), . . ., π∗(PnSn)} is a set of small projective generators forΠAlgn

1, which exhibits
ΠAlgn

1 as an algebraic category.

4.3.2. Standard model structure.The standard model structure on the categorysΠAlg of
simplicialΠ-algebras is described in [7,§ 4.5] and the same description holds forsΠAlgn

1.
A map f : X• → Y• is a fibration (resp. weak eq) if it is so at the level of underlying graded
sets or graded groups. Cofibrations are maps with the left lifting property with respect to
acyclic fibrations and can be characterized as retracts of free maps.

Proposition 4.12. The left Quillen functor Pn : sΠAlg → sΠAlgn
1 preserves weak equiva-

lences and fibrations. In particular, it preserves cofibrantreplacements.

Proof. (Functor point of view)Let f : X• → Y• be a fibration (resp. weak eq) insΠAlg.

Let P be a projective ofΠAlgn
1, exhibited as a retract of a free byP

s
−→ F

p
−→ P. Then

(Pn f )∗ : Hom(P,PnX•) → Hom(P,PnY•) is a retract of Hom(F,Pn f ) so it suffices that the
latter be a fibration (resp. weak eq) of simplicial sets.

Note thatF = Fn(S) is free on a graded setS empty above dimensionn, so we have:

HomΠAlgn
1
(F,PnX•) = HomGrSet(S,UPnX•)

= HomGrSet(S,UX•)

= HomΠAlg(F(S),X•).
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Using this, we obtain:

HomΠAlgn
1
(F,PnX•)

�

��

(Pn f )∗ // HomΠAlgn
1
(F,PnY•)

�

��
HomΠAlg(F(S),X•)

f∗
// HomΠAlg(F(S),Y•).

Since f is a fibration (resp. weak eq) insΠAlg, the bottom row is a fibration (resp. weak
eq) of simplicial sets. �

Proof. (Graded group point of view)The mapf : X• → Y• is a fibration (resp. weak eq)
of simplicial sets in each degree, hence the mapPn f is a fibration (resp. weak eq) of
simplicial sets in each degree, that is in degrees 1 throughn. �

Corollary 4.13. 1. For anyΠ-algebra A, the comparison map of cotangent complexes
Pn(L A)

∼
−→ L PnA induced by the adjunction Pn ⊣ ιn is a weak equivalence.

2. If N is a module over PnA, then the comparison map in Quillen cohomology

(24) HQ∗
ΠAlgn

1
(PnA; N)

�

−→ HQ∗
ΠAlg(A; η∗AιnN)

is a natural iso.

Proof. By 3.10, 3.11, and 4.12. �

HereηA : A→ ιnPnA is the Postnikov truncation map. We would like a better descrip-
tion of the moduleη∗AιnN in (24). Think of a module overA as an abelianΠ-algebra on
which A acts (cf. [7,§ 4.11]), namely the kernel of the split extension as opposed to its
“total space”.

Lemma 4.14. The categoryModPnA of modules over PnA is isomorphic to the full subcat-
egoryModn-tr

A of ModA of modules that happen to be n-truncated.

Proof. Consider the adjunction on modules:

ModA

Pn // ModPnA
η∗Aιn

oo

from 3.2. The compositePnη
∗
Aιn is the identity. Moreover,η∗Aιn lands inModn-tr

A . By
restrictingPn to the latter, we obtain an adjunctionModn-tr

A ⇄ ModPnA where both com-
positesPnη

∗
Aιn andη∗AιnPn are the identity, i.e. an iso of categories. �

The lemma justifies the abuse of notation in the following repackaged statement.

Theorem 4.15. (Truncation isomorphism) Let A be aΠ-algebra and N a module over A
that is n-truncated. Then there is a natural isomorphism

HQ∗
ΠAlgn

1
(PnA; N)

�

−→ HQ∗
ΠAlg(A; N).

The following example is of interest in light of theorems 1.3and 9.6 in [7].

Example4.16. Let A be ann-truncatedΠ-algebra. Fork a positive integer, thek-fold
loopsΩkA form a module overA (which is zero ifk ≥ n) and we are interested in the
cohomology groups HQ∗(A;ΩkA). SinceΩkA is (n − k)-truncated, theorem 4.15 says
HQ∗

ΠAlgn−k
1

(Pn−kA;ΩkA) � HQ∗
ΠAlg(A;ΩkA).
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