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BEHAVIOR OF QUILLEN (CO)HOMOLOGY WITH RESPECT TO
ADJUNCTIONS

MARTIN FRANKLAND

AsstracT. This paper aims to answer the following question: Givendjarection between
two categories, how is Quillen (co)homology in one categefgted to that in the other?
We identify the induced comparison diagram, giving neagsaad stficient conditions for
it to arise, and describe the various comparison maps. Ekamape given. Along the way,
we clarify some categorical assumptions underlying Quileo)homology: cocomplete
categories with a set of small projective generators pmeidonvenient setup.

1. INTRODUCTION

1.1. Motivation and goals. D. Quillen [14,§11.5] introduced a notion of cohomology that
makes use of homotopical algebra and simplicial methodsederived functors in a non-
abelian context, generalizing the derived functors of hiogioal algebra. One of the goals
was to solve problems in algebra using methods from homdtogyry, although Quillen
cohomology later found many applications to homotopy theord topology([12, Rem
4.35].

Quillen cohomology works in a broad context which includesng interesting cat-
egories. The case of commutative algebras, the celebratelde/AQuillen cohomology
[15, §4] [3] [12, §4.4], was one of the first examples studied. The analogueskwrcative
algebras[15§3] is related to another well studied theory, namely Hochiddohomology.
Quillen exhibited relations between the two [§8], which can be useful when cohomol-
ogy is easier to compute in one category or the other.

This paper investigates the question of relating Quillex)lfomology in diferent cat-
egories, more specifically when two categories are relageghladjunction. The author’s
motivating example was to compute some Quillen cohomolagyps of truncatedlI-
algebras controlling the obtructions to realizatioh [7high is done in section 4.3. How-
ever, the broader question seems natural, given that agjairs abound in nature.

1.2. Organization and results. Sectiori 2 clarifies the categorical assumptions underlying
Quillen cohomology. It consists mostly of category theamth a short excursion into
universal algebra, all for the purposes of homotopicallalgeThe main clarifications are
proposition§ 2.32, 2.39, ahd 2]140. Propositions]2.41a#8 Aarify conditions related to
Beck modules being abelian.

Date November 23, 2010.

2000Mathematics Subject ClassificatioRrimary: 18G55, 55U35; Secondary: 18G30, 13D03.

Key words and phraseQuillen, homology, cohomology, adjunction, simplicialpdel, structure, compari-
son, maps.

Supported in part by an NSERC Postgraduate ScholarshipreRQRNT Doctoral Research Scholarship.

This paper is part of the author’s doctoral work at MIT undee supervision of Haynes Miller, whom
we thank heartily for all his support. We also thank Michaelr3 Jacob Lurie, and David Blanc for fruitful
conversations.

1


http://arxiv.org/abs/1009.5156v2

2 MARTIN FRANKLAND

Section[3 is the heart of the paper, describing tliect of an adjunction on Quillen
(co)homology. We first describe the comparison diagramisting of Quillen pairs, and
work out various comparison maps from it. The main result® om which3.ID and
[3.12 follow.

Section 4 studies examples of adjunctions where the rigjoireds the inclusion of
a regular-epireflective full subcategory. In other worde tight adjoint forgets certain
conditions satisfied by the objects, and the left adjoinhésduotient that freely imposes
the conditions. The main results &re 4.13and4.15.

1.3. Notations and conventions.

Definition 1.1. For an objecX of C, the categoryviodx of Beck modulesover X is the
categoryAb(C/ X) of abelian group objects in the slice categGiX.

Definition 1.2. If the forgetful functotUy : Ab(C/X) — C/X has a left adjoinf\by: C/X —
Ab(C/X), itis calledabelianizationoverX.

Definition 1.3. For a mapf: X — Y in C, thedirect image functor f,: C/X — C/Y is
postcomposition by, which is left adjoint to theullback functorf*: C/Y — C/X. Since
f* preserves limits, it induces a functdt: Ab(C/Y) — Ab(C/X) also calledpullback.
Thepushforward by f is the left adjointf. : Ab(C/X) — Ab(C/Y) of f*, if it exists.

Definition 1.4. The cotangent complex Lk of X is derived abelianization oX, i.e. the
simplicial module oveiX given byLy := Abx(C, — X), whereC, — X is a cofibrant
replacement oK in sC, the category of simplicial objects .

Definition 1.5. The Quillen homology of X is derived functors of abelianization, given
by HQ,(X) := m.(Lx). If the categoryModx has a good notion of tensor produgtthen
Quillen homology with cofficients in a modulé/ overX is HQ,(X; M) = m.(Lx ® M).

Definition 1.6. TheQuillen cohomologyof X with codficients in a moduléM is (simpli-
cially) derived functors of derivations, given by HX; M) := #* Hom(L x, M).

Definition 1.7. The abelian cohomologyof X with codficients in a moduleM is de-
rived functors of derivations in the sense of homologicgeara, given by HA(X; M) =
Ext"(AbxX, M). The abelian homologyof X with codficients inM is HA,(X; M) =
Tor.(Abx X, M). They can be viewed as abelian approximations of Quilledh@mology,
with comparison maps HAX; M) — HQ*(X; M) and HQ(X; M) — HA.(X; M)

Remarkl1.8. For ease of reading, we often abbreviate the word epimarplis“epi”,
monomorphism to “mono”, isomorphism to “iso”. and weak egleénce to “weak eq”.

2. Setup FOR QUILLEN (CO)HOMOLOGY

In this section, we study in more detail the categorical aggions needed in order
to work with Quillen cohomology. Most importantly, we waithet prolonged adjunction
Abx: sC/X 2 sAHC/X): Ux to be a Quillen pair.

2.1. Prolonged adjunctions as Quillen pairs.

Proposition 2.1. Assume we have an adjunction€ 2 D: R.

(1) If R preserves regular epis, then L preserves projectives.
(2) If, moreover, the categoiy has finite limits and enough projectives, then the con-
verse holds as well.
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Proof. 1. LetP be a projective irC. We want to show.P is projective inD. Letf: d — d’
be any regular epi itD. Then we have:

Homp(LP, d) — > Homy(LP, d")

Home(P, Rd) T Homg(P, Rd).
By assumptionRf: Rd— Rd is a regular epiirC, andP is projective, hence the bottom
(and top) map is a surjection. Thu® is projective.
2. Under the additional hypotheses, regular epis and giogscdetermine each other.
Indeed,[[14§11.4, Prop 2] asserts thdt: ¢ — ¢ is a regular epift the map

f.: Hom(P,c) -» Hom(P,c')

is a surjection for all projective. Now we start with a regular epi: d — d’ in © and want
to showRf: Rd— Rd is a regular epiirC. Let P be any projective it and consider:

Home(P, Rd) — 2% Homy (P, Rd)

Homyp(LP, d) — Homp(LP, d).

By assumptionlP is projective andf is a regular epi, hence the bottom (and top) map is
a surjection. Thus, by the criterion given aboRd,is a regular epi. O

Proposition 2.2. AssumeC and D have finite limits and enough projectives, and satisfy
extra assumptions so that Quillen’s theorem 4 applies @hey are cocomplete and have
sets of small projective generators). Assume we have ametitjn as above, and hence
an induced adjunction

L
1) C <_—R> sD

between model categories. If L preserves projectives, avatently, if R preserves regular
epis, then this is a Quillen pair.

Proof. We show a slightly stronger statememR:preserves fibrations and weak equiva-
lences. Recall that a map X, — Y, is a fibration (resp. weak eq) if the induced map
f.: Hom({P X,) —» Hom(P,Y.) is a fibration (resp. weak eq) of simplicial sets for all
projectiveP. TakeP a projective inC and consider:

Home(P, RX.) —2% Home(P,RY.)

Homp(LP, X,) — Homyp(LP,Y,).

By assumptionlP is projective inD andf is a fibration (resp. weak eq) 8D, hence the
bottom and top maps are fibrations (resp. weak eq) of sinapkats. ThuRf: RX, —
RY. is a fibration (resp. weak eq). O
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Proposition 2.3. The converse also holds: If the prolonged adjunctign (1) Qullen
pair, then R preserves regular epis.

Proof. Take aregularepi: X — Y in D and view it as a map between constant simplicial
objects insD. Factoring it as a cofibration - acyclic fibration [$41.4, Prop 3], we produce
an acyclic fibrationf,: X, — Y, in 8D satisfyingXy = X, Yo = Y, andfy = f. SinceR
prolongs to a right Quillen functoRf, is an acyclic fibration irsC, and hence a regular
epi in each level. In particulaR f = Rf is a regular epi irC. O

Remark2.4. We've seen that a prolonged right Quillen functdrinl 2.2 igipalarly strong:

it preserves fibrations arall weak equivalences, not just between fibrant objects. How-
ever, the prolonged left Quillen functor does not enjoy #dslitional property in general,
i.e. it need not preserve all weak equivalences, only thes@den cofibrant objects.

Example2.5. Let R be a commutative ring and consider the fund®® — from abelian
groups toR-modules. It preserves projectives (i.e. sends a freeabelioup to a free
R-module), but the prolonged left Quillen functor does natgarve all weak equivalences
if Ris not flat overZ.

2.2. Slice categories.Propositiorf 22 gives a simple criterion for when a prolahgd-
junction is a Quillen pair. We want to know if the induced auljtion on slice categories is
also a Quillen pair. Let us first describe regular epis angeptives in the slice category. A
map inC/X is a regular epift the map of total spaces is, and an objea®6X is projective
iff the total space is.

Proposition 2.6. If f: Y — Z is a regular epi inC, then

Y—Z

AN

X
is a regular epi inC/X. The converse also holdifhas coequalizers.

Proof. Seel[4, Chap 1, Prop 8.12]. It follows from the fact that thautxe” functoiC/X —
C creates colimits. O

Proposition 2.7. 1. If P is projective inC, then p P — X is projective inC/X.
2. The converse also holdgifhas enough projectives.

Proof. 1. Start with a regular epi

in C/X, which meand : Y — Zis a regular epi irC, by[2.8. We want to know if the map

f.: Homex(P 2 X, Y 2 X) = Homgx(P > X, Z5 X)
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is surjective. Letr be a map in the right-hand side which we are trying to reach and
consider the diagram:

SinceP is projective inC, there is a lifta in the top triangle, meanin§a = a. If @ is in
fact a map in Horg/x(P LA X, Y LA X), then it will be our desired lift. So it $fices to
check that the triangle on the left commutgs:= zfa = za = p.

2. LetE > X be projective inC/X. SinceC has enough projectives, pick a regular epi
. P — E from a projectiveP. Consider the diagram

/

X

7/
E er
\
where there exists a lit sinceE = X is projective inC/X. The relationrs = idg exhibits
E as a retract of a projective @, hence itself projective. O

Now we can describe the standard Quillen model structurg®@nX) = sC/X. A map

) v,z

DN

X
is a fibration (resp. weak eq) s{C/X) iff the map

f.
Homex(P 5 X, Yo 5 X) —= Homg x(P 2 X, Z, 5 X)

is a fibration (resp. weak eq) of simplicial sets for all pobjee P % Xin C/X. By
proposition[2.l7, we can rephrase the latter as: for all ptibje P in C and mapp €
Home (P, X).

However, in the framework of Quillen (co)homology, we deddto work with the
“slice” model structure orsC/X, where the mafd{2) is a fibration (resp. weak dfjjhie
map f.: Home(P,Y.) —» Home(P, Z,) is a fibration (resp. weak eq) of simplicial sets for
all projectiveP in C. In fact, let us check that the two model structures agree.

Proposition 2.8. There is a natural iso of simplicial sets:

Upesom HOMx(P 2 X Y, % 39— HOM (P Yo,
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Proof. Idea : For a fixed: Y — X, the data of a mag: P — Y is the same as the data of
the commutative diagram:
g

P——>Y

\ ly
X
and thus we can partition all mags P — Y according to their composie= yg: P — X.

More precisely, we take the map
Home/x(P 5 X, Y 2 X) — Home(P,Y)
peHome(P,X)

which is readily seen to be surjective and injective, i.eisarof sets. Moreover, it is natural
iny: Y — X, i.e. the two sides define two naturally isomorphic funcfoosn C/X to Set
By naturality, it prolongs to a natural iso of simplicial setSince colimits of simplicial
objects are computed levelwise, the simplicial set whdskevel is

Home x(P 2 X, Y 2 X)
peHom¢ (P, X) n
equals the left-hand side in the statement. O

Proposition 2.9. The standard model structures ofC¢X) and £/X are the same.

Proof. The top row in the diagram

Home (P, Y.) L Hom (P, Z.)

L, Home x(P % X, Yo 5 X) —— 11, Homg x (P 5 X, 2, 5 X)

is a fibration (resp. weak eq) of simplicial sefiSdach summand is so. This medans a
fibration (resp. weak eq) isC/X iff it is so inS(C/X). Moreover, the model structures are
closed i.e. cofibrations are determined by fibrations anckweaivalences (as having the
LLP with respect to acyclic fibrations). Therefore the twodwabstructures agree. 0O

2.3. Abelian group objects. In this section, we study the properties of the catedd’f)
of abelian group objects in a catega@and the forgetful functod : Ab(C) — C.

It is convenient to work with regular categories, so we wdikd to know if Ab(C)
is regular wheneveg is. The main feature of regular categories is that any mapbean
factored as a regular epi followed by mono; isos are pracisalps that are both a regular
epi and a mono. We will check that all three classes of mapgraserved and reflected by
u.

First, recall thau is faithful, it and creates limits, and it reflects isosUiff is an iso,
then U f)~! lifts to Ab(C).

Proposition 2.10. Assume has kernel pairs. Then U preserves monos.

Proof. In a category with kernel pairs, a mdp X — Y is a mono ff the two projections
X xy X =3 X from its kernel pair are equal. Thus, any functor betweergmies with
kernel pairs which preserves kernel pairs also preserves®mo O

In [4, Chap 6, Prop 1.7], M. Barr shows the following.
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Proposition 2.11. Assume is regular. Then U lifts the regular epi - mono factorization
in C. In other words, if £ X - Y isamap in AfC) and UX—» UZ — UY is a regular
epi - mono factorization of the underlying map U f, then we Gfirt (uniquely) to a
factorization X— Z — Y in AQC).

Corollary 2.12. If Cis regular, then U preserves regular epis.
In addition, we’d like to know ifU reflects regular epis.

Proposition 2.13. If C is regular, then AKC) has coequalizers of kernel pairs, created by
u.

Proof. Let f: X — Y be any map irAb(C) and take its kernel pa xy X = X. SinceU
preserves limits, the underlying diagram is still a kerragt,pand we can take its coequal-
izer:

pr
UX xuy UX —= UX —'> Uy
prz

N

C.
SinceC is regular, the map: C — Y is a mono([4, Chap 1, Prop 8.10]. By 2111, there
is a unique liftX — C — Y of that regular epi - mono factorization. One can check that
X — C is the desired coequalizer Ab(C) of the kernel pair off. O

Proposition 2.14. If C is regular, then U reflects regular epis.

Proof. Let f: X — Y be a map inAb(C) such thatU f is a regular epi irC. We want

to show thatf is a regular epi. Since creates limits, the kernel pair dfis the unique
lift of the kernel pairtU X xyy UX =3 UX of U f, and the latter has a coequalizer, namely
Uf: UX — UY. SinceU creates coequalizers of kernel pairs, there is a uniqueneoco
lifting Uf: UX - UY anditis a coequalizer of xy X = X. But f: X — Yis such a lift,
hencef is a regular epi. O

Corollary 2.15. The lifted factorization df 2.11 is a regular epi - mono faation in
Ab(C).
Corollary 2.16. If C is regular, then AEC) is regular.

Proof. AKC) has kernel pairs (or any limits th&thas) and coequalizers of kernel pairs. It
remains to check that the pullback of a regular epi is a regda

P—>X

SinceU preserves regular epikle is a regular epi. Since pullbacks are computed’jn
we haveU(f*e) = (U f)*(Ue), which is a regular epi sina@ is regular. SincéJ reflects
regular episf*eitself is a regular epi iIAL(C). O

Now that we've discussed regularity, let us discuss moreggrcolimits inAb(C); it
will become useful later. Recall a few definitions [8, Def.4,14.1.2].

Definition 2.17. A subobjectof an objectX in a categonC is an equivalence class of
monomorphism& — X, up to isomorphism oveX. The equivalence class df— X is
denotedZ — X]. The collection of subobjects of is denoted Subx).
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Definition 2.18. A categoryC is well-poweredif the subobjects of any object form a set.
Lemma 2.19. If C has finite limits and is well-powered, then (&% is well-powered.
Proof. For any objecX of Ab(C), the functorU : Ab(C) — C induces a map

U.: SubX) - SubUX)

where the right-hand side is a set and the left-hand side fisida) a collection. Let us
show thatJ, is injective.

Let [A — X] and [B — X] be subobjects oK satisfyingU.[A — X] = U,[B — X] =
[Z — UX], which means there is a diagramd@rlike such:

A
&

One can check that~ty commutes with the structure maps; it follows from the faetth
the structure maps @ andB are restricted from those of. Hencey ¢ lifts to an iso in
Ab(C) and we have4 — X] = [B — X]. O

Lemma 2.20. If C is complete and well-powered, then one can form the equicalesla-
tion (or gffective equivalence relation) generated by a set of relatmman object X. More
generally, ifC has a limit-preserving functor U to some categdtysometimesey, the
same conclusion holds with relations (or pseudorelatiamsihe underlying object U X.

Proof. Let {p;} be a set of relations od X, i.e. eacty; is a subobject 0 X x UX. The
notion of being an equivalence relation is a well defined propfor subojectsR —
X x X]. So is the property of “containing” the relatign, meaning there is a factorization
pi —» UR—= UX x UX; we writep; < URwhen this happens. Consider the collection

R :={R e SubX x X) | Ris an equivalence relation apd< URfor all i}

which is a set sinc€ is well-powered. Take the intersectignR of all relations inR,
which is the limit of the diagram like such:

NE

and hence exists, by completenes£ofThe intersection is still an equivalence relation,
and still contains alb; (sinceU preserves limits). By construction, it is the desired equiv
alence relation generated by all

The analogous proof forfiective equivalence relations works as well. Indeed, an in-
tersection of &ective equivalence relations, i.e. kernel pairs of mgpsX — Y;, is the
kernel pair of the mapf(): X — [1Y;.

Note that in both cases, the collectifris non-empty, as it contains the terminal equiv-
alence relation idX x X — X x X, which is the kernel pair of the ma} — = to the
terminal object. O
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Proposition 2.21. If C is complete, well-powered, and regular, th@ihas coequalizers (of
parallel pairs).

Proof. Let f,g: X =3 Y be two maps, which we view as a pseudorelationyoi.e. a
map (f,g): X — Y x Y. SinceC is regular, factor it as a regular epi followed by a mono
X » R Y x Y. LetRbe the &ective equivalence relation ohgenerated by (lemma
[2.20). TherR 3 Y has a coequalize¥ — C, sinceC is regular. One readily checks that
Y — Cis also the coequalizer & =3 Y. O

Corollary 2.22. Under the same assumptions, (&b also has coequalizers of parallel
pairs.

Proof. AKC) is also complete (sincl: Ab(C) — C creates limits), well-powered (by

[2.19), and regular (Hy 2.16). o

2.4. Algebraic categories. In the classicl[14§11.4, Thm 4], Quillen introduces a standard
simplicial model structure on the categ@y of simplicial objects in a categoxy, assum-
ing C is nice enough. For example, the theorem applies whieas finite limits, all (small)
colimits, and a set of small projective generators (in patér, enough projectives). This
leads us to the following definition.

Definition 2.23. A category is callealgebraicif it is cocomplete and has a set of small
projective generators.

Remark2.24 The word “algebraic” is overused, and we am@t using it as in[[9,§3.4],
namely Lawvere’s models of algebraic theories. Th®edénce is that our algebraic cat-
egories are not necessarily exact. Note that our algebedggories are locally finitely
presentable in the sense [of [9, Def 5.2.1].

Algebraic categories have excellent properties: they angptete (by([1, Cor 2.12], us-
ing the fact that any set of small objects with coproductbractly finite), well-powered
[8l Prop 4.5.15], and regular [14l1.4, Cor after Prop 2].

Our goal is to show that algebraic categories provide a getupgor Quillen cohomol-
ogy in the following sense: abelianizations and pushfods&xist, and the abelianization
adjunction is a Quillen pair.

2.4.1. Slice categories are algebraic.

Proposition 2.25. LetC be an algebraic category with generator set S and leXf— Y
be amapirC.
(1) fisamonoj f.: Hom(P, X) - Hom(P,Y) is a injective (i.e. a mono iel for
alPesS.
(2) fisaregularepijf f.: Hom(P, X) - Hom(P,Y) is surjective (i.e. a regular epi
inSef forallP e S.

In particular, the family of functors Hor(-) (for all P € S) collectively reflects isos,
as shown in([B, Prop 4.5.10].

Proof. Straightforward, using the fact that any objécbof C receives a regular emi: 11
P; » Afrom a coproduct of generatoPs € S. O

Proposition 2.26. In an algebraic categorg, filtered colimits commute with finite limits.
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Proof. Let L be a filtered categoriy a finite category, anfi: L x N — C a functor. There
is a natural comparison maa colimg limy F — limy colim_ F which we want to show
is aniso. BY 2.7b, it sflices to show HonK ¢) is an iso (of sets) for all generatBr From
the definition of limit and the smallness of the generatoespbtain:

Hom(P, colim,_ limy F) . Hom(P, limy colim_ F)

colim_. Hom(P, limy F) limy Hom(P, colim_ F)

colim_ limy Hom(P, F) —— limy colim_ Hom(P, F).

The bottom map (and hengg) is an iso, since filtered colimits commute with finite limits
in Set O

Proposition 2.27. Let C be an algebraic category. Then:lLAb(C) — C creates filtered
colimits. In particular, AKC) has filtered colimits and U preserves them.

Proof. Essentially the same reash creates limits. Letl. be a filtered category and
F: L - Ab(C) a diagram whose underlying diagrdu: L — C admits a colimit. Then
there is a unique lift of the colimiting coconehto a cocone irAb(C). Indeed, there is at
most one way to endow colimJ F with structure maps, since they are prescribed on each
summand:

colim_(UF x UF) = colim_ UF x colim_ UF colim_ UF
UF() x UF() UF().

“

Applying colim_ to the structure maps &fF producesthose structure maps for celidF.
The result is the colimit oF in Ab(C). O

Proposition 2.28. Let C be an algebraic category and X an object@f Then the slice
categoryC/X is algebraic.

Proof. 1. C/X has small colimits, since they are created by the “souragétirC/X — C.
2. LetS be a set of small projective generatorsdbrThen

{Pixmes,pe Horm(P,X)}

is a set of small projective generators €tX. Smallness is a straightforward verification;
the rest follows fronl ZJ7, 216, and the fact thHIR)) — X is the coproducti(P; — X) in
C/X. (By the same argument,df has enough projectives, then so degX.) |

2.4.2. Abelianizations existTo show that an algebraic category has abelianizations, we
venture into universal algebra. By a characterizationrs®d2, Thm 5.2], every algebraic
category is equivalent to a many-sorted finitary quasitari@hat is, a category where
objects have an underlying graded set indexed by som8& sét‘sorts”, equipped with
some operations, and satisfying some equations and irtiphsg2, §1.1].
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More precisely, le& be a (many-sorted) signature, a set of finitary operatiorls wi
the data of their (many-sorted) arities. 3Alg denote the category af-algebras: ob-
jects areS-graded sets equipped with operations prescribell,lgnd morphisms arg-
homomorphisms, i.e. maps of graded sets that respect aljp&tions. It is known that
»Alg is complete and cocomplete, the forgetful funciddg — Sef creates limits and
filtered colimits, and it has a left adjoiy, which freely adjoins the operations. A vari-
ety (resp. quasivarietyk is a full subcategory o£Alg whose objects are precisely those
satisfying a given set of equations (resp. equations antidatjpns).

Example2.29 The (one-sorted) variety of abelian groups is the full stégary of{e, ¢, u}-
algebras satisfying the usual equations for the neutrahehee, inverse:, and addition
u, with arities 0, 1, and 2 respectively. The quasivarietyasion-free abelian groups
is defined by the additional implicationaX = 0 = x = 0) for alln € N. Likewise,
commutative rings form a (one-sorted) variety, while regtlicommutative rings, i.e. those
without nilpotents, form a quasivariety defined by the adddl implications " = 0 =
x=0)forallneN.

The inclusionly : K — XAlg has a left adjoink« : ZAlg — %K, which is essentially
quotienting by all the equations and implications that defih The unit maps are regular
epis and the counit maps are isomorphisms. In particilas, cocomplete.

Lemma 2.30. If C is a variety (resp. quasivariety), then so is(8p

Proof. LetX be the signature @. Objects ofAb(C) have the underlying graded set of their
underlying object irC, equipped with the additional structure mags u, satisfying the
conditions of associativity and so on, and the conditioastthe structure maps be maps in
C. ThusAb(C) is the full subcategory of’Alg satisfying the equations and implications
that defineC, plus an additional set of equations. HEfés the signatur& L {e, ¢, u} where
the additional operations have arities 0, 1, and 2 respygtiin the many-sorted cas¥,

is X U {es, ts, Ustses Where the additional operations have ariti@sg, (s;s), and 6, s; 9)
respectively. ]

Proposition 2.31. If C is algebraic, then U Ab(C) — C has a left adjoint.

Proof. Let us forget the equations definidgand Ab(C) while keeping all the structure. In
other words, consider the diagram

U
AblC)— ¢

”AD(C)T\LMMC) ”CT\LM
Uy s

¥'Alg — *Alg

Fss/

where we have adjoint pairs on the left, bottom, and rightsidlhe right adjoints com-
mute. Let us check that the obvious candidaig:)Fs s I¢ is in fact left adjoint toU. For
Xin C andBin Ab(C), we have
HomMac) (manc) Frxr1cX, B) = Homsayg (IcX, Us' sl apc) B)
= Homgayg (IcX, 1cUB)
= Hom: (X, UB)
sinceC is a full subcategory cfAlg. O

From[2.28 and2.31, we obtain the following.
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Corollary 2.32. An algebraic categorg has all abelianizations Ab: C/X — Ab(C/X).

2.4.3. Beck modules are algebraiSince we want to put the standard model structure on
the categorysA(C/X) of simplicial Beck modules, we'd like to know th#&h(C/X) is
itself algebraic. By 2.28, it dfices to show that i€ is algebraic, then so iBb(C).

Lemma 2.33. AssumeC is regular and U. Ab(C) — C has a left adjoint. If a map
f: X » UBis a regular epi inC, then its adjunct map*t AbX — B is a regular epi in
AB(C). In particular, the counit AbU A» A is always a regular epi.

Proof. Recall thatAbX — B is a regular epi irAb(C) iff UAbX — UB s a regular epi in
C. The regular epf factors asf = (U f#) o nx: X - UAbX — UB, which impliesU ¥ is
aregular epi sinc€ is regular[[8, Cor 2.1.5 (2)]. O

Remark2.34 The converse is false in general. For example, @keSet X = {x}, Y = Z,
andf(x) = 1. The mapf is far from being a regular epi (i.e. surjection), but itsuadijt
f#: Ab(x) = Z — Z is a regular epi, even an iso.

Lemma 2.35. Assume is regular and has enough projectives, and Bb(C) — C has
a left adjoint. Then an object of AB) is projective jf it is a retract of AbP for some
projective P ofC.

Proof. (<) Trying to lift a mapAb(P) — B along a regular eph —» B is the same as
trying to lift the adjunct map:
e
|
e
Ve
A

UA—=UB.
The bottom map is a regular epi sindepreserves them, and thus the lift exists. Therefore
Ab(P) is projective, and a retract of a projective is projective.
(=) Let Q be a projective irAb(C). SinceC has enough projectives, there is a projective
P of C with a regular epP -» UQ. Take its adjunct mapbP —» Q, which is still a regular
epi by[2.38. Lifting the identity ofQ along that regular epi exhibit® as a retract of
AbP. O

Proposition 2.36. If C is algebraic, then A) is also algebraic.

Proof. 1. Ab(C) is cocomplete since it is a quasivaridiy (2.30).

2. LetS be a set of small projective generators@rThen{Ab(P) | P € S} is a set of
small projective generators fétb(C). Smallness is a straightforward verification, using
[2.27. EachAb(P) is projective, by 2.35. Let us show that they form a familygeherators.
For any objecX of Ab(C), take a regular edilP; -» UX from a coproduct of generators
in S. Then the adjunct mafgAb(P;) = Ab(LIP;) -» X is a regular epi. (By the same
argument, itC has enough projectives, then so dééx%C).) O

It would be worthwhile to know under which assumptions doasompleteness af
guarantee cocompletenessAiiC). One may want to avoid the universal-algebraic argu-
ment used in the proof 6 2.B6.

Proposition 2.37. Assume& is cocomplete and UAD(C) — C has a left adjoint. If AEC)
has coequalizers, then B) is cocomplete.

Proof. Using Beck’s monadicity theorem, one can show thais monadic[[13,§VI.8,
Thm 1]. The result follows fromi |9, Prop 4.3.4]. O
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From[Z2.22, we obtain the following.

Corollary 2.38. Assume&’ is cocomplete and UAb(C) — C has a left adjoint. If more-
overC is complete, well-powered, and regular, then(@pis cocomplete.

Note that in the case of algebraic categories, we did userthvensal-algebraic argu-
ment in[Z.31 to show thdd has a left adjoint.

2.4.4. Pushforwards exist.
Proposition 2.39. LetC be an algebraic category. Th&hhas all pushforwards.
Proof. Let f: X — Y be a map irC. Consider the diagram

ABC/Y) ——= AKC/X)

ally oo

c/Y <—f—> C/X

where the abelianizations existby 2.32. The right adjatotemute. Starting from a Beck
moduleM in Ab(C/X), one naive candidate would By f;Ux M, which is much too big
for our purposes. However, we can trim it down to the righediy modding out some
relations. More precisely, we find a quotientAy f,UxM which satisfies the solution set
condition of the adjoint functor theorem [18Y.6, Thm 2].

We donothave a magM — f*Aby fiUxM, although we DO have a map of underlying
objects

(3) 1. UxM — Uy f*Aby filUxM = (f*Uy)(Aby fi)UxM

in C/X, which is the unit of the adjunctioAbyf, 4+ f*Uy. Letq: AbyfilUxM — Q be
the closest quotient iIAb(C/Y) which makes the maj](3) lift tdb(C/X), i.e. we have a
diagram inAb(C/X)
M= — = F*AbyfiUxM — > £*Q
\/
n
satisfyingUxn = (Uxf*qg) o n, andQ is initial with that property. To shou) exists, note
that the equations for to lift to Ab(C/X) are a set of pseudorelations g f*Aby filUx M.
Take the €ective equivalence relation ohby fiUx M generated by those pseudorelations
as in2.20. Its coequalizer is the desired quotient.

Let us check thaf: M — f*Q satisfies the solution set condition. Takean object of
Ab(C/Y)andh: M — f*N a map inAb(C/X). Consider the underlying map

Uxh: UxM — Uxf*N = f*UyN
and its adjunct mapUxh)*: Aby fiUxM — N. By adjunction, the composite

Uy (Uxh)

UxM —L = f*UyAby fiUxM f*UyN = Uy f*N

is Uxh, which lifts to Ab(C/X). By the universal property d®, we obtain a factorization
(Uxh)* = ¢q for some mapy: Q — N in Ab(C/Y) and, upon applying*, the desired
factorizationh = (f*¢)7. O
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2.5. The setup. Putting the ingredients together, we obtain a good setu@folien co-
homology. It is essentially an observation of Quillen|[§4,5, (4) before Thm 5], which
we state and prove in more detail.

Proposition 2.40. Let C be an algebraic category and X an object@f ThenC/X and
Ab(C/X) are algebraic and the prolonged adjunction

Aby
SC/X <T_> SAKC/X)

X
is a Quillen pair.

Proof. BothC/X andAb(C/X) are algebraic, by 2.28 ahd 2136. Moreoweis regular and
thereforeC/X is also regulaf[4, Chap 1, Prop 8.12]. By proposifion P.h&,right adjoint
Ux: Ab(C/X) — C/X preserves regular epis, hence the prolonged adjunctio@islen
pair, by[2.2 an@2]9. o

The setup above is not quite enough to work with Quillen coblogy. There are
additional assumptions on the homotopy cateddoyAb(sC/X.): conditions (A) and (B)
at the beginning of_ [14, I1.5]. The conditions are satisfied éxample ifC has abelian
Beck modules, i.e. the categoAb(C/X) is abelian for any objecK. One condition
guaranteeing abelian Beck modules is exactrnéess [4, Chapr, 2ZT4]. In [15], at the
beginning of section 2, Quillen uses the word “algebraiciradefinition(2.Z8 and then
refers to Lawvere’s work, in which the categories are asslimbe exact (and in particular
have abelian Beck modules). This is not automatic.

Proposition 2.41. An algebraic category does not necessarily have abeliak Bexdules
(and in particular is not necessarily exact).

Proof. As a counterexample, take the categab' of torsion-free abelian groups, viewed
as a full subcategory of abelian groups. The inclusioAb'! — Ab has a left adjoint,
which quotients out the torsion subgroup. THIE' is cocomplete, and has a small pro-
jective generator, namely, the same generator as fab.

However,Ab!’ is not exact: the map: Z — Z is a mono which is not the kernel of its
cokernel. Indeed, its cokernels — 0, whose kernel is 1Z — Z. In other words, the
equivalence relatiof(x,y) € Z x Z | x = y(n)} onZ is not dfective.

Moreover,Ab'" doesn’t have abelian Beck modules. Singeeserves limits, a Beck
moduleE — G over a torsion-free abelian grois in particular a Beck module viewed
in Ab, i.e. a direct sunGe® M —-» G. The only additional condition is th& & M be
torsion-free, which happens M itself is torsion-free. Hence for every obj&gf we have
Ab(Ab!f/G) = Ab!f, which is not an abelian category. O

Remark2.42 For an algebraic category, being exact is equivalent to émeators being
exact projective, and not merely regular projective [1, Ref]. Exact projective means
preserving coequalizers afl equivalence relations, whereas regular projective means p
serving coequalizers offective equivalence relations.

Since exactness is a convenient way of guaranteeing aligdielk modules, one may
wonder if the two conditions are equivalent, perhaps witthitg@hal assumptions.

Proposition 2.43. Having abelian Beck modules does not imply exactness, eveanf
algebraic category.
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Proof. As a counterexample, take the categ6gm' of reduced commutative rings, i.e.
those without nilpotents, viewed as a full subcategory bcammutative (associative,
unital) rings. The inclusion: Com™® — Comhas a left adjoint, which quotients out the
nilradical. ThusCom™ is cocomplete, and the free commutative ring on one generato
the polynomial rindZ[¥], is still a small projective generator.

However,Com™ is not exact. Consider the map %:— Z which induces the equiv-
alence relatiolR = {(x,y) € Z x Z | x = y(4)} on the targeZ. The coequalizer oR in
Com'®isZ —» Z/2, whose kernel pair ix, y) € Z x Z | x = y(2)} soR s not dfective.

A Beck module over a reduced commutative riRgs in particular a Beck module
viewed inCom, i.e. a square zero extensiBs M - Rwith multiplication ¢, m)(r’,m') =
(rr’,rm’ + mr’), where the left and right actions &on M coincide. The only additional
condition is forR& M to be a reduced ring, which happefid\l is zero, since the nilradical
is Nil(R® M) = M. Hence for every objed®, we haveAb(Com™®?/R) = 0, which is an
abelian category. O

In short, an algebraic category has most of the ingrediemt®tiillen cohomology. If
moreover the category is exact, then it has all the ingréslien

3. EFFECT OF AN ADJUNCTION

In this section, we investigate the main question: What doesdjunctionL: C &
D: Rdo to Quillen (co)homology?

3.1. Effect on Beck modules.The right adjointR always passes to abelian group objects
R: Ab(D) — Ab(C) since it preserves limits. A priori, we don’t know what ieftladjoint
L: AbC) — Ab(D) will look like, but if L preserves finite products, then it passes to
abelian group objects: Ab(C) — Ab(D) and the induced functors still form an adjoint
pair.

First, let us see how an adjunction passes to slice categorieere are two versions,
depending if one starts with a ground objectiror in D. A straightforward verification
yields the following proposition.

Proposition 3.1. (1) For any object cirC, there is an induced adjunction
L
4) C/lc—=DJLc
R

wherer.: ¢ - RLc is the unit map.
(2) For any object d inD, there is an induced adjunction

Gd!L
5) C/Rd<_—R> D/d

whereey: LRd — d is the counit map.

Proposition 3.2. Assume L C — D preserves kernel pairs of split epis.
(1) For any object cirC, there is an induced adjunction on Beck modules:

AB(C/0) == ADD/Lo).

R
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(2) For any object d inD, there is an induced adjunction on Beck modules:
€q-L
Ab(C/Rd) d? Ab(D/d).

Proof. 1. The assumption guarantees that the left adjoin®/c — D/Lc preserves finite
products, and hence the adjunctibh (4) passes to abeliap gigjects.
2. Start with the natural equivalence

HOMAno/) (€0 L(C — RA), d" — d) = HoMaoLra (LE — LRd e5(d — d)).
The right-hand side consists of mdps — d’ that make the diagram

Lc —d

o

LRd?d

commute and respect the structure maps of the columns. §bipivalent to maps —
Rd that make the adjoint diagram

¢ —Rd

]

RdT> Rd

commute and respect the structure maps of the columns. Hneg®ecisely maps from
(¢’ = Rd) to R(d" — d) in Ab(C/Rd). m]

Remark3.3. The assumption thdt passes to Beck modules is not crucial. We only used
it to identify the induced left adjoint.

3.2. Effect on abelian cohomology Before introducing any homotopical algebra, let us
study the problem at the level of homological algebra. Ass@randD have abelian Beck
modules with enough projectives, which is the case for exaihthey are exact algebraic
categories. We want to describe thteet of the adjunction on abelian cohomology. Again,
assume the left adjoirit passes to Beck modules. As we have sedn ih 3.2, there are two
induced adjunctions, depending if one starts with a grousjelad inC or in D.

3.2.1. Ground object inC. Pick a ground objeat in C. The induced adjunction on Beck
modules fits into the diagram

Al
(6) C/c—_——= Ab(C/c)

Uc
L||mR LH%R
Ab

DJ/Lc —u> Ab(D/Lc)

Lc

where the diagram of right adjoints commutes (on the nosa),thus the diagram of
left adjoints commutes as well. In particular, applying téf adjoints to id, we obtain
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LAb.c = Ab .Lc. Take a modulé overLc and consider:
HA"(C; 7:RN) = Ext'(Abc, n;RN)
= H" Homyog, (P., 7cRN)
7 = H" HomMwvod, . (LP., N)
whereP, — Ab.cis a projective resolution. We want to compare this to:
HA*(Lc; N) = Ext"(Ab.cLc, N)
= H" Homyod, . (Q., N)

whereQ., — AbcLcis a projective resolution. Assume the induced left adjbintod. —
Mod . preserves projectives (which is the case for example wheeright adjointr;R
preserves epis, i.e. is exact). TheR, is projective but is not a resolution afAb.c.

However, the map factors a2, < Q, — LAb.c = Ab cLc and the first map induces
HomMyod,.(Qe. N) — Homyeqg,.(LP., N) which, upon passing to cohomology, induces a
well defined map. We sum up the argument in the following psitpm.

Proposition 3.4. If the left adjoint L induces a functor on Beck modules whigserves
projectives, then we obtain a comparison map in abelian cudlogy:

(8) HA*(Lc; N) — HA*(c; 7:RN).

Note that[[¥) exhibits HA(c; n:RN) as derived functors of Homg, (—, N) o L applied
to Absc. Sincel sends projectives to projectives, we obtain a Grothendieckposite
spectral sequence:

Es' = ExtS(LiL(Abc), N) = HAS'(c; 77:RN)

which is first quadrant, cohomologically graded. The corngoar map [(B) is the edge
morphism

HAS(Lc; N) = ExtS(LAlc, N) = E5° » ES0 < HAS(c; 7;RN).

If L: Mod; — Mod|. happens to be exact, th&, is a projective resolution dfAb.c =
AbcLc and the comparison malg (8) is an iso.

Remark3.5. Starting with a modulé/ overc, there is a map
HomMuog, (AbeC, M) — HomMyod,  (LADCC, LM) = Homyioq, . (AbeC, 7cRLM)

given by applyind-, or equivalently, induced by the urM — n;RLM. One might want to
compare HA(c; M) and HA'(Lc; LM), but they both naturally map into HEc; n;RLM),
respectively via the unit and the comparison nidp (8). Trem®idirect comparison.

3.2.2. Ground object inD. Pick a ground objedl in . The induced adjunction on Beck
modules fits into the diagram

Abrg
) C/Rd———= Ab(C/Rd)
Urd
ael| |R el | |R
Aby

D/d 4U> Ab(D/d)

d
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where the diagram of right adjoints commutes, and thus thgrdim of left adjoints com-
mutes as well. Take a moduleoverd and consider:
HA*(d; N) = Ext"(Abyd, N)
= H" HomMyvog, (Ps, N)

whereP, — Abyd is a projective resolution. We want to compare this to:

HA*(Rd; RN) = Ext*(AbrgRd, RN)
= H" HOMyodr(Q., RN)
(10) = H" Homyiod, (€d:L Qo N)
whereQ., — AbrgRdis a projective resolution. Here again, assume the indwfeddjoint

&-L: Modrg — Modqy preserves projectives. Theq.LQ, is projective and we have a
map:

€2.LQ. — e, LAbqRd = eg.Ab rgLRd = Aby(Lrd < d) 22, Apyd.

It admits a factorizatioly,LQ. — P, — Abyd and the first map induces

Homwod, (P, N) = HOMvod, (€4« LQ., N)

which, upon passing to cohomology, induces a well defined Mé&psum up the argument
in the following proposition.

Proposition 3.6. If the left adjoint L passes to Beck modules and the indudéddioint
&-L: Modrg — Mody preserves projectives, then we obtain a comparison mapetiab
cohomology:

(11) HA(d; N) —» HA*(Rd RN).

Note that[(ID) exhibits HARd; RN) as derived functors of Hofaq,(—, N) o es.L ap-
plied to AbrqRd. Sinceey.L sends projectives to projectives, we obtain a Grothendieck
composite spectral sequence:

E5' = Ext® (Li(eg.L)(AbrgRd), N) = HAS(Rd, RN)

which is first quadrant, cohomologically graded. The consoar map [(I11) isAby(eg)*
followed by an edge morphism:

HAS(d; N) = ExtS(Abyd, N) 22, Ext3(eq, LAbgRA N)

= E3° » EX® — HASRd RN).

If &4.L: Modrq — Modgy happens to be exact, theg.LQ, is a projective resolution of
€4-LAbrgRd, and we obtain an iso EXkq.LAbrgRd N) = HA*(Rd, RN). In that case, the
comparison mafg(11) is simpBby(eq)*, which is not necessarily an iso.

Remark3.7. Starting with a modulé/ overRd, one might want to compare HiRd;, M)
and HA'(d; 4.LM). Again, there is no direct comparison. They both map néjuirsto
HA*(Rd; Rey.L M), the former via the uniM — Rey.LM and the latter via the comparison

map [11).
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3.3. The comparison diagram. Now let us check that the adjunction behaves well at the
level of homotopical algebra, when we pass to simpliciaéots.

Theorem 3.8. LetC and D be algebraic categories. Let:IC 2 D: R be an adjunction

that prolongs to a Quillen pair (equivalently, R preservegular epis; equivalently, L pre-
serves projectives), and assume L passes to Beck modutastiigncommutative diagram
(6) simplicially prolongs to four Quillen pairs:

Al
(12) SC/c ———= sAlC/c)

Uc
L||mR L“%R
Aby,

sD/Lc —— sAHD/Lc)
U

Lc

and so does the commutative diagrém (9):

Abrg
(13) C/Rd———= sAHC/Rd)
Rd
eL| R el | |R
Aby

sD/d = U SAHD/d).
d

Proof. Case 1: Ground objectc in C. The induced right adjoint on slice categories is

neR: D/Lc — C/c and it preserves regular epis. Inde®d,D/Lc — C/RLcpreserves

regular epis by assumption andl2.6. The pullbgic&lso preserves regular epis sintés

regular and again Hy 2.6.

The induced right adjoint on Beck modulg®R: Ab(D/Lc) — Ab(C/c) preserves reg-
ular epis. It follows from the same argument, and the fadt tbgular epis inAb(-) are
preserved and reflected by the forgetful fundiooy[Z.12 andZ2.14.

Case 2: Ground objectd in ©. The induced right adjoint on slice categories is just
R: D/d - C/Rd, which preserves regular epis. The induced right adjoinBeck mod-
ulesR: Ab(D/d) — Ab(C/Rd) also preserves regular epis. O

Remark3.9. The result holds whether or not the left adjoinpasses to Beck modules,
since the proof only relies on properties of the inducedtrégloints. IfL does not pass to
Beck modules, the induced left adjoint is something else.

3.4. Effect on Quillen (co)homology.In this section, we describe the comparison maps
induced on Quillen (co)homology. The argument is similaseotior 3.2, except we start
with the comparison diagrams[in 8.8.

3.4.1. Ground object cirC.

Proposition 3.10. Assume the setup bf 8.8. Then the comparison diagram indbees
following comparison maps.

(1) A natural (up to homotopy) comparison map of cotangent cergst:
(14) L(Lc) = Lo
(2) A natural comparison map in Quillen homology:

(15) L (HQ.(c)) » HQ,(Lo).
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(3) If L preserves pullbacks, then we havéHQ, (c)) = n.L(L¢) and the map[(15) is
just the gfect of [14) omnr...

(4) If L preserves all weak equivalences, thien (14) is a weakvatprice and[(15) is
an iso.

Proof. 1. Starting with a cofibrant replacement Qc — c¢ of id., we can apphL to
obtainLQc — Lc, where the source is still cofibrant (sinces a left Quillen functor) but
the map is not a weak equivalence anymore. However, it fagtoiquely and functorially

up to homotopy) a&Qc s, QLc — Lc and we obtain the comparison map
L(L¢) = LAb(Qc — c) = Ab L(Qc — ¢)
= Ab (LQc — Lc) — Ab (QLc— Lc) = L
which is in factAb ¢(¢).
2. There is a homology comparison map [5, Thm 2.2 and 2.6h#right exact functor

L, which we apply to the chain compléx. (using implicitly the Dold-Kan correspon-
dence):

L (HQ.(c)) = LH.(L¢) —» H.L(Lc) = m.L(Lc).
Note that the map is an edge morphism in the composite spseijaence ot o Al
applied to id. Following this homology comparison by th&ext of [14) onr., we obtain
the Quillen homology comparison:

L (HQ.(0)) — m.L(Le) - m.Lic = HQ.(LC).

3. If L preserves pullbacks, then the indudea@n Beck modules also preserves finite
limits, hence is left exact (and thus exact). In that casehtimology comparison is an iso.

4. If L preserves all weak equivalences, then the mapa weak equivalence. Since
Aby is a left Quillen functor, the map(1L4) is also a weak equiveée The induced also
preserves weak equivalences, and in particular is exattesbdmology comparison is an
iSo. m]
Proposition 3.11. Let N be a module over Lc.

(1) The comparison diagram induces a natural comparison map
(16) HQ (Lc;N) - HQ'(c; 7cRN).

(2) If the comparison of cotangent complexXed (14) is a weak atpnee, ther((16) is
an iso. This holds in particular when L preserves all weakiegjences.

Proof. 1. Apply the functor Homeg,.(—, N) to the comparison map{L4)
HomMyod, (L e, N) = Homyigg, (L(L¢), N) = Homyod, (Le, 7:RN)

and upon passing to cohomology, we obtain the hap (16).
2. Sincel (L¢) andL ¢ are cofibrant, a weak equivalentel(14) between them willéedu
a weak equivalence upon applying HemUN). O

3.4.2. Ground object d inD. A very similar reasoning yields the following propositions

Proposition 3.12. Assume the setup i 8.8. Then the comparison diagram indbees
following comparison maps.

(1) A natural (up to homotopy) comparison map of cotangent cergsl:
(17) ed«L(Lrd) — La.
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(2) A natural comparison map in Quillen homology:

(18) ea:L (HQ.(Rd)) — HQ.(d).
(3) If L preserves pullbacks ang. is exact, thery.L (HQ,(Rd) = .e4.L(L rg) holds
and the map(18) is just thefect of [1T) onn...
(4) If L preserves all weak equivalences ands an iso, then[(17) is a weak equiva-
lence and[{IB) is an iso.
Proposition 3.13. Let N be a module over d.
(1) The comparison diagram induces a natural comparison map

(19) HQ'(d; N) - HQ(Rd RN).
(2) If the comparison of cotangent compleXed (17) is a weak altgnive, ther[(19) is
an iso.
4. EXAMPLES

In this section we study three examples. The first serves asmup. The second tries
to relate André-Quillen cohomology to Hochschild cohoawyl (4.7). The third shows
how Quillen cohomology of dl-algebra with cofficients in a truncated module can be
computed within the world of truncatdd-algebras[(4.15), which have a much simpler
structure than (non-truncated)algebras.

4.1. Abelian groups. Consider the functo€om: Gp — Ab that kills commutators, i.e.
ComG) = G/[G, G], whose right adjoint is the inclusion functor Ab — Gp. Although
Comdoes not preserve kernel pairs in general, it does pass toBedules. Recall that
for a (left) G-module M, the semidirect produdd < M is the group with underlying set
G x M and multiplication ¢, m)(g’, nY) = (gg’, m+ gm).

Proposition 4.1. Com passes to Beck modules, on which itinduces the coimtafianctor
(-)e: Modg — Ab.
Proof. Let us first comput€omG = M). Commutators irc < M are given by

[(@1 M), (92, My)] = ([91, Go. Mt — G1GaGy "M + 1My — 1 QoG "G, M)
Applying Comto the split extensios < M — G yields a split extensio@om(G x M) —
ComG) in Ab whose kernel i modulo the subgroup
(M — 10207 ML + 1M, — 1020705 "My | G € G, m € M)
=(M-gm|geG,me M).
In other words, we hav€om(G =< M) = Com(G) & Mg, whereMg is the abelian group of

coinvariants oM.
MoreoverCompreserves the pullback that defines the multiplicationcstme map:

Com((G < M) xg (G < M)) = Com(G < (M x M))
= ComG) @ (M x M)g
= ComG) @ (Mg & Mg)
= (ComG) & Mg) Xcome) (ComG) & Mg)
= Con(G x M) Xcome COMG = M).

In Gp as well as inAb, we think of the module as the kernel of the split extensiowl, ia
this case, &-moduleM is sent to the abelian grouyc. O
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Remark4.2. In Ab, a Beck module consists only of a split extension with the ddithe
splitting. Therefore, any functdf: C — Ab passes to Beck modules. We've shown it
explicitly for Comand identified the induced functor.

Let us describe thefkect of the adjunctio€om: Gp 2 Ab: : on Quillen homology.
Note that the right adjoint preserves regular epis, which are just surjections. Hehee,
prolonged adjunctions are Quillen pairs.

Note also that the unit of the adjunctionsig: G » G/[G, G] and the counit is the
identity. We work with a ground obje& in Gp, since we get nothing new from a ground
object inAb. The comparison diagrarl (6) becomes:

(20) sGp/G sModg
Gix—
Com[ | net (e | | Triv
Src
sAb/Com(G) sAb.

ComG)e—

and by[3.8, it prolongs to four Quillen pairs. HeBecis the “source” functor, which is
the abelianization over any abelian group, dmrd is the functor assigning to an abelian
group the trivialG-action. Indeed, the right adjoint on Beck moduleggis. Given a Beck
moduleCom(G) & A, view it as a split extension of groups, which me#nhkas a trivial
Con(G) action, and then pull the action back alopgr G — G/[G, G], which endowsA
with the trivial G-action.

Remark4.3. In 4.1, we checked explicitly thafominduces the functor{)c on Beck
modules. Per remalk 3.3, we could also look at the inducdd adjointnge = Triv
and use its left adjoint to complete diagrdml(20). The lefoiad of Triv = €* is indeed
()6 = & = Z®zc (), wheree: ZG — Z is the augmentation.

We now formulate the result about Quillen homology.

Proposition 4.4. Let C, — G be a cofibrant replacement of G in groups andletdenote
the cotangent complex of G. Then the following holds:

7. (C./[C..C.]) = 7. ((Le)s) -
Proof. Starting from a cofibrant replacement@fin Gp (or equivalently, of ig in Gp/G)
in the upper left corner of {20), going down then right yields
Srco ComC, — G) = Src(Com(C,) — ComG))
= Com(C.,) = C./[C.,C.]
whereas going right then down yiel@abs(C. — G))g = (Lg)s. Takingr. gives a well
defined equality, since the simplici@moduleL ¢ is defined up to homotopy. O

In fact, one can compute both sides explicitly and checkttiet coincide. For groups,
abelianization iAbsG = I = ker(ZG — Z) and the cotangent complex is discrete, mean-
ingLg — lg is a cofibrant replacement, in particular a flat resoluticakifig coinvariants
results in the derived functors thereof, namely group hagyl

7. ((Le)s) = L.(-)a(le) = H.(G; lg).

Using the short exact sequence® Ig - ZG — Z — 0 of G-modules, the connect-
ing morphism H.1(G;Z) — Hi(G;lg) is an iso for alli > 0, from which we conclude
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7i (Lg)s) = Hi41(G; Z) for all i > 0. On the other hand, [12, Ex 4.26] uses falent
argument to show; (C./[C., C.]) = Hi;1(G; Z) for all i > 0. Propositiof 414 is consistent
with these computations.

4.2. Commutative algebras. Let R be some fixed commutative ring; denoteAlgy the
category of associativie-algebras and bZomg the category of commutatiie-algebras.
(All our rings and algebras are assumed associative andlgni€Consider the functor
Com: Algg — Comg which kills the 2-sided ideal generated by commutatorst iha
Com(A) = A/[A A]. It is left adjoint to the inclusion functor: Comg — Algg, which
preserves regular epis (i.e. surjections).

Recall that Beck modules over an associatRralgebraA are A-bimodules overR,
meaning that scalars Ract the same way on the left and the right; we denote this oateg
A — Bimodg. Beck modules over a commutatifRalgebraA are A-modules in the usual
sense, which we denofe— Mod.

Proposition 4.5. 1. The functor ComAlgg — Comg passes to Beck modules.
2. Itinduces the “central quotient” functor CQA - Bimodg — Com(A) — Mod which
coequalizes the two actions.

Proof. Start with a Beck module ovek in Algg, i.e. a split extensiop: Ae M — A
satisfyingM? = 0. ApplyingComto it yields a split extension

Cor(p)
0——> K ——= Conm{A® M) —— ComA) ——= 0
Com(s)

in Comg. It remains to show that its kernel has square zero.

Commutators in A@ M. Using the decompositiom{m) = (a, 0)+ (0, m), commutators
will be generated by those of the formg[0), (a’, 0)] = ([a, &], 0) and [@, 0), (0, m)] =
(0,a- m—m-a). Thus the kernel is

(22) K=~M/{@a-m-m-a)

where we kill the subA-bimodule generated by all elements of that form.

K has square zero.Take two elementg, X' € K = kerCom(p) c Com(A& M) and
choose representatives n) and €', ') in A@M, forc, ¢’ € [A, A]l. ThenxX is represented
by (c, m)(c’, ) = (cc,c- N’ + m- ¢’). One readily checks that elements of the farrm
andm- c are zero inCom(A@® M), foranym € M andc € [A, A]. This proves the first
assertion, and(21) proves the second. O

The adjunctiorCom: Algg 2 Comg: ¢ allows us to compare the two categories. Ac-
cording td 4.5, the comparison diagrin 6 becomes

A®|(,)®A
(22) Algg/A A — Bimodg
Ad—-
Com| | 7at CQ| | same action
ComA)RQ(yr
Comg/ComA) —— Com(A) — Mod
ComA)o—

where “same action”, the right adjoint on the right, mearss the view aConm(A)-module
as anA-bimodule by acting via the un&k — Com(A) = A/[A, A] both on the left and the
right. Abelianization in associative algebrasfAiba(B — A) = A®g Ig ®s A wherelg
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denotes the kernel of the multiplication map B ® B — B. Abelianization in commu-
tative algebras i®\bs(T — S) = S ®r Qr,r WhereQg,r denotes the module of Kahler
differentialsit/12. By[3.8, diagram{22) prolongs to four Quillen pairs.

Remark4.6. One can viewA — Bimodg as the category of lef ®r A°P modules, and
the “same action” functoEom(A) — Mod — A — Bimodg, as the restriction;am)* along
A®rA® 5 A L Cont(A). Its left adjoint is the pushforwarei{m), = (A®rAP)@cona) —
which is indeed the functor coequalizing the two actions.

Some special cases are of particular interest. WheR4hlgebraA is justRitself — and
is in particular commutative — the comparison diagran (22)dmes
RalH®R
(23) Algr/R————= R- Bimodg
Re-
Com| |t id | |id

ReQ()R
ComR/R<R—€'f> R - Mod.
The diagram says that killing all products can be done in tteps by killing all com-
mutators first. One could try to use the Grothendieck contpagiectral sequence for the
non-abelian setting [6, Thm 4.4] to relate Quillen homolagylgg to Quillen homology
in Comg, i.e. André-Quillen homology. This approach would reguine knowledge of
homotopy operations i@omg, which are known notably far = F, [10] [11].

More generally, another interesting case is when the cetaingomplex in associa-
tive algebras is discrete, i.d.p — AbpA is a weak equivalence. Quillen [15, Prop 3.6]
shows that this happens under the conditiorf(lAJA) = Oforalli > 1 (for example if
Ris a field), in which case HXA; M) = HQ*(A; M) is essentially the same as the usual
Hochschild cohomology, and likewise for homology.

Proposition 4.7. Let A be a commutative R-algebra satisfyifeg?(A, A) = Oforalli > 1.
Then for every p 1, the Hochschild homology of A can be written as

HHj.1(A) = 7 (A®comc.) Qcontc.)/R)

where G — Ais a cofibrant replacement of A Mgg. In particular, there is a comparison
mapHH;,1(A) — HQ;(A) for j > 1.

Proof. Starting from a cofibrant replaceme@d — A in Algg and going right in[(2R), one
obtainsLa — Ia, which is a weak equivalence because of the flathess asamtiA.
Then going down yield& ®agea» LA, Whoser, is Tor’®~"”(A 1,). Again by the flatness
assumption, Hochschild homology HA) is not just a relative Tor but the (absolute)
Tor®®=*”(A, A). The short exact sequence of bimoduless0lx —» A®r A%® — A — 0
gives a natural iso TEEA" (A, A) = Tor****" (A, 1) for alli > 1.

On the other hand, going down in the diagram yigism(C,) — A and then going
right yieldsA ®comc.) Qcontc.)/r- The comparison map is. of (I1), which measures the
failure of Com: Algg — Comg to preserve weak equivalences. O

4.3. Truncated IT-algebras. A II-algebra is the algebraic structure best describing the
homotopy groups of a pointed spa¥e More details can be found inl[3,4] [16, § 4];

we recall the essentials. LE denote the homotopy category of pointed spaces with the
homotopy type of a finite (possibly empty) wedge of sphergsosftive dimensions.
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Definition 4.8. A II-algebrais a contravariant functok: I — Setthat sends wedges to
products, i.e. a product-preserving funclft* — Set(or equivalently to pointed sets).

The prototypical example is the functer,[X]., the homotopyT-algebra of a pointed
spaceX. A II-algebraA can be viewed as a graded grap = A(S')} (abelian fori > 2)
equipped with primary homotopy operations induced by mapsden wedges of spheres,
such as precomposition operatians n, — 7, for everya € m,(S¥). The additional
structure is determined by operations of that form, Whigéehgroducts, and the -action
on higherr;, and there are classical relations between them.

LetIIAlg denote the category df-algebras, that is FU(II®P, Sef), where Furi denotes
product-preserving functors.

4.3.1. Postnikov truncationWe want to make precise the notion of Postnikov truncation
for IT-algebras.

Definition 4.9. A II-algebraA is calledn-truncated if for all i > n, we haveA(S') = x,
the trivial pointed set.

Denote byITAlg] the full subcategory ofIAlg consisting ofn-truncatedI-algebras.
Denote byll, the full subcategory ofI consisting of spaces with the homotopy type of
a wedge of spheres of dimension at mesand letl,: II,, — II be the inclusion functor.
One can go the other way, by removing spheres above a ceiaémsion. Glossing over
technicalities, define a “truncation” functdy: II — II, by Ty (\/:;1 S”i) = Vnan S". It
sendsamap: \/;S" — \/; S™ to the homotopy lift

Vizn SMC—> \/; ST — > \/; S™

-
—~
~
-
~
-
~
~

ES m
\/m,-sn S !

which exists and is unique sin6gm, <, S™ < \/; S™ is an iso o for k < n. By the
same argument, is left adjoint toT,. The unit 1— Tyl is the identity, and the counit
InTn — 1is the inclusion of wedge summands of small dimension. Naebothl, and
Tn preserve coproducts (wedges).

Proposition 4.10. There is an equivalence of categorigs IAIg = Fun‘(M;P, Sed: T

Proof. If F is a product-preserving functdk” — Set then we have;T;F = (Tnln)*F =
F, sinceTyl, is the identity. On the other hand,Afis ann-truncatedI-algebra, we have
TaliA= (InTh)*A = A. Indeed A sends all counit maps

InTa(\/ 8™ = \/ 8" |/ s"
i n<n i
to isos sincéA is n-truncated. O
Sincely: TP — M andT,: I°P — IIY° preserve products, they induce restriction
functorsly:: Fun*(IT°, Se)) — Fur*(Iy", Se) andT;;. Write P: TIAlg — TAIg] for I,

which is the Postnikown-truncation offI-algebras, and,: TIAlg] — IIAlg for T, which
is the inclusion oh-truncatedI-algebras.

Proposition 4.11. Py, is left adjoint toc,,.
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Proof. (Functor point of view): I, — II is the left adjoint, and thuk,: TI;? — II°

is the right adjoint. Note that Fun(Se) is a (strict) 2-functoiCat®® — Cat, where the
superscript irCat°® means that 1-cells have been reversed but 2-cells do nojehdine
same holds for Fut{—, Sef), as long as we take only categories and product-preserving
functors between them. TherefdPg = I}, is left adjoint toc, = Tj;. O

Proof. (Graded group point of view map f : A — (B of II-algebras into an-truncated
IT-algebra is determined by the map of graded group up to degrébe additional con-
ditions are thaf respect the additional structure {action, Whitehead products, and pre-
composition operations). The latter preserves or inceedsgree, which means all the
conditions coming from or landing in degree greater thare vacuous. In other words,
the data of a ma is the same data as the corresponding @ — Bin ITAIg’. O

Both ITAlg andITAlg} are categories of universal algebras — finitary many-soseiel
eties, to be more precise. The figealgebra on a graded g4} is F{Xi} = 7.(\/i Vjex S')-
By combining the two adjunctions

F Py
GrSet <_T> ITAIg — MAIg?

we see that the freetruncatedI-algebra or{X;} is

FalXi} = Por(\/ \/ S) =z (Pn \/ \/ S).

i jeX; ijeXi

In both categories, projective objects are retracts ofdigects and regular epis are surjec-
tions of underlying graded sefs |14, 1.4, Rem 1 after Progriparticular, the left adjoint
P, preserves projectives and prolongs to a left Quillen fundimte also thatr.(P,S?),

7. (PnS?), ..., m.(PnS")} is a set of small projective generators f#Alg], which exhibits
ITAIg] as an algebraic category.

4.3.2. Standard model structureThe standard model structure on the categdbplg of
simplicialIT-algebras is described inl[§ 4.5] and the same description holds &FAlg}.
Amapf: X, — Y, is afibration (resp. weak eq) if it is so at the level of underdygraded
sets or graded groups. Cofibrations are maps with the l&fidiproperty with respect to
acyclic fibrations and can be characterized as retractgefrifraps.

Proposition 4.12. The left Quillen functor p: sITAlg — sITAlg] preserves weak equiva-
lences and fibrations. In particular, it preserves cofibreegilacements.

Proof. (Functor point of viewlet f: X, — Y, be a fibration (resp. weak eq) siIAlg.

Let P be a projective ofIAlg], exhibited as a retract of a free Iﬂ/—i F 2 P Then
(Prf).: Hom(P, P,X,) — Hom(P, P,Y.) is a retract of Hon, P, f) so it sufices that the
latter be a fibration (resp. weak eq) of simplicial sets.

Note thatF = Fy(S) is free on a graded s&empty above dimensiom so we have:

Hompaig: (F, PaX.) = Homg:set(S, UPnX,)
= HomGrSet(S U X-)
= Hompaig (F(S), X.).
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Using this, we obtain:

Pnf).
HomﬂAlgg(F’ ano) % HomHAIg'I(F, PnYo)

Hompaig (F(S), Xo) —— Homiag (F(S). Vo).

Sincef is a fibration (resp. weak eq) sI1Alg, the bottom row is a fibration (resp. weak
eq) of simplicial sets. O

Proof. (Graded group point of viewljhe mapf: X, — Y, is a fibration (resp. weak eq)
of simplicial sets in each degree, hence the rRgp is a fibration (resp. weak eq) of
simplicial sets in each degree, that is in degrees 1 through O

Corollary 4.13. 1. For anylIl-algebra A, the comparison map of cotangent complexes
Pn(La) = Lp,a induced by the adjunctionyPi ¢, is a weak equivalence.
2. If N is a module over fA, then the comparison map in Quillen cohomology

(24) HQBA@';(PnA; N) — HQpaig (A 17atnN)
is a natural iso.
Proof. By[3.10[3.11, and4.12. O

Herena: A — P A is the Postnikov truncation map. We would like a better dpscr
tion of the moduley,nN in (24). Think of a module oveA as an abeliahl-algebra on
which A acts (cf. [7,§ 4.11]), namely the kernel of the split extension as opposedtst
“total space”.

Lemma 4.14. The categoryviodp, A of modules over FA is isomorphic to the full subcat-
egoryMod ™ of Mod 5 of modules that happen to be n-truncated.

Proof. Consider the adjunction on modules:
Pn
MOdA —>< Mod PnA
Mptn
from[3.2. The composit®n,i, is the identity. Moreovery, i, lands in Mod}". By

restrictingPy, to the latter, we obtain an adjuncti(Mndj‘\'tr 2 Modp, A Where both com-
positesPnn,tn andn,inPy are the identity, i.e. an iso of categories. O

The lemma justifies the abuse of notation in the followingaeaged statement.

Theorem 4.15. (Truncation isomorphism) Let A bel&algebra and N a module over A
that is n-truncated. Then there is a natural isomorphism

HQBA@;(PnA; N) = HQpa (A N).
The following example is of interest in light of theorems &rg1 9.6 in[[7].

Example4.16 Let A be ann-truncatedil-algebra. Foik a positive integer, thé&-fold
loops QXA form a module oveA (which is zero ifk > n) and we are interested in the
cohomology groups HQA; QXA). Since QXA is (n — k)-truncated, theore 4115 says
HQ;, AIgT,k(Pn_kA; QKA) = HQjjp (A QFA).



28 MARTIN FRANKLAND

REFERENCES

[1] Jifi Adamek,A categorical characterization of varietiedlgebra Universali$1(2004), no. 2 -3, 215 -234.

[2] , On quasivarieties and varieties as categori8sudia Logicar8 (2004), no. 1 -2, 7 —33.

[3] Michel André, Homologie des algebres commutativeBie Grundlehren der mathematischen Wis-
senschaften, vol. 206, Springer-Verlag, 1974.

[4] Michael Barr,Acyclic Models CRM Monograph Series, vol. 17, AMS, 2002.

[5] , Preserving homologyTheory and applications of categorie8(2006), no. 7, 132 -143.

[6] David Blanc and Christopher R. Stovek,generalized Grothendieck spectral sequemdéemorial Sympo-
sium on Algebraic Topology, London Math. Soc. Lecture Nate&s, Cambridge Univ. Press, 1992, pp. 145
-161.

[7] David Blanc, William G. Dwyer, and Paul G. GoersBEhe realization space of H-algebra: a moduli
problem in algebraic topologyTopology43 (2004), no. 4, 857 —892.

[8] Francis BorceuxHandbook of Categorical Algebra 1: Basic Category Thed&ycyclopedia of Mathemat-
ics and its Applications, Cambridge University Press, 1994

, Handbook of Categorical Algebra 2: Categories and StruesUEncyclopedia of Mathematics and
its Applications, Cambridge University Press, 1994.

[10] William G. Dwyer, Homotopy operations for simplicial commutative algebrégns. Amer. Math. Soc.
260(1980), no. 2, 421 —435.

[11] Paul G. Goerss and Thomas J. LaBalations among homotopy operations for simplicial conative
algebras Proc. Amer. Math. Sod.23(1995), no. 9, 2637 —2641.

[12] Paul G. Goerss and Kristen Schemmerhodel categories and simplicial methg@®ontemporary Math-
ematics436(2007), 3 —49.

[13] Saunders Mac Lan&ategories for the Working MathematiciaBecond, Graduate Texts in Mathematics,
Springer, 1998.

[14] Daniel G. QuillenHomotopical AlgebralLecture Notes in Mathematics, Springer, 1967.

[15] , On the (co-) homology of commutative ringgpplications of Categorical Algebra, Proc. Sympos.
Pure Math., Vol. 17, AMS, Providence, RI, 1970, pp. 65 —87.

[16] Christopher R. StoveA van Kampen spectral sequence for higher homotopy graiggology29 (1990),
no. 1, 9 -26.

E-mail addressfranklan@illinois.edu

9]

DEPARTMENT OF M ATHEMATICS, UNIVERSITY OF |LLINOIS AT URBANA-CHAMPAIGN, 1409 W. GreeN Srt, URBANA, IL
61801, USA



	1. Introduction
	1.1. Motivation and goals
	1.2. Organization and results
	1.3. Notations and conventions

	2. Setup for Quillen (co)homology
	2.1. Prolonged adjunctions as Quillen pairs
	2.2. Slice categories
	2.3. Abelian group objects
	2.4. Algebraic categories
	2.5. The setup

	3. Effect of an adjunction
	3.1. Effect on Beck modules
	3.2. Effect on abelian cohomology
	3.3. The comparison diagram
	3.4. Effect on Quillen (co)homology

	4. Examples
	4.1. Abelian groups
	4.2. Commutative algebras
	4.3. Truncated Pi-algebras

	References

