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LARGE DEVIATIONS FOR ZEROS OF P (ϕ)2 RANDOM POLYNOMIALS

RENJIE FENG AND STEVE ZELDITCH

Abstract. We extend the results of [ZZ] on LDP’s (large deviations principles) for the
empirical measures

Zs :=
1

N

∑

ζ:s(ζ)=0

δζ , (N := #{ζ : s(ζ) = 0)}

of zeros of Gaussian random polynomials s in one variable to P (ϕ)2 random polynomials.
The speed and rate function are the same as in the associated Gaussian case. It follows that
the expected distribution of zeros in the P (ϕ)2 ensembles tends to the same equilibrium
measure as in the Gaussian case.

The purpose of this note is to extend the LDP (large deviation principle) of [ZZ] for the
empirical measure

Zs := dµζ :=
1

N

∑

ζ:s(ζ)=0

δζ , N := #{ζ : s(ζ) = 0} (1)

of zeros of Gaussian random holomorphic polynomials s of degree N in one variable to
certain non-Gaussian measures which we call P (ϕ)2 random polynomials. These are finite
dimensional analogues of (or approximations to) the ensembles of quantum field theory,
where the probability measure on the space of functions (or distributions) has the form
e−S(f)df , with

S(f) =

∫

(|∇f |2 + |f |2 +Q(|f |2)dν, (2)

where Q is a semi-bounded polynomial. A more precise definition is given below; we refer
to [Si] for background on P (ϕ)2 theories. Our main results are that the empirical measures
of zeros for such P (ϕ)2 random polynomials satisfies an LDP with precisely the same speed
and rate functional as in the Gaussian case in [ZZ] where Q = 0. In fact, our proof is to
reduce the LDP to that case. As a corollary, the expected distribution 1

N
ENZs of zeros in

the P (ϕ)2 case tends to the same weighted equilibrium measure as in the Gaussian case. In
the Gaussian case, the proof of the last statement is derived from the asymptotics of the two
point function (see [SZ1, SZ2, B]); in the P (ϕ)2 case, the large deviations proof is the first
and only one we know.

To state the result precisely, we need some notation and terminology. By a random
polynomial, one means a probability measure γN on the vector space PN of polynomials
p(z) =

∑N
j=0 ajz

j of degree N . As in [ZZ], we identify polynomials p(z) on C with holo-

morphic sections s ∈ H0(CP1,O(N)), where O(N) is the Nth power of the hyperplane
section line bundle O(1); strictly speaking, in the local coordinate, s = peN where p is the
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polynomial of degree N and eN is a frame for O(N). The geometric language is useful for
compactifying the problem to CP

1, and we refer to [SZ1, ZZ] for background.
In [ZZ], the authors chose γN to be a Gaussian measure,

γN = e
−||s||2

(hN,ν)ds,

determined by an inner product on PN ,

||s||2(hN ,ν) :=

∫

CP1

|s(z)|2hNdν(z). (3)

Here, ν is an auxiliary probability measure and h is a smooth Hermitian metric on O(1) and
hN is the induced metric on the powers O(N). In the local frame e, h takes the classical
form of a weight h = e−ϕ; the assumption is that it extends smoothly to O(1) → CP1. Thus
in the local coordinate, we rewrite

||s||2(hN ,ν) =

∫

C

|p(z)|2e−Nϕ(z)dν(z). (4)

In this article, we study the probability measures

γN = e−S(s)ds on PN , (5)

where ds denotes Lebesgue measure and the action S has the form,

S(s) =

∫

CP1

|∇s(z)|2hN⊗gdν +

∫

CP1

P (|s|2hN )dν, (6)

where

P (x) =
k∑

j=1

cjx
j , with ck = 1 (7)

is a semi-bounded polynomial. Here, ∇ : C∞(CP1,O(N)) → C∞(CP1,O(N) ⊗ T ∗) is a
smooth connection on the line bundle O(N) → CP1, and g is a smooth Riemannian metric
on CP

1. We recall that connections are the first order derivatives which are well-defined on
sections of line bundles. We will take ∇ to be the Chern connection of a smooth connection
h on O(1) and its extension to the tensor powers O(N) (which strictly speaking should
be denoted by ∇N). Note that the more elementary holomorphic derivative ∂p(z) = p′(z)
defines a meromorphic connection on O(N) with a pole at infinity, rather than a smooth
connection. We refer to §2 and [GH, ZZ] for further background.

The integral
∫

CP1 |∇s(z)|2hN⊗gdν is expressed in (33) in local coordinates. We often denote

the first integral in S(s) as ‖∇s‖2(hN⊗g,ν) and the second as
∫
P (|s|2hN ). In P (ϕ)2 Euclidean

quantum field theory, S(s) is known as the action, ‖∇s‖2 is known as the kinetic energy
term, P is the potential, and L(s) = |∇s|2 + P (|s|2) is the Lagrangian (see e.g. [GJ, Si]).
The Gaussian case is the ‘non-interacting’ or free field theory with quadratic Lagrangian
L0 = |∇s|2 +m|s|2; while in the general P (ϕ)2 case, the non-quadratic part of P is known
as the interaction term. The Gaussian case was studied in [ZZ] without the (also Gaussian)
kinetic term.

The large deviations result for empirical measures of zeros concerns a sequence {ProbN}
of probability measures on the space M(CP1) of probability measures on CP1. Roughly,
ProbN(B) is the probability that the empirical measure of zeros of a random p ∈ PN lies in
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the set B. To be precise, we recall some of the definitions from [ZZ]. The zero set {ζ1, . . . , ζN}
of a polynomial of degree N is a point of the Nth configuration space,

(CP1)(N) = SymN
CP

1 := CP
1 × · · · × CP

1

︸ ︷︷ ︸

N

/SN . (8)

Here, SN is the symmetric group on N letters. We push forward the measure γN on PN

under the ‘zeros’ map

D : PN → (CP1)(N), D(s) = {ζ1, . . . , ζN}, (9)

where {ζ1, . . . , ζN} is the zero set of s, to obtain a measure

~KN(ζ1, . . . , ζN) := D∗dγN (10)

on (CP1)(N), known as the joint probability current (or distribution), which we abbreviate
by JPC. We then embed the configuration spaces into M(CP1) (the space of probability
measures on CP1) under the map,

µ : (CP1)(N) → M(CP1), dµζ :=
1

N

N∑

j=1

δζj . (11)

The measure dµζ is known as the empirical measure of zeros of p. We then push forward the
joint probability current to obtain a probability measure

ProbN = µ∗D∗γ
N (12)

on M(CP1). The sequence {ProbN} is said to satisfy a large deviations principle with
speed N2 and rate functional (or rate function) I if (roughly speaking) for any Borel subset
E ⊂ M(X),

1

N2
logProbN{σ ∈ M : σ ∈ E} → − inf

σ∈E
I(σ).

To be precise, the condition is that

− I(σ) := lim sup
δ→0

lim sup
N→∞

1

N2
logProbN(B(σ, δ)) = lim inf

δ→0
lim inf
N→∞

1

N2
logProbN(B(σ, δ)),

(13)
for balls in the natural (Wasserstein) metric (see Theorem 4.1.11 of [DZ]).

0.1. Statement of results. Our first results give an LDP for slightly simpler P (ϕ)2 en-
sembles where the action does not contain the kinetic term, i.e., we choose the probability
measure to be γN = e−S(s)ds where S(s) =

∫
P (|s|2hN ). In §2 we add the kinetic term.

To obtain a large deviations result, we need to impose some conditions on the probability
measure ν that is used to defined the integration measure on CP1 in the inner product
(3) and the P (ϕ)2 measures (5). In the pure potential case in §1, it must satisfy the mild
conditions of [ZZ]: (i) the Bernstein-Markov condition, and (ii) that the support K of ν
must be ‘regular’ in the sense that it is non-thin at all of its points. We call such measures
admissible. We refer to [B, ZZ] for background on Bernstein-Markov measures and regularity.
When we include the kinetic term, we must assume more about ν (see below).

If γN is defined by an admissible measure ν, then we prove that the speed and the rate
function are the same as in the associated Gaussian case [ZZ] where P (x) = x.
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Theorem 1. Let h = e−ϕ be a smooth Hermitian metric on O(1) → CP1 and let ν ∈
M(CP1) be an admissible measure. Let P (|s|2hN ) be a semi-bounded polynomial defined by
(7), and let γN be the probability measure defined by the action S(s) =

∫

CP
1 P (|s|2hN )dν

without the kinectic term. Then the sequence of probability measures {ProbN} on M(CP1)
defined by (12) satisfies a large deviations principle with speed N2 and rate functional

Ih,K(µ) = −1

2
Eh(µ) + sup

K
Uµ
h + E(h). (14)

This rate functional is lower semi-continuous, proper and convex, and its unique minimizer
νh,K ∈ M(CP1) is the Green’s equilibrium measure of K with respect to h.

Here, Eh(µ) =
∫

CP1×CP1 Gh(z, w)dµ(z)dµ(w) is the Green’s energy, where Gh(z, w) is the

Green’s function with respect to h (see [ZZ] (6)). Also, Uµ
h (µ) =

∫

CP1 Gh(z, w)dµ(w) is the
Green’s potential of µ.

Things become more complicated when the action includes the kinetic term. We could
choose independently the integration measures in the kinetic and potential terms, but for
the sake of simplicity we only use the same measure ν for both terms. We then impose an
extra condition on ν (and ∇), namely that ∇ satisfies a weighted L2 Bernstein inequality,

‖∇s‖2(hN⊗g,ν) ≤ CNk‖s‖2(hN ,ν) (15)

on all H0(CP1,O(N)), for some k, C(h, g, ν) > 0. When ν is admissible and such bounds
hold, we say that ν (or (h, ν,∇)) is kinetic admissible. In Lemma 6, we show that if h = e−ϕ

is a Hermitian metric on O(1) with positive curvature form ωh and g is any fixed Riemannian
metric, then ν = ωh is kinetic admissible, and in fact

‖∇s‖2(hN⊗g,ν) ≤ CN2‖s‖2(hN ,ν). (16)

We then extend Theorem 1 to the full P (ϕ)2 case. Perhaps surprisingly, when (h, ν,∇)
is kinetic admissible, the kinetic term becomes a ‘lower order term’ if P (x) contains non-
quadratic terms.

Theorem 2. Let (h, ν,∇) be kinetic admissible in the sense that (15) holds. Let P (|s|2hN ) be
a semi-bounded polynomial as above, and let γN be the associated P (ϕ)2 measure defined by
the action (6). Then the sequence of probability measures {ProbN} on M(CP1) defined by
(12) satisfies a large deviations principle with speed N2 and the same rate functional Ih,K(µ)
as in Theorem 1.

The proofs of Theorems 1-2 are to relate the LDP for the P (ϕ)2 ensemble to the LDP for
the associated (quadratic) Gaussian ensemble without kinetic term studied in [ZZ]. To avoid
duplication, we refer the reader to the earlier article for steps in the proof which carry over
to P (ϕ)2 measures with no essential change. There are two new steps that are not in [ZZ].
The first new step (Propositions 3 and 8) is the calculation of the JPC (joint probability
current, or distribution) of zeros in the P (ϕ)2 ensembles. The main observation underlying
this note is that the calculation of the JPC in the Gaussian ensemble in [ZZ] extends easily
to the P (ϕ)2 case. The second new step (loc. cit.) is the reduction of the proof of the
LDP to that of [ZZ] by bounding the approximate rate function in the P (ϕ)2 case above and
below by that in the Gaussian case.

As a direct consequence of Theorems 1-2 we obtain,
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Corollary 1. With all assumptions in Theorems 1-2 , let EN(Zs) be the expected value of
the empirical measure with respect to γN . Then, EN(Zs) → νh,K which is the equilibrium
measure determined by h and K.

Indeed, the limit measure limN→∞EN(Zs) must be the unique minimizer of the rate func-
tional. Convergence of the expected distribution of zeros to the equilibrium measure was
first proved for Gaussian random polynomials with ‘subharmonic weights’ in [SZ1] and for
flat weights and real analytic K in [SZ2]. In [B], the flat result was generalized to admissible
measures. Corollary 1 is the first result to our knowledge for probability measures of the form
(5). In fact, we are not aware of prior results on these finite dimensional approximations to
P (ϕ)2 quantum field theories. The results may have an independent interest in illustrating
a novel kind of high frequency cutoff for such theories (in a holomorphic sector).

In conclusion, we thank O. Zeitouni for discussions and correspondence on this note.

0.2. An example: Kac-Hammersley. As an illustration of the methods and results,
we consider a P (ϕ)2 generalization of the Kac-Hammersley ensemble. The classical Kac-
Hammersley ensemble is the Gaussian random polynomial

s(z) =

N∑

j=0

ajz
j , z ∈ C

where the coefficients aj are independent complex Gaussian random variable of mean 0 and
variance 1. In this case, E(Zs) → δS1 as the week limit.

In the Gaussian case, dν = δS1 (the invariant probability measure on the unit circle), the
weight e−ϕ = 1 and g is the flat metric. Hence the inner product (3) reads

‖s‖2δS1
=

1

2π

∫ 2π

0

|s(eiθ)|2dθ

where s is a polynomial of degree N .
We now use the same metrics and measures, together with any semi-bounded polynomial

P (|s|2), to define the kinetic P (ϕ)2 Kac-Hammersley ensemble. We note that δS1 is admissible
[ZZ]. Second, inequality (16) holds for any polynomials: In the setting of Kac-Hammersley,
the connection ∇ is equal to d = ∂ + ∂̄, thus

∇s = (
N∑

j=1

jajz
j−1)dz

thus

‖∇s‖2δS1
=

N∑

j=1

j2|aj|2 ≤ N2

N∑

j=0

|aj |2 = N2‖s‖2δS1

Hence, Theorems 1 - 2 hold in this case and we have

Corollary 2. In the setting of Kac-Hammersley, let Let EN(Zs) be the expected value of
the empirical measure with respect to γN defined by P (ϕ)2 action (6) with the kinetic term.
Then, EN(Zs) → δS1.
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1. Proof of the Theorem 1

In this section, we drop the kinetic term ‖∇s‖2(hN⊗g,ν) and only consider actions of the form
∫
P (|s|2hN )dν. We assume that ck > 0 and with no essential loss of generality we put ck = 1

(the coefficient could be re-scaled in the calculation). The following calculation generalizes
Proposition 3 of [ZZ].

Proposition 3. Let (PN , γN) be the P (ϕ)2 ensemble with S(s) =
∫

CP1 P (|s|hN )dν, where
dν is an admissible measure. Denote by k the maximal non-zero power occurring in P (7).

Let ~KN be the joint probability current (10). Then,

~KN(ζ1, . . . , ζN) =
(ΓN(ζ1, . . . ζN))

ZN(h)

|∆(ζ1, . . . , ζN)|2d2ζ1 · · · d2ζN
(∫

CP1

∏N
j=1 |(z − ζj)|2ke−kNϕ(z)dν(z)

)N+1
k

(17)

=
(ΓN(ζ1, . . . ζN))

ẐN(h)

exp
(
∑

i<j Gh(ζi, ζj)
)
∏N

j=1 e
−2Nϕ(ζj)d2ζj

(∫

CP1 e
kN

∫
CP1

Gh(z,w)dµζdν(z)
)N+1

k

. (18)

where

sup
{ζ1,...,ζN}∈(CP1)(N)

1

N2
log ΓN(ζ1, . . . , ζN) → 0

and where ZN(h), resp. ẐN(h), is the normalizing constant in Proposition 3 of [ZZ].

We note that (17) (resp. (18)) is almost the same as (23) (resp. (24)) in Proposition 3 of
[ZZ] except that we raise ||s||hN to the power k instead of the power k = 2. It is shown in

[ZZ] that 1
ẐN

= e−
1
2
N(N−1)+N(N+1))E(h). The existence of such an explicit JPC in the general

P (ϕ)2 case is the reason why it is possible to prove Theorem 1.

Proof. We coordinatize PN using the basis zj and put

s = a0

N∏

j=1

(z − ζj) =

N∑

j=0

aN−jz
j .

Any smooth probability measure on PN thus has a density D(a0, . . . , aN)
∏N

j=0 d
2aj , where

d2a = da ∧ dā is Lebesgue measure.
As in [ZZ], the first step is to push this measure forward under the natural projection

from PN to the projective space PPN of polynomials, whose points consists of lines Cs of
polynomials. This is natural since Zs is the same for all multiples of s. Monic polynomials
with a0 = 1 form an affine space of PPN . As affine coordinates on PPN we use [1 : b1 : · · · : bN ]
with bj = aj/a0.

We then change variables from the affine coordinates bj to the zeros coordinates ζk. Since
aN−j = eN−j(ζ1, . . . , ζN) (the (N − j)th elementary symmetric polynomial), the pushed
forward probability measure on PPN then has the form

~KN (ζ1, . . . , ζN) =

(∫

D(a0; ζ1, . . . , ζN)|a0|2Nd2a0
)

× |∆(ζ1, . . . , ζN)|2d2ζ1 · · · d2ζN , (19)
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where D(a0; ζ1, . . . , ζN) is the density of the JPC in the coordinates (a0, . . . , aN) followed by
the change of coordinates, and ∆(ζ1, . . . , ζN) =

∏

i<j(ζi − ζj) is the Vandermonde determi-

nant. We refer to [ZZ] (proof of Proposition 3) for further details.
For the P (ϕ)2 measures (5) without a kinetic term,

D(a0; ζ1, . . . , ζN) = e−
∫
CP1 P (|a0|2|

∏N
j=1(z−ζj)|2

hN
)dν(z). (20)

Put

αi(ζ1 . . . , ζN) := αi =

∫

CP
1

|
N∏

j=1

(z − ζj)|2ihNdν(z). (21)

Then

D(a0; ζ1, . . . , ζN) = e−(αk |a0|2k+αk−1ck−1|a0|2k−2+···+α1c1|a0|2), (22)

and the pushed-forward density is
∫
D(a0; ζ1, . . . , ζN)|a0|2Nd2a0

=
∫

C
e−(αk |a0|2k+αk−1ck−1|a0|2k−2+···+α1c1|a0|2)|a0|2Nda0 ∧ dā0.

(23)

We change variables to ρ = |a0|2 → α
− 1

k
k ρ to get

∫ ∞

0

e−(αkρ
k+αk−1ck−1ρ

k−1+···+α1c1ρ)ρNdρ = (αk)
N+1
k ΓN , (24)

where

ΓN(ζ1, . . . , ζN) :=

∫ ∞

0

e−(ρk+βk−1ck−1ρ
k−1+···+β1c1ρ)ρNdρ. (25)

with βi =
αi

α
i
k
k

. We observe that

(αk)
N+1
k =

(
∫

CP
1

|
N∏

j=1

(z − ζj)|2khNdν(z)

)N+1
k

, (26)

so that (24) implies the identity (17). The identity (18) is derived from (17) exactly as in
Proposition 3 of [ZZ], so we refer there for the details.

To complete the proof of the Proposition, we prove the key

Lemma 4. We have,

sup
{ζ1,...,ζN}∈(CP1)(N)

1

N2
log ΓN(ζ1, . . . , ζN) → 0

Proof. By the Hölder inequality with exponent k
i
, βi ≤ (

∫

CP
1 dν)1−

i
k = 1, hence βi is bounded

independent of N for any polynomial s or roots {ζ1, . . . , ζN}.
We first note that

ρk + βk−1ck−1ρ
k−1 + · · ·+ β1c1ρ ≥ ρk − |ck−1|ρk−1 − · · · − |c1|ρ

≥ 1
2
ρk, for ρ ≥ ρk := ρk(c1, . . . , ck−1),
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where |c1|
ρ

+ · · ·+ |c1|
ρk−1 ≤ 1

2
for ρ ≥ ρk. It follows that

ΓN(ζ1, . . . , ζN) ≤
∫ ρk
0

e−(ρk+βk−1ck−1ρ
k−1+···+β1c1ρ)ρNdρ+

∫∞
ρk

e−
1
2
ρkρNdρ

≤
∫ ρk
0

e−(ρk−|ck−1|ρk−1−···−|c1|ρ)ρNdρ+
∫∞
0

e−
1
2
ρkρNdρ.

But ∫ ∞

0

e−
1
2
ρkρNdρ = N

N+1
k

∫ ∞

0

eN(log ρ− 1
2
ρk)dρ ∼ N

N+1
k eN( 1

k
log 1

k
− 1

k
) 1√

N
.

Also, ∫ ρk

0

e−(ρk−|ck−1|ρk−1−···−|c1|ρ)ρNdρ ≤ (ρk)
NCk,

where Ck is a constant independent of N and {ζ1, . . . , ζN}. Hence,

ΓN ≤ (ρk)
NCk +N

N+1
k eN( 1

k
log 1

k
− 1

k
) 1√

N
.

To obtain a lower bound, we write
∫ ∞

0

e−(ρk+βk−1ck−1ρ
k−1+···+β1c1ρ)ρNdρ =

∫ 1

0

+

∫ ∞

1

For ρ ∈ [0, 1] we have,

ρk + βk−1|ck−1|ρk−1 + · · ·+ β1|c1|ρ ≤ kC, C = max{|cj|}kj=1

since each βi is bounded by 1, thus
∫ 1

0

e−(ρk+βk−1ck−1ρ
k−1+···+β1c1ρ)ρNdρ ≥

∫ 1

0

e−CkρNdρ ≥ e−Ck 1

N + 1

For ρ ≥ 1 we have,
ρk + βk−1ck−1ρ

k−1 + · · ·+ β1c1ρ ≤ kCρk,

hence ∫∞
1

e−(ρk+βk−1ck−1ρ
k−1+···+β1c1ρ)ρNdρ ≥

∫∞
1

e−CkρkρNdρ

= (Ck)−(N+1)/k
∫∞
1

e−ρkρNdρ ≥ (Ck)−(N+1)/k.

Putting together the two bounds, we get

(Ck)−(N+1)/k + e−k 1

N + 1
≤ ΓN ≤ (ρk)

NCk +N
N+1
k eN( 1

k
log 1

k
− 1

k
) 1√

N
.

This completes the proof of Lemma 4, and hence of the Proposition. �

Remark: In retrospect, what we proved is that

1

N2
log

∫

D(a0; ζ1, . . . , ζN)|a0|2Nd2a0 ∼
1

N2
log

∫ ∞

0

e−αkρ
k

ρNdρ (27)

We could obtain the limit by a slight generalization of the saddle point method,

1
N2 log

∫∞
0

e−αkρ
k
ρNdρ ∼ − 1

N2 infρ∈R+(αkρ
k −N log ρ)

∼ − 1
kN

logαN = − 1
kN

log
∫

CP
1 |
∏N

j=1(z − ζj)|2khNdν,
(28)
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since the minimum occurs at ρN = (N
k
)

1
kα− 1

k . This is the same answer we are about to get
by the more rigorous argument in [ZZ].

1.1. Completion of the proof of Theorem 1 without kinetic term. We now modify
the calculations of [ZZ], Section 4.7, of the approximate rate function IN . As in that section,
we define

Eh
N(µζ) =

∫

CP
1×CP

1\∆
Gh(z, w)dµζ(z)dµζ(w),

where ∆ ⊂ CP
1 × CP

1 is the diagonal. We also define

J h,ν
N (µζ) = log ‖eU

µζ
h ‖LkN (ν). (29)

It is almost the same functional of the same notation in [ZZ], Section 4.7, except that the
LN norm there now becomes the LkN norm.

We define the approximate rate functional by

−N2IN(µζ) := −1

2
Eh
N(µζ) +

N + 1

N
J h,ν

N (µζ). (30)

The following is the analogue of Lemma 18 of [ZZ].

Proposition 5. With the same notation as in Proposition 3, we have

~KN(ζ1, . . . , ζN) =
ΓN (ζ1, . . . , ζN)

ẐN(h)
e−N2(− 1

2
Eh
N (µζ)+

N+1
N

J h,ν
N (µζ))).

The proof is the same calculation as in [ZZ] and we therefore omit most of the details.
Indeed, the remainder of the proof of Theorem 1 for P (ϕ)2 measure without kinetic term
is identical to that of Theorem 1 of [ZZ], since the only change in the approximate rate

functional is the change 1 → k in J h,ν
N and the factor ΓN . The change in J h,ν

N cancels out
in the limit, since (as in [ZZ]), we have

lim
N→∞

J h,ν
N (µζ) = log ‖eU

µζ
h ‖LkN (ν) ↑ log ‖eU

µζ
h ‖L∞(ν) = sup

K
U

µζ

h .

We briefly re-do the calculation for the sake of completeness, referring to [ZZ] for further
details:
∫

CP1

∏N
j=1 |(z − ζj)|2ke−kNϕdν(z) =

(∫

CP1 e
k
∫
CP1 Gh(z,w)ddc log ||sζ(w)||2

hN dν
)

ek
∫
CP1 log ||sζ||2

hN
(z)ωh

=
(∫

CP1 e
kN

∫
CP1 Gh(z,w)dµζ(w)dν

)
ek

∫
CP1

log ||sζ ||2
hN

(z)ωh .
(31)

The right side is then raised to the power −N+1
k

. If we take 1
N2 log of the result we get the

supremum of
∫

CP1 Gh(z, w)dµζ(w) on the support of dν.

Further, by Proposition 3 the ΓN factor does not contribute to the rate function Ih,K .
Therefore the special case of Theorem 1 for P (ϕ)2 measures where the ‖∇s‖2(hN⊗g,ν) term is

omitted follows from Proposition 5 and from the proof of Theorem 1 in [ZZ].
�
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2. Large deviations for Lagrangians with kinetic term.

We now include the kinetic energy term. In order to define ∇s we need to introduce a con-
nection∇ : C∞(CP1,O(1)) → C∞(CP1,O(1)⊗T ∗). To define the norm-square ||∇s||2(HN⊗g,ν)

we introduce a metric g on CP1 and a Hermitian metric H on O(1) to define |∇s|2HN⊗g point-

wise and a measure dµ on CP1 to integrate the result. The kinetic term is independent of the
potential term, and we could choose H, µ differently from h, ν in the potential term. But to
avoid excessive technical complications, we choose the metrics and connections to be closely
related to those in the potential term.

We first assume that h = e−ϕ is a hermitian metric on O(1) → CP1 with positive (1, 1)
curvature, ωh = i

π
∂∂̄ϕ > 0. We then choose ∇ to be the Chern connection of h. Thus,

∇s ∈ C∞(CP1,O(N) ⊗ T ∗(1,0)) if s ∈ H0(CP1,O(N)). We fix a local frame e over C and
express holomorphic sections of O(N) as s = peN . The connection 1-form is defined by
∇e = e ⊗ α and in the case of the Chern connection for h it is given by α = h−1∂h = ∂ϕ.
We further fix a smooth Riemannian metric g on CP1 (which could be ωh but need not be).

We assume that the auxiliary probability measure dν on CP1 satisfies the following L2-
condition: There exists r ≥ 0 so that

∫

CP1

|p|2e−Nϕωh ≤ CN r

∫

CP1

|p|2e−Nϕdν, (32)

for all p ∈ PN . That is, the inner product defined by (hN , ωh) is polynomially bounded by
the inner product defined by (hN , ν). We say that (h, ν) is kinetic admissible if the data
satisfies these conditions. The metrics h and g and the measure ν induce inner products on
Γ(LN ⊗ T ∗(1,0)) by

〈s⊗ dz, s⊗ dz〉hN⊗g =

∫

CP1

(s, s)hN (dz, dz)g dν.

Since ∇peN = eN ⊗ ∂p+NpeN ⊗ α, the kinetic energy is given in the local coordinate as
∫

CP1 |∇s|2hN⊗gdν : =
∫

C
(eN ⊗ ∂p +NpeN ⊗ α, eN ⊗ ∂p +NpeN ⊗ α)hN⊗gdν

=
∫

C

(
|∂p|2g +Np(α, ∂p)g +Np̄(∂p, α)g +N2|p|2|α|2g

)
e−Nϕdν

(33)

2.1. Kinetic admissible (h, ν,∇). We now show that some natural choices of (h, ν,∇) are
kinetic admissible.

We first observe that 1
N
∇ is a bounded operator on H0(M,LN ) for any positive line bundle

L over the projective Kähler manifold M , when the inner product is defined by a smooth
volume form. This is an obvious result of Toeplitz calculus but we provide a proof using the
Boutet de Monvel-Sjöstrand parametrix for the Szegö kernel. It is at this point that we need
the assumption that ωh > 0.

Lemma 6. Assume h = e−ϕ is a Hermitian metric on a holomorphic line bundle L → M
over any compact projective Kähler manifold with ωh = ∂∂̄ϕ > 0. Assume dν is a smooth
volume form and g is a Riemannian metric over M . Then we have

‖∇s‖2(hN⊗g,ν) ≤ C(h, g, ν)N2‖s‖2(hN ,ν)

where s is the holomorphic section of line bundle LN .
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Proof. Let ΠN,ν : L
2(M,LN) → H0(M,LN ) be the orthogonal projection with respect to the

inner product,

〈f1 ⊗ eN , f2 ⊗ eN 〉 =
∫

M

f1f̄2e
−Nϕdν,

Here in the local coordinate, we write s = feN as the section of the line bundle LN .
Let ΠN,ν(z, w) be its Schwartz kernel with respect to dν,

(ΠN,νs)(z) =

∫

M

ΠN,ν(z, w)f(w)e
−Nϕ(w)dν(w)

Then Bergman kernel has the paramatrix [BBS, BS]

ΠN,ν(z, w) = eNϕ(z·w)ANe
N (z)⊗ ēN (w)

where AN is a symbol of order m = dimM depending on h and ν and where ϕ(z · w) is the
almost-analytic extension of ϕ(z). It follows that the Schwartz kernel of 1

N
∇ΠN,ν has the

local form,

1
N
∇ΠN,ν(z, w) =

(
( 1
N
∂ + ∂ϕdz)eNϕ(z·w)AN (z, w)

)
eN(z)⊗ ēN(w)

=
(
(∂ϕ + ∂zϕ(z · w) + 1

N
∂ logAN)e

Nϕ(z·w)AN

)
eN(z)⊗ ēN(w).

Put Φ(z, w) := ∂ϕ + ∂zϕ(z · w) + ∂ logAN . Denote by ΦΠN,ν the product of Φ and the
Schwartz kernel of ΠN,ν . Then,

‖ 1

N
∇s‖2(hN⊗g,ν) = ‖ 1

N
∇ΠN,νs‖2(hN⊗g,ν) = ‖(ΦΠN,ν)s‖2(hN⊗g,ν)

We now claim that

‖(ΦΠN)s‖L2(hN⊗g,ν) ≤ C‖s‖L2(hN ,ν).

This follows from the Schur-Young bound on the L2 → L2 mapping norm of the integral
operator ΦΠN ,

‖ΦΠN‖ ≤ C sup
M

∫

M

|ΠN,ν(z, w)|dν(z), (34)

since for any metric g on M , |Φ|g ≤ C uniformly on M . To estimate the norm, we use the
following known estimates on the Bergman kernel (see [SZ4] for a similar estimate and for

background): when d(z, w) ≤ CN− 1
3 , we have

|ΠN,ν(z, w)|hN⊗hN ≤ CNme−
1
4
Nd2(z,w) +O(N−∞),

and in general,

|ΠN,ν(z, w)| ≤ CNme−λ
√
Nd(z,w)

for some constant C and λ.
Since we assume dν is a volume form on M , there exists a positive function J ∈ C∞(M)

such that dν = Jωm
h . We break up the right side of (34) into

∫

d(z,w)≤N−1/3

+

∫

d(z,w)≥N−1/3

.
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The first term is bounded by

≤ CNm
∫

d(z,w)≤N−1/3 e
− 1

4
Nd2(z,w)Jωm(z)

≤ C(h, ν)Nm
∫∞
0

e−
1
4
Nρ2dρ2m +O(N−∞) ≤ C ′(h, ν)

The second term is bounded by

≤ CNm
∫

d(z,w)≥N−1/3 e
−λ

√
Nd(z,w)Jωm

≤ CNm
∫

M
e−λN

1
6 dν ≤ O(N−∞)

as N large enough. Thus the operator norm ΦΠN is bounded by some constant C ′(h, g, ν).
�

Remark: The assumption that dν is a smooth volume form allows us to take the adjoint of
∇.

We now give a more general estimate. We assume again that h = e−ϕ has positive
curvature ωh > 0. But we now relax the assumption that dν is a smooth volume form, and
only assume that dν satisfies the L2 condition:

∫

M

|s|2e−Nϕωm
h ≤ CN r

∫

M

|s|2e−Nϕdν

for any s ∈ H0(M,LN ) and for some r ≥ 0.

Lemma 7. Let dimM = m. Under the above assumptions, we have

‖∇s‖2(hN⊗g,ν) ≤ CN r+2m+2‖s‖2(hN ,ν)

where s ∈ H0(M,LN).

Proof. First we consider the following Bergman kernel ΠN,ωh
(z, w) with respect to the inner

product,

ΠN(fe
N )(z) =

∫

M

ΠN,ωh
(z, w)f(w)e−Nϕωm

h (w).

As above, we write Φ(z, w) = ∂ϕ + ∂zϕ(z · w) + ∂ logAN .
By Schwartz’ inequality, we have (in an obvious notation)

‖ 1
N
∇ΠN,ωh

s‖2L2(hN ,ν)

≤ (
∫

M
|f |2e−Nϕωm

h )(
∫

M×M
|Φ|2|ΠN,ωh

|2e−Nϕ(w)−Nϕ(z)|dz|2gωm
h (w)dν(z))

Since |ΦΠN,ωh
|2|dz|2g ≤ CN2m uniformly, this implies

‖∇s‖2L2(hN⊗g,ν) = ‖∇ΠN,ωh
s‖2L2(hN⊗g,ν)

≤ CN2m+2
∫

M
|f |2e−Nϕωh ≤ CN r+2m+2‖s‖2L2(hN ,ν),

under the L2 condition. �
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2.2. Proof of Theorem 2. We now prove Theorem 2. At first one might expect the kinetic
term to dominate the action, since its square root is the H1

2 (dν) norm of s and since that
norm cannot be bounded by the Lp norm for any p < ∞, at least when ν is a smooth area
form. However, we are only integrating over holomorphic sections of O(N) and with the
admissibility assumption, the ratios of all norms are bounded above and below by positive
constants depending on N . Taking logarithm asymptotics erases any essential difference
between these norms.

The main step in the proof is the following generalization of Proposition 3.

Proposition 8. Let (PN , γN) be the P (ϕ)2 ensemble with action (6), where (h,∇, ν) is

kinetic admissible. Let ~KN be the joint probability current (10). Then,

~KN(ζ1, . . . , ζN) =
(Γ̃N(ζ1, . . . ζN))

ẐN(h)

exp
(
∑

i<j Gh(ζi, ζj)
)
∏N

j=1 e
−2Nϕ(ζj)d2ζj

(∫

CP1 e
kN

∫
CP1

Gh(z,w)dµζdν(z)
)N+1

k

. (35)

where

(∗∗) sup
{ζ1,...,ζN}∈(CP1)(N)

1

N2
log Γ̃N(ζ1, . . . , ζN) → 0

and where ZN(h), resp. ẐN(h), is the normalizing constant in Proposition 3 of [ZZ].

Proof. We closely follow the proof of Proposition 3, and do not repeat the common steps.
For the P (ϕ)2 measures (5) with kinetic term,

D(a0; ζ1, . . . , ζN) = e−
∫
CP1

(|∇
∏N

j=1(z−ζj)|2+P (|a0|2|
∏N

j=1(z−ζj)|2
hN

)dν(z)

= e−(αk |a0|2k+αk−1ck−1|a0|2k−2+···+α1c1|a0|2+η|a20|),

(36)

where

η = |a0|−2‖∇s‖2L2(hN⊗g,ν). (37)

Thus, the addition of the kinetic term changes the pushed forward probability density
from (23) to

∫
D(a0; ζ1, . . . , ζN)|a0|2Nd2a0

=
∫

C
e−(αk |a0|2k+αk−1ck−1|a0|2k−2+···+c1α1|a0|2+η|a0|2)|a0|2Nda0 ∧ dā0

=
∫∞
0

e−(αkρ
k+αk−1ck−1ρ

k−1+···+c1α1ρ+ηρ)ρNdρ,

where ρ = |a0|2 and αi is defined by (21). We only need to understand the effect of the new
η term.

We change variable ρ → ρα
1
k
k , to get

∫

D(a0; ζ1, . . . , ζN)|a0|2Nd2a0 = α
N+1
k

k Γ̃N (ζ1, . . . , ζN),

where

Γ̃N(ζ1, . . . , ζN) :=

∫ ∞

0

e
−(ρk+βk−1ck−1ρ

k−1+···+c1β1ρ+
η

α

1
k
k

ρ)

ρNdρ.
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This is the same expression as in Proposition 3 except that the ΓN factor has changed. Hence
to prove (**), it suffices to prove

1

N2
log

∫ ∞

0

e
−(ρk+βk−1ck−1ρ

k−1+···+c1β1ρ+
η

α

1
k
k

ρ)

ρNdρ → 0.

We first prove that the limit is bounded above by 0. Since the addition of the positive

quantity ηα
− 1

k
k increases the exponent, we have

1
N2 log

∫∞
0

e
−(ρk+βk−1ck−1ρ

k−1+···+c1β1ρ+
η

α
1
k
k

ρ)

ρNdρ

≤ 1
N2 log

∫∞
0

e−(ρk+βk−1ck−1ρ
k−1+···+c1β1ρ)ρNdρ,

so the integral is bounded above by its analogue in the pure potential case, and it follows
from the proof in section 1 that the last integral tends to 0.

We now consider the lower bound. By Lemmas 6 and 7 (with m = 1) and by Hölder
inequality, we have

η ≤ CNn|a0|−2‖s‖2L2(hN ,ν) ≤ CNnα
1
k
k ,

in the cases n = 2 with ν a smooth volume form or n ≥ 4 when ν satisfies the weighted L2

Bernstein inequality (15). We then have,

1
N2 log

∫∞
0

e
−(ρk+βk−1ck−1ρ

k−1+···+c1β1ρ+
η

α
1
k
k

ρ)

ρNdρ

≥ 1
N2 log

∫∞
0

e−(ρk+βk−1ck−1ρ
k−1+···+c1β1ρ+CNnρ)ρNdρ

≥ 1
N2 log

∫∞
0

e−(ρk+βk−1|ck−1|ρk−1+···+|c1|β1ρ+CNnρ)ρNdρ.

Hence, it suffices to prove that

1

N2
log

∫ ∞

0

e−(ρk+βk−1|ck−1|ρk−1+···+|c1|β1ρ+CNnρ)ρNdρ ≥ 0.

We use the steepest descent method to show that the latter tends to zero. The maximum
of the phase function occurs when

kρkN + (k − 1)βk−1|ck−1|ρk−1
N + · · ·+ |c1|β1ρN + CNnρN = N.

It follows first that ρN ≤ 1
CNn−1 < 1. Thus

N = kρkN + (k − 1)βk−1|ck−1|ρk−1
N + · · ·+ |c1|β1ρN + CNnρN

≤ kρN + (k − 1)βk−1|ck−1|ρN + · · ·+ |c1|β1ρN + CNnρN

which implies

ρN ≥ N

C(k, ck−1, · · · , c1) + CNn
,

and therefore

ρN ∼ 1

C ′Nn−1
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for N large enough. Thus by the formula of steepest descent,
1
N2 log

∫∞
0

e−(ρk+βk−1|ck−1|ρk−1+···+|c1|β1ρ+CNnρ)ρNdρ

∼ 1
N
log ρN − 1

N2 (ρ
k
N + βk−1|ck−1|ρk−1

N + · · ·+ |c1|β1ρN + CNnρN)

∼ − (n−1) log(C′N)
N

− 1
N2 ((

1
C′Nn−1 )

k + · · ·+ β1|c1| 1
C′Nn−1 )− C 1

C′N

which goes to 0 as N → ∞, and (**) holds. �

This completes the proof of Proposition 8. The rest of the proof proceeds exactly as in
§1.1, completing the proof of Theorem 2.
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