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DERIVED RESOLUTION PROPERTY FOR STACKS,

EULER CLASSES AND APPLICATIONS

YI HU AND JUN LI

Abstract. By resolving any perfect derived object over a Deligne-
Mumford stack, we define its Euler class. We then apply it to define
the Euler numbers for a smooth Calabi-Yau threefold in P4. These
numbers are conjectured to be the reduced Gromov-Witten invari-
ants and to determine the usual Gromov-Witten numbers of the
smooth quintic as speculated by J. Li and A. Zinger.

1. Introduction

Let Mg(P, d) be the DM stack of degree d genus-g stable maps to a
projective space P. We let

(1.1) X
π

−−−→ Mg(P, d) and X
f

−−−→ P

be its universal family. For any integer k > 0, the derived object
Rπ∗(f

∗OPm(k)) is quasi-isomorphic to a complex of locally free sheaves

E • = [E0
ϕ

−−−→ E1].

The main purpose of this article is to define the Euler class

e(Rπ∗(f
∗OP(k))

of this complex over the primary component of Mg(P, d).
In fact, we consider any perfect derived object E • in the bounded

derived category Db(M) of an integral DM stack M with cohomologies
concentrated in the non-negative places. Our main theorem says that
any such a perfect derived object E •, such as Rπ∗(f

∗OPm(k)) in the
above, can be resolved to have locally free sheaf cohomology H 0 after
birational base change.

Theorem 1.1. (Existence of Resolution.) Let E • be any perfect de-
rived object over an integral DM stack M . Assume that E • can locally
be represented by a complex of locally free sheaves of finite length sup-
ported only in non-negative degrees. Then there is another integral DM

stack M̃ and a surjective birational morphism f : M̃ → M such that
H 0(Lf ∗E •) is locally free.
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Moreover, among the above stacks M̃ , there is also a unique one
(up to isomorphism) that is minimal (see Theorem 4.3 and Proposition
4.5 for the precise statements). In the main text, we will prove the
stronger Theorem 4.3 from which the above is a consequence. The
main technical theorem for this purpose is Theorem 3.11.

Definition 1.2. Suppose further that the cohomologies in positive places
H i>0(E •) are all torsion sheaves over M . Then, we define the Euler
class e(E •) in the Chow group A∗M of cycles on M by,

(1.2) e(E •) := f∗(cr(H
0(Lf ∗E •)) · [M̃ ]),

where r = rankH 0(Lf ∗E •).

Proposition 1.3. Let M be an integral DM stack and E • a perfect de-
rived object as in Theorem 1.1. Suppose H i<0(E •) = 0 and H i>0(E •)
are torsion sheaves. Then the Euler class e(E •) is independent of the

choice of the resolutions f : M̃ →M .

For more precise statements, see Proposition 5.3 and Corollary 5.4.

The above, when applied to the derived object Rπ∗f
∗OP4(5) restricted

to the primary component Mg(P4, d)′ of the moduli stack Mg(P4, d),
enables us to construct the modular Euler class when d > 2g − 2.
(The general points of Mg(P4, d)′ are maps with smooth domains, and

Mg(P4, d)′ is irreducible and of the expected dimension when d > 2g−2.
cf. 6.4.) In this case, letting f′ be the restriction of the universal family
f to Mg(P4, d)′, then R1π∗f

′∗OP4(5) is a torsion sheaf over Mg(P4, d)′.

Definition 1.4. For d > 2g − 2, we define the modular Euler class of
Rπ∗f

∗OP4(5) over Mg(P4, d)′ to be

(1.3) e(Rπ∗f
′∗OP4(5)) ∈ A∗(Mg(P4, d)′);

for any smooth Calabi-Yau manifold Q in P4, we define

(1.4) N ′
g,d(Q) = deg e(Rπ∗f

′∗OP4(5)).

We believe that these numbers N ′
g,d(Q) are the reduced GW-invariants

speculated by Li and Zinger:

Conjecture 1.5. Let Ng,d(Q) be the genus g, degree d GW-invariants
of the smooth quintic Q ⊂ P4.There are universal constants ch such
that for d > 2g − 2,

Ng,d(Q) =
∑

0≤h≤g

chN
′
h,d(Q).
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2. Conventions and Terminology

2.1. Throughout the paper, we fix an arbitrary algebraically closed
base field k of characteristic 0. All schemes and stacks in this paper
are assumed to be noetherian over k.

2.2. Paragraphs are enumerated, so are equations. For instance, 3.2
refers to Paragraph 3.2, while (3.2) refers to Equation (3.2). §3.2 refers
to a subsection.

2.3. Unless otherwise stated, smoothness is in the sense of DM stack
or Artin stack. On the coarse moduli level, this roughly means that
the moduli space is locally in the étale topology a quotient of a smooth
variety by a finite group or in the topology of smooth morphisms a
quotient of a smooth variety by a group scheme.

2.4. All morphisms between stacks are assumed to be representable.

2.5. Let X be a scheme, D a Cartier divisor of X and Z a closed
subscheme of X . We will write OZ(D) for the restriction OX(D)|Z .

2.6. For any right exact functor F such as f ∗ from an Abelian cate-
gory A to another B, we use LF to denote the left derived functor.
Similarly, for a left exact functor F such as f∗, RF is the right derived
functor.

3. Diagonalizing Sheaf Homomorphism

3.1. Let M be a DM-stack. We denote by Db(M) the derived category
of bounded complexes of coherent sheaves over M . An object E • ∈
Db(M) is called perfect if locally it can be represented by a complex of
locally free sheaves of finite length. Equivalently, the stack M admits
an étale cover U by a scheme such that there is a finite length complex
F • of locally free sheaves over U such that E • is represented by F • in
Db(U).

3.2. Let an integral DM stack M and a derived object E • be as
in Theorem 1.1. Since E • is perfect, we can cover M by open charts∐
U and for each open subset U there is a finite length complex F •

of locally free sheaves over U such that E •|U is represented by F •. By
our assumption, we may assume that F • has the form

(3.1) F0
ψ

−−−→ F1 −−−→ · · ·
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Our aim is to resolve the sheaf H 0(M, E •). Note that we have

H 0(U, E •|U) ∼= kerψ.

3.3. To resolve the sheaf H 0(M, E •), we consider the following model.
Let X be a scheme, not necessarily irreducible or reduced, and

ϕ : E −→ F

be a homomorphism between locally free sheaves over X . We let
∧i

ϕ :∧i
E −→

∧i
F be the induced homomorphism between the wedge

products, i ≥ 0. We also view
∧i

ϕ as a section of Hom(
∧i

E,
∧i

F ).
Denote by m the rank of the image sheaf Imϕ. This is the smallest
integer such that

∧m+1
ϕ ≡ 0.

Definition 3.4. For any 0 ≤ r ≤ m − 1, we let Zϕ,r ⊂ X be

the subscheme of vanishing of the section
∧r+1

ϕ and call it the r-
determinantal subscheme of X with respect to ϕ. Its scheme struc-
ture is given by the determinantal ideal Iϕ,r which is generated by all
(r+1)× (r+1) minor determinants of any local matrix representation
of ϕ.

Note that the ideal sheaf Iϕ,r does not depend on the choice of local
matrix representation; it is supported on the locus of points w such
that dim Im(ϕ(w)) ≤ r.

3.5. Determinantal ideals have base change property. If f : Y −→
X is a morphism between schemes, then the r-determinantal ideal of
f ∗ϕ : f ∗E −→ f ∗F is the pullback of the r-determinantal ideal of
ϕ : E −→ F . That is, If∗ϕ,r = f ∗Iϕ,r.

3.6. Now, we will define inductively the blowing ups of X along the
determinantal ideal sheaves1. First, we let

b0 : X0 −−−→ X

be the blowing-up of X along the ideal sheaf Iϕ,0. For any 0 ≤ r ≤
m− 2, assume that

br : Xr −−−→ Xr−1

is already defined. We let

ϕr : Er −−−→ Fr

be the pullback of ϕ : E −→ F . Then we define

br : Xr+1 −−−→ Xr

1We note here that similar idea has been used in [6].
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to be the blowup of Xr along the ideal sheaf Iϕr,r+1. After the final
blowing up

bm−1 : Xm−1 −−−→ Xm−2,

we define

b : X̃ := Xm−1 −−−→ X

to be the induced iterated blowing up. We also let Dr to denote the
exceptional divisor of the birational morphism br : Xr −→ Xr−1.

Theorem 3.7. The birational morphism b : X̃ −→ X resolves the
kernel sheaf of ϕ : E −→ F . That is, the kernel sheaf ker(b∗ϕ|X̃′)

is locally free where X̃ ′ is any irreducible component of X̃ with the
reduced scheme structure.

To prove this theorem, we will state and prove the technical but
stronger Theorem 3.11, from which the above is an immediate conse-
quence. To this end, we need the pivotal notion of locally diagonaliz-
able homomorphism.

Definition 3.8. A homomorphism ϕ : O⊕p
X −→ O⊕q

X is said to be
diagonalizable if we have direct sum decompositions by trivial sheaves

(3.2) O⊕p
X = G0 ⊕

l⊕

i=1

Gi and O⊕q
X = H0 ⊕

l⊕

i=1

Hi

with ϕ(Gi) ⊂ Hi for all i such that

(1) ϕ|G0
= 0;

(2) for every 1 ≤ i ≤ l, ϕ|Gi
equals to piIi for some 0 6= pi ∈ Γ(OX)

where Ii : Gi → Hi is an isomorphism;
(3) 〈pi〉 % 〈pi+1〉

Definition 3.9. A homomorphism ϕ : E −→ F between locally free
sheaves of a scheme X is locally diagonalizable if there are trivializa-
tions of E and F over some open covering of X such that ϕ : E −→ F

is diagonalizable over every open subset.

It is routine to check the following useful observations.

Proposition 3.10. Suppose that a homomorphism ϕ : E −→ F is
locally diagonalizable, then

(1) for every 0 ≤ r ≤ m−1, the determinantal ideal Iϕ,r is invert-
ible;

(2) for every irreducible componentX ′ ofX with the reduced scheme
structure, ker(ϕ|X′) is locally free2;

2Note here that the rank of kerϕ depends on the properties of the functions pi,
hence may not be constant over X . Further, when X ′ is not reduced, ker(ϕ|X′)
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(3) if f : Y −→ X is a morphism, then f ∗ϕ is also locally diagonal-
izable (i.e., “locally diagonalizable” has base change property).

We now arrive at our main technical theorem.

Theorem 3.11. (Diagonalization.) For any 0 ≤ r ≤ m − 1, there is
an open covering of Xr trivializing Er and Fr such that over each open
subset U we have direct sum decompositions by trivial sheaves

Er =

r⊕

i=0

Gi ⊕Gr+1 and Fr =

r⊕

i=0

Hi ⊕Hr+1

with ϕr(Gi) ⊂ Hi for all 0 ≤ i ≤ r and ϕr(Gr+1) ⊂ Hr+1 making the
following true

(1) Gi
∼= Hi

∼= OU for all 0 ≤ i ≤ r, hence
⊕r

i=0Gi
∼=

⊕r
i=0Hi

∼=

O⊕(r+1)
U ;

(2) for every 0 ≤ i ≤ r, ϕr|Gi
equals to piIi for some 0 6= pi ∈

Γ(OX) where Ii : Gi → Hi is an isomorphism;
(3) pi|pi+1 (0 ≤ i ≤ r − 1);
(4) pr divides ϕr|Gr+1

.

In particular, when r = m−1, we obtain that the homomorphism b∗ϕ is
locally diagonalizable, and hence the kernel sheaf ker(b∗ϕ|X̃′) is locally

free where X̃ ′ is an irreducible component of X̃ with the reduced scheme
structure.

Proof. We will prove by induction on r.
First, consider the case of r = 0. Take any point ξ ∈ X . Locally

around ξ, we can trivialize E and F over an open neighborhood U of ξ
and choose bases of E and F such that ϕ is given by the matrix (µij).
If Zϕ,0 = ∅, or equivalently Iϕ,0 = OU , then there is a µij such that

µij(0) 6= 0. By shrinking U we may assume that µij ∈ Γ(O∗
U). This

way, by a basis change, we can arrange decompositions

E ∼= G1 ⊕G2 and F ∼= H1 ⊕H2

such that G1, H1
∼= OU , ϕ(G1) ⊂ H1, ϕ(G2) ⊂ H2, and ϕ|G1

: G1 −→
H1 is an isomorphism. Since X0 = X in this case, the statements of
the theorem hold.
If Zϕ,0 is a Cartier divisor, i.e., the ideal Iϕ,0 is the principal ideal

〈p〉 generated by some p ∈ Γ(OU), then we can write (µij) as (p · νij).
Since 〈µij〉 = 〈p〉, we see that 〈νij〉 = OU . This implies that the

needs not to be locally free. These technical issues lead us to use the “integral”
assumption whenever and only when we want to produce a locally free sheaf.
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homomorphism ϕ factors as

ϕ : E
ϕ′

−−−→ F (−Zϕ,0)
inclusion
−−−−−→ F,

and ϕ′ = (νij) has that Iϕ′

0
,0 = OU . Now apply the previous case to

the homomorphism ϕ′, one checks that we obtain decompositions

E = G1 ⊕G2 and F = H1 ⊕H2

such that G1, H1
∼= OU , ϕ(G1) ⊂ H1, ϕ(G2) ⊂ H2, and ϕ|G1

: G1 −→
H1 equals pI1 where I1 : G1 −→ H1 is an ismomorphism and p divides
ϕ|G2

. Again, since X0 = X in this case, the statements of the theorem
hold.
If Zϕ,0 is not a Cartier divisor, that is, Iϕ,0 is not principal, we blow

up Zϕ,0 to obtain

b0 : X0 −→ X and b∗0ϕ : b∗0E −→ b∗0F.

By 3.5, we have that Ib∗
0
ϕ,0 = b∗0Iϕ,0. Since b∗0Iϕ,0 is principal, this

reduces to the previous case. Note that b∗0ϕ = ϕ0. Thus, the case 0 is
proved.
Assume now that the assertion holds for r. Since the question is

local, we can restrict our focus on an affine open subset U of Xr such
that Er are Fr are all trivialized with the desired decomposition as
in the theorem and ϕr : Er −→ Fr has the desired properties as in
the theorem. In terms of the suitable bases of Er and Fr as in the
theorem granted by the inductive assumption, all these mean is that
we can represent ϕr by the diagonal matrix

diag[p0I0, · · · , prIr, B]

where B is the matrix representation of ϕr|Gr+1
and pr|B. Since

pr|B, we may write B = prB
′ and let ϕ′

r : Gr+1 −→ Hr+1 be the
homomorphism corresponding to B′. From the above representation,
we see that

(3.3) Iϕr ,r+1 = (p0 · · ·pr)prIϕ′

r,0.

Hence blowing up Iϕr ,r+1 is the same as blowing up Iϕ′

r ,0. Now we
can apply the case 0 to the homomorphism

ϕ′
r : Gr+1 −→ Hr+1.

From here, it is routine to check against the three cases of case 0 (for
ϕ′
r) so that we will obtain the desired decompositions for Er+1 and Fr+1

with the desired properties for ϕr+1.
By induction, this proves the statements (1)–(4) of the theorem.
To finish off, in the case of r = m−1, because ⊕r

i=0Gi
∼= O⊕m

U with m
the maximal rank of ϕm−1 = b∗ϕ, we must have that ϕm−1(Gr+1) = 0.
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This implies that b∗ϕ is locally diagonalizable, and in particular, if we
restrict b∗ϕ to an irreducible component with the reduced structure,
its kernel sheaf is locally free.
This completes the proof. �

Remark 3.12. The requirement that each Gi is isomorphic to OU in
the above theorem appears to be “stronger” than Definition 3.8, but in
fact, they are equivalent since in this theorem we allow 〈pi〉 = 〈pi+1〉
for some pairs pi and pi+1.

Proposition 3.13. (Universality.) Let ϕ : E −→ F be a homomor-

phism between locally free sheaves over a scheme X and X̃ the blowup
of X along determinantal loci of ϕ. If f : Z −→ X is any domi-
nant morphism between schemes such that the pullback homomorphism
f ∗ϕ : f ∗E −→ f ∗F is locally diagonalizable, then f factors uniquely
through X̃.

Proof. Let m be the rank of the image sheaf Imϕ. For any 0 ≤ r ≤
m− 1, we will show inductively that f factors uniquely through Xr.
When r = 0, consider any point ξ ∈ Z such that f(ξ) belongs to the

0-determinantal locus of ϕ. As in the proof of Theorem 3.11, locally
around f(ξ) ∈ W , we can represent ϕ by a matrix (µij) with µij ∈
Γ(OU), where U is an open neighborhood of f(ξ). The homomorphism
f ∗ϕ : f ∗E −→ f ∗F is given by the pullbacks (f ∗µij). Let J = f−1Iϕ,0

be the ideal generated by (f ∗µij). Since f is dominant, f(Z) is not
entirely contained in the 0-determinantal locus of ϕ, hence J 6= 0.
But then, since f ∗ϕ : f ∗E −→ f ∗F is diagonalizable, we can represent
f ∗ϕ as a diagonal matrix diag[p1I1, · · · , plIl, 0]. This shows that J is
principal. By the universal property of blowing up (Proposition 7.14
of [4]), f factors uniquely through X0.
Now assume that the claim holds for r: f factors uniquely through

Xr

f : Z
g

−−−→ Xr
br−−−→ X.

Since Xr+1 is the blowup of Xr along Iϕ′

r,0 (here we use the notation
as in the proof Theorem 3.11), we need only to consider a small open
neighborhood of any point ξ ∈ Z such that g(ξ) belongs to the 0-
determinantal locus of ϕ′

r. Since f is dominant, by the base change
property, we have

g−1Iϕ′

r,0 = Ig∗ϕ′

r,0 and f−1Iϕ,r+1 = If∗ϕ,r+1.

By (3.3) in the proof of Theorem 3.11, we see that Ig∗ϕ′

r ,0 and If∗ϕ,r+1

differ by an invertible sheaf. Since f ∗ϕ : f ∗E −→ f ∗F is diagonalizable,
from its diagonal representation we conclude that If∗ϕ,r+1, which is
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f−1Iϕ,r+1, is invertible. Hence, so is Ig∗ϕ′

r,0 = g−1Iϕ′

r ,0. This implies
that g factors uniquely through Xr+1, hence so does f .
By induction, this finishes the proof. �

Definition 3.14. For any homomorphism ψ : E −→ F between two
locally free sheaves over a scheme X, we say that a point x ∈ X is
ψ-regular if ψ(x) is of maximal rank.

It is easy to see that if x ∈ X is ψ-regular, then locally around x,
ψ : E −→ F is diagonalizable (and in fact, can be diagonalized to the
form diag(I, 0)).

Remark 3.15. The universality proposition 3.13 may also hold for
any morphism f : Z −→ X such that f(Z) contains ϕ-regular points
and f ∗ϕ is locally diagonalizable. But, we do not need this stronger
version in this paper.

4. Resolution of Derived Object

4.1. Let G be any coherent sheaf over a scheme X . A presentation of
G is an exact sequence

O⊕n
X

α
−→ O⊕m

X −→ G −→ 0.

The h-th (h ≤ m) Fitting ideal of the above presentation, denoted
Jh(G ), is the (m−h)-determinatal ideal of the homomorphism α (and
is defined to be OX when h > m). The basic property of Fitting ideals
is that any two presentations of G have the same Fitting ideals ([2, 8]).
This enables us to define the Fitting ideals of the coherent sheaf G
without reference to any particular presentation. It can be shown that
Jh(G ) are finitely generated and form an increasing sequence

J0(G ) ⊂ J1(G ) ⊂ · · · .

Taking Fitting ideal commutes with base change. That is, if g : Y −→
X is a morphism, then the h-th Fitting ideal of the sheaf f ∗G is gener-
ated, as an OY -module, by the h-th Fitting ideal of G . This is because
the pullback of a presentation of G is a presentation of f ∗G since the
tensor product is a right exact functor. In addition, taking Fitting ideal
commutes with localization. Let S be any multiplicative closed subset
of OX not containing the zero element. Then for every h ≥ 0 we have

Jh(G )(OX)S = Jh(GS),

where by Jh(GS) we mean the h-th Fitting ideal of the sheaf GS of
(OX)S-modules. For more details of Fitting ideals, the reader is referred
to [2] and [8].



10 YI HU AND JUN LI

4.2. We now are ready to prove Theorem 1.1 which we restate be-
low. Since E • is perfect and can locally be represented by a complex
of locally free sheaves of finite length supported only in non-negative
degrees, we can assume that M admits an open cover

∐
U , and over

each open subset U , its restriction E •|U is represented by the following
complex of locally free sheaves

(4.1) F0
ψ0

−−−→ F1
ψ1

−−−→ · · · −−−→ Fn−1
ψn−1

−−−→ Fn.

Theorem 4.3. Let M be an integral DM stack and E • a perfect ob-
ject in the derived category Db(M) which can be locally represented
by a complex of locally free sheaves of finite length supported only in

non-negative degrees. Then there is another integral DM stack M̃

and a dominant birational morphism f : M̃ → M such that over
any open chart and for every 0 ≤ i ≤ n − 1, the homomorphism

f ∗Fi
f∗ψi−−−→ f ∗Fi+1

is diagonalizable. In particular, H 0(Lf ∗E •) is
locally free.

Proof. We will adopt the notations from 4.2 and assume that locally
E • is represented by the complex as in (4.1).
We first consider the coherent sheaf H n(F •) = cokerψn−1. The

sequence

Fn−1
ψn−1

−−−→ Fn −−−→ H n(F •) −−−→ 0

is a locally free presentation of H n(E •). Since the Fitting ideals of
H n(E •) are the same as the determinatal ideals of ψn−1 : Fn−1 → Fn

and Fitting ideals are independent of presentations, we conclude that
when applied to the homomorphism ψn−1 : Fn−1 → Fn over the open
subset U , the iterated blowup as described in §3 patch together to
produce a well-defined iterated blowup of M

fn−1 :Mn−1 −→M

such that f ∗
n−1ψn−1 is locally diagonalizable. Now observe that if M

is integral and Z ⊂M a closed substack, then LZM , the blowup of M
along Z, is also integral. This follows from the fact that if I is any ideal
in a domain A, then

⊕
n I

n is also a domain. Thus Mn−1 is integral
and hence ker f ∗

n−1ψn−1 is locally free.
Now we apply the left derived functor Lf ∗

n−1 to E • and obtain

Lf ∗
n−1E

• ∈ Db(Mn−1).

The stack Mn−1 admits the open cover by
∐
f−1
n−1(U). Over the open

subset f−1
n−1(U), Lf

∗
n−1E

• is represented by

f ∗
n−1F0

f∗n−1
ψ0

−−−−→ f ∗
n−1F1 −−−→ · · ·f ∗

n−1Fn−1

f∗n−1
ψn−1

−−−−−−→ f ∗
n−1Fn.
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Consider the short exact sequence

f ∗
n−1Fn−2

f∗n−1
ψn−2

−−−−−−→ ker f ∗
n−1ψn−1 −−−→ H n−1(Lf ∗

n−1E
•) −−−→ 0.

This is a locally free presentation of H n−1(Lf ∗
n−1E

•). This allows us
to apply the same blowing up process as in the previous step to the
coherent sheaf H n−1(Lf ∗

n−1E
•) to get

fn−2 :Mn−2 −→ Mn−1

such that f ∗
n−2f

∗
n−1ψn−2 is diagonalizable and for the same reason as

explained earlier ker f ∗
n−2f

∗
n−1ψn−2 is locally free.

Applying the above repeatedly (or by induction), we will eventually
arrive at a birational dominant morphism

f : M̃ −→ M,

factoring as

M̃ =M0
f0

−−−→ M1
f1

−−−→ · · ·
fn−2

−−−→ Mn−1
fn−1

−−−→ M,

such that if we let f to be fn−1◦fn−2 · · ·◦f0, then for each 0 ≤ i ≤ n−1,
f ∗ψi is diagonalizable, Mi is integral and ker f ∗ψi is locally free. Now
use that Lf ∗E • is locally represented by

f ∗F0
f∗ψ0

−−−→ f ∗F1 −−−→ · · · f ∗Fn−1
f∗ψn−1

−−−−→ f ∗Fn,

we see that
H 0(Lf ∗E •) = ker f ∗ψ0,

the theorem is thus proved. �

Corollary 4.4. Let M be a DM stack (not necessarily integral) and
E • a perfect object in the derived category Db(M) with H i(E •) = 0
for i < 0. Assume further that locally E • can be represented by a
two-term complex F0

ψ
−−−→ F1

of locally free sheaves. Then there is

another DM stack M̃ and a birational morphism f : M̃ →M such that
the homomorphism f ∗F0

f∗ψ
−−−→ f ∗F1

is diagonalizable. In particular,

for any irreducible component M̃ ′ of M̃ endowed with the reduced stack
structure, H 0(Lf ∗E •|M̃ ′) is locally free.

Proof. As in the first step of the proof of the above theorem, we consider
the locally free presentation

F0
ψ

−−−→ F1 −−−→ H 1(E•) −−−→ 0

of the sheaf H 1(E•), we then simply blow up M along its Fitting

ideals and obtain f : M̃ →M . It follows from Theorem 3.11 that the
homomorphism f ∗F0

f∗ψ
−−−→ f ∗F1

is diagonalizable. Now Proposition

3.10 (2) implies the rest of the statements. �
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As a direct consequence of Proposition 3.13, the stack M̃ is universal.

Proposition 4.5. (Universality.) Let the situation be as in Theorem
4.3 or as in Corollary 4.4. If g : Z −→ M is any dominant mor-
phism such that for each 0 ≤ i ≤ n − 1, g∗ψ : g∗Fi −→ g∗Fi+1 is

diagonalizable, then g factors uniquely through f : M̃ −→M .

But, for topological applications, the following base change property,
although weaker, is more convenient to use and easy to prove.

Proposition 4.6. (Base Change Property.) Suppose that M is inte-
gral. For any DM stack N and a dominant morphism g : N →M such
that H 0(Lg∗E •) is locally free, we can find another DM stack N ′ and
a dominant morphism g̃ : N ′ → M , factoring through f and g (i.e.,
g̃ = f ◦ f ′ = g ◦ g′)

N ′ f ′
−−−→ M̃

g′

y f

y
N

g
−−−→ M

so that H 0(Lg̃∗E •) is locally free and is the pull back of H 0(Lf ∗E •)
and H 0(Lg∗E •).

Proof. Indeed, we let N ′ be the closure of the open subset of the graph
of the rational map

N −→ M̃

that is isomorphic to its image when projected to either N ′ and M̃ .
Then we obtain the square as in the proposition such that g̃ : N ′ −→ M

is a dominant morphism. The rest conclusions are local. So, locally we
will represent Lf ∗E • by the complex of locally free sheaves

f ∗F0
f∗ψ0

−−−→ f ∗F1 −−−→ · · · .

This implies that Lg̃∗E • = Lf ′∗ ◦ Lf ∗E • is locally represented by

f ′∗f ∗F0
f ′∗f∗ψ0

−−−−→ f ′∗f ∗F1 −−−→ · · · .

Now, note that

0 −−−→ ker f ∗ψ0 −−−→ f ∗F0
f∗ψ0

−−−→ f ∗F1

is exact. Since f ′ is dominant,

0 −−−→ f ′∗ ker f ∗ψ0 −−−→ f ′∗f ∗F0
f ′∗f∗ψ0

−−−−→ f ′∗f ∗F1

is also exact. Hence

H 0(Lg̃∗E •) = f ′∗H 0(Lf ∗E •).
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Similarly,

H 0(Lg̃∗E •) = g′∗H 0(Lg∗E •).

�

4.7. Suppose that M is integral. One can also routinely verify the
following.

(1) Let E • be a perfect derived object over an DM stack M and
E •′ be a perfect derived object over an DM stack M ′, both

with vanishing H i<0. Let f : M̃ −→ M and f ′ : M̃ ′ −→ M ′

be given as in Theorem 4.3, then H 0(L(f, f ′)∗(E •
⊞ E •′)) is

locally free over M̃ × M̃ ′;
(2) Let E • and E •′ be perfect derived objects over a DM stack M ,

both with vanishing H i<0. Let f : M̃ −→ M and f ′ : M̃ ′ −→
M be given as in Theorem 4.3. We let M be the graph of the

rational map M̃ −→ M̃ ′ and f̃ the projection to M . Then
H 0(Lf̃ ∗(E • ⊕ E •′)) is locally free over M.

5. The Euler class of Perfect Derived Object

5.1. In this subsection, we again make assumption that M (hence also

M̃) is integral. To define the Euler class of the complex E •, we will
use the top Chern class of the locally free sheaf H 0(Lf ∗E •). Let r =
rankH 0(E •). The Chern class cr(H

0(Lf ∗E •)) is a homomorphism

cr(H
0(Lf ∗E •)) : A∗(M̃) −−−→ A∗−r(M̃).

Here A∗(M̃) is the Chow group of cycles on M̃ . We will assume that
rankH 0(E •) > 0 and the higher cohomology sheaves H i(E •) are all
torsion for i > 0. This way, the Euler class of the complex E •, as
expected, should only depend on H 0(Lf ∗E •).

Definition 5.2. For any integral DM stack M of dimension n and a
derived object E • as in Theorem 4.3, let r = rankH 0(E •). Then we
define its Euler class e(E •) ∈ An−r(M) as:

(5.1) e(E •) := f∗(cr(H
0(Lf ∗E •)) · [M̃ ]).

Here A∗(M) is the Chow group of cycles on M .

Proposition 5.3. For any integral DM stack N and a surjective bi-
rational morphism g : N →M such that H 0(Lg∗E •) is locally free, we
have

g∗(cr(H
0(Lg∗E •)) · [N ]) = f∗(cr(H

0(Lf ∗E •)) · [M̃ ]).
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Proof. By Proposition 4.6, we have a square

N ′ f ′

−−−→ M̃

g′

y f

y

N
g

−−−→ M.

The diagonal morphism N ′ −→M , denoted g̃, is a surjective birational
morphism. From Proposition 4.6, we have that

H 0(Lg̃∗E •) = f ′∗H 0(Lf ∗E •)

(note that all the sheaves involved are locally free). Observe that we

also have f ′
∗[N

′] = [M̃ ] because f ′ is birational and surjective. Hence
we obtain

f ′
∗(cr(H

0(Lg̃∗E •)) · [N ′]) = f ′
∗(f

′∗(cr(H
0(Lf ∗E •))) · [N ′])

= cr(H
0(Lf ∗E •)) · [M̃ ].

This implies that

f∗(cr(H
0(Lf ∗E •)) · [M̃ ]) = f∗f

′
∗(cr(H

0(Lg̃∗E •)) · [N ′])

= g̃∗(cr(H
0(Lg̃∗E •)) · [N ′]).

Similarly, we get

g∗(cr(H
0(Lg∗E •)) · [N ]) = g∗g

′
∗(cr(H

0(Lg̃∗E •)) · [N ′])

= g̃∗(cr(H
0(Lg̃∗E •)) · [N ′]).

This proves the proposition. �

Corollary 5.4. Let E • be a perfect object in Db(M). Suppose H i<0(E •) =
0 and H i>0(E •) are torsion. Then the Euler class e(E •) is well-defined
and is independent of the choice of the bitational surjective morphisms

f : M̃ −→M .

6. Applications to GW-Invariants

6.1. Let P be a projective space, and let Mg(P, d) be the DM stack of
degree d genus g stable maps to P as before. Let

(6.1) (f, π) : X −→ P×Mg(P, d)

be its universal family. For any positive integer k, the derived object
Rπ∗(f

∗OP(k)) in Db(Mg(P, d)) is perfect.
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6.2. One way to see this is to pick two sufficiently large integers n and
n′ and form L = f∗OP(n) ⊗ ω⊗n′

X/Mg(P,d)
; then form the tautological

homomorphism

A0 = π∗π∗(f
∗OP(k)⊗ L )⊗ L −1 −→ f∗OP(k).

Since n and n′ are sufficiently large, it is surjective. We let A−1 be the
kernel of the above homomorphism. Then it is easy to see that we have
an quasi-isomorphism

[R1π∗A−1 → R1π∗A0] = Rπ∗f
∗OP(k).

Again since n and n′ are sufficiently large,

[E0 → E1] := [R1π∗A−1 → R1π∗A0]

is a complex of locally free sheaves. This proves that Rπ∗f
∗OP(k) is

perfect.

Definition 6.3. Assume d > 2g− 2. We let Mg(P, d)0 ⊂ Mg(P, d) be
the open subset consisting of stable morphisms with irreducible domain

curves. We define the primary part Mg(P, d)
′
of Mg(P, d) to be the

closure of Mg(P, d)0 in Mg(P, d).

The open subset Mg(P, d)0 is non-empty, smooth and has the ex-

pected dimension. Thus Mg(P, d)
′
is generically smooth and of the

expected dimension.

Remark 6.4. Some remarks on the primary components are in order.
Let C be an irreducible curve of genus g. A map u : C −→ P is
given by (m+1)-sections u0, · · · , um ∈ Γ(u∗OP(1)), where m = dimP.
We may assume that u∗OP(1) = OC(D) for some effective divisor D.
Assume that d > g. Then there are general divisors on the curve C.
If D is general, by the geometric version of Riemann-Roch theorem,
dimΓ(OC(D)) = d + 1 − g ≥ 2. From here, one checks that the
dimension of Mg(P, d) at such a map is

3g − 3 + d+ (d+ 1− g)m = d(m+ 1) + (m− 3)(1− g),

as expected. When d > 2g−2, all divisors are general. If C is reducible
and has more than one irreducible components (of positive genera,
for instance) that are not contracted by the stable morphsim, then
conjecturally they do not contribute the GW number of quintic Calabi-
Yaus. When g < d < 2g−1, there are special divisors over the curve C.
Such divisors give rise to Γ(OC(D)) with dimΓ(OC(D)) > d+1−g ≥ 2.
Hence they may produce a component of Mg(P, d) with dimension
larger than expected. When 0 < d ≤ g, it may happen that none of
the irreducible components of Mg(P, d) have the expected dimension.
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6.5. We now assume d > 2g − 2. We apply the constructions in the

previous sections to the complex Rπ∗f
∗OP(k) restricted to Mg(P, d)

′
.

Let f′ be the restriction of f to Mg(P, d)
′
. By the vanishing of high co-

homology, R1π∗f
′∗OP(k)) is trivial on a dense open subset of Mg(P, d)

′
.

Then by §5.4, we have a well-defined modular Euler class

(6.2) e(Rπ∗(f
′∗OP(k))) ∈ A∗(Mg(P, d)

′
).

We denote this number by N ′
g,d, (cf. Definition 6.3).

6.6. When g = 0, N ′
0,d = N0,d, the usual Gromov-Witten number of

the quintic X ; when g = 1, N ′
1,d is the reduced genus-1 GW-invariants

(see [7, 1]).

We believe these numbers are the reduced GW-invarains of guintics
conjectured by Li-Zinger, (cf. Conj. 1.5).
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