CONSIDERING ADELMAN'S SHORTEST PERMUTATION STRINGS

HESAM DASHTI*

Abstract

In this report, we consider Adelman's algorithm for generating shortest permutation strings. We introduce a new representation approach which reveals some properties of Adelman's algorithm.

Key words. Shortest Permutation Strings.

1. Introduction. Since Donald Knuth in 1971 [1] published a set of open problems with computational flavor, the problem of generating a permutation string with the least length has attracted a great deal of attention. For the past four decades, some algorithms have been introduced for tackling this problem but still many ambiguities remain. In addition to the beauty of the problem, its applicability in the security area motivated researchers to focus on this combinatorics problem.
Newey [3] and Adelman [2] proved an upper bound $\left(\mathrm{n}^{2}-2 \mathrm{n}+4\right)$ for the length of a Π_{n}-Complete word. Later on some other proofs have been proposed and confirmed the boundary. Newey determined the lower bounds for $n \leq 7$ as shown in Table 1. In order to have a better understanding of the definition of Π_{n}-Complete strings here we note the following examples:
121 is a Π_{2}-Complete word.
1221 is a Π_{2}-Complete word.
1231213 is a Π_{3}-Complete word.

Table 1.1
The length of permutation strings for $n \leq 7$, proved by Newey

n	1	2	3	4	5	6	7
Lower bound	1	3	7	12	19	28	39

After introducing the open problem of the lower bound of Π_{n}-Complete string, the next section focused on needed preliminaries for revisiting the Adelman's Algorithm.
2. Preliminaries. Since our algorithm is based on Adelman's Algorithm [2], the reader is strongly encouraged to read Adelman's paper first.
Let us start with introducing our notation:

Notation:

- $S_{n}=\{1, \ldots, \mathrm{n}\}$ is a set of alphabets.
- $W \in S_{n}^{*}$ is a sentence that may, or may not, be a Π_{n}-Complete string.
- A Permutation Word (PW) is a permutation of S without repetition.
- δ is a generic symbol of PW's.
- x-permutations is a generic symbol for all the permutations of length x , where $\mathrm{x} \leq \mathrm{n}$.
2.1. Revisiting Adelman's Algorithm. In this section we recall Adelman's Algorithm [2] and introduce a framework to capture its permutation strings. We will use this framework for the rest of the paper.

[^0]
Adelman's Algorithm:

Definition 2.1. A string $W=w_{1} w_{2} \ldots, w_{k}$ is a R_{n}-String iff satisfies the following conditions:
(a) $W \in S_{n}^{*}$
(b) $w_{i+1}=w_{i}(\bmod n)+1$

Example: The followings are R_{7}-String:
1234
234567123456712345
Here, we use this definition to construct a Π_{n}-Complete string.
i Construct a unique string $\mathrm{T}_{n} \in S_{n-1}^{*}$ such that
a) T_{n} is a R_{n-1}-String,
b) T_{n} is of length $\mathrm{n}^{2}-3 \mathrm{n}+4$,
c) The first letter of T_{n} is 1 .
ii Construct $\mathrm{T}^{\prime}{ }_{n}=\mathrm{T}_{n}$ and then change it as follows: for all i, if $1 \leq \mathrm{i} \leq \mathrm{n}-2$, then insert the letter n into $\mathrm{T}^{\prime}{ }_{n}$ after the i^{\prime} th occurrence of the letter $\mathrm{n}-i$.
iii Construct $\Pi_{n}=\mathrm{nT}^{\prime}{ }_{n} \mathrm{n}$.
Here we borrow two examples from the Adelman's paper which are depicted in Table 2.1.

Table 2.1
The three steps of constructing Π_{4} and Π_{7} are shown

	Π_{4}	Π_{7}
T	12312312	12345612345612345612345612345612
T	1234124312	1234567123457612347561237456127345612
Π_{n}	412341243124	712345671234576123475612374561273456127

Thereafter, Adelman proved the Π_{n} is a Π_{n}-Complete string of length $\mathrm{n}^{2}-2 \mathrm{n}+4$ which is described in details in his paper [2]. In order to rewrite these complete strings, we use a sliding window of length $\left\|S_{n}\right\|$, which traces the string (W) and extracts substrings of length n. Each substring would be a PW of S if we duplicate the last letter of a substring at the beginning of the next substring. For example, assume we want to rewrite the above Π_{4}-Complete in this framework: $412341243124=4123$ 41243124 . Now, if we perform the duplication process we would have 412341243124 $=4123 \underline{3} 412 \underline{2} 431 \underline{124}$. The latter looks perfect since we have exactly 3 PW without any extra letters. Let us do the same on Π_{7} and compare the output; $\Pi_{7}=7123456$ $712345 \underline{7} 6123475612374561273456127$. As it is shown, in addition to the extra letters we have a repeated letter in the second PW which changes the attitude and this substring will not be a PW. Now, let us check the string with duplications: Π_{7} $=7123456 \underline{6} 712345 \underline{5} 761234 \underline{4} 756123 \underline{3} 745612 \underline{2} 734561 \underline{1} 27$. This is a set of perfect PW's with two extra letters at the end. Using this representation we would be able to generate all the different Π_{n}-Complete strings when the letters have been substituted. For example, we can consider another Π_{7}-Complete string where 7 is substituted by 2 : $\Pi_{7}=2173456 \underline{6} 217345 \underline{5} 261734 \underline{4} 256173 \underline{3} 245617 \underline{7} 234561 \underline{1} 72$ which is a Π_{7}-Complete string.
To conclude this section, we can say that the new representation of the Adelman's Algorithm gives a structure for Π_{n}-Complete strings. For example, we derived the
template of Π_{7}-Complete strings as shown in the Table 2.2 ,
Table 2.2
The structure and some examples of the Π_{7} based on Adelman's Algorithm. As it is shown, the examples exactly follow the structure with assigning different letters to the structure elements (a_{i}^{\prime} s).

Structure	Ex1	Ex2
$a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}$	1234567	7123456
$a_{7} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$	7123456	6712345
$a_{6} a_{1} a_{7} a_{2} a_{3} a_{4} a_{5}$	6172345	5761234
$a_{5} a_{1} a_{6} a_{7} a_{2} a_{3} a_{4}$	5167234	4756123
$a_{4} a_{1} a_{5} a_{6} a_{7} a_{2} a_{3}$	4156723	3745612
$a_{3} a_{1} a_{4} a_{5} a_{6} a_{7} a_{2}$	3145672	2734561
$a_{2} a_{3} a_{1}$	231	127

We experimentally verified the completeness of Adelman's Algorithm as described in the next section. Based on these investigations we have extracted the following observations:

Observasion 2.1. For a given set $S_{n}=\{1, \ldots, n\}$, Adelman's rule generates a string W which covers n-permutations. Note that this rule does not mean that a substring $w \in W$ of length $k^{2}-2 k+4(k<n)$ can cover every k-permutations of words $S_{k} \in S_{n}$.
Example:
912345678
891234567
798123456
679
This string does not cover every 4-Permutations.
Theorem 2.1. For a string generated by Adelman's rule, substitution of the last two letters does not effect the completeness of the string.
Example:
$\mathrm{W} 1=\mathrm{A} 123456789$
$\mathrm{W} 2=9 \mathrm{~A} 12345678$
$\mathrm{W} 3=8 \mathrm{~A} 91234567$
$\mathrm{W} 4=7 \mathrm{~A} 89123456$
$\mathrm{W} 5=6 \mathrm{~A} 78912345$
$\mathrm{W} 6=5 \mathrm{~A} 67891234$
$\mathrm{W} 7=4 \mathrm{~A} 56789123$
$\mathrm{W} 8=3 \mathrm{~A} 45678912$
$\mathrm{W} 9=2 \mathrm{~A} 34567891$
$\mathrm{W} 10=12 \mathrm{~A}($ or 1 A 2$)$

Proof

In order to proof this theorem we consider different positions of ' A ' and ' 2 ' with respect to each other.
When $\delta_{9}=2$, the ' 2 ' in the W9 would be selected and we should have a complete PW after it. Hence, it does not matter what the arrangement of 'A' and '2' is in W10. Similarly, when the $\delta_{10}=2$, the last ' 2 ' would be selected where there is a complete PW between the '2' in W10 and W9 without considering the last 'A' in W10.

Hence, position of 'A' in W10 does not affect the position of ' 2 '.
When $\delta_{9}=$ 'A', as shown before the 'A' from W9 would be chosen. So the position of ' 2 ' in W10 is not important. In a case that $\delta_{10}=$ 'A', we would choose the last 'A' to fill the δ, so the string before that would be:
$\mathrm{W} 1=123456789$
$\mathrm{W} 2=912345678$
$\mathrm{W} 3=891234567$
$\mathrm{W} 4=789123456$
$\mathrm{W} 5=678912345$
$\mathrm{W} 6=567891234$
$\mathrm{W} 7=456789123$
$\mathrm{W} 8=345678912$
$\mathrm{W} 9=234567891$
$\mathrm{W} 10=1$ (or 12)
In both cases, we have more than 9 PWs for the 9 letters of δ. So, arrangement of the last line is not important.

ObSERVASION 2.2. For a given set, $S_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$, and a string $W \in S$ (of length $n^{2}-2 n+4$) generated according to Adelman's rule, a string $W^{\prime}\left(W^{\prime} \in S, W^{\prime} \subset\right.$ $W)$ could be modified to a Π_{k}-Complete by removing $n-k$ letters of W^{\prime}, such that W^{\prime} satisfies Adelman's rule.

Actually, this Observation is based on the fact that removing ' n - k ' letters (excluding the first letter of W^{\prime}) from W^{\prime} yields to a Π_{k}-Complete string of $S_{k}^{\prime}=\left\{b_{1}, \ldots, b_{k}\right\} \in$ $S_{n}=\left\{a_{n}, \ldots, a_{n}\right\}$.

Example:

In the previous example we saw the following string is not a Π_{4}-Complete string.
912345678
891234567
798123456
679
Here, by removing every 5 letters we would have a Π_{4}-Complete string. Example: 9128
8912
9812
9
which is the same as:
9128
8912
2981
129
This string is a Π_{4}-Complete string. Note that by removing every 5 letters (except 9) the remaining string follows from Adelman's algorithm and is a complete string.

ObSERVASION 2.3. There exists a slight modification of Adelman's Algorithm that generates a Π_{n}-Complete string of length $n^{2}-2 n+5$. This modification changes the cyclic behavior of the letters, in one permutation word by repeating the first letter at the end of the permutation word.

Example: An example is provided in the (Table 2.3-W). In this example, W6 and W7 end with a_{4} and rearranging this string gives us W^{\prime} as it shown in (Table 2.3-W').

TABLE 2.3
A Π_{9}-Complete string with a small modification on the circular behavior in Adelman's Algorithm

	W	W^{\prime}
W1	$a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9}$	$a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9}$
W2	$a_{9} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}$	$a_{9} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8}$
W3	$a_{8} a_{1} a_{9} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}$	$a_{8} a_{1} a_{9} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}$
W4	$a_{7} a_{1} a_{8} a_{9} a_{2} a_{3} a_{4} a_{5} a_{6}$	$a_{7} a_{1} a_{8} a_{9} a_{2} a_{3} a_{4} a_{5} a_{6}$
W5	$a_{6} a_{1} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4} a_{5}$	$a_{6} a_{1} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4} a_{5}$
W6	$a_{5} a_{1} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4}$	$a_{5} a_{1} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4}$
W7	$a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4}$	$a_{4} a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3} a_{4}$
W8	$a_{4} a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3}$	$a_{4} a_{1} a_{5} a_{6} a_{7} a_{8} a_{9} a_{2} a_{3}$
W9	$a_{3} a_{4} a_{1}$	$a_{3} a_{4} a_{1}$

This string follows Adelman's rule, except for W7 that ends with its starting letter $\left(\mathrm{a}_{4}\right)$ and also, W8 does not have cyclic behavior. This string is a Π_{9}-Complete string and the reader can verify this as shown in the next section.
3. Diving into Adelman's Algorithm. Let us start with an example of Adelman's Algorithm for an alphabet set $S_{10}=\{1, \ldots, 9, \mathrm{~A}\}$. Based on Adelman's rule, the W (Table 3.1) is a Π_{10}-Complete string. It is clear that the ending letter of each line (a PW) is repeated at the beginning of the next line and should be ignored in terms of counting the length. These substrings are shown in Table3.1 Since the theoretical terminology of Adelman's Algorithm is proved in his paper, here we empirically see why this string covers all the permutations δ of S. To do so, we consider different δ 's with different positions of a letter $\alpha \in S$.
Considering permutation words subject to positions of the letter 'A' in δ : In each of the following parts of this section, we fix position of the letter ' A ' in the string δ and find the best 'A' from the string 'W'; such that substrings before and after this 'A' in 'W' can cover every necessary permutation of substrings before and after the ' A ' in δ.
$\delta_{1}=$ 'A': Since 'A' is the first letter of the strings δ and W, the rest of W includes 9 complete permutation words, (plus two extra letters) which can be used to generate every permutation words of length 9 . Hence, all the permutations, δ, starting with ' A ' would be covered.
$\delta_{2}=$ 'A': Since there is a PW before the second 'A', the second 'A' can be used for filling the δ_{2} position (Table 3.1). Each line is a PW, so, we need to fill 8 letters of δ and we have 8 PW which means all of the 8 -permutations would be covered.
$\delta_{3}=$ 'A': As shown in the Table 3.1 we filled 3 letters and need 7 more letters, where we have 7 PW's.
The rest of positions are similar, just let us consider the last case:
$\delta_{10}=$ 'A': This means we need to fill 9 letters, from the PW's before the last 'A' in 'W'. We have 9 PWs for the 9 blank positions, so we would find all of the permutations.

Now, we perform a similar process for the letter '9'. Strings of different steps are shown in the associated columns in Table3.2
$\delta_{1}=$ ' 9 ': Using the first ' 9 ' in W, we want to find 9 letters from the remaining string (Table 3.2). In a recursive manner from the Adelman's rule, we can generate all the 8 -permutations from this string.

Table 3.1
Considering different positions of the letter ' A ' in a δ

	W	$\delta_{1}=\mathrm{A}$	$\delta_{2}=\mathrm{A}$	$\delta_{3}=\mathrm{A}$	$\delta_{10}=A$
W 1	A 123456789	123456789			123456789
W2	9A12345678	912345678	12345678		912345678
W3	8 A 91234567	891234567	891234567	891234567	891234567
W4	7 A 89123456	789123456	789123456	789123456	789123456
W5	6 A 78912345	678912345	678912345	678912345	678912345
W6	5A67891234	567891234	567891234	567891234	567891234
W7	4A56789123	456789123	456789123	456789123	456789123
W8	3A45678912	345678912	345678912	345678912	345678912
W9	2A34567891	234567891	234567891	234567891	234567891
W10	12A	12	12	12	12

$\delta_{2}=$ '9': Since we have a complete PW before the first '9', we have the previous sequence but this time to cover 8 letters. With this string we can cover every 9permutations, but need 8-permutation words, so we have one extra PW.
$\underline{\delta_{3}=\text { '9': Since we covered the first two positions of ' } 9 \text { ' by the first ' } 9 \text { ', in this case, we }}$ use the second ' 9 '.
Before the second '9' we have two PW's (red colored), so we can cover every 2permutations. For the remaining positions of δ we have blue colored strings (Table 3.2). By ignoring the last 7 letters in W3, the rest covers every 7 -permutations. Hence, we have a 7 extra letters at the beginning. Other cases are similar to the previous ones, let us jump to the last case:
$\delta_{10}=$ '9' Here, we are interested in finding 9 letters from the string before the last ' 9 ' in W as depicted in the last column of Table 3.2. The first line is a PW and covers at least one letter. The rest covers all 8 -permutations, where the last 5 letters are unnecessary. Hence, we cover every 10-permutations ending with '9', where there are 5 extra letters.

Table 3.2
Considering different positions of the letter ' 9 ' in a δ

	W	$\delta_{1}=9$	$\delta_{2}=^{\prime} 9^{\prime}$	$\delta_{3}=^{\prime} 9^{\prime}$	$\delta_{10}=^{\prime} 9^{\prime}$
W1	A123456789			$\underline{\text { A123456789 }}$	A12345678
W2	9 A 12345678	A12345678	A12345678	$\underline{9 A 12345678}$	A12345678
W3	8 A 91234567	8 A 1234567	8 A 1234567	8 A 1234567	8 A 1234567
W4	7 A 89123456	7 A 8123456	7 A 8123456	7 A 8123456	7 A 8123456
W5	6 A 78912345	6 A 7812345	6 A 7812345	6 A 7812345	6 A 7812345
W6	5A67891234	5 A 6781234	5 A 6781234	5 A 6781234	5 A 6781234
W7	4A56789123	4A5678123	4A5678123	4 A 5678123	4 A 5678123
W8	3A45678912	3A4567812	3A4567812	3A4567812	3 A 4567812
W9	2A34567891	2A3456781	2A3456781	2A3456781	2 A 345678
W10	12A	12A	12A	12 A	

In the following we consider another letter ('4') and the rest of letters and positions are similar.
$\delta_{1}=$ '4': the first '4' would be chosen, the remaining string is shown in Table 3. Ig$\overline{\text { noring }}$ the first line, the rest covers all 9 -permutations. Hence, in this case we have

5 extra letters.

$\delta_{2}=$ '4': And again 4 extra letters. Let us jump to the last case:
$\overline{\delta_{10}=\text { ' } 4}$: Based on Adelman's rule, this sequence covers all 9-permutations.
Table 3.3
Considering different positions of the letter '4' in a δ

	W	$\delta_{1}=^{\prime} 4^{\prime}$	$\delta_{2}={ }^{\prime} 4^{\prime}$	$\delta_{10}={ }^{\prime} 4^{\prime}$
W1	A123456789	56789		A12356789
W2	9A12345678	9A1235678	5678	9A1235678
W3	8A91234567	8A9123567	8A9123567	8A9123567
W4	7A89123456	7A8912356	7A8912356	7A8912356
W5	6A78912345	6A7891235	6A7891235	6A7891235
W6	5A67891234	5A 6789123	5A 6789123	5A 6789123
W7	4A56789123	A56789123	A56789123	A56789123
W8	3A45678912	3A5678912	3A5678912	3A5678912
W9	2A34567891	2A3567891	2A3567891	2A3
W10	12A	12A	12A	

REFERENCES

[1] Donald Knuth, Open problems with computational flavor, mimeographed notes for a seminar on combinatorics., Stanford University, Stanford, California, (1971).
[2] Leonard Adelman, Short Permutation Strings, Discrete Mathematics, 10 (1974), 197-200., North-Holland Publishing Company.
[3] Malcolm C. Newey, Notes on a problem involving permutations as subsequences, Technical Report: CS-TR-73-340, (1973).

[^0]: *Department of Mathematics, University of Wisconsin, Madison, USA

