
ar
X

iv
:1

00
9.

50
53

v2
 [

m
at

h.
C

O
]

 1
8

O
ct

 2
01

0

CONSIDERING ADELMAN’S SHORTEST PERMUTATION STRINGS

HESAM DASHTI∗

Abstract. In this report, we consider Adelman’s algorithm for generating shortest permutation
strings. We introduce a new representation approach which reveals some properties of Adelman’s
algorithm.

Key words. Shortest Permutation Strings.

1. Introduction. Since Donald Knuth in 1971 [1] published a set of open prob-
lems with computational flavor, the problem of generating a permutation string with
the least length has attracted a great deal of attention. For the past four decades,
some algorithms have been introduced for tackling this problem but still many am-
biguities remain. In addition to the beauty of the problem, its applicability in the
security area motivated researchers to focus on this combinatorics problem.
Newey [3] and Adelman [2] proved an upper bound (n2-2n+4) for the length of a
Πn-Complete word. Later on some other proofs have been proposed and confirmed
the boundary. Newey determined the lower bounds for n≤7 as shown in Table 1. In
order to have a better understanding of the definition of Πn-Complete strings here we
note the following examples:
121 is a Π2-Complete word.
1221 is a Π2-Complete word.
1231213 is a Π3-Complete word.

Table 1.1

The length of permutation strings for n≤7, proved by Newey

n 1 2 3 4 5 6 7
Lower bound 1 3 7 12 19 28 39

After introducing the open problem of the lower bound of Πn-Complete string, the
next section focused on needed preliminaries for revisiting the Adelman’s Algorithm.

2. Preliminaries. Since our algorithm is based on Adelman’s Algorithm [2], the
reader is strongly encouraged to read Adelman’s paper first.
Let us start with introducing our notation:
Notation:

• Sn={1, . . ., n} is a set of alphabets.
• W ∈ S∗

n
is a sentence that may, or may not, be a Πn-Complete string.

• A Permutation Word (PW) is a permutation of S without repetition.
• δ is a generic symbol of PW’s.
• x-permutations is a generic symbol for all the permutations of length x, where
x ≤ n.

2.1. Revisiting Adelman’s Algorithm. In this section we recall Adelman’s
Algorithm [2] and introduce a framework to capture its permutation strings. We will
use this framework for the rest of the paper.

∗Department of Mathematics, University of Wisconsin, Madison, USA

1

http://arxiv.org/abs/1009.5053v2

2 Hesam Dashti

Adelman’s Algorithm:

Definition 2.1. A string W = w1w2 . . . , wk is a Rn-String iff satisfies the fol-
lowing conditions:
(a) W ∈ S∗

n

(b) wi+1=wi(mod n)+1

Example: The followings are R7-String:
1234
234567123456712345

Here, we use this definition to construct a Πn-Complete string.

i Construct a unique string Tn ∈ S∗

n−1 such that
a) Tn is a Rn−1-String,
b) Tn is of length n2-3n+4,
c) The first letter of Tn is 1.

ii Construct T’n = Tn and then change it as follows: for all i, if 1≤i≤n-2, then
insert the letter n into T’n after the i’th occurrence of the letter n−i.

iii Construct Πn = nT’nn.
Here we borrow two examples from the Adelman’s paper which are depicted in Table
2.1.

Table 2.1

The three steps of constructing Π4 and Π7 are shown

Π4 Π7

T 12312312 12345612345612345612345612345612
T’ 1234124312 1234567123457612347561237456127345612
Πn 412341243124 712345671234576123475612374561273456127

Thereafter, Adelman proved the Πn is a Πn-Complete string of length n2-2n+4 which
is described in details in his paper [2]. In order to rewrite these complete strings,
we use a sliding window of length ‖Sn‖, which traces the string (W) and extracts
substrings of length n. Each substring would be a PW of S if we duplicate the last
letter of a substring at the beginning of the next substring. For example, assume
we want to rewrite the above Π4-Complete in this framework: 412341243124 = 4123
4124 3124. Now, if we perform the duplication process we would have 412341243124
= 4123 3412 2431 124. The latter looks perfect since we have exactly 3 PW without
any extra letters. Let us do the same on Π7 and compare the output; Π7 = 7123456
71234576 1234756 1237456 1273456 127. As it is shown, in addition to the extra
letters we have a repeated letter in the second PW which changes the attitude and
this substring will not be a PW. Now, let us check the string with duplications: Π7

= 7123456 6712345 5761234 4756123 3745612 2734561 127. This is a set of perfect
PW’s with two extra letters at the end. Using this representation we would be able to
generate all the different Πn-Complete strings when the letters have been substituted.
For example, we can consider another Π7-Complete string where 7 is substituted by 2:
Π7 = 2173456 6217345 5261734 4256173 3245617 7234561 172 which is a Π7-Complete
string.
To conclude this section, we can say that the new representation of the Adelman’s
Algorithm gives a structure for Πn-Complete strings. For example, we derived the

Considering Adelman’s Shortest Permutation strings 3

template of Π7-Complete strings as shown in the Table 2.2.

Table 2.2

The structure and some examples of the Π7 based on Adelman’s Algorithm. As it is shown, the
examples exactly follow the structure with assigning different letters to the structure elements (a′

i
s).

Structure Ex1 Ex2
a1a2a3a4a5a6a7 1234567 7123456
a7a1a2a3a4a5a6 7123456 6712345
a6a1a7a2a3a4a5 6172345 5761234
a5a1a6a7a2a3a4 5167234 4756123
a4a1a5a6a7a2a3 4156723 3745612
a3a1a4a5a6a7a2 3145672 2734561
a2a3a1 231 127

We experimentally verified the completeness of Adelman’s Algorithm as described
in the next section. Based on these investigations we have extracted the following
observations:

Observasion 2.1. For a given set Sn={1, . . ., n}, Adelman’s rule generates
a string W which covers n-permutations. Note that this rule does not mean that a
substring w ∈ W of length k2-2k+4 (k<n) can cover every k-permutations of words
Sk ∈ Sn.
Example:
912345678
891234567
798123456
679
This string does not cover every 4-Permutations.

Theorem 2.1. For a string generated by Adelman’s rule, substitution of the last
two letters does not effect the completeness of the string.
Example:
W1= A123456789

W2= 9A12345678

W3= 8A91234567

W4= 7A89123456

W5= 6A78912345

W6= 5A67891234

W7= 4A56789123

W8= 3A45678912

W9= 2A34567891

W10= 12A (or 1A2)

Proof

In order to proof this theorem we consider different positions of ’A’ and ’2’ with
respect to each other.
When δ9 =2, the ’2’ in the W9 would be selected and we should have a complete PW
after it. Hence, it does not matter what the arrangement of ’A’ and ’2’ is in W10.
Similarly, when the δ10 = 2, the last ’2’ would be selected where there is a complete
PW between the ’2’ in W10 and W9 without considering the last ’A’ in W10.

4 Hesam Dashti

Hence, position of ’A’ in W10 does not affect the position of ’2’.
When δ9 = ’A’, as shown before the ’A’ from W9 would be chosen. So the position
of ’2’ in W10 is not important. In a case that δ10 = ’A’, we would choose the last ’A’
to fill the δ, so the string before that would be:
W1= 123456789

W2= 912345678

W3= 891234567

W4= 789123456

W5= 678912345

W6= 567891234

W7= 456789123

W8= 345678912

W9= 234567891

W10= 1 (or 12)

In both cases, we have more than 9 PWs for the 9 letters of δ. So, arrangement of
the last line is not important.

Observasion 2.2. For a given set, Sn={a1, . . . , an}, and a string W ∈ S (of
length n2-2n+4) generated according to Adelman’s rule, a string W ′ (W ′ ∈ S,W ′ ⊂
W) could be modified to a Πk-Complete by removing n − k letters of W ′, such that
W ′ satisfies Adelman’s rule.

Actually, this Observation is based on the fact that removing ’n-k’ letters (excluding
the first letter of W ′) from W ′ yields to a Πk-Complete string of S′

k
={b1, . . . , bk} ∈

Sn={an, . . . , an}.

Example:
In the previous example we saw the following string is not a Π4-Complete string.
912345678
891234567
798123456
679
Here, by removing every 5 letters we would have a Π4-Complete string. Example:
9128
8912
9812
9
which is the same as:
9128
8912
2981
129
This string is a Π4-Complete string. Note that by removing every 5 letters (except 9)
the remaining string follows from Adelman’s algorithm and is a complete string.

Observasion 2.3. There exists a slight modification of Adelman’s Algorithm
that generates a Πn-Complete string of length n2-2n+5. This modification changes
the cyclic behavior of the letters, in one permutation word by repeating the first letter
at the end of the permutation word.

Example: An example is provided in the (Table 2.3-W). In this example, W6 and W7
end with a4 and rearranging this string gives us W’ as it shown in (Table 2.3-W’).

Considering Adelman’s Shortest Permutation strings 5

Table 2.3

A Π9-Complete string with a small modification on the circular behavior in Adelman’s Algorithm

W W’
W1 a1a2a3a4a5a6a7a8a9 a1a2a3a4a5a6a7a8a9
W2 a9a1a2a3a4a5a6a7a8 a9a1a2a3a4a5a6a7a8
W3 a8a1a9a2a3a4a5a6a7 a8a1a9a2a3a4a5a6a7
W4 a7a1a8a9a2a3a4a5a6 a7a1a8a9a2a3a4a5a6
W5 a6a1a7a8a9a2a3a4a5 a6a1a7a8a9a2a3a4a5
W6 a5a1a6a7a8a9a2a3a4 a5a1a6a7a8a9a2a3a4
W7 a1a5a6a7a8a9a2a3a4 a4a1a5a6a7a8a9a2a3a4
W8 a4a1a5a6a7a8a9a2a3 a4a1a5a6a7a8a9a2a3
W9 a3a4a1 a3a4a1

This string follows Adelman’s rule, except for W7 that ends with its starting letter
(a4) and also, W8 does not have cyclic behavior. This string is a Π9-Complete string
and the reader can verify this as shown in the next section.

3. Diving into Adelman’s Algorithm. Let us start with an example of Adel-
man’s Algorithm for an alphabet set S10={1, . . ., 9, A}. Based on Adelman’s rule, the
W (Table 3.1) is a Π10-Complete string. It is clear that the ending letter of each line
(a PW) is repeated at the beginning of the next line and should be ignored in terms
of counting the length. These substrings are shown in Table3.1. Since the theoretical
terminology of Adelman’s Algorithm is proved in his paper, here we empirically see
why this string covers all the permutations δ of S. To do so, we consider different δ’s
with different positions of a letter α ∈ S.
Considering permutation words subject to positions of the letter ’A’ in δ:

In each of the following parts of this section, we fix position of the letter ’A’ in the
string δ and find the best ’A’ from the string ’W’; such that substrings before and
after this ’A’ in ’W’ can cover every necessary permutation of substrings before and
after the ’A’ in δ.
δ1=’A’: Since ’A’ is the first letter of the strings δ and W , the rest of W includes 9
complete permutation words, (plus two extra letters) which can be used to generate
every permutation words of length 9. Hence, all the permutations, δ, starting with
’A’ would be covered.
δ2=’A’: Since there is a PW before the second ’A’, the second ’A’ can be used for
filling the δ2 position (Table 3.1). Each line is a PW, so, we need to fill 8 letters of δ
and we have 8 PW which means all of the 8-permutations would be covered.
δ3=’A’: As shown in the Table 3.1 we filled 3 letters and need 7 more letters, where
we have 7 PW’s.
The rest of positions are similar, just let us consider the last case:
δ10=’A’: This means we need to fill 9 letters, from the PW’s before the last ’A’ in ’W’.
We have 9 PWs for the 9 blank positions, so we would find all of the permutations.

Now, we perform a similar process for the letter ’9’. Strings of different steps are
shown in the associated columns in Table3.2.
δ1=’9’: Using the first ’9’ in W , we want to find 9 letters from the remaining string
(Table 3.2). In a recursive manner from the Adelman’s rule, we can generate all the
8-permutations from this string.

6 Hesam Dashti

Table 3.1

Considering different positions of the letter ’A’ in a δ

W δ1 = A δ2=A δ3=A δ10 = A

W1 A123456789 123456789 123456789
W2 9A12345678 912345678 12345678 912345678
W3 8A91234567 891234567 891234567 891234567 891234567
W4 7A89123456 789123456 789123456 789123456 789123456
W5 6A78912345 678912345 678912345 678912345 678912345
W6 5A67891234 567891234 567891234 567891234 567891234
W7 4A56789123 456789123 456789123 456789123 456789123
W8 3A45678912 345678912 345678912 345678912 345678912
W9 2A34567891 234567891 234567891 234567891 234567891
W10 12A 12 12 12 12

δ2=’9’: Since we have a complete PW before the first ’9’, we have the previous
sequence but this time to cover 8 letters. With this string we can cover every 9-
permutations, but need 8-permutation words, so we have one extra PW.
δ3=’9’: Since we covered the first two positions of ’9’ by the first ’9’, in this case, we
use the second ’9’.
Before the second ’9’ we have two PW’s (red colored), so we can cover every 2-
permutations. For the remaining positions of δ we have blue colored strings (Table
3.2). By ignoring the last 7 letters in W3, the rest covers every 7-permutations. Hence,
we have a 7 extra letters at the beginning. Other cases are similar to the previous
ones, let us jump to the last case:
δ10=’9’ Here, we are interested in finding 9 letters from the string before the last ’9’
in W as depicted in the last column of Table 3.2. The first line is a PW and covers
at least one letter. The rest covers all 8-permutations, where the last 5 letters are
unnecessary. Hence, we cover every 10-permutations ending with ’9’, where there are
5 extra letters.

Table 3.2

Considering different positions of the letter ’9’ in a δ

W δ1=9 δ2=’9’ δ3=’9’ δ10=’9’
W1 A123456789 A123456789 A12345678
W2 9A12345678 A12345678 A12345678 9A12345678 A12345678
W3 8A91234567 8A1234567 8A1234567 8A1234567 8A1234567
W4 7A89123456 7A8123456 7A8123456 7A8123456 7A8123456
W5 6A78912345 6A7812345 6A7812345 6A7812345 6A7812345
W6 5A67891234 5A6781234 5A6781234 5A6781234 5A6781234
W7 4A56789123 4A5678123 4A5678123 4A5678123 4A5678123
W8 3A45678912 3A4567812 3A4567812 3A4567812 3A4567812
W9 2A34567891 2A3456781 2A3456781 2A3456781 2A345678
W10 12A 12A 12A 12 A

In the following we consider another letter (’4’) and the rest of letters and positions
are similar.
δ1=’4’: the first ’4’ would be chosen, the remaining string is shown in Table 3. Ig-
noring the first line, the rest covers all 9-permutations. Hence, in this case we have

Considering Adelman’s Shortest Permutation strings 7

5 extra letters.
δ2=’4’: And again 4 extra letters. Let us jump to the last case:
δ10=’4’: Based on Adelman’s rule, this sequence covers all 9-permutations.

Table 3.3

Considering different positions of the letter ’4’ in a δ

W δ1=’4’ δ2=’4’ δ10=’4’
W1 A123456789 56789 A12356789
W2 9A12345678 9A1235678 5678 9A1235678
W3 8A91234567 8A9123567 8A9123567 8A9123567
W4 7A89123456 7A8912356 7A8912356 7A8912356
W5 6A78912345 6A7891235 6A7891235 6A7891235
W6 5A67891234 5A6789123 5A6789123 5A6789123
W7 4A56789123 A56789123 A56789123 A56789123
W8 3A45678912 3A5678912 3A5678912 3A5678912
W9 2A34567891 2A3567891 2A3567891 2A3
W10 12A 12A 12A

REFERENCES

[1] Donald Knuth, Open problems with computational flavor, mimeographed notes for a seminar
on combinatorics., Stanford University, Stanford, California, (1971).

[2] Leonard Adelman, Short Permutation Strings, Discrete Mathematics, 10 (1974), 197-200.,
North-Holland Publishing Company.

[3] Malcolm C. Newey, Notes on a problem involving permutations as subsequences, Technical
Report: CS-TR-73-340, (1973).

