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Lp-ESTIMATES OF THE BOTLZMANN EQUATION AROUND A

TRAVELING LOCAL MAXWELLIAN

SEOK-BAE YUN

Abstract. In this paper, we are interested in the Lp-estimates of the Boltzmann equation
in the case that the distribution function stays around a travelling local Maxwellian. For
this, we divide both sides of the Boltzmann equation by the velocity distribution function
with a fractional exponent and reformulate the Boltzmann equation into a regularized one.
This amounts to endowing additional integrability on the collision kernel, which in turn
enables us to apply simple Hölder type inequalities. Our results cover the whole range of
Lebesgue exponents: 0 < p ≤ ∞.

1. Introduction

In the kinetic theory of gases, it is postulated that all the relevant information is encoded
in a velocity distribution function f(x, v, t) representing the number density of particles
located at position x with velocity v at time t. For non-ionized monatomic rarefied gas, the
time evolution of f is governed by the celebrated Boltzmann equation:

∂tf + v · ∇xf = Q(f, f), (x, v, t) ∈ R
3 × R

3 × R+.(1.1)

The left hand side of (1.1) describes the free transport of non-interacting particles, whereas
the collision operator Q(f, f) captures collisions or interaction between particles. It can be
written down explicitly as follows:

(1.2) Q(f, f)(v) ≡
1

κ

∫

R3×S2+

B(v − v∗, ω)(f
′f ′

∗ − ff∗)dωdv∗.

Here κ is the Knudsen number which is the ratio between the mean free path of molecules
and the characteristic length of the flow and S

2
+ = {ω ∈ S

2 | (v − v∗) · ω ≥ 0}. For the
simplicity of presentation, we adopt the following handy notations:

f ′ ≡ f(x, v′, t), f ′
∗ ≡ f(x, v′∗, t), f ≡ f(x, v, t) and f∗ ≡ f(x, v∗, t),

where the pair (v′, v′∗) denotes the post-collisional velocities which can be calculated explic-
itly from the pre-collisional pair of velocities (v, v∗) by

(1.3) v′ = v − [(v − v∗) · ω]ω and v′∗ = v∗ + [(v − v∗) · ω]ω.

The collision kernel B(v−v∗, ω) is determined by types of interaction between gas particles.
For the precise form and relevant structural assumptions imposed on the collision kernel,
see (A1) below. For more detailed survey of mathematical and physical results of the
Boltzmann equation, we refer to [4, 6, 7, 21, 22, 26].
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In this paper, we study the stability problem of the Boltzmann equation in Lp spaces
when the velocity distribution function is bounded from above and below by a travelling
local Maxwellian:

(1.4) amMα,β(x, v) ≤ f ♯(x, v, t) ≤ aMMα,β(x, v),

where am, aM denotes positive constants and Mα,β(x, v) is a travelling local Maxwellian
solution:

(1.5) Mα,β(x, v) ≡ e−α|x|2−β|v|2 for positive constants α, β > 0.

For the stability problem of kinetic equations, L1 space is the most natural setting in that
it corresponds to the total mass of the system. The study of stability in L1 space for the
Boltzmann equation near vacuum was initiated by Ha [11, 12] who introduced a nonlinear
functional approach motivated by the stability theory of hyperbolic conservation laws, and
was studied extensively by Ha and his coworkers [8, 10, 14, 16]. See also [3, 19]. It is
then quite natural to ask whether the stability results in L1 can be extended to general Lp

space. Considering that the asymptotic behavior of the Boltzmann equation in this regime
is largely governed by the free transport equation:

∂f

∂t
+ v · ∇f = 0,

for which the uniform Lp stability estimate trivially holds, it is reasonable to expect similar
estimates to hold true for general Lp spaces. In this vein, there have been several results on
the Lp-stability estimates of the Boltzmann equation near vacuum. In [15], Ha’s nonlinear
functional approach was extended to summational Lp setting. Then the Gronwall type
argument also became available in [13] to obtain weighted Lp-stability estimates. Recently,
Alonso et al. [1] resolved the uniform Lp stability problem for the Boltzmann equation with
soft potential in the affirmative.

The usual difficulty encountered in the study of Lp type estimates of the collision operator
is that even the simple Hölder inequality cannot be directly applied due to the singularity of
the collision kernel. In [13], this difficulty was overcome by introducing polynomial weights
in the velocity fields. In this paper, we attack this problem by dividing both sides of (1.1)
by 1

µ
f1−µ and reformulating the the Boltzmann equation into the following form (See (3.2)):

∂fµ

∂t
+ v · ∇fµ = Qµ(f

µ, fµ).

In this way, the reformulated collision operator Qµ gains additional integrability, and we
are now able to apply Hölder type inequalities to obtain the following Lp-estimate:

‖fµ‖p ≤ Cµ,p‖f
µ‖p,

which, upon adjusting the value of µ and p properly, leads to the main results. (See Theorem
1.1 and 1.2 below.) We mention that the parameter µ provides greater degree of freedom
in determining the Lebesgue exponent, which is a key element in obtaining Lp estimates for
0 < p < 1. Before we state our assumptions and main results, we introduce the notion of
mild solutions.

Definition 1.1. We say that a nonnegative function f ∈ L∞(0, T ;L1(R3 × R
3)) is a mild

solution if it satisfies the mild form:

(1.6) f ♯(x, v, t) = f0(x, v) +

∫ t

0
Q♯(f, f)(x, v, s)ds, (x, v, t) ∈ R

3 × R
3 × R+,
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where the operator ♯ is defined by

f ♯(x, v, t) ≡ f(x+ tv, v, t)

The global existence of mild solutions for the Boltzmann equation in infinite vacuum was
first established by Illner shinbrot [17] in the case that the solution decays exponentially
in phase space by combining fixed point arguments with the celebrated Kaniel Shinbrot
scheme [18]. Their result was then extended to more general settings including algebraically
decaying data by several authors [5, 24, 25]. In [20, 23] the smallness assumption imposed
on the upper travelling Maxwellian bound was replaced by a closedness condition to resolve
the Cauchy problem of the Boltzmann equation close to a local Maxwellian regime, which
is relevant to our case. We remark, however, that our stability analysis in this paper does
not require any closedness nor smallness restrictions on the solutions. The main structural
assumptions of this paper are as follows.

• (A1). The collision kernel satisfies an inverse power potential and an angular cut-off
assumption:

B(v − v∗, ω) = |v − v∗|
γbγ(θ), −3 < γ ≤ 1,

and ∫

S2+

bγ(θ)dω = Bγ < ∞,

where θ is the angle between v − v∗ and ω.
• (A2). Mild solution f satisfies

amMα,β(x, v) ≤ f ♯(x, v, t) ≤ aMMα,β(x, v), a.e. (x, v),

for some strictly positive constants aM , am.

Remark 1.1. 1. The existence of mild solution satisfying (A2) with additional condition

that aM − am is sufficiently small was established in [20, 23]. Recently, this result was

extended to the classical solutions for soft potentials in [1].

We are now in a position to state our main results. Below Gp denotes constants which
depend on the Lebesgue exponent p, but not on x, v and t.

Theorem 1.1. Suppose that main assumption (A1) holds with −3 < γ ≤ 1 and let f be a

mild solution of (1.1) satisfying (A2) corresponding to an initial datum f0. Then we have

||f(t)||Lp ≤ Gp||f0||Lp , 0 < p ≤ ∞.(1.7)

Remark 1.2. 1. Alonzo et al.[1] has resolved Lp-stability problem of the Boltzmann equation

with soft potentials for spatially decaying solutions. Our result is weaker in the sense that

we cannot consider the difference of the two distribution functions: f − f̄ , but stronger in

that it covers the hard potential case and the whole range of exponent: 0 < p ≤ ∞.

2. We do not impose any smallness condition neither on aM nor on aM − am. Although

the existence result was established only when the distribution functions lie close to a local

Maxwellian regime in the sense that aM − am is sufficiently small.

The rest of this paper is organized as follows. In section 2, we present several estimates
which will be crucial for the later sections. Through section 3 to section 4, we prove our
main results. In the last section, we consider the stability problem of the difference of two
distribution functions.
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2. Preliminaries

2.1. Basic estimates. In this part, we present several estimates to be used in later sections.
For the proof, we refer readers to [11, 13, 16, 19].

Lemma 2.1. Let x ∈ R
3, V 6= 0 and a > 0. Then we have

∫ ∞

0
e−a|x+τV |2dτ ≤

√
π

a

1

|V |
.

Lemma 2.2. For −3 < γ ≤ 0, we have
∫

R3×S2+

B(v − v∗, ω)Mα,β(x+ t(v − v∗), v∗)dωdv∗

≤ C(γ, α, β) ·
1

(t+ 1)γ+3
,

where C(γ, α, β) = Bγ

[ 2π

γ + 3
+

√
(π

α

)3
+

√
(π

β

)3 ]

.

3. The proof of theorem 1.1 (−3 < γ ≤ 0)

Let f be a mild solution of the Boltzmann equation satisfying the structural assumption
(A2). We then have from (1.6)

∂f ♯

∂t
=

1

κ
Q♯(f, f) ≤

1

κ
Q+♯(f, f).(3.1)

We divide both sides of (3.1) by 1
µ
(f ♯

ε)1−µ (0 < µ < 1) to get

∂(f ♯)µ

∂t
≤

1

κ

µ

(f ♯)1−µ
Q+(f, f)

=
µ

κ

∫

R3×S2+

B(v − v∗, ω)
(f ′♯f

′♯
∗

f ♯

)1−µ(
f ′♯f ′♯

∗

)µ
dωdv∗.

(3.2)

We observe from the lower and upper bound estimate of (A2)

f ′♯f
′♯
∗

f ♯
≤

a2Me−α|x−t(v−v′)|2−β|v′∗|
2
e−α|x−t(v−v′∗)|

2−β|v′∗|
2

ameα|x|
2−β|v|2

=
a2Me−α|x|2+β|v|2e−α|x−t(v−v∗)|2−β|v∗|2

ame−α|x|2−β|v|2

=
a2M
am

e−α|x+t(v−v∗)|2−β|v|2 .

We substitute the above estimate into (3.2) to obtain

∂(f ♯)µ

∂t
≤ µeα

(a2M
am

)1−µ
∫

R3×S2+

Aµ,α,β(v − v∗)b(θ)
(
f ′♯f ′♯

∗

)µ
dωdv∗,(3.3)

where Aµ,α,β(v − v∗) denotes the regularized collision kernel defined by

Aµ,α,β ≡ Aµ,α,β(v − v∗) ≡ |v − v∗|
γe−(1−µ)(α|x−t(v−v∗)|2+β|v∗|2).
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Note that Aµ,α,β now is an integrable function, which is a crucial ingredient in estimating the

reformulated collision operator in Lp. We then multiply p(f ♯)µ(p−1) to (3.3) and integrate
over R3 × R

3 × R+ with respect to (x, v, t) to obtain

‖(f ♯)µ(t)‖pp ≤ ‖(f ♯
0)

µ‖pp

+ pµeα
(a2M
am

)1−µ
∫ ∞

0

∫

R3×S2+

Aµ,α,βb(θ)
(
f ′♯f ′♯

∗

)µ
(f ♯)µ(p−1)dωdv∗dvdxdt.

(3.4)

For brevity, we put

N1(t) ≡

∫

R3×S2+

Aµ,α,β(v − v∗)b(θ)
(
f ′♯f ′♯

∗

)µ(
f ♯)µ(p−1)dωdxdvdv∗.

Lemma 3.1. Let γ ∈ (−2, 0]. Then for q ≥ 1, N1 satisfies the following pointwise estimate:

N1(t) ≤
CN1(aM )µ

(t+ 1)3+γ
‖(f ♯)µ(t)‖pp,(3.5)

for some constant CN1 = CN1(µ, α, β).

Proof. We apply Hölder inequality to N1 to obtain

N1 ≤

∫

S2+

b(θ)
( ∫

R9

|v − v∗|
γe

− (1−µ)p
p−1

(α|x+t(v−v∗)|2+β|v∗|2)(f ♯)µpdvdv∗dx

︸ ︷︷ ︸

N1A

) p−1
p

×
(∫

R9

|v − v∗|
γ
(
f ′♯)pµ(f ′♯

∗

)pµ
dvdv∗dx

︸ ︷︷ ︸

N1B

) 1
p
dω.

(3.6)

(i) The estimate of N1A: We observe from Lemma 2.2

N1A ≡

∫

R9

|v − v∗|
γe

− (1−µ)p
p−1

(α|x+t(v−v∗)|2+β|v∗|2)(f ♯(x, v, t))µpdvdv∗dx

=

∫

R6

(f ♯(x, v, t))µp
( ∫

R3

|v − v∗|
γe

− (1−µ)p
p−1

(α|x+t(v−v∗)|2+β|v∗|2)dv∗

)

dxdv

≤
1

(t+ 1)3+γ

[ 2π

γ + 3
+

√
( π(p − 1)

α(1 − µ)p

)3
+

√
( π(p− 1)

β(1− µ)p

)3 ]

‖
(
f ♯(t)µ

)
‖pp

≡
CN1A

(t+ 1)3+γ
‖
(
f ♯(t)

)µ
‖pp.

(3.7)

(ii) The estimate of N1B : Applying a series of standard changes of variables, we have

N1B =

∫

R9

|v − v∗|
γ(f(x+ tv, v′))pµ(f(x+ tv, v′∗))

pµdxdvdv∗

=

∫

R9

|v − v∗|
γ(f(x, v′))pµ(f(x, v′∗))

pµdxdvdv∗

=

∫

R9

|v − v∗|
γ(f(x, v))pµ(f(x, v∗))

pµdvdv∗dx

=

∫

R9

|v − v∗|
γ(f ♯(x, v))pµ(f ♯(x+ t(v − v∗), v∗))

pµdxdvdv∗.
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We then use Lemma 2.2 to see

N1B =

∫

R6

(f ♯(x, v))pµ
(∫

R3

|v − v∗|
γ(f ♯(x+ t(v − v∗), v∗))

pµdv∗

)

dvdx

≤ (aM )pµ
∫

R6

(
(f ♯(x, v))pµ

)(
∫

R3

|v − v∗|
γe−pµ(α|x−t(v−v∗)|2+β|v∗|2)dv∗

)

dvdx

≤
(aM )pµ

(t+ 1)3+γ

[ 2π

γ + 3
+

√
( π

αpµ

)3
+

√
( π

βpµ

)3 ]

‖(f ♯)µ(t)‖pp

≡ (aM )pµ
CN1B

(t+ 1)3+γ
‖(f ♯)µ(t)‖pp.

(3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain

N1 ≤ (aM )µ
(
CN1A

) p
p−1

(
CN1B

) 1
p (t+ 1)

−(3+γ)(p−1
p

+ 1
p
)
∫

S2+

b(θ)‖(f ♯)µ‖ppdω

≤
(
CN1A

) p
p−1

(
CN1B

) 1
p
(aM )µBγ

(t+ 1)3+γ
‖(f ♯)µ‖pp.

We set

CN1(α, β, µ) = (aM )µ
(
CN1A

) p
p−1

(
CN1B

) 1
pBγ

to complete the proof. �

We now substitute the estimate (3.5) of Lemma 3.1 into (3.4) to obtain

‖(f ♯)µ(t)‖pp ≤ ‖(f ♯
0)

µ‖pp + µpDµ,p

∫ t

0

1

(t+ 1)3+γ
‖(f ♯)µ(t)‖pp dt,(3.9)

where

Dµ,p = a
µ
MCN1Bγ

(a2M
am

)1−µ

.

By Grownwall’s lemma, this yields

‖f(t)‖µpµp ≤ e2µpDµ,p‖f0‖
µp
µp

or, equivalently,

‖f(t)‖µp ≤ eDµ,p‖f0‖µp.

We now adjust µ and p to complete the proof. For this, assume we are given a Lebesque
exponent P ∈ (0,∞). We divide the argument into the following two cases:
(i) P ∈ [1,∞): we fix µ between 0 and 1 and set p = P

µ
to obtain

‖f(t)‖P ≤ eDµ,p‖f0‖P .

Letting P → ∞, we get

‖f(t)‖∞ ≤ eDµ,∞‖f0‖∞.

Here Dµ,∞ denotes

Dµ,∞ = lim
P→∞

Dµ,P
µ
< ∞.

(ii) P ∈ (0, 1): we fix p in [1,∞) and set µ = P
p
to obtain

‖f(t)‖P ≤ eDµ,p‖f0‖P .
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Note that in both cases 0 < µ < 1 and 1 ≤ p < ∞ hold, which guarantee the relevance of
the preceding argument.

4. The proof of theorem 1.1 (−2 < γ ≤ 1)

If the intermolecular force is governed by hard potentials (0 < γ ≤ 1), most of the crucial
estimates in the previous sections are not relevant anymore due to the unboundedness of the
collision kernel at infinity. We overcome this difficulty by incorporating the idea of Cho and
Yu [9] into the reformulated setting. More precisely, we introduce a maximal distribution
function supt f

♯ and interchange the order of integration between time and velocity, to
resolve the singularity of the collision kernel at infinity. We mention that the proof of this
section is not restricted to the hard potential case and can be applied to the soft potential
case either for −2 < γ ≤ 1. We again start from the following inequality:

∂(f ♯)µ

∂t
≤ µ

(a2M
am

)1−µ
∫

R3×S2+

Aµ,α,β(v − v∗)b(θ)
(
f ′♯f ′♯

∗

)µ
dωdv∗.(4.1)

We integrate from 0 to t to obtain

(f ♯(t))µ ≤ (f ♯
0)

µ + µ
(a2M
am

)1−µ
∫ t

0

∫

R9×S2+

Aµ,α,βb(θ)
(
f ′♯f ′♯

∗

)µ
dωdv∗dt

≤ (f ♯
0)

µ + µ
(a2M
am

)1−µ
∫ ∞

0

∫

R9×S2+

Aµ,α,βb(θ)
(
f ′♯f ′♯

∗

)µ
dωdv∗dt.

(4.2)

We then take the supremum in time to obtain

sup
t
(f ♯)µ ≤ (f ♯

0)
µ + µ

(a2M
am

)1−µ
∫ ∞

0

∫

R3×S2+

Aµ,α,βb(θ)(f
♯f ♯

∗)
µdωdv∗dt.(4.3)

The reason why we do this will be clear in Lemma 4.1. We now take Lp norm directly on
both sides, instead of multiplying pf ♯p−1 to both sides of (4.3) and integrating with respect
to (x, v) as in the previous sections, to see

‖ sup
t
(f ♯)µ‖p ≤ ‖(f ♯

0)
µ‖p

+ µ
(a2M
am

)1−µ
∥
∥
∥

∫ ∞

0

∫

R3×S2+

Aµ,α,βb(θ)
(
f ′♯f ′♯

∗

)µ
dωdv∗dt

∥
∥
∥
p

≡ ‖(f ♯
0)

µ‖p + µ
(a2M
am

)1−µ
N2.

(4.4)

In the following lemma, we estimate N2. Note that N2 is bounded by the Lp-norm of
supt(f

♯).

Lemma 4.1. Let γ ∈ (−2, 1]. Then for p ≥ 1 and µ ∈ (0, 1), we have

N2 ≤ Cµ,p‖
(
sup
t

f ♯
)µ
‖p(4.5)

for some positive constant Cµ,p
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Proof. By Hölder inequality, we have

N2 ≤
∥
∥
∥

∫

S2+

b(θ)
(∫ ∞

0

∫

R3

|v − v∗|
γe

− p(1−µ)
p−1

(α|x+t(v−v∗)|2+β|v∗|2)dv∗ds

︸ ︷︷ ︸

N2A

) p−1
p

×
(∫ ∞

0

∫

R3

|v − v∗|
γ
(
f ′♯)pµ(f ′♯

∗

)pµ
dv∗ds

) 1
p
dω

∥
∥
∥
Lp(dx,dv)

.

(4.6)

We use Lemma 2.1 and 2.2 to see

N2A ≡

∫ ∞

0

∫

R3

|v − v∗|
γe

− p(1−µ)
p−1

(α|x+t(v−v∗)|2+β|v∗|2)dtdv∗

=

∫

R3

|v − v∗|
γe

− p(1−µ)
p−1

β|v∗|2
( ∫ ∞

0
e
− p(1−µ)

p−1
α|x+t(v−v∗)|2dt

)

dv∗

≤

√

π(p− 1)

αp(1− µ)

∫

R3

|v − v∗|
γ−1e

− p(1−µ)
p−1

β|v∗|2dv∗

≤

√

π(p− 1)

αp(1− µ)

( ∫

|v∗|≤1
|v − v∗|

γ−1dv∗ +

∫

|v∗|>1
e
− p(1−µ)

p−1
β|v∗|2dv∗

)

≤

√

π(p− 1)

αp(1− µ)

( 2π

γ + 2
+

√
( p− 1

βp(1− µ)

)3 )

≡ CN2A
.

Note that we performed integration in time first before the velocity integration. We plug
the above estimate of N2A into (4.6) to obtain

N2 ≤ (CN2A
)
p−1
p

∥
∥
∥

(∫ ∞

0

∫

R3

|v − v∗|
γ(f ♯(x− t(v − v′), v′, t))pµ

×(f ♯(x− t(v − v′∗), v
′
∗, t))

pµdv∗dt
) 1

p
∥
∥
∥
Lp(dx,dv)

.

Applying a series of changes of variables: x+ tv → x, (v′, v′∗) → (v, v∗) and x → x+ tv gives

N2 ≤ (CN2A
)
p−1
p

[ ∫ ∞

0

∫

R9

|v − v∗|
γ(f ♯(x, v, t))pµ

×(f ♯(x− t(v − v∗), v∗, t))
pµdxdvdv∗dt

] 1
p
.

We now introduce the maximal distribution supt f
♯(x, v) as follows

N p
2 ≤ a

pµ
M (CN2A

)p−1

∫

R6

(
sup
t
(f ♯(x, v))pµ

)

×
(∫

R3

∫ ∞

0
|v − v|γe−pµ(α|x−t(v−v∗)|2+β|v∗|2)dtdv∗

)

dvdx

≤ a
pµ
M (CN2A

)p−1

√
π

αµp

∫

R6

(
sup
t
(f ♯)pµ

)(
∫

R3

|v − v|γ−1e−pµβ|v∗|2dv∗

)

dvdx

≤ a
pµ
M (CN2A

)p−1

√
π

αµp

( 2π

γ + 2
+

√
( 1

βpµ

)3 )

‖ sup
t
(f ♯)µ‖pp,
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where we used

f ♯(x, v, t) ≤ sup
t
(f ♯)(x, v) and

f ♯(x, v∗, t) ≤ aMe−α|x−t(v−v∗)|2−β|v∗|2 .

Finally we put

Cµ,p ≡ a
µ
M (CN2A

)
p−1
p

[√ π

αµp

( 2π

γ + 2
+

√
( 1

βpµ

)3 )] 1
p

to obtain the desired result. �

We now go back to the proof of the main theorem of this section. Substituting (4.5) into
(4.4) and recalling

‖(f ♯)µ‖p = ‖(f ♯)‖µµp,

we have

‖ sup
t
(f ♯)‖µµp ≤ ‖(f ♯

0)‖
µ
µp + C̄µ,p‖ sup

t
(f ♯)‖µµp,(4.7)

where

C̄µ,p ≡ µa
µ
M (CN2B

)
p−1
p

(a2M
am

)1−µ[
√

π

αµp

( 2π

γ + 2
+

√
( 1

βpµ

)3 )] 1
p
.

As in the previous section, we first fix µp = P for a given Lebesgue exponent 0 < P < ∞.
We then observe that

C̄µ,p ≤ µO(1)
[
√

1

P

(

1 +

√
( 1

P

)3 )] µ
P
,

where we used the fact that (CN2A
)
p−1
p is uniformly bounded for p ≥ 1, 0 < µ < 1, and

a
µ
M

(a2M
am

)1−µ

= aM

(aM

am

)1−µ

<
a2M
am

.

Therefore, we can take µ sufficiently small (with P fixed) such that C̄µ,p < 1, which gives
from (4.7)

‖(f ♯)(t)‖µP ≤ ‖ sup
t
(f ♯)‖µP ≤

1

1− C̄µ,p

‖(f ♯
0)‖

µ
P .

This implies the desired result.

5. On the stability of f − f̄

Let f , f̄ be two mild solutions of (1.1) which satisfy the upper bound estimate (but not
necessarily lower bound estimate) of the main assumption (A2):

(A2)′ : 0 ≤ f ♯(x, v, t), f̄ ♯(x, v, t) ≤ aMMα,β(x, v), a.e. (x, v),

for some strictly positive constant aM . Since the difference f − f̄ does not satisfies the
lower bound estimate of (A2) in general, the arguments given in section 3 and 4 are not
directly applicable to the difference of two distribution functions. One way to circumvent
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this problem is to consider g♯(x, v, t) ≡ M−1
α,βf

♯(x, v, t) instead of f ♯(x, v, t). Substituting

this into (1.1), we obtain

∂g♯

∂t
=

∫

R3×S2+

Aα,β(v − v∗, ω)(g
′♯g′♯∗ − g♯g♯∗)dωdv∗,(5.1)

∂ḡ♯

∂t
=

∫

R3×S2+

Aα,β(v − v∗, ω)(ḡ
′♯ḡ′♯∗ − ḡ♯ḡ♯∗)dωdv∗,(5.2)

where Aα,β denotes the regularized collision kernel as before:

Aα,β(v − v∗, ω) = |v − v∗|
γe−α|x−(v−v∗)t|2−β|v∗|2 .

We subtract (5.2) from (5.1) and multiply sgn(f ♯ − f̄ ♯) to both sides to see

∂G♯

∂t
≤

∫

R3×S2+

Aα,β(v − v∗, ω)(G
′♯D′♯

∗ +D′♯G′♯
∗ +G♯D♯

∗ +D♯G♯
∗)dωdv∗.

where G = |g − ḡ| and D = |g + ḡ|. Then the exactly same arguments as in the previous
sections yield

‖G‖p ≤ Cp‖G0‖p, (−3 < γ ≤ 1),(5.3)

where θ = 1 for sufficiently small aM . We now introduce the following notation for simplic-
ity.

||f(t)||Lp
M

≡
{∫

R6

(
f ♯(x, v, t)M−1

α,β

)p
dxdv

} 1
p
,

then (5.3) leads to the following theorems.

Theorem 5.1. Suppose that main assumption (A1) holds with −3 < γ ≤ 1. Let f and f̄

be mild solutions satisfying (A2)′ corresponding to initial data f0, f̄0 respectively. Then we

have

||f(t)− f̄(t)||Lp
M

≤ Gp||f0 − f̄0||Lp
M
, t ≥ 0.
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