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ON EXPLICIT HOLMES-THOMPSON AREA FORMULA IN

INTEGRAL GEOMETRY

YANG LIU

Abstract. In this article, we give an exposition on the Holmes-Thompson
theory developed by Alvarez. The space of geodesics in Minkowski space has
a symplectic structure which is induced by the projection from the sphere-
bundle. we show that it can be also obtained from the symplectic structure
on the tangent bundle of the Riemannian manifold, the tangent bundle of
the Minkowski unit sphere. We give detailed descriptions and expositions on
Holmes-Thompson volumes in Minkowski space by the symplectic structure
and the Crofton measures for them. For the Minkowski plane, a normed two
dimensional space, we express the area explicitly in an integral geometry way,
by putting a measure on the plane, which gives an extension of Alvarez’s result
for higher dimensional cases.

1. Introductions

1.1. Minkowski Space and Geodesics. A Minkowski space is a vector space
with a Minkowski norm, and a Minkowski norm is defined in [8] as

Definition 1.1. A function F : Rn → R is a Minkowski norm if

(1) F (x) > 0 for any x ∈ R
n \ {0} and F (0) = 0.

(2) F (λx) = |λ|F (x) for any x ∈ R
n \ {0}.

(3) F ∈ C∞(Rn \ {0}) and the symmetric bilinear form

gx(u, v) :=
1

2

∂2

∂s∂t
F 2(x+ su+ tv)|s=t=0 (1.1)

is positively definite on R
n for any x ∈ R

n \ {0}.

We denote a Minkowski space by (Rn, F ). By the way, (2) and (3) in Definition 1.1
imply the the convexity of F , see Chapter 1 of [8].

First of all, we can infer the following theorem about geodesics in Minkowski
space from Definition 1.1.

Theorem 1.2. The straight line joining two points in Minkowski space is the only
shortest curve joining them.

Proof. For any p, q ∈ (Rn, F ), let r(t), t ∈ [a, b] with F (r′(t)) = 1, be a curve
joining p and q, which has the minimum length. Then r(t) is the minimizer of the

functional
´ b

a F (r′(t))dt.
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Note that F is smooth. By the fundamental lemma of calculus of variation (Let

V (h) :=
´ b

a F (r′(t) + hδ′(t))dt, where δ(a) = δ(b) = 0. Then

V ′(0) = ∂
∂h |h=0

´ b

a F (r′(t) + hδ′(t))dt

=
´ b

a
∂
∂h |h=0F (r′(t) + hδ′(t))dt

=
´ b

a ∇F (r′(t)) · δ′(t)dt

= ∇F (r′(t)) · δ(t)|ba −
´ b

a
δ(t) · d

dt∇F (r′(t))dt

= −
´ b

a
δ(t) · d

dt∇F (r′(t))dt.

(1.2)

Thus we can obtain d
dt∇F (r′(t)) = 0 since V ′(0) = 0 as V (0) 6 V (h) for any δ(t)),

or by the Euler–Lagrange equation directly, we have

d

dt
∇F (r′(t)) = 0. (1.3)

Using chain rule, (1.3) becomes

Hess(F )
d2r(t)

dt2
= 0. (1.4)

On the other hand, we have

∇F (r′(t))
d2r(t)

dt2
= 0 (1.5)

by differentating F (r′(t)) = 1, and then by product rule, (1.4) and (1.5),

1
2Hess(F

2)d
2r(t)
dt2 = F (r′(t))Hess(F )d

2r(t)
dt2 + (∇F (r′(t))T∇F (r′(t))d

2r(t)
dt2

= Hess(F )d
2r(t)
dt2

= 0.
(1.6)

Hence we get d2r(t)
dt2 = 0 because 1

2Hess(F
2) is non-degenerated by (3) in Definition

1.1, and then it implies r(t), t ∈ [a, b], is a straight line segment connecting p and
q. �

Thus the space of geodesics in (Rn, F ) actually is the space of affine lines, denoted

by Gr1(Rn). More generally, one can define

Definition 1.3. The affine Grassmannian Grk(Rn) is the space of affine k-planes
in (Rn, F ).

1.2. Symplectic Structures on Cotangent Bundle. The Minkowski space (Rn, F ),
as a differentiable manifold, has a canonical symplectic structure on its cotangent
bundle T ∗

R
n, from which a symplectic structure on its tangent bundle TRn can be

derived as well.
The canonical contact form α on T ∗

R
n is defined as αξ(X) := ξ(π0∗X) for

X ∈ TξT
∗
R
n, where π0 : T ∗

R
n → R

n is the natural projection. And then the
canonical symplectic form on T ∗

R
n is defined as ω := dα.

On the other hand, we know that the dual of Minkowski metric is defined as

F ∗(ξ) := sup {|ξ(v)| : v ∈ TRn, F (v) 6 1} (1.7)

for ξ ∈ T ∗
R
n, and there is a natural correspondence between the sphere bundle

SRnand the cosphere bundle SRn = {ξ ∈ T ∗
R
n : F ∗(ξ) = 1} of the Minkowski

space (Rn, F ).
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By the convexity and the positive homogeneity of F , see [11], we can obtain
F ∗(dF (ξ̄)) = 1 and dF ∗(dF (ξ̄)) = ξ̄ for any ξ̄ ∈ SxR

n and x ∈ R
n, where dF is the

gradient of F and similarly for dF ∗. Thus dF is a diffeomorphism from SxR
n to

S∗
xR

n, which induces another diffeomorphism

ϕF : SRn → S∗
R
n

ϕF ((x, ξx)) = (x, dF (ξx))
(1.8)

for any ξx ∈ SxR
n. More generally, there is another diffeomorphism 1

2dF
2 from

TxR
n \ {0} to T ∗

xR
n \ {0} for any x ∈ (Rn, F ), thus we obtain a diffeomorphism

ϕ̄F : TRn → T ∗
R
n

ϕ̄F ((x, ξx)) = (x, 1
2dF

2(ξx))
(1.9)

by ignoring the 0-sections.
The diffeomorphism (1.8) induces a 2-form ω̄ := ϕ∗

Fω on SRn. Without loss of
elegance, we can express it more concretely. Since T ∗

R
n = R

n × R
n∗, for (x, ξ) ∈

T ∗
R
n the canonical symplectic form ω on T ∗

R
n is actually ω = tr(dx ∧ dξ), here

we denote dx ∧ dξ := (dxi ∧ dξj)n×n and similarly dx ∧ dξ̄ := (dxi ∧ dξ̄j)n×n,

n × n matrices with 2-forms as entries, where ξj(ξ) = ξ( ∂
∂xj

), ξ̄j(ξ̄) = dxj(ξ̄) and

F ∗(ξ̄) = 1. Then using chain rule, we can obtain

ω̄ = ϕ∗
F (ω|S∗Rn) = Hess(F ) ⋆ dx ∧ dξ̄|SRn , (1.10)

where ⋆ is the Frobenius inner product which is the sum of the entries of the
entrywise product of two matrices.

1.3. Gelfand Transform. Gelfand transform on a double fibration as a general-
ization of Radon transform plays an important role in making use of the symplectic
form of Section 1.2 in integral geometry of Minkowski space.

Definition 1.4. Let M
π1← F

π2→ Γ be double fibration where M and Γ are two
manifolds, π1 : F → M and π2 : F → Γ are two fibre bundles, and π1 × π2 : F →
M ×Γ is an submersion. Let Φ be a density on Γ, then the Gelfand transform of Φ
is defined as GT (Φ) := π1∗π

∗
2Φ. In the case Φ is a differential form and the fibres

are oriented, then we also have a well-defined Gelfand transform GT (Φ) := π1∗π
∗
2Φ,

noting that the pushforward of a form is the integral of contracted form over the
fibre.

To make it clear, let’s see how the degree of a density or form changes by the
transform. Suppose Φ is a density or form of degree m on Γ and the dimension of
fibre π1is q, then π∗

2Φ has degree m, and then GT (Φ) = π1∗π
∗
2Φ =

´

π−1
1 (x)

π∗
2Φ for

x ∈M has degree m− q.
An application of Gelfand transforms in integral geometry is the following fun-

damental theorem [5], whose proof is quite simple.

Theorem 1.5. Suppose Mγ := π1(π−1
2 (γ)) are smooth submanifolds of M for

γ ∈ Γ, M ⊂ M is a immersed submanifold, and Φ is a top degree density on Γ.
Then

ˆ

Γ

#(M ∩Mγ)Φ(γ) =

ˆ

M

GT (Φ). (1.11)
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Proof. Working on the transitions of measures on manifolds and the transforma-
tions of intersection numbers, we have

´

M GT (Φ) =
´

M π1∗π
∗
2Φ =

´

π−1
1 (M) π

∗
2Φ

=
´

Γ
#(π−1

2 (γ) ∩ π−1
1 (M))Φ(γ)

=
´

Γ
#(M ∩Mγ)Φ(γ).

(1.12)

�

2. The Symplectic Structure on the Space of Geodesics

The symplectic structure on the space of geodesics in a Minkowski space is
induced naturally from the canonical symplectic structure on its cotangent bundle.

The process of construction of symplectic form on Gr1(Rn) in Minkowski space
(Rn, F ) is based on the following diagram

SRn
ϕF
≃
→ S∗

R
n i
→֒ T ∗

R
n

↓ p

Gr1(Rn)

(2.1)

where p is the projection from SRn onto Gr1(Rn) defined by

p((x, ξ̄)) := l(x, ξ̄), (2.2)

where l(x, ξ̄) is the line passing through x with direction ξ̄.

Consider the geodesic vector field X (ξx) := (ξx, 0) on TRn for any ξx ∈ SR
n,

ϕF in (1.8) induces another vector field X := dϕF (X ) on T ∗
R
n with

X (dF (ξx)) = (dϕF (X )(ϕF (ξx)) = (ξx, 0) (2.3)

for ξx ∈ SR
n.

We have the following vanishing property about X and ω on S∗
R
n.

Lemma 2.1. iXω = 0 on S∗
R
n .

Proof. Noting that ω(X,Y ) = 〈X1, Y2〉 − 〈Y1, X2〉 for any X = (X1, X2) and Y =
(Y1, Y2) in TξxS

∗
R
n ⊂ TξxT

∗
R
n because T ∗

R
n ∼= R

n×Rn∗, where the inner product
is the dual space action, by (2.3) we have

ωξx(X , Y ) = 〈ξx, Y2〉 = 〈dF ∗(ξx), Y2〉 = 0 (2.4)

because Y2 ∈ TξxS
∗
R
n is “normal” to dF ∗(ξx), precisely, that can be obtained by

differentiating F ∗(ξx) = 1 and noting Y2 ∈ TξxS
∗
R
n. �

Furthermore, the Lie derivative of ω along geodesic vector field X is

LXω = diXω + iXdω = 0 (2.5)

by Lemma 2.1. Then (2.5) implies (ϕF )∗ω|S∗Rn is invariant under X̄ .

Based on the invariance of ω we can construct a symplectic structure on Gr1(Rn).

However, in order to do that, we need to give a manifold structure for Gr1(Rn) first.

In fact, we can build a bijection ψ between Gr1(Rn) and TSn−1
F ,where Sn−1

F is

the unit sphere in (Rn, F ). For any l(x, ξ̄) ∈ Gr1(Rn), let η̄ be the tangent vector
pointing at l(x.ξ̄) ∩ Tξ̄S

n−1
F , in fact, η̄ = x − dF (ξ̄)(x)ξ̄ ∈ Tξ̄S

n−1
F , see Figure 2.1

on page 5, and one can define

ψ(l(x, ξ̄)) := (ξ̄,η̄) = (ξ̄, x− dF (ξ̄)(x)ξ̄). (2.6)
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Figure 2.1. Gr1(Rn) Diffeomorphic to TSn−1
F

Thus we have a homeomorphism ψ from Gr1(Rn) to TSn−1
F , and then the manifold

structure on TSn−1
F provides one for Gr1(Rn).

Let us again consider the projection (2.2) with the manifold structure onGr1(Rn),
and then we can obtain the following lemma

Lemma 2.2. X̄ is in the kernel of dp, in other words, p∗(X̄ ) = 0.

Proof. Using the basic equality

dF (ξ̄)(ξ̄) = F (ξ̄) = 1 (2.7)

obtained by the positive homogeneity of F for any ξ̄ ∈ SxR
n, we have

p∗(X̄ ) = dp((ξ̄, 0)) = d(ξ̄, x− dF (ξ̄)(x)ξ̄)((ξ̄, 0))

= ξ̄ − dF (ξ̄)(ξ̄)ξ̄

= (1− dF (ξ̄)(ξ̄))ξ̄
= 0.

(2.8)

�

One can compute the rank of the Jacobian of p which is 2n − 2, that implies
dim(dp|ξ̄x) = 1 and then

ker(dp|ξ̄x) = span(X̄ (ξ̄x)) (2.9)

by Lemma 2.2.
Now we can obtain the following theorem

Theorem 2.3. There exists a symplectic form ω0 on Gr1(Rn), such that p∗ω0 =
ω̄ = (ϕF )∗ω|S∗Rn.
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Proof. By (2.5), (2.9) and Lemma 2.1, we know that ω̄ξx(X,Y ) is independent of
the choices of preimages under the pushforward induced by projection p. Thus we
have a well-defined two form ω0 on Gr1(Rn),

ω0p(ξx)
(X̃, Ỹ ) := ω̄ξx(X,Y ), (2.10)

where (p∗)ξx(X) = X̃ and (p∗)ξx(Y ) = Ỹ , such that

p∗ω0 = ω̄ = (ϕF )∗i∗ω. (2.11)

�

That finishes the construction of symplectic structure on the space of geodesics
in Minkowski space.

On the other hand, since T ∗Sn−1
F as a cotangent bundle on Riemannian manifold

Sn−1
F has a canonical symplectic structure denoted as ω̃, and we have a canonical

diffeomorphism

ϕ̃F : TSn−1
F → T ∗Sn−1

F

ϕ̃F (η̄ξ̄) = 〈η̄ξ̄, ·〉gF ,
(2.12)

in which gF is the Riemannian metric on Sn−1
F , which is actually the bilinear form

〈ū, v̄〉gF :=
∂2

∂s∂t
F (ξ̄ + sū+ tv̄)|s=t=0 (2.13)

for any ū, v̄ ∈ Tξ̄S
n−1
F , see [8], and then ϕ̃∗

F ω̃ is the the symplectic form induced

on TSn−1
F

∼= Gr1(Rn). Also, we have another symplectic form ω0 on Gr1(Rn)
from Theorem 2.3. A natural question is whether the two symplectic structures on

Gr1(Rn) are the same, the answer is yes, see the following theorem

Theorem 2.4. ω0 = ϕ̃∗
F ω̄.

Let us first draw a diagram for this theorem by combining (2.1)

SRn
ϕF
≃
→ S∗

R
n i

→֒ T ∗
R
n

↓ p

Gr1(Rn)
ψ
≃ TSn−1

F

ϕ̃F
≃
→ T ∗Sn−1

F .

(2.14)

Proof. First, differentiating (2.7) and using chain rule, one can get

Hess(F ) ⋆ ξ̄dξ̄|SRn = 0 (2.15)

in which ξ̄dξ̄ := (ξ̄idξ̄j)n×n is a matrix and ⋆ is the Frobenius inner product of
matrices.

Next, the canonical symplectic form ω̃ on T ∗Sn−1
F , ω̃ = ω|T∗Sn−1

F
in which ω is

the canonical symplectic form on the cotangent bundle T ∗
R
n. Thus, from (2.12)

and (2.13), one can obtain that

ϕ̃∗
F ω̃ = Hess(F ) ⋆ dη̄ ∧ dξ̄|TSn−1

F

, (2.16)

here dξ̄ ∧ dη̄ is a matrix with 2-form entries and ⋆ is the Frobenius inner product
of matrices.
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Figure 2.2. “p-norm distance” r

Therefore, by plugging (2.6) into (2.16) and using (2.15), we obtain

p∗ϕ̃∗
F ω̃ = Hess(F ) ⋆ dη̄ ∧ dξ̄|TSn−1

F

= Hess(F ) ⋆ d(x − dF (ξ̄)(x)ξ̄) ∧ dξ̄|SRn

= Hess(F ) ⋆ dx ∧ dξ̄|SRn − d(dF (ξ̄)(x)) ∧Hess(F ) ⋆ ξ̄dξ̄|SRn

= Hess(F ) ⋆ dx ∧ dξ̄|SRn

= ω̄,

(2.17)

which by Theorem 2.3 implies the claim. �

At the end to this section, we make a remark on the symplectic structure on
Gr1(Rn).

Remark 2.5. From (1.10) we see the symplectic structure ω̄ on TRn relies on the
Minkowski metric F , then we know, by the above construction, the symplectic
structure on Gr1(Rn) depends on the Minkowski metric F as well. Let us see the
following example of Minkowski plane with p-norm as a Minkowski metric.

Example 2.6. Given a Minkowski plane by
(
R

2, || · ||p
)
, 1 < p < ∞, where

||(α, β)||p = (|α|p + |β|p)1/p and the dual norm is || · || p

p−1
we can obtain the sym-

plectic form ω on Gr1(R2), the space of affine lines in
(
R

2, || · ||p
)
, by following the

general construction above.
By (1.10) and Theorem 2.3, we have

p∗ω0 = (p− 1)αp−2dx ∧ dα+ (p− 1)βp−2dy ∧ dβ, (2.18)

for ((x, y), (α, β)) ∈ SR2.

Since Gr1(R2) is a 2-dimensional manifold, we can parametrize affine lines in

Gr1(R2) with two variables in a natural way. For any straight line l passing through
(x, y) with direction (α, β) of unit p-norm, let (−Θ,Ω) be the unit vector in p-norm
such that l is tangent to the Minkowski sphere S(r) of radius r at (−rΘ, rΩ), here
we can call r the “p-norm distance” of l to the origin, see Figure 2.2 on page 7.
Thus we can denote the line by l(r,Θ).
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We have the following theorem about the symplectic structure on Gr1(R2) by
the above parametrization.

Theorem 2.7. The symplectic structure on Gr1(R2) is

ω0 =
(p− 1)2Θp(p−2)Ωp

2−3p+1

||(Θ,Ω)||
(p−1)(2p−1)
p(p−1)

dr ∧ dΘ. (2.19)

Proof. For a line l passing through (x, y) with direction (α, β) of unit p-norm, the
“p-norm distance”

r = −Θp−1x+ Ωp−1y (2.20)

and

(−Θ,Ω) = (−
β

1
p−1

(α
p
p−1 + β

p
p−1 )

1
p

,
α

1
p−1

(α
p
p−1 + β

p
p−1 )

1
p

). (2.21)

In order to express ω0 in terms of r and Θ, at first we use (2.20) and (2.21) to
compute

dr ∧ dΘ = (−Θp−1dx+ Ωp−1dy) ∧ dΘ

= −Θp−1dx ∧ d( β
1
p−1

(α
p
p−1 +β

p
p−1 )

1
p

) + Ωp−1dy ∧ d( β
1
p−1

(α
p
p−1 +β

p
p−1 )

1
p

)

= −Θp−1dx ∧ d( 1

((α
β

)
p
p−1 +1)

1
p

) + Ωp−1dy ∧ d( 1

((α
β

)
p
p−1 +1)

1
p

)

= −Θp−1dx ∧ (− 1
p )((αβ )

p

p−1 + 1)−p+1
p

p
p−1 (αβ )

1
p−1 βdα−αdβ

β2

+Ωp−1dy ∧ (− 1
p )((αβ )

p
p−1 + 1)− p+1

p
p
p−1 (αβ )

1
p−1 βdα−αdβ

β2

= ( 1
p−1 )(αβ )

1
p−1 ((αβ )

p

p−1 + 1)− p+1
p (Θp−1dx ∧ ( 1

β dα−
α
β2 dβ)

−Ωp−1dy ∧ ( 1
βdα−

α
β2 dβ)

= ( 1
p−1 )(αβ )

1
p−1 ((αβ )

p

p−1 + 1)− p+1
p (Θp−1( 1

β + αp

βp+1 )dx ∧ dα

−Ωp−1(− 1
β
βp−1

αp−1 −
α
β2 )dy ∧ dβ)

= ( 1
p−1 )(αβ )

1
p−1 ((αβ )

p
p−1 + 1)− p+1

p (Θp−1

βp+1 dx ∧ dα+ Ωp−1

αp−1β2 dy ∧ dβ)

= 1
(p−1)2 (αβ )

1
p−1 ((αβ )

p

p−1 + 1)− p+1
p ( Θp−1

βp+1αp−2 (p− 1)αp−2dx ∧ dα

+ Ωp−1

αp−1βp (p− 1)βp−2dy ∧ dβ).

(2.22)
Indeed,

Θp−1

βp+1αp−2
=

Ωp−1

αp−1βp
(2.23)

since

Θp−1

Ωp−1
=
β

α
(2.24)

by (2.21).
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Therefore, using (2.23), (2.24) and ||(Θ,Ω)||p = 1, we have

dr ∧ dΘ = 1
(p−1)2 (αβ )

1
p−1 ((αβ )

p
p−1 + 1)− p+1

p Θp−1

βp+1αp−2

((p− 1)αp−2dx ∧ dα+ (p− 1)βp−2dy ∧ dβ)

= 1
(p−1)2 (αβ )

1
p−1 ((αβ )

p

p−1 + 1)− p+1
p Θp−1

βp+1αp−2ω0

= 1
(p−1)2

(α
β

)
1
p−1 Θp−1

((α
β

)
p
p−1 +1)

p+1
p βp+1αp−2

ω0

= 1
(p−1)2

Ω
Θ Θp−1

(( Ω
Θ )p+1)

p+1
p ( Θp−1

||(Θp−1,Ωp−1)||p
)p+1( Ωp−1

||(Θp−1,Ωp−1)||p
)p−2

ω0

= 1
(p−1)2

ΩΘ2p−1

( Θp−1

||(Θp−1,Ωp−1)||p
)p+1( Ωp−1

||(Θp−1,Ωp−1)||p
)p−2

ω0

= 1
(p−1)2

ΩΘ2p−1||(Θp−1,Ωp−1)||2p−1
p

Θ(p−1)(p+1)Ω(p−1)(p−2) ω0

= 1
(p−1)2

||(Θp−1,Ωp−1)||2p−1
p

Θp(p−2)Ωp2−3p+1
ω0

=
||(Θ,Ω)||

(p−1)(2p−1)

p(p−1)

(p−1)2Θp(p−2)Ωp2−3p+1
ω0,

(2.25)

Thus we have shown

dr ∧ dΘ =
||(Θ,Ω)||

(p−1)(2p−1)
p(p−1)

(p− 1)2Θp(p−2)Ωp2−3p+1
ω0, (2.26)

which implies (2.19) in the claim. �

So from (2.18) and (2.19) we see the symplectic structure on Gr1(R2) is deter-
mined by the Minkowski metric || · ||p on R

2.

3. Integral Geometry on Length in Minkowski Space

The length of a straight line segment in (R2, F ) can be obtained by integrating
the canonical contact form α introduced in Section 1.2. For any x, y ∈ R

2, let −→xy
be the vector from x to y, and

c(t) := (x+
t

F (−→xy)
(y − x), dF (

−→xy

F (−→xy)
)), t ∈ [0, F (−→xy)] (3.1)

be a straight line segment in T ∗
R

2. By the positive homogeneity of F, one can get
the useful fact that

dF (
−→xy

F (−→xy)
)(
−→xy

F (−→xy)
) = F (

−→xy

F (−→xy)
) = 1. (3.2)

Therefore,
´

c
α =

´ F (−→xy)

0
dF (

−→xy
F (−→xy)

)(
−→xy

F (−→xy)
)dt = F (−→xy) = L(xy), (3.3)

where L(xy) is the length of xy.
Here let us introduce a general definition in integral geometry first.

Definition 3.1. A Crofton measure φ for a degree k measure Φ on (Rn, F ) is

a measure on Grn−k(Rn) (Definition 1.3), such that it satisfies the Crofton-type
formula

Φ(M) =

ˆ

P∈Grn−k(Rn)

#(M ∩ P )Φ(P ) (3.4)

for any compact convex subset M (Rn, F ).
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Figure 3.1. From SR2 to Gr1(R2)

Furthermore, we have the following

Proposition 3.2. The Crofton measure on Gr1(R2) for the length is |ω0|.

Our treatment of applying Stokes’ theorem here is primarily based on [4].

Proof. From Section 2, we know Gr1(R2)
ψ
≃
→ TSF which is a cylinder, and it has a

symplectic form ω0 as TSF embedded in T ∗
R

2.

Let S :=

{

l ∈ Gr1(R2) : l ∩
◦
xy 6= φ

}

, Cx and Cy be the family of oriented lines

passing through x and y respectively, then Cx ∩ Cy =
{
l+xy, l

−
xy

}
that are the two

oriented lines connecting x and y, and ∂S = Cx ∪ Cy.
Let R :=

{
ξ ∈ SR2 ⊂ TR2 : l((x+ t(y − x), dF (ξ)) ∩ xy 6= φ

}
, where l((x+t(y−

x), dF (ξ)) is the line passing through x+ t(y− x) with direction ξ, then p(R) = S,

where p is the natural projection from SR2 to Gr1(R2).

Additionally, let C
′

x =
{
ξx : ξx ∈ SxR

2
}
, C

′

y =
{
ξy : ξy ∈ SyR

2
}
, l

′+
xy =

−→xy
F (−→xy)

∈

SxR
2, and l

′−
xy = −

−→xy
F (−→xy)

∈ SyR
2, then p maps C

′

x, C
′

y, l
′+
xy and l

′−
xy to Cx, Cy, l

+
xy

and l−xy respectively, see Figure 3.1 on page 10.
Applying Stokes’ theorem to the two regions individually, using the fact that

´

C′ α = 0 because of the fixed base points for any C′ ⊂ C
′

x orC
′

y , and combining
with (3.3), we obtain

´

S
|ω0| =

´

p(R)
|ω0| =

´

R
|p∗ω0|

=
´

R
|ω|

= 2
´

l
′+
xy∪l

′−
xy
α

= 4L(xy).

(3.5)

Therefore, for any rectifiable curve γ in (R2, F ), the length of γ,

L(γ) =
1

4

ˆ

l∈Gr1(R2)

#(γ ∩ l)|ω0|, (3.6)

which is the desired claim. �
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Remark 3.3. The proof above can be applied to R
2 with projective Finsler metric,

in which geodesics are straight lines. Furthermore, for R
n with a projective Finsler

metric F , we choose a plane P ⊂ R
n containing xy for any x, y ∈ R

n, then

L(xy) =
1

4

ˆ

l∈Gr1(P )

#(xy ∩ l)|ω0|. (3.7)

4. Volume of Hypersurfaces

A standard definition of Holmes-Thompson volume in Minkowski space (Rn, F )
is given and its importance in Finsler geometry and integral geometry is illustrated
in [3].

The Holmes-Thompson volumes are defined as follows.

Definition 4.1. Let N be a k-dimensional manifold and

D∗N := {ξx ∈ T
∗N : F ∗(ξx) 6 1} , (4.1)

where F ∗ is the dual norm in (1.7), be the codisc bundle of N , then the k-th
Holmes-Thompson volume is defined as

volk(N) :=
1

ǫk

ˆ

D∗N

|ωk|, (4.2)

where ǫk is the Euclidean volume of k-dimensional Euclidean ball and ω is the
canonical symplectic form on the cotangent bundle of N .

Let Λ ∈ Grk(Rn) for some k ≤ n, ω0 and ω̂0 are the natural symplectic forms on

Gr1(Rn) and Gr1(Λ) constructed in the way described in Section 2. The relation
between ω0 and ω̂0 is shown in the following

Lemma 4.2. i∗ω0 = ω for i : Gr1(Λ) →֒ Gr1(Rn).

Proof. First consider the diagram

S∗Λ
ϕF∗

≃
→ SΛ

î
→֒ SRn

ϕF
≃
→ S∗

R
n. (4.3)

We have a canonical contact form α̂ξ(X) := ξ(π̂0∗X) for X ∈ TξS
∗Λ on S∗Λ in

diagram (4.3), where π̂0 : S∗Λ → Λ is the natural projection, and define ω̂ := dα̂

on S∗Λ.
Let j = ϕF ◦ î ◦ ϕF∗ , then for any X ∈ TξS

∗Λ,

(j∗α)ξ(X) = αj(ξ)(j∗X) = j(ξ)(π∗j∗X) = ξ(π̂0∗X) = α̂ξ(X) (4.4)

in which α and ω on S∗
R
n are introduced in Section 1.2, then (4.4) implies

j∗α = α̂, (4.5)

and furthermore we have

j∗ω = ω̂ (4.6)

by differentiating (4.5).

Next, let p̂ be the projection taking ξ̄x ∈ SΛ to the line passing x with the
direction ξ̄x, and similarly for p which is described in (2.1). Consider the diagram

S∗Λ
ϕF∗

≃ SΛ
î
→֒ SRn

ϕF
≃ S∗

R
n

↓ p̂ ↓ p

Gr1(Λ)
i
→֒ Gr1(Rn)

(4.7)
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obtained by combining diagram (2.1) and (4.4). By the definitions of the maps in
(4.7), we know the diagram is commutative. By Theorem 2.3, we have p∗ω0 = ϕ∗

Fω

and p̂∗ω̂0 = ϕ∗
F ω̂. Combining with (4.6) and the commutativity of the diagram

(4.7), we obtain the desired claim i∗ω0 = ω̂0. �

Suppose N is a hypersurface in (Rn, F ), then we have the following

Proposition 4.3. voln−1(N) = 1
2ǫn−1

´

l∈Gr1(Rn)
#(N ∩ l)|ωn−1

0 |, where ω0 is the

symplectic form on Gr1(Rn).

This idea of intrinsic proof is given by Dr. Joseph H. G. Fu.

Proof. It suffices to prove the claim in the case when N is affine. Without loss of
generality, assume N ⊂ R

n−1 ⊂ R
n is compact and convex with smooth boundary.

Consider the following diagram

S∗N
î
→֒ S∗

R
n−1

ϕF∗
∼=
→ SRn−1 i

→֒ SRn
ϕF
∼=
→ S∗

R
n π
→ Gr1(Rn), (4.8)

where i and k are embeddings, and π := p ◦ ϕ−1
F = p ◦ ϕF∗ is a projection from

diagram (2.1).
As N is a (n − 1)-dimensional manifold, the canonical contact form α̂ on S∗N

is defined as α̂ξ(X) := ξ(π̂0∗X) for X ∈ TξS
∗N , where π̂0 : S∗N → N is the

projection.
Let j = ϕF ◦ i ◦ ϕF∗ , then

(j∗α)̂i(ξ)(̂i∗X) = ((ϕF ◦ i ◦ ϕF∗)∗α)̂i(ξ)(̂i∗X) = ξ(π0∗X) = α̂ξ(X). (4.9)

for any X ∈ TξS
∗N , which implies (̂i ◦ j)∗α = î∗j∗α = α̂, and then (i ◦ j)∗ω = ω̂

where ω̂ := dα̂ and ω is introduced in Section 1.2.
Applying Stokes’ theorem, we have
´

D∗N
ω̂n−1 =

´

∂(D∗N)
α̂ ∧ ω̂n−2 =

´

S∗N
α̂ ∧ ω̂n−2 +

´

π̂−1
0 (∂N)

α̂ ∧ ω̂n−2

=
´

S∗N α̂ ∧ ω̂
n−2

(4.10)
since the degree of α̂ ∧ ω̂n−2 on the compoment mesuring perturbations of base
points is bigger than the dimension of the base manifold, and
´

S∗
+Rn∩π−1

0 (N)
ωn−1 =

´

∂(S∗
+Rn∩π−1

0 (N))
α ∧ ωn−2

=
´

S∗N
î∗j∗α ∧ î∗j∗ωn−2 +

´

π̂−1
0 (∂N)

î∗j∗α ∧ î∗j∗ωn−2

=
´

S∗N α̂ ∧ ω̂
n−2,

(4.11)
where

S∗
+R

n =
{
ξ ∈ S∗

R
n : ξ(v0) > 0, v0 satisfies dF (v0)(v) = 0 for all v ∈ SRn−1

}
.

(4.12)
Therefore,

ˆ

D∗N

ω̂n−1 =

ˆ

S∗
+Rn∩π−1

2 (N)

ωn−1. (4.13)

Now let us consider the “upper” half space of geodesics in (Rn, F ),

Gr+
1 (Rn) :=

{
l(x, η) : dF (η)(η0) > 0, η0 satisfies dF (η0)(v) = 0 for all v ∈ SRn−1

}
.

(4.14)
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Since π∗ω0 = ω, then we get
´

S∗
+Rn∩π−1

0 (N) ω
n−1 =

´

S∗
+Rn∩π−1

0 (N) π
∗ωn−1

0

=
´

π−1(l)∈S∗
+Rn∩π−1

0 (N)
#(N ∩ l)ωn−1

0

=
´

l∈Gr+
1 (Rn)

#(N ∩ l)ωn−1
0 .

(4.15)

Combining with (4.13), we obtain

voln−1(N) = 1
ǫn−1

´

D∗N ω̂
n−1

= 1
ǫn−1

´

l∈Gr+
1 (Rn)

#(N ∩ l)ωn−1
0

= 1
2ǫn−1

´

l∈Gr1(Rn)
#(N ∩ l)|ωn−1

0 |,

(4.16)

that finishes the proof. �

5. k-th Holmes-Thompson Volume and Crofton Measures

Let us introduce a general fact first. Busemann constructed all projective metrics
F for projective Finsler space (Rn, F ), and it was also proved in [12] by Schneider
using spherical harmonics.

Theorem 5.1. (Busemann) Suppose F is a projective metric on R
n, then F (x, v) =

´

ξ∈Sn−1 |〈ξ, v〉|f(ξ, 〈ξ, x〉)Ω0 for any (x, v) ∈ TRn, where Ω0 is the Euclidean volume

form on Sn−1 and f is some continuous function on Sn−1 × R.

In fact, for the case that (Rn, F ) is Minkowski, we can use a theorem on surjec-
tivity of cosine transform,

C(f)(·) =

ˆ

ξ∈Sn−1

|〈ξ, ·〉|f(ξ)Ω0, (5.1)

of even functions from Chapter 3 of [9],

Theorem 5.2. For any even C2[(n+3)/2] function g on Sn−1, n > 2, where [·] is the
greatest integer function, there is an even function f on Sn−1 such that C(f) = g.

From it we directly obtain that there exists an even function f on Sn−1, such
that

L(xy) =
1

4

ˆ

ξ∈Sn−1

|〈ξ,−→xy〉|f(ξ)Ω0. (5.2)

On the other hand, for any v = −→xy, x, y ∈ (R2, F ), by Proposition 3.2 we know

F (x, v) =
1

ωn−1

ˆ

l∈Gr1(R2)

#(xy ∩ l)|ω0|. (5.3)

In fact, there is a relation between Ω0 and ω0. Considering the following double
fibration

Gr1(Rn)
π1← I

π2→ Grn−1(Rn), (5.4)

where I =
{

(l, H) ∈ Gr1(Rn)×Grn−1(Rn) : l ⊂ H
}

, we have

Proposition 5.3. GT (fΩ0 ∧ dr) = ω0, where GT is the Gelfand transform for
the double fibraton (5.4) and r is the Euclidean distance of a hyperplane H to the
origin.
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Proof. For any x, y in any 2-plane Π ⊂ R
n, we know that the length of xy,

L(xy) =
1

4

ˆ

l∈Gr1(Π)

#(xy ∩ l)|ω0|Gr1(Π)
. (5.5)

where Gr1(Π) :=
{

l ∈ Gr1(Rn) : l ⊂ Π
}

.

Let I =
{

l ∈ Gr1(Π) ⊂ Gr1(Rn) : xy ∩ l 6= φ
}

and GH := π1(π−1
2 (H)) for H ∈

Grn−1(Rn). By the fundamental theorem of Gelfand transform, Theorem 1.5,
ˆ

H∈Grn−1(Rn)

#(I ∩GH)|fΩ0 ∧ dr| =

ˆ

I

|GT (fΩ0 ∧ dr)|. (5.6)

Therefore,
´

l∈Gr1(Π)
#(xy ∩ l)|GT (fΩ0 ∧ dr)| =

´

I |GT (fΩ0 ∧ dr)|

=
´

H∈Grn−1(Rn)
#(I ∩GH)|fΩ0 ∧ dr|

=
´

ξ∈Sn−1 |〈ξ,
−→xy〉|f(ξ)Ω0

(5.7)

since Grn−1(Rn) ∼= Sn−1 × R. By (5.2)and (5.5) we thus obtain
ˆ

l∈Gr1(Π)

#(xy ∩ l)|GT (fΩ0 ∧ dr)| =

ˆ

l∈Gr1(Π)

#(xy ∩ l)|ω0|, (5.8)

which implies GT (fΩ0 ∧ dr)|Gr1(Π)
= ω0|Gr1(Π)

for any plane Π ⊂ R
n by the

injectivity of cosine transform (5.1).(In Chapter 3 of [9] Groemer shows by using
condensed harmonic expansion and Parseval’s equation, that C(f1) = C(f2) iff f+

1 =

f+
2 , where f+

1 (v) = f1(v)+f1(−v)
2 and similarly for f+

2 , for any bounded integrable

functions f1 and f2 on Sn−1.)

Now define a basis for TlGr1(Rn), the tangent space of Gr1(Rn) at l ∈ Gr1(Rn).

Note that Gr1(Rn)
ψ
≃ TSn−1

F from Section 2. Let {ei : i = 1, · · · , n} be the basis

for Rn, and curve γi with γi(t) = l+tei for i = 1, · · · , n−1, where l ∈ Gr1(Rn), and

then define ei := γ′
i(0) for i = 1, · · · , n− 1. Let l(x, ξ) be a line in Gr1(Rn) passing

through x with direction ξ and ri(t)(ξ) for be the rotation about origin with the
direction from en towards ei for time t, then let vi(t) be the parallel transport from
ψ(l(x, ξ) along on ri(t)(ξ) on Sn−1

F , and then define curves γi(t) = ψ−1(vi(t)) for

i = 1, · · · , n− 1, thus we can define ei := γ
′
i(0). Then

{
ei, ej : i, j = 1, · · · , n− 1

}

is a basis for TlGr1(Rn).
Here we have four cases to discuss.
First of all, one can obtain the fact

GT (fΩ0 ∧ dr)(ei, ei) = ω0(ei, ei) (5.9)

by choosing a plane Πi with the tangent space of Gr1(Πi) spanned by ei and ei for
i = 1, · · · , n− 1.

On the other hand, in the double fibration (5.4), π2|π−1
1 (Lij), in which Lij is be the

lines in Gr1(Rn) obtained by translation along ei or ej for i, j = 1, · · · , n−1, is not

a submersion from π−1
1 (Lij) to Grn−1(Rn). Precisely, choose ẽi and ẽj in T(l,H)I,

l ⊂ H such that dπ1(ẽi) = ei and dπ1(ẽj) = ej , moreover, dπ2(ẽi) and dπ2(ẽi)

are linearly dependent in THGrn−1(Rn). Therefore π1∗π
∗
2(fΩ0 ∧ dr)l(ei, ej) =
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´

π−1
1 (l)

π∗
2(fΩ0 ∧ dr)(ei, ej) = 0 for i, j = 1, · · · , n− 1, and obviously ω0(ei, ej) = 0,

thus

GT (fΩ0 ∧ dr)(ei, ej) = ω0(ei, ej) = 0 (5.10)

for i, j = 1, · · · , n− 1.
For the case of ei and ej , i 6= j, i = 1, · · · , n − 1. Let L̄ij be the lines in

Gr1(Rn) obtained by translation along ei or rotation along ej . Again, π2|L̄ij in

(5.4) is not a submersion from π−1
1 (L̄ij) to Grn−1(Rn) either, and it also can be

explained precisely as the above case, therefore π1∗π
∗
2(fΩ0 ∧ dr)(ei, ej) = 0 for

i, j = 1, · · · , n− 1, and obviously ω0(ei, ej) = 0, thus

GT (fΩ0 ∧ dr)(ei, ej) = ω0(ei, ej) = 0 (5.11)

for i 6= j, i, j = 1, · · · , n− 1.
Similarly for the last case of ei and ej , i, j = 1, · · · , n− 1,

GT (fΩ0 ∧ dr)(ei, ej) = ω0(ei, ej) = 0. (5.12)

So we have GT (fΩ0 ∧ dr) = ω0 on Gr1(Rn). �

One can use the diagonal intersection map and Gelfand transform by following
[6] to construct Crofton measure for the k-th Holmes-Thompson volume.

Let Ωn−1 := fΩ0 ∧ dr and define a map

π : Grn−1(Rn)
k
\△k → Grn−k(Rn)

π((H1, · · · , Hk)) = H1 ∩ · · · ∩Hk,
(5.13)

where △k = {(H1, · · · , Hk) : dim(H1 ∩ · · · ∩Hk) > n− k} and then let Ωn−k :=
π∗Ωkn−1.

Now consider the following double fibration,

Gr1(Rn)
π1,k
← Ik

π2,k
→ Grn−k(Rn), (5.14)

where Ik =
{

(l, S) ∈ Gr1(Rn)×Grn−k(Rn) : l ⊂ S
}

. Then we have the following

proposition about the Gelfand transform on (5.14)

Proposition 5.4. GT (Ωn−k) = ωk0 for 1 ≤ k ≤ n− 1.

Proof. Let

H :=
{

(l, (H1, H2, · · · , Hk)) ∈ Gr1(Rn)×Grn−1(Rn)
k

: l ⊂ H1 ∩ · · · ∩Hk

}

(5.15)
and consider the following diagram

Gr1(Rn)
π1,k
← Ik

π2,k
→ Grn−k(Rn)

π̃
տ
1 ↑ π̃ ↑ π

H
π̃2→ Grn−1(Rn)

k
,

(5.16)

in which π̃ : H → Ik is defined by π̃((l, (H1, H2, · · · , Hk))) = (l, H1∩H2∩· · ·∩Hk)).
Note that

π1∗π
∗
2Ωn−1 = ω0, (5.17)

by Proposition 5.3.
For the lower part of the diagram (5.16),

Gr1(Rn)
π̃1← H

π̃2→ Gr1(Rn)
k
, (5.18)
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By manipulating the map π̃2 = π2 × · · · × π2
︸ ︷︷ ︸

k

, the product of k copies of the map

π2, applying Fubini theorem for (5.17) and using the fact that π̃1 × π̃2 : H →

Gr1(Rn)×Gr1(Rn)
k

is an immersion, one can infer π̃1∗π̃
∗
2Ωkn−1 = ωk0 .

Thus, by the commutativity of the diagram (5.16) we obtain π1,k∗π
∗
2,kΩn−k =

ωk0 . �

In order to study the k-th Holmes-Thompson volume, one can restrict on some

k + 1-dimensional flat subspace. So fix S ∈ Grk+1(Rn) and then define a map by
intersection

πS : Grn−k(Rn) \ △(S)→ Gr1(S)
πS(Hn−k) = Hn−k ∩ S

(5.19)

for Hn−k ∈ Grn−k(Rn) \ △(S), where

△(S) :=
{

Hn−k ∈ Grn−k(Rn) : dim(Hn−k ∩ S) > 0
}

. (5.20)

Then we have the following proposition

Proposition 5.5. (πS)∗Ωn−k = ωk0 |Gr1(S)
, for 1 ≤ k ≤ n− 1.

Proof. From Proposition 5.4, we know that π1,k∗π
∗
2,kΩn−k = ωk0 for the double

fibration Grn−k(Rn)
π2,k
← Ik

π1,k
→ Gr1(Rn).

Therefore, one can obtain by the definition of the intersection map (5.19)

(πS)∗Ωn−k = π1,k∗π
∗
2,kΩn−k|Gr1(S)

= ωk0 |Gr1(S)
. (5.21)

�

Finally, one can obtain the following theorem about Holmes-Thompson volumes.

Theorem 5.6. (Alvarez) Suppose N is a k-dimensional submanifold in (Rn, F ).
Then volk(N) = 1

2ǫk

´

P∈Grn−k(Rn)
#(N ∩ P )|Ωn−k| for 1 ≤ k ≤ n− 1.

Proof. By Proposition 4.3, the claim is true for hypersurface case.
It is sufficient to show the claim for the case when N ⊂ S for some S ∈

Grk+1(Rn). We obtain by Proposition 4.3 and Proposition 5.5,

volk(N) = 1
2ǫk

´

l∈Gr1(S)
#(N ∩ l)|ωk0 |

= 1
2ǫk

´

l∈Gr1(S)
#(N ∩ l)|(πS)∗Ωn−k|

= 1
2ǫk

´

P∈Grn−k(Rn)
#(N ∩ P )|Ωn−k|.

(5.22)

as desired. �

6. Length and Related

The classic Crofton formula is

Length(γ) =
1

4

ˆ ∞

0

ˆ 2π

0

#(γ ∩ l(r, θ))dθdr (6.1)

for any rectifiable curve in Euclidean plane, where θ is the angle of the normal of
the oriented line l to the x-axis and r is its distance to the origin. Let us denote
the affine 1-Grassmannians (lines) in R

2 by Gr1(R2) .
As for Minkowski plane, it is a normed two dimensional space with a norm

F (·) = || · || , in which the unit disk is convex and F has some smoothness.
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Two of the key tools used to obtain the Crofton formula for Minkowski plane
are the cosine transform and Gelfand transform. Let us explain them one by one
first and see their connection next. A fact from spherical harmonics about cosine
transform is there is some even function on S1 such that

F (·) =
1

4

ˆ

S1

|〈ξ, ·〉|g(ξ)dξ, (6.2)

if F is an even C4 function on S1. A good reference for this is [9]. As for Gelfand
transform, it is the transform of differential forms and densities on double fibrations,

for instance, R
2 π1← I

π2→ Gr1(R2), where I :=
{

(x, l) ∈ R
2 ×Gr1(R2) : x ∈ l

}

is

the incidence relations and π1 and π2 are projections. A formula one can take as
an example of the fundamental theorem of Gelfand transform is the following

ˆ

γ

π1∗π
∗
2 |Ω| =

ˆ

l∈Gr1(R2)

#(γ ∩ l)|Ω|, (6.3)

where Ω := g(θ)dθ ∧ dr. But we give a direct proof here.

Proof. First, consider the case of Ω = dθ∧dr. For any v ∈ Txγ, since there is some
v′ ∈ Tx′I, such that π1∗(v′) = v, then

(π1∗π
∗
2 |Ω|)x(v) = (

´

π−1
1 (x)

π∗
2 |Ω|)x(v)

=
´

x′∈π−1
1 (x)(π

∗
2 |Ω|)x′(v′)

=
´

S1(π∗
2 |dθ ∧ dr|)(v

′)
=
´

S1 |dr(π2∗(v′))|dθ
=
´

S1 |〈v, θ〉|dθ
= 4|v|.

(6.4)

So
´

γ
π1∗π

∗
2 |Ω| = 4Length(γ) =

´

l∈Gr1(R2)
#(γ ∩ l)|Ω| by the classic Crofton for-

mula.
When Ω = f(θ)dθ ∧ dr, we just need to replace dθ by g(θ)dθ in the equalities in

the first case. �

Moreover, from the above proof and (6.2), for any curve γ(t) : [a, b] → R
2

differentiable almost everywhere in the Minkowski space,

ˆ

γ

π1∗π
∗
2 |Ω| =

ˆ b

a

(π1∗π
∗
2 |Ω|)(γ

′(t))dt =

ˆ b

a

4F (γ′(t))dt = 4Length(γ), (6.5)

so then by (6.3) we know

Length(γ) =
1

4

ˆ

l∈Gr1(R2)

#(γ ∩ l)|g(θ)dθ ∧ dr| (6.6)

for Minkowski plane.
The Holmes-Thompson Area HT 2(U) of a measurable set U in a Minkowski

plane is defined as HT 2(U) := 1
π

´

D∗U
|ω0|

2, where ω0 is the natural symplectic

form on the cotangent bundle of R2 and D∗U :=
{

(x, ξ) ∈ T ∗
R

2 : F ∗(ξ) ≤ 1
}

. To
study it from the perspective of integral geometry, we need to introduce a symplectic

form ω on the space of affine lines Gr1(R2), that one can see [1].
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7. HT Area and Related

Now let’s see the Crofton formula for Minkowski plane, which is Length(γ) =
1
4

´

Gr1(R2)
#(γ ∩ l)|ω|. To prove this, it is sufficient to show that it holds for for any

straight line segment

L : [0, ||p2 − p2||]→ R
2, L(t) = p1 +

p2 − p1

||p2 − p1||
t, (7.1)

starting at p1 and ending at p2 in R
2. First, using the diffeomorphism between the

circle bundle and co-circle bundle, which is

ϕF : SR2 → S∗
R

2

ϕF (x, ξ) = (x, dFξ),
(7.2)

we can obtain a fact that
´

L×
{

p2−p1
||p2−p1||

} ϕ∗
Fα0 =

´

ϕF (L×
{

p2−p1
||p2−p1||

}
)
α0

=
´ ||p2−p1||

0 α0dF p2−p1
||p2−p1||

(( p2−p1

||p2−p1|| , 0))dt

=
´ ||p2−p1||

0 dF p2−p1
||p2−p1||

( p2−p1

||p2−p1|| )dt,

(7.3)

where α0 is the tautological one-form, precisely α0ξ(X) := ξ(π0∗X) for any X ∈
TξT

∗
R

2, and dα0 = ω0. Applying the the basic equality that dFξ(ξ) = 1, which is
derived from the positive homogeneity of F , for all ξ ∈ SR2, the above quantity

becomes
´ ||p2−p1||

0 1dt, which equals to ||p2 − p1||.

Let R :=
{
ξx ∈ S

∗
R

2 : x ∈ p1p2

}
and T =

{

l ∈ Gr1(R2) : l ∩ p1p2 6= Ø
}

, and p′

is the projection (composition) from S∗
R

2 to Gr1(R2).
Apply the above fact and p′∗ω = ω0,
´

T |ω| =
´

p′(R) |ω| =
´

R |p
′∗ω| =

´

R |ω0|

= |
´

R+ ω0|+ |
´

R− ω0|
= |

´

∂R+ α0|+ |
´

∂R− α0|
= 4||p2 − p1||.

(7.4)

Thus we have shown the Crofton formula for Minkowski plane.
Furthermore, combining with (6.6), we have

1

4

ˆ

l∈Gr1(R2)

#(γ ∩ l)|Ω| =
1

4

ˆ

Gr1(R2)

#(γ ∩ l)|ω|, (7.5)

where Ω = g(θ)dθ∧dr. Then, by the injectivity of cosine transform in [9], |Ω| = |ω|.
To obtain the HT area, one can define a map

π : Gr1(R2)×Gr1(R2) \ △̃ → R
2

π(l, l′) = l ∩ l′,
(7.6)

where △̃ := {(l, l′) : l ‖ l′ or l = l′}, extended from Alvarez’s construction of taking
intersections, [?]. The following theorem can be obtained.

Theorem 7.1. HT 2(U) = 1
2π

´

x∈R2 χ(x ∩ U)|π∗Ω2| for any bounded measurable
subset U of a Minkowski plane.

Proof. On one hand,

1

π

ˆ

D∗U

ω2
0 =

1

π

ˆ

∂D∗U

ω2
0 =

1

π

ˆ

S∗U

α0 ∧ ω0. (7.7)
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On the other hand, let TU :=
{

((l, l′) ∈ Gr1(R2)×Gr1(R2) : l ∩ l′ ∈ U
}

,

1

π

ˆ

x∈R2

χ(x ∩ U)π∗Ω2 =
1

π

ˆ

U

π∗ω
2 =

1

π

ˆ

TU

ω2. (7.8)

Let T
∗U := {(ξx, ξ

′
x) : ξx, ξ

′
x ∈ S

∗
xU}, then

(p′ × p′)−1(TU ) = T
∗U \ {(ξx, ξx) : ξx ∈ S

∗
xU} . (7.9)

Therefore
1
π

´

TU
ω2 = 1

π

´

T∗U\{(ξx,ξx):ξx∈S∗
xU} p

′∗ω2

= 1
π

´

T∗U\{(ξx,ξx):ξx∈S∗
xU}

ω2
0

= 2
π

´

{(ξx,ξx):ξx∈S∗
xU}

α0 ∧ ω0

= 2
π

´

S∗U α0 ∧ ω0.

(7.10)

So the claim follows from (7.7),(7.8) and (7.10). �

Acknowledgement. Thanks to J. Fu for some helpful discussions on this subject.
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