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Abstract. D. Krieger and J. Shallit have proved that every real numbeatgr
than 1 is a critical exponent of some sequeice [1]. We showthiswesult can be
derived from some general statements about sequences sitmsErjuences have
(almost) maximal Kolmogorov complexity. In this way one algo construct a
sequence that has no “approximate” fractional powers witloeent that exceeds
a given value.

1 Kolmogorov complexity of subsequences

Let w = wp ... be an infinite binary sequence. For any finiteAet N let w(A) be a
binary string of length Aformed by with i € A (in the same order as ). We want
to construct a sequenoesuch that stringso(A) have high Kolmogorov complexity for
all simpleA. (Seel[3] for the definition and properties of Kolmogorov qexity. We
use prefix complexity and denote it I§; but plain complexity can also be used with
minimal changes.)

Theorem 1. Lety be a positive real number less thanThen there exists a sequence
w and an integer N such that for any finite set A of cardinalitjeatst N the inequality

K(A w(A)lt) > y-#A
holds for some € A.

HereK (A, w(A)|t) is conditional Kolmogorov complexity of a paiA, w(A)) rela-
tive tot.

Proof. This result is a consequence of Lovasz local lemma (see[4].tpr a proof):

Lemma. Assume that a finite sequence of evehis . ., A, is given, for eacli some
subseiN(i) C {1,...,n} of “neighbors” is fixed, positive reals, ..., & are chosen in
such a way that
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PiAl<e [] (1-g)
JEN(i), j#i

and for everyi the event is independent of the family of al\j with j ¢ N(i), j #1.
Then the probability of the event “n@{; and notA; and... and no#,” is at least
(1—&)-...-(L—&n).

The standard compactness argument shows that it is enaurggo(heN; the choice
of N will be explained later) to construct an arbitrarily longifinsequencev that sat-
isfies the statement of Theoré&mn 1. Let us fix the desired leofgthis (long) sequence.
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For any sefA (whose elements do not exceed this length) and any sfrofdength|A|
such thatK (A, Z]t) < y-#A for everyt € A consider the every(A) = Z; the setA is
callled thesupportof this event. We have to prove that the complements of thesgte
have non-empty intersection.

This is done by using Lovasz lemma. Let us choose sBrbetweeny and 1. Let
& be 27PS wheres is the size of support dith event. For each evend(A) = Z the
neighbor events are evertgA’) = Z' such that the supporfsandA’ have nonempty
intersection. Let us check the assumptions of Lovasz lemma.

First, an eventy is independent of any family of events whose supports do not
intersect the support ;.

Second, letv(A) = Z be an event and letbe the cardinality oA. The probability
of this event is 2". We have to check that 2 does not exceed 2" multiplied by the
product of(1—2-P™) factors for all neighbor events (whereis the size of the support
of the corresponding events).

This product can be split into parts according to possibtersection points. (If
there are several intersection points, let us select andnfixad them.) Then for any
t € Aand for anymthere is at most'?" factors that belong to thiepart and have size
m, since there exist at most®objects that have complexity less tham (relative tot).
Then we take a product over aland multiply the results for all(there aren of them).
The condition of Lovasz lemma (that we need to check) getfottme

27[1 < 27[3[1 rL(l_ Zfﬁm)Zan

m>

or (after we remove the common exponent

2Pl |'L<1—2*B”‘>2”“

m>

Bernoulliinequality guarantees that this is true if

B-1gq ¥ 2ymp-Bm

m>

Since the left hand side is less than 1 and the geometricssarieverges, this inequality
is true for a suitabl®&\. (Let us repeat how the proof goes: we start vth (y, 1), then
we chooseN using the convergence of the series, then for any finite nuwfbevents
we apply Lovasz lemma, and then we use compactness.)

(End of proof)

The inequality established in this theorem has an usefolleoy:

K(@(At) > y-#A— K(Alt) — O(1),

sinceK (A, w(A)|t) < K(Alt) + K(w(A)|t) + O(1). For example, iAis an interval, then
K(AJt) is o(#A), so this term (as well as an additive const@t)) can be absorbed by
a small change i and we obtain the following corollary (“Levin’s lemma”, sf&} for

a discussion and further references): for any 1 there exists a sequenaesuch that
all its substrings of sufficiently large lengtthave complexity at leagin.



2 Critical exponents

LetX be a string over some alphabet, andéfe its prefix. Then the string=X... XY

is called dractional powerof X and the ratidZ|/|X| is itsexponentA critical exponent

of an infinite sequnce is the least upper bound of all exponents of fractional pewer
that are substrings a@b. D. Krieger and J. Shallit [1] have proved the following riksu

Theorem 2. For any reala > 1 there exists an infinite sequence that has critical expo-
nenta.

Informally speaking, when constructing such a sequenceneeel to achieve two
goals. First, we have to guarantee (for rational numbbdess thana but arbitrarily
close toa) that our sequence containgpowers; second, we have to guarantee that it
does not contaimg-powers forq > o. Each goal is easy to achieve when considered
separately. For the first one, we can just insert sorpewer for every rational < a.

For the second goal we can use the sequence with complexisgbssince every-
power has complexity about/§ of its length (the number of free bits in it), Levin’s
sequence does not contain lospgowers ifq > 1/y.

The real problem is to combine these two goals: after we fixdpetition pattern
needed to ensure the first requirement (i.e., after decidehwidits in a sequence should
coincide) we need to choose the values of the “free” bits chsaway that no other
(significant) repetitions arise. For that, let us first preeene general statement about
Kolmogorov complexity of subsequences in the case when siisare repeated.

3 Complexity for sequences with repetitions

Let ~ be an equivalence relation dh We assume that all equivalence classes are finite
and the relation itself is computable; moreover, we assumaefor a givenx one can
effectively list thex's equivalence class. This relation is used as a repetititiem: we
consider only sequencesthat follows~, i.e., only sequences such thatg = wj if

i ~ j. For any seA C N we consider theumber of free bits in A.e., the number of
equivalence classes that have a non-empty intersectibnAyit is denoted #A in the
sequel.

There are countably many equivalence classes. Let us asatgral numbers to
them (say, in the increasing order of minimal elements) and(l) be the number of
equivalence class that containsThen every sequenae that follows the repetition
pattern~ has the forntw = 7¢;) for some functiorc: N — N.

Now we assume that the equivalence relatiofas explained above) and a constant
y < 1 are fixed.

Theorem 3. There exists a sequencethat follows the pattern~ and an integer N
with the following properties: for every finite set A withA > N there exists € A such
that

K(w(A)|t) > y-#:A— K(A]t) —logm(t)

where nit) is the “multiplicity” of t, i.e., the number of bits in its egualence class.



(Note that if all equivalence classes are singletons, them(t) disappears, #A is
the cardinality ofA and we get an already mentioned corollary.)

Proof. Let w = 1¢(j) Wherer is a sequence that satisfies the statement of Theidrem 1
(with the samey). For anyA let B be the set of alt(i) for i € A. Then B = #;A.
Theoren{]l guarantees th&{B, 7(B)|u) > y-#B for someu € B. Sinceu € B, there
exists someé € Asuch that(t) = u. To specifyt whenuis known, we need log(t) bits,
soK(t|u) < logm(t) +O(1). Aftert is known, we neet (Alt) additional bits to specify
AandK(w(A)|t) bits to specifyw(A). KnowingA andw(A), we then reconstru& and
7(B). Therefore,

y-#B < K(B,T(B)|u) < logm(t) + K(Alt) + K(w(A)|t) + O(1),

which implies the desired inequality (with additional te@fil), which can be compen-
sated by a small change .

4 Construction

Assume that k a < B. First, let us show that Theordmh 3 implies the existence of a
binary sequence that contains fractional powers of all rational exponeess ithar,
but does not contain long fractional powers of exponentatgreharns.

To construct such a sequence,tgtr,, ... be all rational numbers between 1 and
a. For eachrj = pj/q; we “implant” a fractional power of exponentin the sequence:
we select some interval of lengfh and decide that this interval should be a fractional
power of some string of lengtty (and exponent;). This means that we declare two
indices in this interval equivalent if they differ by a mplé of gi. (The intervals for
differenti are disjoint.) We call these intervaistive intervalsWe assume that distance
between two active intervals is much bigger than the lengtiisese two intervals (see
below why this is useful).

Xi h X5 h

| m|Xi| | | 2| Xa| |

Fig. 1. Two fractional powers of exponent andr;, are implantedy; is a prefix ofX;
(in this example the exponents are less than 2, so only oheeftibd is shown).

Evidently, any sequence that follows this repetition patteas critical exponent at
leasta.

Let us choose somgbetweena /3 and 1 and apply Theorem 3 with thisto the
pattern explained above. We get a bit sequence; let us pnavé tloes not contailong
fractional powers of exponent greater th@nindeed, it is easy to see that density of
free bits in this pattern is at leastdl pha, i.e., for any intervah of lengthl the number
of free bits in it,a¢A, is at least /a. Indeed, ifA intersects with two or more active



intervals, then all bits between them are free, and thertisthetween the intervals is
large compared to interval sizes. Then we may assumeitiéersects with only one
active interval. All subintervals of the active intervaMeathe same repetitions period,
and the density of free bits is minimal whéns maximal, i.e., coincides with the entire
active interval. The bits outside the active interval aeef(no equivalences), so they
can only increase the fraction of free bits.

On the other hand, a fractional power of expon@rand length has complexity
I/B+ O(logl) (we specify the length of the string ahd3 bits that form the period).
For long enough strings we then get a contradiction with taeement of Theoreifn 3
sincea /B < y.

To get rid of short fractional powers of exponent greatentBawe can add ad-
ditional layer of symbols that prevents them. In other terammsider a sequence in a
finite alphabet that follows (almost) the same repetitiotigua but has no other repe-
titions (not prescribed by the pattern) on short distankés.easy to construct such a
sequence; for example, we may assume thé& a multiple ofi! and then consider a
periodic sequence with any large peridd it will destroy all periods that are not mul-
tiple of M, i.e., all short periods and only finitely many@f(the latter does not change
the critical exponent). The Cartesian product of these ®euencesith letter is a pair
formed byith letters of both sequences) has critical exponent betwesmd 3.

In fact, we even get a stronger result:

Theorem 4. For anya and 3 such thatl < a < 3 there exist a sequence that has
fractional powers of exponent r for all« o but does not have approximate fractional
powers of exponeift or more: there exists songe> 0 such that any substring of length
n is en-far from any fractional power in terms of Hamming distawe need to change
at leasten symbols of the sequence to get a fractional power of length n

Indeed, a change @ffraction bits in a sequence of lengtlincreases its complexity
at most byH (¢)n+ O(logn) where

H(e) = —€eloge — (1—¢)log(1—¢).

Therefore, we need to change a constant fraction of bitsrtgpemsate for the difference
in complexities (between the lower bound guaranteed by fEm@ and the upper
bound due to approximate periodicity). (End of proof.)

5 Critical exponent: exact bound

The same construction (with some refinement) can be used tosgguence with given
critical exponent.

Theorem 5. (Krieger — Shalli) For any real numben > 1 there exists a sequence that
has critical exponendr.

(This proof follows the suggestions of D. Krieger who infadthe author about the
problem and suggested to apply Theotém 1 to it. See [1] footiggnal proof. Author



thanks D. Krieger for the explanations and both authors|dbjithe permission to cite
their paper.)

Again, let us consider repetition pattern that guarantéesxponents less thaa
and apply Theoreii] 3 with someclose to 1. This (as we have seen) prevents powers
with exponents greater that/y; the problem is how to get rid of intermediate expo-
nents.

To do this, we should distinguish between two possibiliti@$ an unwanted power
is an extension of the prescribed one (has the same peribdribapectedly has more
repetitions) and (b) an unwanted power is not an extensibe fifst type of unwanted
powers can be prevented by adding brackets around eacle ativrval (in a special
layer: we take a Cartesian product of the sequence and &g la

It remains to explain why unwanted repetitions of the sedgpd do not exist (foy
close enough to 1). Consider any fractional power with egpogreater thao. There
are two possibilities:

(1) It intersect at least two active intervals. Then it camaall free bits between
these intervals, and (since we assume that the distanclesgeeompared to the length
of intervals) the density of free bits is close to 1, so expaigeeater thamr is impossi-
ble.

(2) It intersects only one active interval. The same argur(edout density of free
bits) shows that if the endpoints of this fractional powevidt significantly from the
endpoints of the active interval, then the density of fres 8 significantly greater
than I/a and we again get a contradiction. Therefore, takingose to 1 we may
guarantee that the distance between endpoints of fratfiomger and active interval is
a small fraction of the length of the active interval. Thengettwo different periods
in the intersection of fractional power and active inter@he (“old”) is inherited from
the repetition pattern; the second one (“new”) is due to #w that we consider a
fractional power. (The periods are different, otherwise ave in the case (1).) The
period lengths are close to each other. Indeed, if the neiwgér significantly longer,
then the exponent is less than if the new period is significantly shorter, then the
complexity bound decreases and we again get a contradiction

Now note that two periods andt; in a string guarantee the perigd-t, near the
endpoints of this string (at the distance equal to the difiee between string length
and minimal of these periods). Therefore we get a periodishtesmall fraction of the
string length at an interval whose length is a non-negléajtzction of the string length.
This again significantly decreases the complexity of thegtand this contradicts the
lower bound of the complexity. (End of the proof.)

Remark. This proof uses some parameters that have to berchosgerly. For a
givena we choosey that is close enough to 1 and makes the arguments about “suffi-
ciently small” and “significantly different” things in thes$t paragraph valid for long
strings. Then we choose the repetition patterns wherehesfgictive intervals are mul-
tiples of factorials and the distances between them growhrfaster than the lengths of
active intervals. Then we apply TheorEm 3 for this patteimalfy, we look at the length
N provided by this theorem and prevent all shorter periodsrbgdditional layer. An-
other layes is used for brackets. These layers destroy anifgl§i many of prescribed
patterns and unwanted short periods.
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