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Kolmogorov complexity, Lovasz local lemma and critical
exponents

A. Rumyantsev

Moscow State University, Russia, Mathematics Department,Logic and algorithms theory
division

Abstract. D. Krieger and J. Shallit have proved that every real number greater
than 1 is a critical exponent of some sequence [1]. We show howthis result can be
derived from some general statements about sequences whosesubsequences have
(almost) maximal Kolmogorov complexity. In this way one canalso construct a
sequence that has no “approximate” fractional powers with exponent that exceeds
a given value.

1 Kolmogorov complexity of subsequences

Let ω = ω0ω1 . . . be an infinite binary sequence. For any finite setA⊂ N let ω(A) be a
binary string of length #A formed byωi with i ∈ A (in the same order as inω). We want
to construct a sequenceω such that stringsω(A) have high Kolmogorov complexity for
all simpleA. (See [3] for the definition and properties of Kolmogorov complexity. We
use prefix complexity and denote it byK, but plain complexity can also be used with
minimal changes.)

Theorem 1. Let γ be a positive real number less than1. Then there exists a sequence
ω and an integer N such that for any finite set A of cardinality atleast N the inequality

K(A,ω(A)|t)> γ ·#A

holds for some t∈ A.

HereK(A,ω(A)|t) is conditional Kolmogorov complexity of a pair(A,ω(A)) rela-
tive to t.

Proof. This result is a consequence of Lovasz local lemma (see, e.g., [4] for a proof):
Lemma. Assume that a finite sequence of eventsA1, . . . ,An is given, for eachi some

subsetN(i) ⊂ {1, . . . ,n} of “neighbors” is fixed, positive realsε1, . . . ,εn are chosen in
such a way that

Pr[Ai ]6 εi ∏
j∈N(i), j 6=i

(1− ε j)

and for everyi the eventAi is independent of the family of allA j with j /∈ N(i), j 6= i.
Then the probability of the event “notA1 and notA2 and. . . and notAn” is at least
(1− ε1) · . . . · (1− εn).

The standard compactness argument shows that it is enough (for someN; the choice
of N will be explained later) to construct an arbitrarily long finite sequenceω that sat-
isfies the statement of Theorem 1. Let us fix the desired lengthof this (long) sequence.
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For any setA (whose elements do not exceed this length) and any stringZ of length|A|
such thatK(A,Z|t) < γ ·#A for everyt ∈ A consider the eventω(A) = Z; the setA is
callled thesupportof this event. We have to prove that the complements of these events
have non-empty intersection.

This is done by using Lovasz lemma. Let us choose someβ betweenγ and 1. Let
εi be 2−β s wheres is the size of support ofith event. For each eventω(A) = Z the
neighbor events are eventsω(A′) = Z′ such that the supportsA andA′ have nonempty
intersection. Let us check the assumptions of Lovasz lemma.

First, an eventAi is independent of any family of events whose supports do not
intersect the support ofAi .

Second, letω(A) = Z be an event and letn be the cardinality ofA. The probability
of this event is 2−n. We have to check that 2−n does not exceed 2−β n multiplied by the
product of(1−2−β m) factors for all neighbor events (wherem is the size of the support
of the corresponding events).

This product can be split into parts according to possible intersection points. (If
there are several intersection points, let us select and fix one of them.) Then for any
t ∈ A and for anym there is at most 2γm factors that belong to thet-part and have size
m, since there exist at most 2γm objects that have complexity less thanγm (relative tot).
Then we take a product over allmand multiply the results for allt (there aren of them).
The condition of Lovasz lemma (that we need to check) gets theform

2−n
6 2−β n ∏

m>N
(1−2−β m)2γmn

or (after we remove the common exponentn)

2β−1
6 ∏

m>N
(1−2−β m)2γm

Bernoulli inequality guarantees that this is true if

2β−1
6 1− ∑

m>N
2γm2−β m

Since the left hand side is less than 1 and the geometric series converges, this inequality
is true for a suitableN. (Let us repeat how the proof goes: we start withβ ∈ (γ,1), then
we chooseN using the convergence of the series, then for any finite number of events
we apply Lovasz lemma, and then we use compactness.)

(End of proof)
The inequality established in this theorem has an useful corollary:

K(ω(A)|t)> γ ·#A−K(A|t)−O(1),

sinceK(A,ω(A)|t)6 K(A|t)+K(ω(A)|t)+O(1). For example, ifA is an interval, then
K(A|t) is o(#A), so this term (as well as an additive constantO(1)) can be absorbed by
a small change inγ and we obtain the following corollary (“Levin’s lemma”, see[2] for
a discussion and further references): for anyγ < 1 there exists a sequenceω such that
all its substrings of sufficiently large lengthn have complexity at leastγn.
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2 Critical exponents

LetX be a string over some alphabet, and letY be its prefix. Then the stringZ=X . . .XY
is called afractional powerof X and the ratio|Z|/|X| is itsexponent. A critical exponent
of an infinite sequnceω is the least upper bound of all exponents of fractional powers
that are substrings ofω . D. Krieger and J. Shallit [1] have proved the following result:

Theorem 2. For any realα > 1 there exists an infinite sequence that has critical expo-
nentα.

Informally speaking, when constructing such a sequence, weneed to achieve two
goals. First, we have to guarantee (for rational numbersr less thanα but arbitrarily
close toα) that our sequence containsr-powers; second, we have to guarantee that it
does not containq-powers forq > α. Each goal is easy to achieve when considered
separately. For the first one, we can just insert somer-power for every rationalr < α.
For the second goal we can use the sequence with complex substrings: since everyq-
power has complexity about 1/q of its length (the number of free bits in it), Levin’s
sequence does not contain longq-powers ifq> 1/γ.

The real problem is to combine these two goals: after we fix therepetition pattern
needed to ensure the first requirement (i.e., after decide which bits in a sequence should
coincide) we need to choose the values of the “free” bits in such a way that no other
(significant) repetitions arise. For that, let us first provesome general statement about
Kolmogorov complexity of subsequences in the case when somebits are repeated.

3 Complexity for sequences with repetitions

Let∼ be an equivalence relation onN. We assume that all equivalence classes are finite
and the relation itself is computable; moreover, we assume that for a givenx one can
effectively list thex’s equivalence class. This relation is used as a repetition pattern: we
consider only sequencesω that follows∼, i.e., only sequencesω such thatωi = ω j if
i ∼ j. For any setA⊂ N we consider thenumber of free bits in A, i.e., the number of
equivalence classes that have a non-empty intersection with A; it is denoted #f A in the
sequel.

There are countably many equivalence classes. Let us assignnatural numbers to
them (say, in the increasing order of minimal elements) and let c(i) be the number of
equivalence class that containsi. Then every sequenceω that follows the repetition
pattern∼ has the formωi = τc(i) for some functionc: N→N.

Now we assume that the equivalence relation∼ (as explained above) and a constant
γ < 1 are fixed.

Theorem 3. There exists a sequenceω that follows the pattern∼ and an integer N
with the following properties: for every finite set A with#f A> N there exists t∈ A such
that

K(ω(A)|t)> γ ·#f A−K(A|t)− logm(t)

where m(t) is the “multiplicity” of t, i.e., the number of bits in its equivalence class.
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(Note that if all equivalence classes are singletons, then logm(t) disappears, #f A is
the cardinality ofA and we get an already mentioned corollary.)

Proof. Letωi = τc(i) whereτ is a sequence that satisfies the statement of Theorem 1
(with the sameγ). For anyA let B be the set of allc(i) for i ∈ A. Then #B = #f A.
Theorem 1 guarantees thatK(B,τ(B)|u) > γ · #B for someu ∈ B. Sinceu ∈ B, there
exists somet ∈A such thatc(t)= u. To specifyt whenu is known, we need logm(t) bits,
soK(t|u)6 logm(t)+O(1). After t is known, we needK(A|t) additional bits to specify
A andK(ω(A)|t) bits to specifyω(A). KnowingA andω(A), we then reconstructB and
τ(B). Therefore,

γ ·#B6 K(B,τ(B)|u)6 logm(t)+K(A|t)+K(ω(A)|t)+O(1),

which implies the desired inequality (with additional termO(1), which can be compen-
sated by a small change inγ).

4 Construction

Assume that 1< α < β . First, let us show that Theorem 3 implies the existence of a
binary sequenceω that contains fractional powers of all rational exponents less thanα,
but does not contain long fractional powers of exponents greater thanβ .

To construct such a sequence, letr1, r2, . . . be all rational numbers between 1 and
α. For eachr i = pi/qi we “implant” a fractional power of exponentr i in the sequence:
we select some interval of lengthpi and decide that this interval should be a fractional
power of some string of lengthqi (and exponentr i). This means that we declare two
indices in this interval equivalent if they differ by a multiple of qi. (The intervals for
differenti are disjoint.) We call these intervalsactive intervals. We assume that distance
between two active intervals is much bigger than the lengthsof these two intervals (see
below why this is useful).X1 Y1 X2 Y2r1|X1| r2|X2|
Fig. 1. Two fractional powers of exponentr1 andr2 are implanted;Yi is a prefix ofXi

(in this example the exponents are less than 2, so only one full period is shown).

Evidently, any sequence that follows this repetition pattern has critical exponent at
leastα.

Let us choose someγ betweenα/β and 1 and apply Theorem 3 with thisγ to the
pattern explained above. We get a bit sequence; let us prove that it does not containlong
fractional powers of exponent greater thanβ . Indeed, it is easy to see that density of
free bits in this pattern is at least 1/alpha, i.e., for any intervalA of lengthl the number
of free bits in it,α f A, is at leastl/α. Indeed, ifA intersects with two or more active
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intervals, then all bits between them are free, and the distance between the intervals is
large compared to interval sizes. Then we may assume thatA intersects with only one
active interval. All subintervals of the active interval have the same repetitions period,
and the density of free bits is minimal whenA is maximal, i.e., coincides with the entire
active interval. The bits outside the active interval are free (no equivalences), so they
can only increase the fraction of free bits.

On the other hand, a fractional power of exponentβ and lengthl has complexity
l/β +O(logl) (we specify the length of the string andl/β bits that form the period).
For long enough strings we then get a contradiction with the statement of Theorem 3
sinceα/β < γ.

To get rid of short fractional powers of exponent greater than β we can add ad-
ditional layer of symbols that prevents them. In other terms, consider a sequence in a
finite alphabet that follows (almost) the same repetition pattern but has no other repe-
titions (not prescribed by the pattern) on short distances.It is easy to construct such a
sequence; for example, we may assume thatqi is a multiple ofi! and then consider a
periodic sequence with any large periodM; it will destroy all periods that are not mul-
tiple of M, i.e., all short periods and only finitely many ofqi (the latter does not change
the critical exponent). The Cartesian product of these two sequences (ith letter is a pair
formed byith letters of both sequences) has critical exponent betweenα andβ .

In fact, we even get a stronger result:

Theorem 4. For anyα andβ such that1< α < β there exist a sequenceω that has
fractional powers of exponent r for all r< α but does not have approximate fractional
powers of exponentβ or more: there exists someε > 0 such that any substring of length
n isεn-far from any fractional power in terms of Hamming distance(we need to change
at leastεn symbols of the sequence to get a fractional power of length n).

Indeed, a change ofε-fraction bits in a sequence of lengthn increases its complexity
at most byH(ε)n+O(logn) where

H(ε) =−ε logε − (1− ε) log(1− ε).

Therefore, we need to change a constant fraction of bits to compensate for the difference
in complexities (between the lower bound guaranteed by Theorem 3 and the upper
bound due to approximate periodicity). (End of proof.)

5 Critical exponent: exact bound

The same construction (with some refinement) can be used to get a sequence with given
critical exponent.

Theorem 5. (Krieger – Shallit) For any real numberα > 1 there exists a sequence that
has critical exponentα.

(This proof follows the suggestions of D. Krieger who informed the author about the
problem and suggested to apply Theorem 1 to it. See [1] for theoriginal proof. Author
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thanks D. Krieger for the explanations and both authors of [1] for the permission to cite
their paper.)

Again, let us consider repetition pattern that guarantees all exponents less thanα
and apply Theorem 3 with someγ close to 1. This (as we have seen) prevents powers
with exponents greater thatα/γ; the problem is how to get rid of intermediate expo-
nents.

To do this, we should distinguish between two possibilities: (a) an unwanted power
is an extension of the prescribed one (has the same period that unexpectedly has more
repetitions) and (b) an unwanted power is not an extension. The first type of unwanted
powers can be prevented by adding brackets around each active interval (in a special
layer: we take a Cartesian product of the sequence and this layer).

It remains to explain why unwanted repetitions of the secondtype do not exist (forγ
close enough to 1). Consider any fractional power with exponent greater thanα. There
are two possibilities:

(1) It intersect at least two active intervals. Then it contains all free bits between
these intervals, and (since we assume that the distances arelarge compared to the length
of intervals) the density of free bits is close to 1, so exponent greater thanα is impossi-
ble.

(2) It intersects only one active interval. The same argument (about density of free
bits) shows that if the endpoints of this fractional power deviate significantly from the
endpoints of the active interval, then the density of free bits is significantly greater
than 1/α and we again get a contradiction. Therefore, takingγ close to 1 we may
guarantee that the distance between endpoints of fractional power and active interval is
a small fraction of the length of the active interval. Then weget two different periods
in the intersection of fractional power and active interval. One (“old”) is inherited from
the repetition pattern; the second one (“new”) is due to the fact that we consider a
fractional power. (The periods are different, otherwise weare in the case (1).) The
period lengths are close to each other. Indeed, if the new period is significantly longer,
then the exponent is less thanα; if the new period is significantly shorter, then the
complexity bound decreases and we again get a contradiction.

Now note that two periodst1 andt2 in a string guarantee the periodt1− t2 near the
endpoints of this string (at the distance equal to the difference between string length
and minimal of these periods). Therefore we get a period thatis a small fraction of the
string length at an interval whose length is a non-negligible fraction of the string length.
This again significantly decreases the complexity of the string, and this contradicts the
lower bound of the complexity. (End of the proof.)

Remark. This proof uses some parameters that have to be chosen properly. For a
givenα we chooseγ that is close enough to 1 and makes the arguments about “suffi-
ciently small” and “significantly different” things in the last paragraph valid for long
strings. Then we choose the repetition patterns where length of active intervals are mul-
tiples of factorials and the distances between them grow much faster than the lengths of
active intervals. Then we apply Theorem 3 for this pattern. Finally, we look at the length
N provided by this theorem and prevent all shorter periods by an additional layer. An-
other layes is used for brackets. These layers destroy only finitely many of prescribed
patterns and unwanted short periods.
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