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PROPERTIES OF THE LIMIT SHAPE FOR SOME LAST PASSAGE

GROWTH MODELS IN RANDOM ENVIRONMENTS

HAO LIN AND TIMO SEPPÄLÄINEN

Abstract. We study directed last passage percolation on the first quadrant of the planar
square lattice whose weights have general distributions, or equivalently, · /G/1 queues in se-
ries. The service time distributions of the servers vary randomly which constitutes a random
environment for the model. Equivalently, each row of the last passage model has its own
randomly chosen weight distribution. We investigate the limiting time constant close to the
boundary of the quadrant. Close to the y-axis, where the number of random distributions
averaged over stays large, the limiting time constant takes the same universal form as in the
homogeneous model. But close to the x-axis we see the effect of the tail of the distribution of
the random means attached to the rows.

1. Introduction

We study the limit shapes of some last passage growth models in random environments,
specifically the standard corner growth model, and then two Bernoulli models with different
rules for admissible paths. We begin by describing the question we ask about the corner growth
model.

In queueing terms we look at the following situation. We have service stations labeled
0, 1, 2, . . . , ℓ in series, each with unbounded waiting room and first-in first-out (FIFO) service
discipline. Initially customers 0, 1, 2, . . . , k are queued up at server 0. At time t = 0 customer
0 begins service with server 0. Customers move through the system of servers in order, joining
server j + 1 as soon as service with server j is complete. FIFO discipline means that server j
completes the service of customer i before turning to serve customer i+1. After the departure of
customer i, server j starts serving customer i+1 as soon as customer i+1 has arrived from the
previous station. Consequently the customers stay ordered throughout the process. Let X(i, j)
be the service time that customer i needs at station j, and T (k, ℓ) the time when customer k
completes service with server ℓ.

Asymptotics for T (k, ℓ) as k and ℓ get large have been investigated a great deal under various
hypotheses in the past two decades. As one of the seminal papers from the queueing perspective
let us mention Glynn-Whitt [6] that studied the case of i.i.d. {X(i, j)} and inspired much later
work. This area is closely related to directed last-passage percolation because a quick inductive
argument shows that T (k, ℓ) = maxπ

∑
(i,j)∈π X(i, j) where the maximum is taken over non-

decreasing nearest-neighbor lattice paths π from (0, 0) to (k, ℓ). That is, an admissible path
π ⊆ Z

2
+ is of the form π = {(0, 0) = (x0, y0), (x1, y1), , . . . , (xk+ℓ, yk+ℓ) = (k, ℓ)} where (xi, yi)−
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T. Seppäläinen was partially supported by National Science Foundation grants DMS-0701091 and DMS-1003651,
and by the Wisconsin Alumni Research Foundation.

1

http://arxiv.org/abs/1009.4967v1


2 HAO LIN AND TIMO SEPPÄLÄINEN

(xi−1, yi−1) = (1, 0) or (0, 1). See Prop. 2.1 in [6] where also earlier references to this observation
are given. This particular last passage model is also known as the corner growth model.

We consider this queueing model in a random environment. The environment is a sequence
{Fj : j ∈ Z+} of probability distributions, generated by a probability measure-valued ergodic
or i.i.d. process with distribution P. Given the sequence {Fj}, the variables {X(i, j)} are inde-
pendent and X(i, j) has distribution Fj . In other words, the service times {X(i, j) : i ∈ Z+}
at service station j are i.i.d. with common distribution Fj , and at the outset the distributions
{Fj : j ∈ Z+} themselves are chosen randomly according to some given law P. Of course our
choice to attach the random distributions to the servers is arbitrary. We could just as well
have stipulated that the service times of customer i are i.i.d. with common randomly chosen
distribution Gi. This just amounts to transposing our last-passage model.

The asymptotic regime we consider for T (k, ℓ) is the “hydrodynamic” one where k and ℓ
are both of order n and n is taken to ∞. Under some moment assumptions standard subaddi-
tive considerations and approximations imply the existence of the deterministic limit Ψ(x, y) =
limn→∞ n−1T (⌊nx⌋, ⌊ny⌋) for all (x, y) ∈ R

2
+. Only in the case where the distributions Fj are

exponential or geometric has it been possible to describe explicitly the limit Ψ. This is the case
of · /M/1 queues in series, which in terms of interacting particle systems is the same as studying
either the totally asymmetric simple exclusion process or the zero-range process with constant
jump rate. For rate 1 i.i.d. exponential {X(i, j)} the limit Ψ(x, y) = (

√
x+

√
y )2 was first derived

by Rost [17] in a seminal paper on hydrodynamic limits of asymmetric exclusion processes. The
random environment model with exponential Fj ’s was studied in [1, 12, 20].

Let us set aside the queueing motivation and consider only the last-passage model on the
first quadrant Z

2
+ of the planar integer lattice, defined by the nondecreasing lattice paths and

the random weights {X(i, j)}. For the queueing application it is natural to assume the weights
nonnegative, but in the general last-passage situation there is no reason to restrict ourselves to
nonnegative weights.

The ideal limit shape result would have some degree of universality, that is, apply to a broader
class of distributions. Such results have been obtained only close to the boundary: in [14] Martin
showed that in the i.i.d. case, under suitable moment hypotheses and as α ց 0,

(1.1) Ψ(1, α) = µ+ 2σ
√
α+ o(

√
α),

where µ and σ2 are the common mean and variance of the weights X(i, j). In the i.i.d. case Ψ
is symmetric so the same holds for Ψ(α, 1).

Our goal is to find the form Martin’s result takes in the random environment setting. Ψ
is no longer necessarily symmetric since the distribution of the array {X(i, j)} is not invariant
under transposition: {X(i, j) : j ∈ Z+} is an i.i.d. sequence but {X(i, j) : i ∈ Z+} is i.i.d. only
conditionally. So we must ask the question separately for Ψ(1, α) and Ψ(α, 1).

It turns out that for Ψ(α, 1), where the number of rows stays large relative to the number
of columns, the fluctuations of the environment average out to the degree that our result in
Theorem 2.2 below is essentially identical to Martin’s result in the homogeneous environment.
The only difference is that the variance is replaced by the expectation of the conditional variance:
as α ց 0, Ψ(α, 1) = µ+2σ

√
α+o(

√
α), where now µ is the mean as before but σ2 is the average

of the “quenched” variance. That is, if we let µ0 =
∫
x dF0(x) and σ2

0 =
∫
(x−µ0)

2 dF0(x) denote
the mean and variance of the random distribution F0, and E expectation under P, then µ = E(µ0)
and σ2 = E(σ2

0). Also, the o(
√
α) term in the statement means that limαց0 α

−1/2
[
Ψ(α, 1)−µ−

2σ
√
α
]
= 0.

The case Ψ(1, α) does not possess a clean result such as the one above. Even though we are
studying the deterministic limit obtained after n has been taken to infinity, we see an effect
from the tail of the distribution of the quenched mean µ0. We illustrate this with the case of
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exponential {Fj}. Now the number nα of distributions Fj is small compared to the number n of
weights X(i, j) in each row, hence the fluctuations among the Fj ’s become prominent. The effect
comes in two forms: first, the leading term is no longer the averaged mean µ but the maximal
mean. Second, if large values among the row means µj are rare, the order of the α-dependent
correction is smaller than the

√
α seen above and this order of magnitude depends on the tail

of the distribution of µ0. As an exponent characterizing this tail changes, we can see a phase
transition of sorts in the power of α, with a logarithmic correction at the transition point.

For general distributions we derive bounds on Ψ(1, α) that indicate that in the case of finitely
many distributions the correction is of order

√
α.

As auxiliary results we need bounds on the limits for last-passage models with Bernoulli
weights under a random environment. This turns our attention to the Bernoulli models. However,
with Bernoulli weights the standard corner growth model is not one of the explicitly solvable
cases. The model with Bernoulli weights does become solvable when the path geometry is
altered suitably. The model we take up is the one where the paths are weakly increasing in
one coordinate but strictly in the other. There are two cases, depending on which coordinate is
required to increase strictly. If we require the x-coordinate to increase strictly then an admissible
path {(x0, y0), (x1, y1), . . . , (xm, ym)} satisfies x0 < · · · < xm and y0 ≤ · · · ≤ ym. The second
case switches the inequalities. These cases have to be addressed separately because the random
environment attached to rows makes the model asymmetric. The sum of these two last-passage
values gives a bound for the case where neither coordinate is required to increase strictly in each
step.

We derive the exact limit constants for Bernoulli models with both types of strict/weak paths.
For one of them this has been done before by Gravner, Tracy and Widom [9]. Their proof utilizes
the fact that the distribution of T (k, ℓ) is a symmetric function of the environment (at least for
the particular Bernoulli case they study). Our proof is completely different. It is based on the
idea in [19] where the limit for the homogeneous case was derived: the last-passage model is
coupled with a particle system whose invariant distributions can be written down explicitly, and
then through some convex analysis the speed of a tagged particle yields the explicit limit of the
last-passage model.

Further remarks on the literature. The present paper does not address questions of fluctua-
tions, but let us mention some highlights from the literature. For the last-passage model with
i.i.d. exponential or geometric weights, the distributional limit with fluctuations of order n1/3

and limit given by the Tracy-Widom GUE distribution was proved by Johansson [10]. As for
the shape, universality has been achieved only close to the boundary, by Baik-Suidan [2] and
Bodineau-Martin [3].

Fluctuations of the Bernoulli model with strict/weak paths and homogeneous weights were
derived first in [11] and later also in [7]. For the model in a random environment fluctuation
limits appear in [9, 8].

On the lattice Z
2
+ we can imagine three types of nondecreasing paths: weak-weak (both

coordinates required to increase weakly, the type that our main results are for), strict-weak and
strict-strict. As mentioned, with Bernoulli weights the strict-weak case is solvable but the weak-
weak case appears harder. The third case, strict-strict, is also solvable with Bernoulli weights.
The shape was derived in [18] and recent work on this model appears in [5].

Organization of the paper. The main results on the shape close to the boundary are in Section
2 and the results for Bernoulli models in Section 3. Section 4 sketches the proof of the existence
of the limiting shape, a result we basically take for granted. The main proofs follow: in Section
5 for Theorem 2.2 on Ψ(α, 1), in Section 6 for Theorem 2.3 on Ψ(1, α), and in Section 7 for
Theorem 2.4 for the exponential model.



4 HAO LIN AND TIMO SEPPÄLÄINEN

Some frequently used notation. We write ess sup
P

f = inf{s ∈ R : P(f > s) = 0} for the

essential supremum of a function f under a measure P. Z+ = {0, 1, 2, . . .}, N = {1, 2, 3, . . .},
and R+ = [0,∞).

2. Main results

First a precise definition of the last-passage model in a random environment. Let P be a
stationary, ergodic probability measure on the space M1(R)

Z+ of sequences of Borel probability
distributions on R. E denotes expectation under P. For some of the main results P will be
assumed to be an i.i.d. product measure. A realization of the distribution-valued process under
P is denoted by {Fj}j∈Z+ . This is the environment. Given {Fj}, the weights {X(z) : z ∈ Z

2
+} are

independent real-valued random variables with marginal distributions X(i, j) ∼ Fj for (i, j) ∈
Z
2
+. Let (Ω,F ,P) be the probability space on which all variables {Fj , X(i, j)} are defined, and

denote expectation under P by E.
A (weakly) nondecreasing path is a sequence of points z0 = (x0, y0), z1 = (x1, y1), . . . , zm =

(xm, ym) in Z
2
+ that satisfy x0 ≤ x1 ≤ · · · ≤ xm, y0 ≤ y1 ≤ · · · ≤ ym, and |xi+1 − xi| + |yi+1 −

yi| = 1. For z1, z2 ∈ Z
2
+ with z1 ≤ z2 (coordinatewise ordering), let Π(z1, z2) be the set of

nondecreasing paths from z1 to z2. Whether the endpoints z1 and z2 are included in the path
makes no difference to the limit results below. The last-passage time T (z1, z2) from z1 to z2 is
defined by

T (z1, z2) = max
π∈Π(z1,z2)

∑

z∈π

X(z).

When z1 = 0 abbreviate Π(z) = Π(0, z) and T (z) = T (0, z).
Put these three assumptions on the model:

(2.1) E|X(z)| < ∞,

(2.2)

∫ ∞

0

{
1− E(F0(x))

}1/2

dx < ∞,

and

(2.3)

∫ ∞

0

ess sup
P

(1 − F0(x)) dx < ∞.

We begin with this by now standard result that defines our object of study, namely the function
Ψ. The proof is briefly commented on in Section 4.

Proposition 2.1. Assume P is ergodic and satisfies (2.1), (2.2) and (2.3). Then for all (x, y) ∈
(0,∞)2 the last passage time constant

(2.4) Ψ(x, y) = lim
n→∞

1

n
T (⌊nx⌋, ⌊ny⌋)

exists as a limit both P-almost surely and in L1(P). Furthermore, Ψ(x, y) is a homogeneous,

concave and continuous function on (0,∞)2.

Assumption (2.2) is also used for the constant distribution case, see (2.5) in [14]. Some
further control along the lines of assumption (2.3) is required for our case. For example, suppose
1−Fj(x) = e−ξjx for random ξj ∈ (0,∞). Then (2.3) holds iff ess infP(ξ0) > 0. If the distribution
of ξ0 is not bounded away from zero, n−1T (n, n) → ∞ because we can simply collect all the
weights from the row with minimal ξj among {ξ0, . . . , ξn}. However, assumption (2.2) can be
satisfied without bounding ξ0 away from zero.

Now we turn to the main results of the paper on the form of the limit shape at the boundary.
As explained in the introduction, for Ψ(α, 1) we find a universal form as α ց 0. In addition to
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the earlier assumptions, we need similar control of the left tail of the distributions, and also a
finite second moment:

(2.5) E|X(z)|2 < ∞,

(2.6)

∫ 0

−∞

(
E[F0(x)]

)1/2
dx < ∞,

and

(2.7)

∫ 0

−∞

ess sup
P

F0(x) dx < ∞.

Let µj = µ(Fj) and σ2
j = σ2(Fj) denote the mean and variance of distribution Fj . These are

random variables under P. Their averages under P are denoted by µ = E(µ0) and σ2 = E(σ2
0).

Theorem 2.2. Assume the process {Fj} is i.i.d. under P, and satisfies moment assumption (2.5)
and tail assumptions (2.2), (2.3), (2.6) and (2.7). Then, as α ↓ 0, Ψ(α, 1) = µ+2σ

√
α+o(

√
α ).

Assumptions (2.2) and (2.6) are direct counterparts of what was used for Theorem 2.4 in
[14]. Assumptions (2.6) and (2.7) are additional assumptions needed for handling the random
environment.

We turn to the case Ψ(1, α). The results will be qualitatively different from Theorem 2.2.
The leading term will be the essential supremum of the mean instead of the averaged mean and
we will see different orders for the first α-dependent correction term.

First a general result for which we restrict ourselves to the case of finitely many distributions,
but we can relax the i.i.d. assumption of the random distributions. Assume the process {Fj} of
probability distributions is stationary, ergodic, and has a state space of finitely many distributions
H1, . . . , HL each of which satisfies Martin’s [14] hypothesis

(2.8)

∫ ∞

0

(1−Hℓ(x))
1/2 dx +

∫ 0

−∞

Hℓ(x)
1/2 dx < ∞.

Let µ∗ = maxℓ µ(Hℓ) be the maximal mean of the Hℓ’s.

Theorem 2.3. With assumptions as in the paragraph above, there exist constants 0 < c1 < c2 <
∞ such that, as α ↓ 0,

(2.9) µ∗ + c1
√
α+ o(

√
α ) ≤ Ψ(1, α) ≤ µ∗ + c2

√
α+ o(

√
α ).

Finally, we consider the case Ψ(1, α) for the exponential model where some (partially) explicit
calculation is possible. Here we see how the tail of the random mean µ0 creates different orders
of magnitude for the α-dependent correction term. Let {pj}j∈Z+ be an i.i.d. sequence of bounded
random variables 0 < c ≤ pj ≤ 1 with common distribution m. We assume c is the exact lower
bound: m[c, c + ε) > 0 for each ε > 0. Then the essential supremum of the random mean is
µ∗ = c−1. To distinguish the exponential model from the general one we write Gj(x) = 1−e−pjx

for the distribution function of the exponential distribution with parameter pj , and ΨG for the
limiting time constant.

An implicit description of the limit shape was derived in [20] by way of studying an exclusion
process with random jump rates attached to particles. We recall the result here. One explicit
shape is needed for the proof of Theorem 2.2 also, so this result will serve there too.
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Define first a critical value u∗ =
∫
[c,1]

c
p−c m(dp) ∈ (0,∞]. For 0 ≤ u < u∗ define a = a(u)

implicitly by

u =

∫

[c,1]

a

p− a
m(dp).

a(u) is strictly increasing, strictly concave, continuously differentiable and one-to-one from 0 <
u < u∗ onto 0 < a < c. We let a(u) = c for u ≥ u∗ if u∗ < ∞. Then define g : R+ → R+ by

(2.10) g(y) = sup
u≥0

{−yu+ a(u)}, y ≥ 0.

The function g is monotone decreasing, continuous, and g(y) = 0 for y ≥ a′(0+) = 1/µG. It is
the level curve of the time constant. The equations connecting the two are g(y) = inf{x > 0 :
ΨG(x, y) ≥ 1} and

(2.11) ΨG(x, y) = inf{t ≥ 0 : tg(y/t) ≥ x}.
Qualitative properties of the limit shape depend on the tail of the distribution m at c+,

and transitions occur where the integrals
∫
[c,1](p − c)−2 m(dp) and

∫
[c,1](p − c)−1 m(dp) blow

up. (For details see [20].) These same regimes appear in our results below. For the case∫
[c,1]

(p− c)−2 m(dp) = ∞ we make a precise assumption about the tail of the distribution of the

random rate:

(2.12) ∃ ν ∈ [−1, 1], κ > 0 such that lim
pցc

m[c, p)

(p− c)ν+1
= κ.

The value ν = −1 means that the bottom rate c has probability m{c} = κ > 0. Values ν < −1
are of course not possible.

Theorem 2.4. For the model with exponential distributions with i.i.d. random rates the limit

ΨG has these asymptotics close to the x-axis.
Case 1:

∫
[c,1]

(p− c)−2 m(dp) < ∞. Then there exists α0 > 0 such that

(2.13) ΨG(1, α) = c−1 + α

∫

[c,1]

1

p− c
m(dp) for α ∈ [0, α0].

Case 2: (2.12) holds so that, in particular
∫
[c,1]

(p− c)−2 m(dp) = ∞. Then as α ց 0,

if ν ∈ (0, 1] then ΨG(1, α) = c−1 + α

∫

[c,1]

1

p− c
m(dp) + o(α) ;(2.14)

if ν = 0 then ΨG(1, α) = c−1 − κα logα+ o(α logα) ;(2.15)

if ν ∈ [−1, 0) then ΨG(1, α) = c−1 +Bα
1

1−ν + o(α
1

1−ν ).(2.16)

In statement (2.16) above B = B(c, κ, ν) is a constant whose explicit definition is in equation
(7.7) in the proof section below. The extreme case ν = −1 is the one that matches up with
Theorem 2.3.

3. Bernoulli models with strict-weak paths in a random environment

This section looks at last-passage models with Bernoulli-distributed weights. The environment
is now an i.i.d. sequence {pj}j∈Z+ of numbers pj ∈ [0, 1], with distribution P. Given {pj}, the
weights {X(i, j)} are independent with marginal distributions P (X(i, j) = 1) = pj = 1 −
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P (X(i, j) = 0). We consider two last-passage times that differ by the type of admissible path:
for z1, z2 ∈ Z

2
+

(3.1) T→(z1, z2) = max
π∈Π→(z1,z2)

∑

z∈π

X(z) and T↑(z1, z2) = max
π∈Π↑(z1,z2)

∑

z∈π

X(z).

In terms of coordinates let zk = (ak, bk), k = 1, 2. Then admissible paths π ∈ Π→(z1, z2) are
of the form π = {(a1, y0), (a1 + 1, y1), (a1 + 2, y2), . . . , (a2, ya2−a1)} with b1 ≤ y0 ≤ y1 ≤ · · · ≤
ya2−a1 ≤ b2, while paths π ∈ Π↑(z1, z2) are of the form π = {(x0, b1), (x1, b1+1), . . . , (xb2−b1 , b2)}
with a1 ≤ x0 ≤ x1 ≤ · · · ≤ xb2−b1 ≤ a2. Thus paths in Π→(z1, z2) increase strictly in the x-
direction while those in Π↑(z1, z2) increase strictly in the y-direction. The last-passage times
T→(z1, z2) and T↑(z1, z2) record the maximal weights of such paths in the lattice rectangle
([a1, a2]× [b1, b2]) ∩ Z

2
+.

As before we simplify notation with T→(0, z) = T→(z). The almost sure limits are denoted
by

(3.2) Ψ→(x, y) = lim
n→∞

1

n
T→(⌊nx⌋, ⌊ny⌋) and Ψ↑(x, y) = lim

n→∞

1

n
T↑(⌊nx⌋, ⌊ny⌋)

for (x, y) ∈ (0,∞)2. The existence of the limits needs no further comment.
The next theorem gives the explicit limits. (3.3) is the same as in [9, Thm. 1]. Inside the

E( · · · ) expectations below p is the random Bernoulli probability. Let b = ess sup
P

p denote the

maximal probability.

Theorem 3.1. The limits in (3.2) are as follows for x, y ∈ (0,∞).

(3.3) Ψ→(x, y) =





bx+ y(1− b)E
(

p
b−p

)
, x/y ≥ E

(p(1−p)
(b−p)2

)

yz20E
(

1−p
(z0−p)2

)
− y, E

(
p

1−p

)
< x/y < E

(p(1−p)
(b−p)2

)

x, 0 < x/y ≤ E
(

p
1−p

)

with z0 ∈ (b, 1) uniquely defined by the equation

x/y = E

[ p(1− p)

(z0 − p)2

]
.

(3.4) Ψ↑(x, y) =




y − yz20E

(
1−p

(z0+p)2

)
, 0 < x/y < E

(
1−p
p

)

y, x/y ≥ E
(
1−p
p

)

with z0 ∈ (0,∞) uniquely defined by the equation

x/y = E

[ p(1− p)

(z0 + p)2

]
.

Our second result gives simplified bounds that are useful for the proof of the main result
Theorem 2.2. Let p̄ = E(p) be the mean of the environment. Ψ(x, y) is the limiting time
constant with weakly increasing paths defined in Proposition 2.1.

Theorem 3.2. The following three inequalities hold for the Bernoulli model:

(3.5) Ψ→(x, y) ≤ bx+ 2
√
p̄(1− b)xy,

(3.6) Ψ↑(x, y) ≤ p̄y + 2
√
p̄(1 − p̄)xy



8 HAO LIN AND TIMO SEPPÄLÄINEN

and

(3.7) Ψ(x, y) ≤ p̄y + 4
√
p̄(1− p̄)xy + bx.

(3.7) follows from (3.5) and (3.6) because Ψ(x, y) ≤ Ψ→(x, y) + Ψ↑(x, y). Another loose
estimate we will use later following (3.7) is

(3.8) Ψ(x, y) ≤ p̄y + 4
√
p̄(1− p̄)xy + bx ≤ (y + 4

√
xy)

√
p̄+ bx.

We prove the formulas and inequalities first for Ψ→ and then for Ψ↑. For some parts of the
proofs it is convenient to assume b < 1. Results for the case b = 1 follow by taking a limit.

Proof of (3.3) and (3.5). We adapt the proof from [19] to the random environment situation
and sketch the main points.

Consider now the environment {pj} fixed, but the weights X(i, j) random. For integers
0 ≤ s < t and a, k define an inverse to the last passage time as

Γ((a, s), k, t) = min{l ∈ Z+ : T→((a+ 1, s+ 1), (a+ l, t)) ≥ k}.

Note that Γ((a, s), 0, t) = 0 but Γ((a, s), k, t) > 0 for k > 0. Knowing the limits of the variables
Γ is the same as knowing Ψ→. By the homogeneity of Ψ→ it is enough to find h(x) = Ψ→(x, 1).
By the homogeneity and superadditivity of Ψ→, h is concave and nondecreasing. Let g be the
inverse function of h on R+. Then g is convex and

tg(x/t) = lim
n→∞

1

n
Γ((0, 0), ⌊nx⌋, ⌊nt⌋).

To find these functions we construct an exclusion-type process z(t) = {zk(t) : k ∈ Z} of
labeled, ordered particles zk(t) < zk+1(t) that jump leftward on the lattice Z, in discrete
time t ∈ Z+. Given an initial configuration {zi(0)} that satisfies zi−1(0) ≤ zi(0) − 1 and
lim infi→−∞ |i|−1zi(0) > −1/b, the evolution is defined by

(3.9) zk(t) = inf
i:i≤k

{zi(0) + Γ((zi(0), 0), k − i, t)}, k ∈ Z, t ∈ N.

It can be checked that z(t) is a well-defined Markov process, in particular that zk(t) > −∞
almost surely.

Define the process {ηi(t)} of interparticle distances by ηi(t) = zi+1(t) − zi(t) for i ∈ Z and
t ∈ Z+. By Prop. 1 in [19] process {ηi(t)} has a family of i.i.d. geometric invariant distributions
indexed by the mean u ∈ [1, b−1) and defined by

(3.10) P (η = n) = u−1(1 − u−1)n−1, n ∈ N.

Let xk(t) = zk(t− 1)− zk(t) ≥ 0 be the absolute size of the jump of the kth particle from time
t− 1 to t, and let qt = 1− pt. From (6.5) in [19], in the stationary process

P (xk(t) = x) =

{
(1− upt)q

−1
t x = 0

pt(1− upt)q
−1
t (u− 1)x(uqt)

−x x = 1, 2, 3, . . .

We track the motion of particle z0(t) in a stationary situation. The initial state is defined
by setting z0(0) = 0 and by letting {ηi(0)} be i.i.d. with common distribution (3.10). Up to
now everything has been in a fixed environment. Now we average over time, and this way the
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environment gets averaged over. The first equality below defines f that gives the average speed of
the tagged particle in the stationary process with mean interparticle distance u: for u ∈ [1, b−1)

(3.11)

f(u) ≡ −E[ lim
n→∞

1

n
z0(n)] = E[ lim

n→∞

1

n

n−1∑

t=0

x0(t)]

= E

∞∑

x=1

x(u − 1)x(uq)−xp(1− up)(1− p)−1 = E

[pu(u− 1)

1− up

]
.

It is natural to set f(u) = 0 for u ∈ [0, 1), f(b−1) = f((b−1)−), and f(u) = ∞ for u > b−1.
The function g is convex and nondecreasing. With k = 0, divide by t in (3.9) and take the

t → ∞ limit to get f(u) = supx≥0{ux− g(x)}. This says that f = g+, the monotone conjugate

of g. By [16, Thm. 12.4]

(3.12) g(x) = sup
u≥0

{xu− g+(u)} = sup
1≤u≤1/b

{xu− f(u)}.

We solve for g(x) from (3.11) and (3.12). The result is

(3.13) g(x) =






x/b− b−1(1− b)E p
(b−p) x ≥ b2E (1−p)

(b−p)2 − 1

u2
0E

p(1−p)
(1−u0p)2

E
p

1−p < x < b2E (1−p)
(b−p)2 − 1

x 0 < x < E
p

1−p

where u0 ∈ (1, b−1) is uniquely defined by the equation x+ 1 = E(1− p)(1 − u0p)
−2. From this

we find the inverse function h(x) = g−1(x) and then Ψ→(x, y) = yh(x/y). We omit these details
and consider (3.3) proved.

To prove (3.5) we return to the duality (3.12) and write

(3.14) g(x) ≥ sup
1≤u<1/b

{xu− f̃(u)} for f̃(u) =
u(u− 1)

1− ub
p̄.

f̃ ′(u) = x is solved by u∗ = b−1
(
1−

√
(1−b)p̄
bx+p̄

)
.

When x ≥ p̄
1−b , we have u∗ ∈ [1, 1

b ), and then

g(x) ≥ xu∗ − f̃(u∗) =
1

b

(√
(1 − b)p̄−

√
bx+ p̄

)2
.

Consequently

g−1(x) ≤ 1

b

(√
b2x+

√
(1− b)p̄

)2 − p̄ = bx− p̄+ 2
√
(1 − b)p̄x.

When x < p̄
1−b , the supremum is attained at u = 1, and in this case

g−1(x) ≤ x ≤ bx+ 2
√
(1− b)p̄x.

The bound (3.5) now follows from Ψ→(x, y) = yg−1(x/y). �

Proof of (3.4) and (3.6). The scheme is the same, so we omit some more details. The inverse of
the last-passage time is now defined

Γ((a, s), k, t) = min{l ∈ Z+ : T↑((a, s+ 1), (a+ l, t)) ≥ k}.
Vertical distance t− s allows for at most t− s marked points, so the above quantity must be set
equal to ∞ for k > t−s. The particle process {z(t) : t ∈ Z+} is defined by the same formula (3.9)
as before but it is qualitatively different. The particles still jump to the left, but the ordering
rule is now zk(t) ≤ zk+1(t) so particles are allowed to sit on top of each other. Well-definedness
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of the dynamics needs no further restrictions on admissible particle configurations because the
minimum in (3.9) only considers i ∈ {k−t, . . . , k} so it is well-defined for all initial configurations
{zi(0) : i ∈ Z} such that zi(0) ≤ zi+1(0).

The following can be checked. Under a fixed environment {pj}, the gap process {ηi(t) =
zi+1(t) − zi(t) : i ∈ Z} has i.i.d. geometric invariant distributions P (ηk = n) = ( 1

1+u )(
u

1+u )
n,

n ∈ Z+, indexed by the mean u ∈ R+. In this stationary situation the successive jumps xk(t) =
zk(t− 1)− zk(t) of a tagged particle have distribution

P (xk(t) = y) =

{
1

1+upt
y = 0

( u
u+1 )

y pt

1+upt
y ≥ 1.

From here the analysis proceeds the same way as for the other model. The speed function is
defined by

f(u) = − lim
n→∞

1

n
z0(n) = lim

n→∞

1

n

n∑

t=1

x0(t) = u(u+ 1)E
[ p

1 + up

]

and then convex analysis takes over. We omit the remaining details of the proof of (3.4).
To prove (3.6), note that

g(x) = sup
u≥0

{xu− f(u)} ≥ sup
u≥0

{xu− p̄u(u+ 1)

1 + up̄
}

=

{
1
p̄ (
√
1− x−√

1− p̄)2 p̄ ≤ x ≤ 1

0 0 ≤ x ≤ p̄.

We used Jensen’s inequality and concavity of p 7→ p
1+up . From this

g−1(x) ≤
{
p̄− p̄x+ 2

√
p̄(1− p̄)x 0 ≤ x ≤ 1−p̄

p̄

1 x > 1−p̄
p̄

and (3.6) follows. �

4. Proof of Proposition 2.1

We comment briefly on the proof of Proposition 2.1. Further details can be found in [13]. The
flow of arguments is standard. First one takes an integer point (x, y) ∈ Z

2
+ and applies Liggett’s

version of the subadditive ergodic theorem to the process Zm,n = −T ((mx,my), (nx, ny)), 0 ≤
m < n, to prove that Ψ(x, y) exists and is finite. Then rational (x, y) and real (x, y) are
handled by approximations. Along the way regularity properties of Ψ are established and used:
superadditivity, homogeneity, concavity and continuity.

All this works easily for the Bernoulli case because last-passage times are uniformly bounded
in terms of path length. Consequently we can assume that Proposition 2.1 has been proved for
the Bernoulli case. For the general case we check that for integer points (x, y) ∈ Z

2
+ the moment

hypotheses of the subadditive ergodic theorem [4, p. 358] follow from our assumptions (2.1),
(2.2), and (2.3):

EZ+
0,1 ≤ E|T ((0, 0), (x, y))| ≤ E

∑

0≤i≤x,0≤j≤y

|X(i, j)| = (x+ 1)(y + 1)E|X(0, 0)| < ∞.



LAST-PASSAGE SHAPE 11

Next:

1

n
EZ0,n ≥ − 1

n
E max

π∈Π(nx,ny)

∑

z∈π

X(z)+ = − 1

n
E max

π∈Π(nx,ny)

∑

z∈π

∫ ∞

0

1(X(z) > u) du

≥ − 1

n
E

∫ ∞

0

max
π∈Π(nx,ny)

∑

z∈π

1(X(z) > u) du = − 1

n

∫ ∞

0

E max
π∈Π(nx,ny)

∑

z∈π

1(X(z) > u) du

≥ −
∫ ∞

0

sup
n

1

n
E max

π∈Π(nx,ny)

∑

z∈π

1(X(z) > u) du = −
∫ ∞

0

ΨBer[1−F (u)](x, y) du

≥ −(y + 4
√
xy)

∫ ∞

0

√
1− EF0(u) du− x

∫ ∞

0

(
1− ess inf

P

F0(u)
)
du.

ΨBer[1−F (u)](x, y) is the limiting time constant for the Bernoulli model where the weights have
distributions P (X(i, j) = 1) = 1 − Fj(u) = 1 − P (X(i, j) = 0). On the last line above we
used the Bernoulli estimate (3.8). By assumptions (2.2) and (2.3), EZ0,n ≥ nγ for a constant
γ > −∞. These estimates justify the application of the subadditive ergodic theorem. We omit
the remaining details and consider Proposition 2.1 proved.

5. Proof of Theorem 2.2

For the first lemma, let {Fj} and {Gj} be ergodic sequences of distributions defined on a
common probability space under probability measure P. In a later step of the proof we need
to assume {Fj} i.i.d. Assume that both processes {Fj} and {Gj} satisfy the assumptions made
in Theorem 2.2. With some abuse of notation we label the time constants, means, and even
random weights associated to the processes {Fj} and {Gj} with subscripts F and G. So for
example µF = E(

∫
x dF0(x)). The symbolic subscripts F and G should not be confused with the

random distributions Fj and Gj assigned to the rows of the lattice. We write ΨBer([G(x)−F (x)]+)

for the limit of a Bernoulli model with weight distributions P (X(i, j) = 1) = (Gj(x)−Fj(x))+ =
1−P (X(i, j) = 0) where x is a fixed parameter. An analogous convention will be used for other
Bernoulli models along the way.

Lemma 5.1. For α > 0,

|ΨF (α, 1)−ΨG(α, 1)− (µF − µG)|

≤ 8
√
α

∫ +∞

−∞

(
E|G0(x)− F0(x)|

)1/2

dx+ α

∫ +∞

−∞

ess sup
P

|F0(x) −G0(x)| dx.
(5.1)

Proof. The right-hand side of (5.1) is finite under the assumptions on {Fj} and {Gj}. Couple
the Fj- and Gj-distributed weights in a standard way. Let {u(z) : z = (i, j) ∈ Z

2
+} be i.i.d.

Uniform(0, 1) random variables. Set XF (z) = F−1
j (u(z)), where F−1

j (u) = sup{x : Fj(x) < u},
and similarly XG(z) = G−1

j (u(z)). Write E for expectation over the entire probability space of
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distributions and weights.

ΨF (α, 1)−ΨG(α, 1)

= lim
n→∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

XF (z)− lim
n→∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

XG(z)

≤ lim
n→∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

(
XF (z)−XG(z)

)

= lim
n→∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

∫ +∞

−∞

{
I
(
XG(z) ≤ x < XF (z)

)
− I

(
XF (z) ≤ x < XG(z)

)}
dx

≤ lim
n→∞

1

n
E

∫ +∞

−∞

max
π∈Π(⌊αn⌋,n)

∑

z∈π

{
I
(
XG(z) ≤ x < XF (z)

)
− I

(
XF (z) ≤ x < XG(z)

)}
dx.

We check that Fubini allows us to interchange the integral and the expectation. Since F and G
are interchangeable it is enough to consider the first indicator function from above. Let a be an
integer ≥ α.

∫ +∞

−∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

I
(
XG(z) ≤ x < XF (z)

)
dx

≤
∫ +∞

−∞

sup
n

1

n
E max

π∈Π(an,n)

∑

z∈π

I
(
XG(z) ≤ x < XF (z)

)
dx

=

∫ +∞

−∞

ΨBer([G(x)−F (x)]+)(a, 1) dx

≤
∫ +∞

−∞

(
E|G0(x) − F0(x)| + 4

√
a
(
E|G0(x) − F0(x)|

)1/2
+ a ess sup

P

|G0(x) − F0(x)|
)
dx

< ∞
by estimate (3.7) and the finiteness of the right-hand side of (5.1). Continue from the limit
above by applying Fubini. Then take the limit inside the dx-integral by dominated convergence,
justified by the n-uniformity in the bound above. Finally apply again the Bernoulli estimate
(3.7).

ΨF (α, 1)−ΨG(α, 1)

≤ lim
n→∞

∫ +∞

−∞

1

n
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

{
I
(
XG(z) ≤ x < XF (z)

)
− I

(
XF (z) ≤ x < XG(z)

)}
dx

≤
∫ +∞

−∞

lim
n→∞

1

n

{
E max

π∈Π(⌊αn⌋,n)

∑

z∈π

I
(
XG(z) ≤ x < XF (z)

)

+ E max
π∈Π(⌊αn⌋,n)

∑

z∈π

(
1− I

(
XF (z) ≤ x < XG(z)

))
−
∑

z∈π

1
}
dx

=

∫ +∞

−∞

{
ΨBer([G(x)−F (x)]+)(α, 1) + ΨBer(1−[F (x)−G(x)]+)(α, 1)− (1 + α)

}
dx

≤
∫ +∞

−∞

{
E
(
G0(x) − F0(x)

)
+
+ 1− E

(
F0(x) −G0(x)

)
+

+ 4
√
α
(√

E
(
G0(x) − F0(x)

)
+
+
√
E
(
F0(x)−G0(x)

)
+

)
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+ α
(
ess sup

P

[G0(x) − F0(x)]+ + 1− ess inf
P

[F0(x)−G0(x)]+

)
− (1 + α)

}
dx

≤ (µF − µG) + 8
√
α

∫ +∞

−∞

√
E|F0(x)−G0(x)| dx+ α

∫ +∞

−∞

ess sup
P

|G0(x)− F0(x)| dx.

Interchanging F and G gives the bound from the other direction and concludes the proof. �

For a while we make two convenient assumptions: that the weights are uniformly bounded,
so for a constant M < ∞,

(5.2) P{F0(−M) = 0 and F0(M) = 1} = 1,

and that variances are uniformly bounded away from zero, so for a constant 0 < c0 < ∞,

(5.3) P{σ2(F0) ≥ c0} = 1.

Note that then

(5.4) c0 ≤ σ2(F0) ≤ M2
P-a.s

and the conditions assumed for Theorem 2.2 are trivially satisfied by the uniform boundedness.
Henceforth r = r(α) denotes a positive integer-valued function such that r(α) ր ∞ as α ց 0.

Tile the lattice with 1 × r blocks Br(x, y) = {(x, ry + k) : k = 0, 1, ..., r − 1} for (x, y) ∈ Z
2
+. A

coarse-grained last-passage model is defined by adding up the weights in each block:

Xr(z) =
∑

v∈Br(z)

X(v).

The distribution of the new weightXr(i, j) on row j ∈ Z+ of the rescaled lattice is the convolution
Fr, j = Frj ∗ Frj+1 ∗ · · · ∗ Frj+r−1.

We repeat Lemma 4.4 from [14] with a sketch of the argument.

Lemma 5.2. Let ΨF (x, y) and ΨFr
(x, y) be the last passage time functions obtained by using

Fj and Fr,j as the distributions on the jth row, respectively. If r → ∞ and r
√
α → 0 as α ↓ 0,

then

lim
α↓0

1√
α

∣∣ΨF (α, 1)−
1

r
ΨFr

(αr, 1)
∣∣ = 0.

Proof. Given a path π ∈ Π(m,nr), consider all the blocks that it intersects; this gives a path
π̃ ∈ Π(m,n) in the rescaled lattice such that

∣∣(∪z∈π̃Br(z))△π
∣∣ ≤ mr. Then by (5.2)

∣∣ max
π∈Π(m,nr)

∑

z∈π

X(z)− max
π̃∈Π(m,n)

∑

z∈π̃

Xr(z)
∣∣ ≤ mrM.

Take m = ⌊αnr⌋, divide through by nr, and the conclusion follows. �

Let µr,y and Vr,y be the mean and variance of Fr,y:

µr,y =

r−1∑

i=0

µry+i, and Vr,y =

r−1∑

i=0

σ2
ry+i.

Let Φr,y be the distribution function of the normal N (µr,y, Vr,y) distribution, and Φ̃r,y the

distribution function of N (rµF , Vr,y). The difference between Φr,y and Φ̃r,y is that the latter has
a non-random mean. We shall also find it convenient to use {Xj} as a sequence of independent
variables with (random) distributions Xj ∼ Fj . For the next lemma we need to assume {Fj} an
i.i.d. sequence under P.

As in [14], a key step in the proof is the replacement of the rescaled weights with Gaussian
weights, which is undertaken in the next lemma.
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Lemma 5.3. Assume {Fj} i.i.d. under P. If r → ∞ and r
√
α → 0 as α ↓ 0, then

(5.5) lim
α↓0

1

r
√
α
|ΨFr

(αr, 1)−ΨΦr
(αr, 1)| = 0.

Proof. According to Theorem 5.17 of [15], independent mean 0 random variables X1, X2, X3, . . .
satisfy the estimate

∣∣∣P
{
B−1/2

r

r∑

i=1

Xi ≤ x
}
− Φ(x)

∣∣∣ ≤ A

∑r
i=1 E|Xi|3
B3/2

(1 + |x|)−3, x ∈ R,

where Br =
∑r

i=1 Var(Xi), Φ is the standard normal distribution function, and A is a constant.
Then,

(5.6)

|Fr,y(x) − Φr,y(x)| ≤ A

∑r−1
i=0 E|Xry+i − µry+i|3
(
∑r−1

i=0 σ2
ry+i)

3/2

(
1 + V −1/2

r,y |x− µr,y|
)−3

≤ C√
r

(
1 +M−1r−1/2|x− µr,y|

)−3

where the second inequality used the assumptions P (|Xi| ≤ M) = 1 and σ2
i ≥ c20 > 0.

Armed with (5.6) we now estimate the right-hand side of (5.1) for the processes {Fr,y}y∈Z+

and {Φr,y}y∈Z+ and with α replaced by αr.
For the first term on the right in (5.1), note this Schwarz trick: for a probability density f on

R and a function H ≥ 0,

∫ √
H dx =

∫
f
√
f−2H dx ≤

(∫
f−1H dx

)1/2

.

For the calculation below take δ > 0 and f(x) = c1(1 + |x − rµF |1+δ)−1 for the right constant
c1 = c1(δ). Factors that depend on M and δ are subsumed in a constant C. Then

√
αr

∫ +∞

−∞

(
E|Fr,0(x) − Φr,0(x)|

)1/2

dx

≤ Cα1/2r1/4
∫ +∞

−∞

{
E

[(
1 +M−1r−1/2|x− µr,0|

)−3
]}1/2

dx

≤ Cα1/2r1/4
{
E

∫ +∞

−∞

(
1 + |x− rµF |1+δ

)(
1 +

|x− µr,0|
M

√
r

)−3

dx

}1/2

by a change of variables x = µr,0 + yM
√
r

= Cα1/2r1/2
{
E

∫ +∞

−∞

1 + |µr,0 − rµF + yM
√
r|1+δ

(1 + |y|)3 dy

}1/2

≤ Cα1/2r1/2
{
E|µr,0 − rµF |1+δ + r(1+δ)/2

}1/2

≤ Cα1/2r(3+δ)/4.

In the last step we used E|µr,0 − rµF |1+δ ≤ Cr(1+δ)/2 which follows because µr,0 − rµF is a sum
of r bounded mean zero i.i.d. random variables.
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For the second term on the right in (5.1),

αr

∫ +∞

−∞

ess sup
P

|Fr,0(x)− Φr,0(x)| dx ≤ Cαr1/2
∫ +∞

−∞

ess sup
P

(
1 +

|x− µr,y|
M

√
r

)−3

dx

≤ Cαr1/2
{∫ −rM

−∞

(
1 +

−rM − x

M
√
r

)−3

dx+

∫ rM

−rM

dx+

∫ +∞

rM

(
1 +

x− rM

M
√
r

)−3

dx

}

≤ Cαr3/2.

To summarize, with these estimates and (5.1) we have

1

r
√
α
|ΨFr

(αr, 1)−ΨΦr
(αr, 1)| ≤ C

r
√
α
(α1/2r(3+δ)/4 + αr3/2).

If δ is fixed small enough, assumptions r → ∞ and r
√
α → 0 make this vanish as α → 0. �

The next lemma makes a further approximation that puts us in the situation where all sites
have normal variables with the same mean.

Lemma 5.4. Let ΨΦr
and ΨΦ̃r

be defined as before, and again r
√
α → 0 as α → 0. Then

lim
α↓0

1

r
√
α
|ΨΦr

(αr, 1)−ΨΦ̃r
(αr, 1)| = 0.

Proof. For z = (i, j) ∈ Z
2
+, let X

(r)(z) have distribution Φr,j so that X̃(r)(z) = X(r)(z)− µr,j +

rµF has distribution Φ̃r,j . Now estimate:

ΨΦ̃r
(αr, 1) = lim

n→∞

1

n
max

π∈Π(⌊αnr⌋,n)

∑

z∈π

X̃(r)(z)

≤ lim
n→∞

1

n
max

π∈Π(⌊αnr⌋,n)

∑

z∈π

X(r)(z) + lim
n→∞

1

n
max

π∈Π(⌊αnr⌋,n)

∑

z∈π

(
−µr,j + rµF

)

≤ ΨΦr
(αr, 1) + lim

n→∞

1

n

n∑

j=1

(
−µr,j + rµF

)
+ lim

n→∞

1

n
2Mr · ⌊αnr⌋

= ΨΦr
(αr, 1) + 2Mαr2.

The opposite bound ΨΦ̃r
(αr, 1) ≥ ΨΦr

(αr, 1) − 2Mαr2 comes similarly, and the lemma follows.
�

Let us separate the mean by letting Φr,y denote the N(0,
∑r−1

i=0 σ2
ry+i) distribution function.

Since the last-passage functions of the normal distributions satisfy ΨΦ̃r
(αr, 1) = rµF (1 + αr) +

Ψ
Φ

(r)(αr, 1), we can summarize the effect of the last three lemmas as follows.

Lemma 5.5. Assume {Fj} i.i.d. under P, and assume r = r(α) satisfies r → ∞ and r
√
α → 0

as α ↓ 0. Under assumptions (5.2) and (5.3)

(5.7) lim
α↓0

1√
α
|ΨF (α, 1)− µF − 1

r
Ψ

Φ
(r)(αr, 1)| = 0.

In order to deduce a limit from (5.7) we utilize the explicitly computable case of exponential
distributions from [20]. We need to match up the random variances of the exponentials with
the variances σ2

j of the sequence {Fj}. Thus, given the i.i.d. sequence of quenched variances

σ2
j = σ2(Fj) that we have worked with up to now under condition (5.4), let pj = 1/σj and

Gj(x) = 1 − e−pjx the rate pj exponential distribution. Then {pj}j∈Z+ is an i.i.d. sequence of
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bounded random variables 0 < c ≤ pj ≤ b with distribution m. We can assume c is the exact

lower bound: m[c, c + ε) > 0 for each ε > 0. Gj has mean and variance µ(Gj) = p−1
j and

σ2(Gj) = p−2
j = σ2

j .

Assumptions (2.2) and (2.3) are easily checked, and so the last-passage function ΨG is well-
defined. We would like to apply Lemma 5.5 to this exponential model, but obviously assumption
(5.2) is not satisfied. To get around this difficulty we do the following approximation which
leaves the quenched means and variances intact. We learned this trick from [14].

Let Yj denote a Gj-distributed random variable. For a fixed τ > 0, let

mj = E(Yj |Yj > τ) and wj = E(Y 2
j |Yj > τ).

The quantities

sj =
(mj − τ)2

(mj − τ)2 + wj −m2
j

and uj =
wj − τ2

mj − τ
− τ

satisfy the equations

(1− sj)τ + sjuj = mj and (1 − sj)τ
2 + sju

2
j = wj .

Then 0 ≤ sj ≤ 1, uj ≥ τ and wj ≥ τ2. Define distribution functions

(5.8) G̃j(x) =





Gj(x) 0 ≤ x < τ

1− sj [1−Gj(τ)] τ ≤ x < uj

1 x ≥ uj.

Ỹj ∼ G̃j satisfies EYj = EỸj and EY 2
j = EỸ 2

j . Moreover, for any fixed τ > 0,

uj =
E(Y 2

j |Yj > τ) − τ2

E(Yj |Yj > τ)− τ
− τ =

2

pj
+ τ ≤ 2

c
+ τ,

so the distributions {G̃j} are all supported on the nonrandom bounded interval [0, 2/c + τ ].

Consequently Lemma 5.5 applies to G̃. We can draw the same conclusion for G once we have
the next estimate:

Lemma 5.6. Given ε > 0, we can select τ large enough and define G̃j as in (5.8) so that

lim
α↓0

1√
α
|ΨG(α, 1)−ΨG̃(α, 1)| < ε.

Proof. This comes from an application of Lemma 5.1. Gj = G̃j on (−∞, τ) and 1− G̃j ≤ 1−Gj

on all of R. The integrals on the right-hand side of (5.1) are finite and can be made arbitrarily
small by choosing τ large. �

Currently we have shown that

(5.9) lim
α↓0

1√
α
|ΨG(α, 1)− Eσ0 −

1

r
ΨΦr

(αr, 1)| = 0.

It remains to perform an explicit calculation on ΨG(α, 1). As before, utilize the notation µG =
Ep−1

0 and σ2
G = Ep−2

0 .

Lemma 5.7. For the random exponential distributions defined above,

lim
α↓0

1√
α
|ΨG(α, 1)− µG − 2σG

√
α| = 0.
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Proof. Recall the definition of the limit shape ΨG(α, 1) from (2.11). From (2.10) one can read
that tg(1/t) is nondecreasing in t. Thus by (2.11) ΨG(α, 1) = t = t(α) such that tg(1/t) = α.

Next we argue that when α is close enough to 0, g(1/t) = −u0/t+a(u0) for some 0 < u0 < u∗

with a′(u0) = 1/t. Since a(0) = 0 and a(u∗−) = c, strict concavity gives for 0 < u < u∗

{∫

[c,b]

p

(p− c)2
m(dp)

}−1

= a′(u∗−) < a′(u) =
{∫

[c,b]

p

(p− a(u))2
m(dp)

}−1

< a′(0+) =
{∫

[c,b]

p−1m(dp)
}−1

=
1

µG
.

On the other hand, 0 < ΨG(α, 1) − µG ≤ C
√
α + Cα where the second inequality comes from

comparing {Gj} in (5.1) with identically zero weights. Thus when α is small enough, 1/t is in
the range of a′. Consequently there exists u0 ∈ (0, u∗) such that a′(u0) = 1/t, or equivalently,

(5.10)

∫

[c,b]

p

(p− a(u0))2
m(dp) = t.

From the choice of t, α = tg(1/t) = t
(
−u0/t+ a(u0)

)
= −u0 + ta(u0) and so

(5.11) ΨG(α, 1) = t =
α

a(u0)
+

u0

a(u0)
=

α

a(u0)
+

∫

[c,b]

1

p− a(u0)
dm(p).

Combining (5.10) and (5.11) gives

(5.12) α = a(u0)
2

∫

[c,b]

1

(p− a(u0))2
m(dp).

From this

a(u0)
2

∫

[c,b]

1

p2
m(dp) ≤ α = a(u0)

2

∫

[c,b]

1

(p− a(u0))2
m(dp) −→ 0 as α ↓ 0.

Hence we must have a(u0) → 0 as α ↓ 0, and (5.12) yields

(5.13) lim
α↓0

α

a(u0)2
=

∫

[c,b]

1

p2
m(dp) = σ2

G.

Now we put all the above together to prove the lemma.

ΨG(α, 1)− µG − 2σG

√
α

=
α

a(u0)
+

∫

[c,b]

1

p− a(u0)
dm(p)− µG − 2σG

√
α

=
α

a(u0)
+

∫

[c,b]

[ 1

p
+

1

p2
a(u0) +O

(
a(u0)

2
)]
m(dp)− µG − 2σG

√
α

=
√
α
( √

α

a(u0)
− σG

)
+ σ2

G

√
α
( a(u0)√

α
− 1

σG

)
+ α ·O

(a(u0)
2

α

)

= o(
√
α ) as α ↓ 0. �

Combining Lemma 5.7 and (5.9) gives

lim
α↓0

1√
α

∣∣1
r
ΨΦr

(αr, 1)− 2σG

√
α
∣∣ = 0.

Substitute this back into (5.7) and recall that σF = σG. The conclusion we get is

(5.14) lim
α↓0

1√
α
|ΨF (α, 1)− µF − 2σF

√
α| = 0.
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We have proved Theorem 2.2 under assumptions (5.2) and (5.3). We now lift (5.3). For
ε > 0, let {W (z)} be i.i.d weights with distribution H defined by P (W (z) = ±ε) = 1/2. Let

F̃j = Fj ∗H be the distribution of the weight X̃(i, j) = X(i, j)+W (i, j). Let ΨH and ΨF̃ be the

time constants of the last-passage models with weights {W (z)} and {X̃(z)}, respectively. The
Bernoulli bound (3.7) gives the estimate ΨH(x, y) ≤ 4ε

√
xy. The corresponding last-passage

times satisfy

TF̃ (z)− TH(z) ≤ TF (z) ≤ TF̃ (z) + T̂H(z)

where T̂H(z) uses the weights −W (z). In the limit

(5.15) ΨF̃ (α, 1)− 4ε
√
α ≤ ΨF (α, 1) ≤ ΨF̃ (α, 1) + 4ε

√
α.

Since σ2(F̃j) = σ2(Fj) + ε2 while µF̃ = µF , and ε > 0 can be arbitrarily small, this estimate
suffices for limit (5.14).

As the last item of the proof of Theorem 2.2 we remove the uniform boundedness assumption
(5.2). Suppose {Fj} satisfy the conditions required for Theorem 2.2, but there is no common
bounded support. For a fixed M > 0 define the truncated distributions

Fj,M (x) =






1 x ≥ M

Fj(x) −M ≤ x < M

0 x < −M.

Let µM , σ2
M and ΨFM

(x, y) be quantities associated to {Fj,M}.
From (5.1) and the conditions assumed in Theorem 2.2,

1√
α
|ΨF (α, 1)−ΨFM

(α, 1)− (µ− µM )|

≤ 8

∫ +∞

−∞

(
E|F0(x)− F0,M (x)|

)1/2

dx+
√
α

∫ +∞

−∞

ess sup
P

|F0(x) − F0,M (x)| dx

= 8
[∫ −M

−∞

(
E|F0(x)|

)1/2

dx+

∫ ∞

M

(
E|1− F0(x)|

)1/2

dx
]

+
√
α
[∫ −M

−∞

ess sup
P

|F0(x)| dx +

∫ +∞

M

ess sup
P

|1− F0(x)| dx
]
≤ ε.

The last inequality comes from choosing M large enough, and is valid for all α ≤ 1. Since
E(EX2(0, 0)) < ∞, dominated convergence gives σM → σ and so we can pick M so that
|σ − σM | < ε. Now

1√
α
|ΨF (α, 1)− µ− 2σ

√
α| ≤ 1√

α
|ΨFM

(α, 1)− µM − 2σM

√
α|+ 2ε.

Since ε is arbitrary and limit (5.14) holds for {Fj,M}, we get the conclusion for the sequence
{Fj}. This concludes the proof of Theorem 2.2.

6. Proof of Theorem 2.3

Proof of Theorem 2.3. The lower bound in (2.9) can be proved by applying Martin’s result (1.1)
to the homogeneous problem where a maximal path is constructed by using only those rows j
where Fj = Hi∗ , the distribution with the maximal mean µ∗ = µ(Hi∗). This is fairly straight-
forward and we leave the details to the reader.

To prove the upper bound in (2.9), we start by increasing all the weights X(z) by moving
their means to µ∗. Then we subtract the common mean µ∗ from the weights, so that for the
proof we can assume that all distributions H1, . . . , HL have mean zero.
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Create the following coupling. Independently of the process {Fj}, let {Xℓ(z) : 1 ≤ ℓ ≤ L, z ∈
Z
2
+} be a collection of independent weights such that Xℓ(z) has distribution Hℓ. Then define

the weights used for computing Ψ(1, α) by

X(z) =

L∑

ℓ=1

Xℓ(z)I{Fj=Hℓ} for z = (i, j) ∈ Z
2
+.

Begin with this elementary bound:

(6.1)

Ψ(1, α) = lim
n→∞

1

n
E
[

max
π∈Π(n,⌊αn⌋)

∑

z∈π

X(z)
]

≤
L∑

ℓ=1

lim
n→∞

1

n
E
[

max
π∈Π(n,⌊αn⌋)

∑

z∈π

Xℓ(z)I{Fj=Hℓ}

]
.

The next lemma contains a convexity argument that will remove the indicators from the last
passage values above.

Lemma 6.1. Let D be a sub-σ-field on a probability space (Ω,F , P ), D an event in D, and ξ
and η two integrable random variables. Assume that Eη = 0, η is independent of D, and ξ and

η are independent conditionally on D. Then E[ ξ ∨ (ηID) ] ≤ E[ ξ ∨ η ].

Proof. By Jensen’s inequality, for any fixed x ∈ R,

x ∨ E(η | D) ≤ E(x ∨ η | D).

Since η is independent of D and mean zero,

x ∨ 0 ≤ E(x ∨ η | D).

Integrate this against the conditional distribution P (ξ ∈ dx | D) of ξ, given D, and use the
conditional independence of ξ and η:

E(ξ ∨ 0 | D) ≤ E(ξ ∨ η | D).

Next integrate this over the event Dc:

E
[
IDc · ξ ∨ (ηID)

]
= E

[
IDc · ξ ∨ 0

]
≤ E

[
IDc · ξ ∨ η

]
.

The corresponding integral over the event D needs no argument. �

Fix a lattice point z0 = (i0, j0) for the moment. We split the maximum in (6.1) according to
whether the path π goes through z0 or not, and in case it goes we also separate the weight at z0:

max
π∈Π(n,⌊nα⌋)

∑

z∈π

Xℓ(z)I{Fj=Hℓ} = A∨
(
B+Xℓ(z0)I{Fj0=Hℓ}

)
= B+

(
A−B

)
∨
(
Xℓ(z0)I{Fj0=Hℓ}

)

where

A = max
π 6∋z0

∑

z∈π

Xℓ(z)I{Fj=Hℓ} and B = max
π∋z0

∑

z∈π\{z0}

Xℓ(z)I{Fj=Hℓ}.

Now apply Lemma 6.1 with ξ = A − B, η = Xℓ(z0), and D = {Fj0 = Hℓ}. Given Fj0 , A − B
does not look at Xℓ(z0), so the independence assumed in Lemma 6.1 is satisfied. The outcome
from that lemma is the inequality

E
[

max
π∈Π(n,⌊αn⌋)

∑

z∈π

Xℓ(z)I{Fj=Hℓ}

]
≤ E

[
A ∨ (B +Xℓ(z0))

]
.

This is tantamount to replacing the weight Xℓ(z0)I{Fj0=Hℓ} at z0 with Xℓ(z0).
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We can repeat this at all lattice points z0 in (6.1). In the end we have an upper bound in
terms of homogeneous last-passage values, to which we can apply Martin’s result (1.1):

Ψ(1, α) ≤
L∑

ℓ=1

lim
n→∞

1

n
E
[

max
π∈Π(n,⌊αn⌋)

∑

z∈π

Xℓ(z)
]
=

L∑

ℓ=1

ΨHℓ
(1, α)

= 2
√
α

L∑

ℓ=1

σ(Hℓ) + o(
√
α).

This completes the proof of Theorem 2.3. �

7. Proofs for the exponential model

Proof of Theorem 2.4. Equation (2.11) gives

(7.1) ΨG(1, α) = inf{t ≥ 0 : tg(α/t) ≥ 1} = t(α) = t.

That the infimum is achieved can be seen from (2.10).

Under Case 1 the critical value u∗ =
∫ 1

c
c(p− c)−1 dm(p) < ∞, and also

a′(u∗−) =

{∫

[c,1]

p

(p− c)2
m(dp)

}−1

> 0.

By the concavity of a and (2.10), for 0 ≤ y ≤ a′(u∗−) we have g(y) = −yu∗ + c. Consequently
for small enough α

1 = tg(α/t) = −αc

∫

[c,1]

1

p− c
m(dp) + ct

and equation (2.13) follows.
In Case 2 a′(0+) > a′(u∗−) = 0 and hence for small enough α > 0 there exists a unique

u0 ∈ (0, u∗) such that a′(u0) = α/t. Set a0 = a(u0) ∈ (0, c). As α ց 0, both u0 ր u∗ and
a0 ր c. We have the equations

a′(u0)
−1 =

∫

[c,1]

p

(p− a0)2
m(dp) =

t

α
, 1 = tg(α/t) = −αu0 + ta0 ,

(7.2) t =
1

a
+

αu0

a0
=

1

a0
+ α

∫

[c,1]

1

p− a0
m(dp)

and

(7.3)
1

a20
= α

∫

[c,1]

1

(p− a0)2
m(dp).

Assuming (2.12), start with ν ∈ (−1, 0)∪ (0, 1). For a small enough ε > 0 there are constants
0 < κ1 < κ2 such that

(7.4) κ1(p− c)ν+1 ≤ m[c, p) ≤ κ2(p− c)ν+1 for p ∈ [c, c+ ε]

and as ε ց 0 we can take κ1, κ2 → κ. First we estimate c− a0. Fix ε > 0.

1

α
= a20

∫

[c,1]

1

(p− a0)2
m(dp) = 2a20

∫ ∞

c

m[c, p)

(p− a0)3
dp

= 2a20

∫ c+ε

c

m[c, p)

(p− a0)3
dp+ C1(ε)
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for a quantity C1(ε) = O(ε−2). The first term above can be bounded above and below by (7.4),
and we develop both bounds together for κi, i = 1, 2, as

(7.5)

2κia
2
0

∫ c+ε

c

(p− c)ν+1

(p− a0)3
dp+ C1(ε)

= 2κia
2
0

∫ c+ε

c

[
(p− a0)− (c− a0)

]ν+1

(p− a0)3
dp+ C1(ε)

= 2κia
2
0

∞∑

k=0

(
ν + 1

k

)
(−1)k(c− a0)

k

∫ c+ε

c

(p− a0)
ν−k−2dp+ C1(ε)

= 2κia
2
0

∞∑

k=0

(
ν + 1

k

)
(−1)k(c− a0)

k (c− a0)
ν−k−1 − (c+ ε− a0)

ν−k−1

k − ν + 1
+ C1(ε)

= 2κia
2
0Aν(c− a0)

ν−1 − 2κia
2
0

∞∑

k=0

(
ν + 1

k

)
(−1)k

k − ν + 1
(c− a0)

k(c+ ε− a0)
ν−k−1 + C1(ε)

= 2κia
2
0Aν(c− a0)

ν−1 + C1(ε).

C1(ε) changed of course in the last equality. In the next to last equality above we defined

Aν =
∞∑

k=0

(
ν + 1

k

)
(−1)k

k − ν + 1
.

Rewrite the above development in the form

(c− a0)
1−ν = 2κc2Aνα+ α[2Aν(κia

2
0 − κc2) + C1(ε)(c− a0)

1−ν ].

Now choose ε = ε(α) ց 0 as α ց 0 but slowly enough so that C1(ε)(c− a0)
1−ν → 0 as α ց 0.

Then also κia
2
0 → κc2 and we can write

(7.6) c− a0 = B0α
1

1−ν + o(α
1

1−ν )

with a new constant B0 = (2κc2Aν)
1

1−ν .
Now consider the case ν ∈ (0, 1) which also guarantees

∫
[c,1]

(p− c)−1 m(dp) < ∞. From (7.2)

and (7.6) as α ց 0

ΨG(1, α) =
1

a0
+ α

∫

[c,1]

1

p− a0
m(dp)

=
1

c
+ α

∫

[c,1]

1

p− c
m(dp) +O(α

1
1−ν ) + α

(∫

[c,1]

1

p− a0
m(dp)−

∫

[c,1]

1

p− c
m(dp)

)

=
1

c
+ α

∫

[c,1]

1

p− c
m(dp) + o(α).

Next the case ν ∈ (−1, 0). The steps are similar to those above so we can afford to be sketchy.

ΨG(1, α) =
1

a0
+ α

∫

[c,1]

1

p− a0
m(dp)

=
1

c
+

c− a0
c2

+
(c− a0)

2

c2a0
+ α

∫ c+ε

c

m[c, p)

(p− a0)2
dp+ αC1(ε).

Again, using (7.4) and proceeding as in (7.5), we develop an upper and a lower bound for the
quantity above with distinct constants κi, i = 1, 2. After bounding m[c, p) above and below with
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κi(p − c)ν+1 in the integral, write (p − c)ν+1 = ((p − a0) − (c − a0))
ν+1 and expand in power

series.

1

c
+B0c

−2α
1

1−ν + o(α
1

1−ν ) + ακi

∫ c+ε

c

(p− c)ν+1

(p− a0)2
dp+ αC1(ε)

=
1

c
+B0c

−2α
1

1−ν + o(α
1

1−ν ) + ακi(c− a0)
ν

∞∑

k=0

(
ν + 1

k

)
(−1)k

k − ν

+ ακi(c− a0 + ε)ν
∞∑

k=0

(
ν + 1

k

)
(−1)k

ν − k

(
c− a0

c− a0 + ε

)k

+ αC1(ε)

=
1

c
+Bα

1
1−ν + o(α

1
1−ν ) +Aν,2α(κi − κ)(c− a0)

ν + αC1(ε).

In the last equality the next to last term with the
∑∞

k=0 sum was subsumed in the αC1(ε) term.
Then we introduced new constants

(7.7) Aν,2 =

∞∑

k=0

(
ν + 1

k

)
(−1)k

k − ν
and B = B0c

−2 + κBν
0Aν,2.

As before, by letting ε = ε(α) ց 0 slowly enough as α ց 0 we can extract ΨG(1, α) = c−1 +

Bα
1

1−ν + o(α
1

1−ν ) from the above bounds.
It remains to treat the cases ν = −1, 0, 1 where integration of the type done in (7.5) is

elementary. We omit the details. �
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