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Abstract

We show that the notions of R-trivial monoid and weakly ordered

monoid are equivalent. We use this fact to construct a complete system

of orthogonal idempotents for all R-trivial monoids.

1 Introduction

Recently, Denton ([5], [6]) gave a construction for a complete system of or-
thogonal idempotents for the 0-Hecke algebra of type A, the first since the
question was posed by Norton [9] in 1979. A complete system of orthogo-
nal idempotents for left regular bands was found by Brown [3] and Saliola
[10]. Finding such collections is an important problem in representation
theory because they give a decomposition of the algebra into projective in-
decomposable modules: If {eJ}J∈I is such a collection for an algebra A, then
A = ⊕J∈IAeJ for indecomposable modules AeJ . They also allow for the ex-
plicit computation of the quiver, the Cartan invariants, and the Wedderburn
decomposition of the algebra (see [2], [1]).

Schocker [11] constructed a class of monoids, called weakly ordered monoids,
to generalize 0-Hecke monoids and left regular bands, with the broader aim
of finding a complete system of orthogonal idempotents for the corresponding
monoid algebras.

A key step in being able to do so is recognizing that the notions of weakly
ordered monoid and R-trivial monoid are one and the same. In Section 2,
we fill out an outline of a proof that Steinberg [12] pointed out to us that
connects the two concepts. In Section 3, we use the equivalence to provide a
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construction of a complete system of orthogonal idempotents for the resulting
monoid algebras.

It should be noted that Denton, Hivert, Schilling and Thiéry [7] give a
construction of a complete system of orthogonal idempotents for J-trivial
monoids, which are a subclass of R-trivial monoids. Left regular bands, for
example, are R-trivial but not necessarily J-trivial. In this paper, we give a
uniform construction for all R-trivial monoids.
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2 Weakly ordered monoids and R-trivial monoids

Given any monoid T , that is, a set with an associative multiplication and an
identity element, we can define a preorder ≤ on T as follows: Given u, v ∈ T ,
u ≤ v if there exists w ∈ T such that uw = v. We write u < v if u ≤ v

but u 6= v. Unless stated otherwise, the monoids throughout the paper are
endowed with this “weak” order.

Definition 2.1. Let (L,�) be an upper semilattice. A weakly ordered

monoid W is a finite monoid with two maps C,D : W → L such that

1. C is a surjection of monoids.

2. If u, v ∈ W are such that uv ≤ u, then C(v) � D(u).

3. If u, v ∈ W are such that C(v) � D(u), then uv = u.

Remark 2.2. In Schocker’s paper, he actually calls these weakly ordered
semigroups. However our understanding is that monoids include a unity and
semigroups do not. So throughout the paper we call these weakly ordered
monoids.

Definition 2.3. We say that the monoid S is R-trivial if, for all x, y ∈ S,
xS = yS implies x = y.
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We restrict our discussion to finite R-trivial monoids.

Example 2.4. A monoid W is called a left regular band if x2 = x and
xyx = xy for all x, y ∈ W . Left-regular bands are R-trivial. Indeed, if
xW = yW , then there exist u, v ∈ W such that xu = y and x = yv. But
then, since uv = uvu,

x = yv = xuv = xuvu = yvu = xu = y.

Left regular bands are also weakly ordered monoids, see Shocker [11], Eg.
2.4 and Brown [3], Appendix B.

Example 2.5. Let G be a Coxeter group with simple generators {si : i ∈ I}
and relations:

• s2i = 1,

• sisjsisj . . .
︸ ︷︷ ︸

mij

= sjsisjsi . . .
︸ ︷︷ ︸

mij

for positive integers mij .

Then the 0-Hecke monoid HG
n (0) has generators {Ti : i ∈ I} and relations:

• T 2
i = Ti,

• TiTjTiTj . . .
︸ ︷︷ ︸

mij

= TjTiTjTi . . .
︸ ︷︷ ︸

mij

for positive integers mij .

Of particular interest is the case when G is the symmetric group Sn. Norton
[9] gave a decomposition of the monoid algebra CHSn

n (0) into left ideals and
classified its irreducible representations. She was not able to construct a
complete system of orthogonal idempotents for the algebra. Denton [5] gave
the first construction of a set of orthogonal idempotents for CHSn

n (0).

The weakly ordered monoid HSn
n (0) has maps C and D onto the lattice

of subsets of {1, . . . , n − 1}. The map C is the content set of an element,
that is, if x = Ti1Ti2 . . . Tik , then C(x) is the set containing i1, i2, . . . , ik. The
map D is the subset of right descents of an element, that is, xTi = x if and
only if i ∈ D(x).

Example 2.6. Consider the 3× 3–matrices over Z given by

g1 =





1 0 0
0 0 1
0 0 1



 and g2 =





0 1 0
0 1 0
0 0 1



 .
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Let S be the monoid with identity generated by g1 and g2, that is, S =
{1, g1, g2, g1g2, g2g1}. S is both an R-trivial monoid and a weakly ordered
monoid. For example, we can take L be to be usual lattice of subsets of
{1, 2}, with C : S → L given by

C(1) = ∅, C(g1) = {1}, C(g2) = {2}, C(g1g2) = C(g2g1) = {1, 2},

and D : S → L given by

D(1) = ∅, D(g1) = {1}, D(g2) = D(g1g2) = {2}, D(g2g1) = {1, 2}.

S, however, is neither a left regular band, since g1g2 is not idempotent, nor
isomorphic to the 0-Hecke monoid CHS3

3 (0) on 2 generators, since the latter
has 6 elements.

The fact that the above examples are both weakly ordered monoids and
R-trivial monoids is no coincidence: these two notions are equivalent.

Proposition 2.7. A monoid S is R-trivial if and only if the preorder ≤
defined above is a partial order.

Proof. Suppose S is an R-trivial monoid and x, y ∈ S are such that x ≤ y

and y ≤ x. Then there exist u, v ∈ S such that xu = y and yv = x. So
y ∈ xS and x ∈ yS, implying that yS ⊆ xS and xS ⊆ yS. That is, xS = yS.
Since S is R-trivial, x = y.

On the other hand, suppose that the given preorder is a partial order,
and that xS = yS for some x, y ∈ S. Since x = x · 1 ∈ xS = yS, we have
that x = yu for some u ∈ S. So y ≤ x. Similarly, y ∈ xS implies that x ≤ y.
The antisymmetry of ≤ implies then that x = y. So S is R-trivial.

Corollary 2.8. A weakly ordered monoid is an R-trivial monoid.

Proof. Let W be a weakly ordered monoid. Lemma 2.1 in [11] shows that
the defining conditions of a weakly ordered monoid imply that the preorder
on W is a partial order. The result now follows from Proposition 2.7.

Let S be a finite R-trivial monoid. We will show that S is a weakly
ordered monoid using an argument outlined by Steinberg [12].

We must establish the existence of an upper semi-lattice L and two maps
C and D from S to L that satisfy the conditions of Definition 2.1. We gather
here the definitions of L, C and D:
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1. L is the set of left ideals Se generated by idempotents e in S, ordered
by reverse inclusion;

2. C : S → L is defined as C(x) = Sxω, where xω is the idempotent power
of x (see Corollary 2.10);

3. D : S → L is defined as D(u) = C(e), where e is a maximal element
in the set {s ∈ S : us = u} (with respect to the preorder ≤).

The remainder of this section is dedicated to showing that these objects are
well-defined and that they satisfy the conditions of Definition 2.1.

We begin by using Proposition 2.7 to show that the submonoid generated
by any x in S stabilizes at a particular power of x.

Lemma 2.9. For each x ∈ S, there exists a positive integer ω = ω(x) such
that xωx = xω.

Proof. If x = 1, we may take ω to be 1. If x 6= 1, consider the set of
positive integers N = {n : xn = xk for some 0 ≤ k < n}. Since the set
{1, x, x2, x3, . . .} is a subset of S and S is finite, the set N is nonempty.
Let m + 1 be the smallest member of N . Since x 6= 1, m + 1 ≥ 2. The
minimality of m + 1 tells us that 1, x, x2, . . . , xm are distinct: Given our
order, 1 < x < x2 < · · · < xm. If xm+1 = xk, where k < m, then we
would have that xm ≤ xk because xmx = xm+1 = xk, and xk ≤ xm because
xkxm−k = xm. But then Propostion 2.7 tells us that xk = xm, contradicting
xk < xm. So xm+1 must be xm and we may take ω to equal m.

Consequently, every element in an R-trivial monoid has some power that
is idempotent.

Corollary 2.10. For each x ∈ S, there exists a positive integer ω = ω(x)

such that
(
xω
)2

= xω.

Remark 2.11. In what follows, if x ∈ CS and there exists an N such that
xN+1 = xN , we sometimes abuse notation by writing xN instead of xω.

The next technical lemma sets the groundwork needed to define the lattice
L and the maps C,D : S → L.

Lemma 2.12. Let S be a finite R-trivial monoid. For all x and y in S,
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1. (xy)ωx = (xy)ω

2. (xy)ωxω = (xy)ω

3. (xωyω)ωxω = (xωyω)ω

4. (xωyω)ω = (xωyω)ω (xy)

5. (xωyω)ω = (xωyω)ω (xy)ω

Proof. (1) Since (xy)ωx ∈ (xy)ωS, it follows that (xy)ωxS ⊆ (xy)ωS. To
show the reverse inclusion, note that (xy)ω = (xy)ω(xy) =

(
(xy)ωx

)
y ∈

(xy)ωxS, where the first equality follows from Lemma 2.9. So (xy)ωS ⊆
(xy)ωxS. Thus (xy)ωxS = (xy)ωS. Since S is an R-trivial monoid, the
desired result follows.

(2) This follows from applying (1) repeatedly.
(3) Let u = xω and v = yω. Now, by (1), (uv)ωu = (uv)ω.
(4) We compute:

(xωyω)ω = (xωyω)ω−1xωyω

= (xωyω)ω−1xωyωy (by Lemma 2.9)

= (xωyω)ωy

= (xωyω)ωxωy (by (3))

= (xωyω)ωxωxy (by Lemma 2.9)

= (xωyω)ωxy (by (3))

(5) This follows by repeatedly applying part (4).

We are now ready to construct a lattice corresponding to the R-trivial
monoid S. Define

L = {Se : e ∈ S such that e2 = e}.

That is, L is the set of left ideals generated by idempotents. Define a partial
order on L by

Se � Sf ⇐⇒ Se ⊇ Sf.

Proposition 2.13. If e and f are idempotents in S, then S(ef)ω is the least
upper bound of Se and Sf in L.

Proof. First, let us show that S(ef)ω is an upper bound for Se and Sf .
Since, by Lemma 2.12 (1), (ef)ω = (ef)ωe, we have that (ef)ω ∈ Se. Hence

S(ef)ω ⊆ Se and S(ef)ω � Se. Moreover, (ef)ω =
(

(ef)ω−1e
)

f ∈ Sf . So
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S(ef)ω ⊆ Sf and S(ef)ω � Sf . So S(ef)ω is an upper bound for Se and
Sf .

Next, let us show that S(ef)ω is the least upper bound for Se and Sf .
Suppose g is an idempotent in S such that Sg is an upper bound for Se and
Sf . That is, Sg ⊆ Se and Sg ⊆ Sf . Since Sg ⊆ Se, g = te for some t ∈ S.
But then ge = (te)e = te2 = te = g. Similarly, Sg ⊆ Sf implies that gf = g.
So g(ef) = (ge)f = gf = g and it follows that

g = g(ef) =
(

g(ef)
)

(ef) = g(ef)2 =
(

g(ef)
)

(ef)2 = g(ef)3 = · · · = g(ef)ω.

Consequently, g ∈ S(ef)ω, Sg ⊆ S(ef)ω, and Sg � S(ef)ω. So S(ef)ω is the
least upper bound of Se and Sf .

Hence, we may define the join of two elements Se and Sf in L by

Se ∨ Sf = S(ef)ω.

That is, L is an upper semilattice with respect to this join operation.
Define a map C : S → L by C(x) = Sxω.

Proposition 2.14. C is a surjective monoid morphism.

Proof. Let x, y ∈ S. By Lemma 2.12 (5), we know that (xωyω)ω = (xωyω)ω(xy)ω.
Hence, (xωyω)ω ∈ S(xy)ω and S(xωyω)ω ⊆ S(xy)ω.

To show the reverse inclusion, we begin by noting that, by Lemma 2.12 (2),
(xy)ω = (xy)ωxω. So (xy)ω ∈ Sxω and S(xy)ω ⊆ Sxω. That is, S(xy)ω �
Sxω. Also, by using Lemmas 2.9 and 2.12 (1), we have

(xy)ω = (xy)ω(xy)

=
(

(xy)ωx
)

y = (xy)ωy

=
(

(xy)ω(xy)
)

y

=
(

(xy)ωx
)

y2 = (xy)ωy2

= · · ·

=
(

(xy)ωx
)

yω = (xy)ωyω.

So (xy)ω ∈ Syω, which implies that S(xy)ω ⊆ Syω and S(xy)ω � Syω. In
particular, S(xy)ω is an upper bound for both Sxω and Syω. So S(xy)ω �
Sxω ∨ Syω = S(xωyω)ω, that is, S(xy)ω ⊆ S(xωyω)ω.
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Thus C(xy) = S(xy)ω = S(xωyω)ω = Sxω ∨ Syω = C(x) ∨ C(y), and C

is a monoid morphism. Finally, we know that every element of L is of the
form Se for some idempotent e in S. But then C(e) = Seω = Se; that is, C
is a surjective morphism.

Given x ∈ S, we defined C(x) to be the left ideal of S generated by xω.
Here is an alternate characterization of C(x):

Proposition 2.15. Given x ∈ S, C(x) = {a ∈ S : ax = a}.

Proof. Take an arbitrary element in Sxω, say txω. Since
(
txω
)
x = t

(
xωx

)
=

txω by Lemma 2.9, we see that txω ∈ {a ∈ S : ax = a}. On the other hand,
take b ∈ {a ∈ S : ax = a}. Then

bxω = (bx)xω−1 = bxω−1 = (bx)xω−2 = bxω−2 = · · · = bx = b.

So b ∈ Sxω.

We now define a map D : S → L. Given u ∈ S, let D(u) = C(e), where
e is a maximal element in the set {s ∈ S : us = u}.

To check whether the map D is well-defined, let e and f be two distinct
maximal elements in {s ∈ S : us = u}. Since e ≤ ef and u(ef) = (ue)f =
uf = u, by the maximality of e, e = ef . Similarly, since f ≤ fe and
u(fe) = u, the maximality of f implies f = fe. But then, by Proposition
2.14,

C(e) = C(ef) = C(e) ∨ C(f) = C(f) ∨ C(e) = C(fe) = C(f).

Note that the maximality of e and ue2 = u also implies that e = e2, that is,
e is idempotent.

The next proposition shows that the C and D maps on S interact in
precisely the manner given in conditions 2 and 3 in Definition 2.1 of a weakly
ordered monoid. The following lemma will help us prove this proposition.

Lemma 2.16. Let x, y ∈ S. If x ≤ y, then C(x) � C(y).

Proof. Take s ∈ C(y). Then sy = s. Since x ≤ y, there exists t ∈ S such
that y = xt. So sxt = s implying sx ≤ s. But s ≤ sx. Since, by Proposition
2.7, the order on S is a partial order, sx = s. That is, s ∈ C(x). Hence
C(y) ⊆ C(x), that is, C(x) � C(y).
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Proposition 2.17. Let u, v ∈ S.

(i) If uv ≤ u, then C(v) � D(u).

(ii) If C(v) � D(u), then uv = u.

Proof. (i) Since u ≤ uv, by Proposition 2.7, u = uv. Hence v lies in the set
{s ∈ S : us = u}. Let e be a maximal element in this set such that v ≤ e.
Then, by Lemma 2.16, C(v) � C(e) = D(u).

(ii) By definition, D(u) = C(e), where e is a maximal element of {s ∈ S :
us = u}. So if C(v) � D(u), then C(v) � C(e). Hence C(e) ⊆ C(v). Since
ue = u, u lies in C(e). So u is also a member of C(v); that is, uv = u.

Propositions 2.14 and 2.17 tell us that an R-trivial monoid is a weakly
ordered monoid. Combining this with Corollary 2.8, we have the following
result.

Theorem 2.18. A monoid W is a weakly ordered monoid if and only if it
is an R-trivial monoid.

3 Constructing idempotents

We begin this section with a small technical lemma about R-trivial monoids.
The proof is rather trivial, but we use it often enough in proofs to justify
stating it at the onset.

Lemma 3.1. Suppose W is an R-trivial monoid. If x, y, z ∈ W are such
that xyz = x, then xy = x.

Consequently, if x, y1, y2, . . . , ym ∈ W are such that xy1y2 . . . ym = x, then
xyi = x for all 1 ≤ i ≤ m.

Proof. If xyz = x then xyW = xW . Therefore xy = x by the definition
of W being R-trivial. The second statement immediately follows from the
first.

Definition 3.2. Let A be an algebra. Let Λ = {eJ : J ∈ I} be a set of
nonzero elements of A. We say that Λ is a complete system of orthogo-

nal idempotents for A if:

1. eJ is idempotent, that is, e2J = eJ for all J ∈ I;
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2. eJ is orthogonal to eK, that is, eJeK = 0 for J,K ∈ I with J 6= K; and

3. the collection Λ is a maximal set of nonzero elements with properties 1
and 2.

Remark 3.3. A collection of nonzero elements that satisfies 1, 2 and 3 in
the above defintion will also satisfy the following two conditions:

• eJ is primitive for all J ∈ I, that is, if eJ = x+ y, where x and y are
idempotent and xy = yx = 0, then either x or y is zero; and

•
∑

J∈I

eJ = 1.

To see primitive, just note that if eJ can be written as x + y, then we
could replace eJ in Λ with x and y, contradicting the maximality of Λ. To
see the second condition, we just note that if

∑

J eJ 6= 1, then 1 −
∑

J eJ is
idempotent and orthogonal to all other eJ . Combining this element with Λ
would again contradict the maximality of Λ.

LetW denote a weakly ordered monoid with C andD being the associated
“content” and “descent” maps from W to an upper semi-lattice L. We let
G denote a set of generators of W . The main goal of this paper is to build
a method for finding a complete system of orthogonal idempotents for the
monoid algebra CW . In particular, this solves the problem posed by Norton
about the 0-Hecke algebra for the symmetric group.

For each J ∈ L, we define a Norton element AJTJ . Let us begin by
defining TJ .

For each J ∈ L, let

TJ =
( ∏

g∈G
C(g)�J

gω
)ω

∈ W.

Remark 3.4. A different ordering of the set G of generators may produce
different TJ ’s; so we fix an (arbitrarily chosen) order.

We now define the AJ in the “Norton element” AJTJ . First we let

BJ =
∏

g∈G
C(g)6�J

(1− gω) ∈ CW.
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We would like to raise BJ to a high enough power to make it idempotent.
However, BJ 6∈ W , so Bω

J may not be well defined. The following lemma and
corollary resolve this problem.

Definition 3.5. Given x ∈ CW if x =
∑

w∈W cww, then the coefficient of
w in x is cw. We say w is a term of x if the coefficient of w in x is nonzero.

Lemma 3.6. Let b ∈ W and suppose bxω = b for some x ∈ G with C(x) 6� J .

1. Then the coefficient of b in bBJ is zero; and

2. if c is a term of bBJ , then c > b.

Proof. Let D = {xω : x ∈ G, C(x) 6� J, bxω = b}. By assumption D is not
empty. Let g1, g2, . . . , gm be the generators which appear in the definition of
BJ . Then

BJ =
∑

i1<i2<···<ik

(−1)kgωi1g
ω
i2
· · · gωik .

It follows from Lemma 3.1 that the coefficient of b in bBJ is counting the
terms in BJ where each of gi1, . . . , gik come from D, weighted with sign (−1)k.
If |D| = n ≥ 1 then this is 1− n+

(
n

2

)
−
(
n

3

)
+ · · ·+ (−1)n = 0.

The second statement follows from the first and the definition of order, as
every term c of bBJ must be of the form c = bm for some term m appearing
in BJ , and hence c ≥ b.

Lemma 3.7. For every J ∈ L, there exists an integer N such that yωBN
J = 0

for all y ∈ G with C(y) � J .

Proof. Let N = ℓ+ 1, where ℓ is the length of the longest chain of elements
in the poset (W,≤).

Suppose yωBN
J 6= 0. Let cN be a term of BN

J . Then cN is a term of cN−1BJ

for some term cN−1 in yωBN−1
J . Since yωyω = yω, Lemma 3.6 (1) implies that

yω is not a term of yωBk
J for any k ≥ 1. Hence, cN−1 = yωgω1 · · · gωm for some

m ≥ 1 and gi ∈ G with C(gi) 6� J . In particular, cN−1g
ω
m = cN−1, and so, by

Lemma 3.6 (2), cN > cN−1.
Repeated application of this argument produces a decreasing chain

cN > cN−1 > cN−2 > · · · > c1

of N elements in W , contradicting the fact that the length of the longest
chain of elements in (W,≤) is ℓ < N .
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Corollary 3.8. For every J ∈ L there exists an N such that BN+1
J = BN

J .

Proof. By Lemma 3.7, (B − 1)BN = 0 for a sufficiently large N since every
element of B − 1 is of the form yω where y ∈ G and C(y) � J .

This now allows us to define AJ = Bω
J .

Lemma 3.9. Let J ∈ L. Then:

1. TJx = TJ for all x such that C(x) � J ;

2. yωAJ = 0 for all y such that C(y) 6� J and y ∈ G.

Proof. Since J = C(TJ), C(x) � J implies C(x) ⊇ C(TJ). We also know
that TJ ∈ C(TJ) because TJ is idempotent. So TJ ∈ C(x), that is, TJx = TJ .

The second part follows from Lemma 3.7 since A = BN .

Remark 3.10. Although TJ and AJ are idempotents individually, their prod-
uct, the “Norton element” zJ , need not be. For example, take the 0-Hecke
algebra H6(0) corresponding to the symmetric group S6. Let J be the subset
{1, 4, 5} of {1, 2, 3, 4, 5}. Then TJ = T1T4T5T4, AJ = (1−T2)(1−T3)(1−T2)
and zJ is their product. No power of zJ is idempotent.

Recall that zJ = AJTJ .

Lemma 3.11. The coefficient of TJ in zJ is 1. All other terms y in zJ have
C(y) ≻ J .

Proof. The coefficient of the identity element 1 in AJ is 1. Each term of
AJTJ is of the form aTJ for a term a of AJ . If a 6= 1, then C(a) � J so
C(aTJ) = C(a) ∨ C(TJ) ≻ C(TJ) = J . Hence the coefficient of TJ in AJTJ

is 1 and all other terms have content greater than J .

Lemma 3.12. If J 6� K then zJzK = 0.

Proof. Since J 6� K, there exists a g ∈ G with C(g) � J but C(g) 6� K.
Expanding the product

zJzK = AJTJAKTK .

We will show TJAK = 0. By Lemma 3.9 (1), TJg
ω = TJ and by Lemma 3.9

(2), (1− gω)AJ = AJ or gωAJ = 0. Hence TJAJ = TJg
ωAJ = 0.

12



Definition 3.13. Let J ∈ L. Let

PJ :=
∑

n,m≥0

(1− zJ)
n+m

z2J =
∑

k≥0

(k + 1) (1− zJ)
k
z2J .

(Lemma 3.15 shows there are only finitely many terms in this summation.)

Remark 3.14. A monoid S is called J-trivial if SxS = SyS implies x = y

for all x, y ∈ S. When S is J-trivial it suffices to define

PK =
∑

n≥0

(1− zK)
nzK .

The next result shows that the sum in the definition of PJ contains only
finitely many summands, and so PJ is a well-defined element of CW for each
J ∈ L.

Lemma 3.15. For all J ∈ L, there exists an N such that (1− zJ)
N
z2J = 0.

Proof. To simplify the notation, let us temporarily set T = TJ , A = AJ and
z = zJ = AT . We first note that for any integer k ≥ 0,

(1− z)kz2 = z(1 − z)kz

= AT (1− AT )kAT

= A(T (1− A)T )kAT.

We will show that (T (1 − A)T )NA = 0 for N > ℓ, where ℓ is the length of
the longest chain in the poset (W,≤).

Let us write 1 − A =
∑

a∈W caa where each term has ca 6= 0 only if
a = gω1 · · · gωk with C(gi) 6� J for all i. Therefore

T (1−A)T =
∑

a∈W

caTaT =
∑

a∈W

TaT=Ta

caTa +
∑

a∈W

TaT 6=Ta

caTaT.

Note that c1 = 0 since 1 is not a term of (1−A). If TaT = Ta, then we have

TaT · (T (1− A)T ) = Ta(1−A)T = Ta− TaAT = Ta

13



since aA = 0 by Lemma 3.9. Thus,

(T (1− A)T )N =






∑

a1∈W

Ta1T=Ta1

ca1Ta1 +
∑

a1∈W

Ta1T 6=Ta1

ca1Ta1T




 (T (1−A)T )N−1

=
∑

a1∈W

Ta1T=Ta1

ca1Ta1 +






∑

a1∈W

Ta1T 6=Ta1

ca1Ta1T




 (T (1−A)T )N−1.

Next, rewrite the second summand above using the same argument:






∑

a1∈W

Ta1T 6=Ta1

ca1Ta1T




 (T (1−A)T )N−1

=






∑

a1∈W

Ta1T 6=Ta1

ca1Ta1T






(
∑

a2∈W

ca2Ta2T

)

(T (1− A)T )N−2

=






∑

a1,a2∈W

Ta1T 6=Ta1

ca1ca2Ta1Ta2T




 (T (1− A)T )N−2

=
∑

Ta1T 6=Ta1
Ta1Ta2T=Ta1Ta2

ca1ca2Ta1Ta2

+






∑

Ta1T 6=Ta1
Ta1Ta2T 6=Ta1Ta2

ca1ca2Ta1Ta2T




 (T (1− A)T )N−2.

Continuing in this way, we can write (T (1−A)T )N in the form

(T (1− A)T )N =

(
∑

ca1Ta1 + · · ·+
∑

ca1 · · · caNTa1 · · ·TaN

)

+
∑

Ta1···TaiT 6=Ta1···Tai
1≤i≤N

ca1 · · · caNTa1 · · ·TaNT.

14



By Lemma 3.9, we have aiA = 0 for all terms ai in 1−A, and so

(T (1− A)T )N ·A =






∑

Ta1···TaiT 6=Ta1···Tai
1≤i≤N

ca1 · · · caNTa1 · · ·TaNT




A.

This summation is 0 as it ranges over an empty set: indeed, if it is not empty,
we would have an increasing chain of length N > ℓ, namely

Ta1 < Ta1Ta2 < Ta1Ta2Ta3 < · · · < Ta1Ta2 · · ·TaN ,

Therefore, (T (1− A)T )NA = 0.

Lemma 3.16. The coefficient of TJ in PJ is 1 and all other terms y of PJ

have C(y) ≻ J .

Proof. If n+m > 0 then

AJTJAJTJ(1−AJTJ)
n+m = AJTJAJ(TJ − TJAJTJ)

n+m.

Each term x in (TJ − TJAJTJ)
n+m has C(x) ≻ J , so no TJ appears in

z2J(1 − zJ )
n+m. The coefficient of TJ in zJ is 1, by Lemma 3.11. Hence TJ

appears in z2J(1 − zJ)
0 with coefficient 1. By Lemma 3.11, since all of the

terms y 6= TJ of zJ have C(y) ≻ J and PJ is a polynomial in zJ , all other
terms w of PJ must have C(w) ≻ J .

Lemma 3.17. As polynomials in x,

x

N∑

n=0

(1− x)n = 1− (1− x)N+1,

for any nonnegative integer N .

Proof. Induct on N .

Proposition 3.18. For each J ∈ L, the element PJ is idempotent.
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Proof. Let J ∈ L be fixed and let N be such that (1 − zJ)
Nz2J = 0. Let us

temporarily denote zJ by z. We can use Lemma 3.17 to rewrite PJ as

PJ =
∑

n,m≥0

z2(1− z)n+m

=
N∑

n=0

N−n∑

m=0

z2(1− z)n+m

=

N∑

n=0

(1− z)n

(

z2
N−n∑

m=0

(1− z)m

)

=
N∑

n=0

(1− z)n
(
z − z(1 − z)N−n+1

)

= z

(
N∑

n=0

(1− z)n

)

− (N + 1)z(1− z)N+1

= 1− (1− z)N+1 − (N + 1)z(1− z)N+1.

This implies that z2PJ = z2 since z2(1− z)N+1 = 0, and so

P 2
J =

(
N∑

n=0

N−n∑

m=0

(1− z)n+mz2

)

PJ =
N∑

n=0

N−n∑

m=0

(1− z)n+mz2 = PJ .

Lemma 3.19. For all J,K ∈ L, with J 6� K, PJPK = 0.

Proof. This is implied by Lemma 3.12 and the fact that PJ is a polynomial
in zJ with no constant term.

Definition 3.20. For each J ∈ L, let eJ := PJ

(

1−
∑

K≻J

eK

)

.

Lemma 3.21. TJ occurs in eJ with coefficient 1. All other terms y of eJ
have C(y) ≻ J . In particular, eJ 6= 0.

Proof. We proceed by induction. If J is maximal, then eJ = PJ , so the
statement is implied by Lemma 3.16.

Now suppose the statement is true for all M ≻ J . Then eJ = PJ(1 −
∑

M≻J eM). By induction, all terms x of eM have C(x) � M ≻ J . So terms
y from PJeM have C(y) � M ≻ J . The only other terms are those from PJ ,
for which the statement was proved in Lemma 3.16.
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Lemma 3.22. eKPJ = 0 for K 6� J .

Proof. The proof is by a downward induction on the semilattice. If K is
maximal, then eK = PK , so by Lemma 3.19, eKPJ = PKPJ = 0.

Now suppose that for every L ≻ K, eLPJ = 0 for L 6� J , and we will
show that eKPJ = 0 for K 6� J . We expand eKPJ :

eKPJ = PK

(

1−
∑

L≻K

eL

)

PJ = PKPJ −
∑

L≻K

PKeLPJ .

Since K 6� J , we have PKPJ = 0 by Lemma 3.19, and eLPJ = 0 by induction,
since L ≻ K and K 6� J implies L 6� J .

Corollary 3.23. eJ is idempotent.

Proof. We expand eJeJ :

eJeJ = PJ

(

1−
∑

M≻J

eM

)

PJ

(

1−
∑

M≻J

eM

)

= PJ

(

PJ −
∑

M≻J

eMPJ

)(

1−
∑

M≻J

eM

)

= P 2
J

(

1−
∑

M≻J

eM

)

(by Lemma 3.22)

= PJ

(

1−
∑

M≻J

eM

)

(by Lemma 3.18)

= eJ

Lemma 3.24. eJeK = 0 for J 6= K.

Proof. The proof is by downward induction on the lattice L. For a maximal
element M ∈ L, eM = PM , so eMeK = PMPK(1 −

∑
eL) = 0 by Lemma

3.19. Now suppose that for all M ≻ J , eMeK = 0 for M 6= K and we will
show that eJeK = 0 for J 6= K. We expand eJeK :

eJeK = PJ(1−
∑

L≻J

eL)eK = PJ(eK −
∑

L≻J

eLeK) (1)
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If K 6≻ J , then
∑

L≻J eLeK = 0 by our induction hypothesis, so PJ(eK −
∑

L≻J eLeK) = PJeK = PJPK(1−
∑

M≻K eM ) = 0 by Lemma 3.19.
If K ≻ J , then

∑

L≻J eLeK = eK since eK is idempotent and eLeK = 0
for L 6= K by the inductive hypothesis. Therefore eK −

∑

L≻J eLeK = 0 and
hence the right hand side of (1) is zero.

Theorem 3.25. The set {eJ : J ∈ L} is a complete collection of orthogonal
idempotents for CW .

Proof. From [11], we know that the maximal number of such idempotents
is the cardinality of L. The rest of the claim is just Lemma 3.21, Corollary
3.23 and Lemma 3.24.

Appendix: Two examples

We show by example how to use the above construction to create orthogonal
idempotents for R-trivial monoids.

Idempotents of the free left regular band on two gener-

ators

Let W be the left regular band freely generated by two elements a, b. Then
W = {1, a, b, ab, ba}. All elements of W are idempotent. Also aba = ab

and bab = ba. The lattice L has four elements: ∅ := W, a := Wa, b :=
Wb and ab := Wab = Wba, where ∅ ≺ a ≺ ab and ∅ ≺ b ≺ ab, but a and b

have no relation.
When J = ∅, neither of the generators satisfies C(g) � J , so T∅ = 1 ∈ W .

B∅ = (1− a)(1− b). Also

B2
∅ = (1− a)(1− b)(1− a)(1− b)

= (1− a− b+ ab)(1 − a)(1− b)

= (1− a− b+ ab)(1 − b)

= (1− a− b+ ab)

= B∅.

Therefore A∅ = B∅ = 1− a− b+ ab, so z∅ = 1− a− b+ ab. Therefore z∅
is idempotent, so P∅ = 1− a− b+ ab.
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When J = a, then C(a) � a and C(b) 6� a, so Ta = a and Ba = 1−b = Aa

since 1−b is idempotent. Therefore za = (1−b)a = a−ba. z2
a
= a−ab and one

can check that z3a = z2a , so Pa = z2a (1+(1−za)+(1−za)
2+ . . . ) = z2a = a−ab.

One can check that Pa is idempotent.
Similarly, Pb = b− ba.
When J = ab, C(a), C(b) � ab, so Tab = ab and Aab = 1. zab = ab is

idempotent, so Pab = ab. Since ab is maximal, eab = ab.
Since Paeab = (a− ab)ab = ab− ab = 0, ea = Pa(1− eab) = Pa = a− ab.
Similarly, eb = b− ba.
P∅ea = (1 − a − b + ab)(a − ab) = 0. Similarly, P∅eb = 0. However,

P∅eab = (1 − a − b + ab)ab = ab − ab − ba + ab = ab − ba. So we let
e∅ = P∅(1− eab) = P∅ − P∅eab = 1− a− b+ ab− ab+ ba = 1− a− b+ ba.

One can check that {e∅, ea, eb, eab} is a collection of mutually orthogonal
idempotents.

Idempotents of HS5(0)

As mentioned above, HS5(0) has generators T1, T2, T3, T4. In this case, the
corresponding lattice is the lattice of subsets of {1, 2, 3, 4}. HS5(0) is actually
a J-trivial monoid, so we can use the simplified formula from Remark 3.14.
We use the shorthand notation T (i1, . . . , ik) to denote the element Ti1 . . . Tik .

If J = {1, 2, 3, 4}, then TJ = T (1, 2, 3, 4)ω = T (1, 2, 3, 4, 1, 2, 3, 1, 2, 1).
Also AJ = 1, so zJ = AJTJ = TJ . Also, PJ = zJ , and since J is maximal,
eJ = PJ , so

e{1,2,3,4} = T (1, 2, 3, 4, 1, 2, 3, 1, 2, 1).

If J = {1, 2, 3}, then TJ = T (1, 2, 3, 1, 2, 1) and AJ = 1 − T (4). Then
zJ = (1 − T (4))T (1, 2, 3, 1, 2, 1) = T (1, 2, 3, 1, 2, 1)− T (4, 1, 2, 3, 1, 2, 1). One
can check that z2J = zJ , so PJ = zJ . Also, one can check that PJ is orthogonal
to e{1,2,3,4}. So eJ = PJ . Therefore

e{1,2,3} = T (1, 2, 3, 1, 2, 1)− T (4, 1, 2, 3, 1, 2, 1).

Similarly,

e{2,3,4} = T (2, 3, 4, 2, 3, 2)− T (1, 2, 3, 4, 2, 3, 2).

Now let J = {1, 2, 4}. TJ = T (1, 2, 1, 4) and AJ = (1 − T (3)). Letting
zJ = AJTJ , one can check that zJ (1 − zJ)

2 = 0, so PJ = zJ(1 + (1 − zJ )).
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Again PJ is orthogonal to e{1,2,3,4}, so eJ = PJ . Therefore

e{1,2,4} = −T (1, 2, 3, 4, 2, 3, 1, 2, 1)+T (1, 2, 3, 4, 3, 1, 2, 1)−T (3, 4, 1, 2, 1)+
T (4, 1, 2, 1).

Similarly,

e{1,3,4} = −T (1, 2, 3, 4, 1, 2, 3, 2, 1)+T (1, 2, 3, 4, 2, 3, 2, 1)−T (2, 3, 4, 3, 1)+
T (3, 4, 3, 1).

When J = {1, 2}, TJ = T (1, 2, 1) and AJ = (1−T (3))(1−T (4))(1−T (3)).
Then zJ is already idempotent, so PJ = zJ . One can check that PJ is already
orthogonal to e{1,2,3,4}, e{1,2,3}, e{1,2,4}. Therefore,

e{1,2} = −T (3, 4, 3, 1, 2, 1)+T (3, 4, 1, 2, 1)+T (4, 3, 1, 2, 1)−T (3, 1, 2, 1)−
T (4, 1, 2, 1) + T (1, 2, 1).

Similarly,

e{3,4} = −T (1, 2, 3, 4, 3, 1)+T (1, 2, 3, 4, 3)+T (2, 3, 4, 3, 1)−T (3, 4, 3, 1)−
T (2, 3, 4, 3) + T (3, 4, 3).

If J = {1, 3}, TJ = T1T3 and AJ = (1 − T2)(1 − T4). One can check
that zJ(1 − zJ)

2 = 0, and PJ = zJ(1 + 1 − zJ) is idempotent. PJ is or-
thogonal to e{1,2,3,4} and e{1,2,3}, but not orthogonal to e{1,2,4}. So we define
e{1,3} = P{1,3}(1− e{1,2,4}). Then

e{1,3} = T (1, 2, 3, 4, 1, 2, 3, 2, 1)−T (1, 2, 3, 4, 1, 2, 3, 1)−T (1, 2, 3, 4, 2, 3, 2, 1)+
T (1, 2, 3, 4, 2, 3, 1)−T (2, 3, 4, 1, 2, 3, 2, 1)+T (2, 3, 4, 1, 2, 3, 1)+T (4, 1, 2, 3, 1, 2, 1)−
T (1, 2, 3, 1, 2, 1) + T (3, 4, 1, 2, 3, 2, 1) − T (3, 4, 1, 2, 3, 1) − T (4, 1, 2, 3, 2, 1) +
T (1, 2, 3, 2, 1) + T (4, 2, 3, 1)− T (2, 3, 1)− T (4, 3, 1) + T (3, 1).

Similarly,

e{2,4} = T (1, 2, 3, 4, 2, 3, 1, 2, 1)−T (1, 2, 3, 4, 2, 3, 1, 2)−T (1, 2, 3, 4, 3, 1, 2, 1)+
T (1, 2, 3, 4, 3, 1, 2)+T (1, 2, 3, 4, 2, 3, 2)−T (1, 2, 3, 4, 3, 2)−T (2, 3, 4, 2, 3, 1, 2, 1)+
T (2, 3, 4, 2, 3, 1, 2)+T (2, 3, 4, 3, 1, 2, 1)−T (2, 3, 4, 3, 1, 2)+T (3, 4, 1, 2)−T (4, 1, 2)−
T (2, 3, 4, 2, 3, 2) + T (2, 3, 4, 3, 2)− T (3, 4, 2) + T (4, 2).
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We continue in this way, constructing all of the idempotents for the alge-
bra. For the sake of completeness, the other idempotents are:

e{2,3} = −T (1, 2, 3, 4, 1, 2, 3, 1, 2, 1)+T (1, 2, 3, 4, 1, 2, 3, 1, 2)+T (2, 3, 4, 1, 2, 3, 1, 2, 1)−
T (2, 3, 4, 1, 2, 3, 1, 2)+ T (4, 1, 2, 3, 2)− T (1, 2, 3, 2)− T (4, 2, 3, 2) + T (2, 3, 2);

e{1,4} = −T (1, 2, 3, 4, 1, 2, 3, 1, 2, 1)+T (1, 2, 3, 4, 1, 2, 3, 2, 1)+T (1, 2, 3, 4, 2, 3, 1, 2, 1)−
T (1, 2, 3, 4, 3, 1, 2, 1)−T (1, 2, 3, 4, 2, 3, 2, 1)+T (1, 2, 3, 4, 3, 2, 1)−T (2, 3, 4, 2, 1)+
T (2, 3, 4, 1) + T (3, 4, 2, 1)− T (4, 2, 1)− T (3, 4, 1) + T (4, 1);

e{4} = T (1, 2, 3, 4, 1, 2, 1)−T (1, 2, 3, 4, 1, 2)−T (1, 2, 3, 4, 2, 1)+T (1, 2, 3, 4, 1)+
T (1, 2, 3, 4, 2)−T (1, 2, 3, 4)−T (2, 3, 4, 1, 2, 1)+T (2, 3, 4, 1, 2)+T (3, 4, 1, 2, 1)−
T (4, 1, 2, 1)−T (3, 4, 1, 2)+T (4, 1, 2)+T (2, 3, 4, 2, 1)−T (2, 3, 4, 1)−T (3, 4, 2, 1)+
T (4, 2, 1)+T (3, 4, 1)−T (4, 1)−T (2, 3, 4, 2)+T (2, 3, 4)+T (3, 4, 2)−T (4, 2)−
T (3, 4) + T (4);

e{3} = −T (1, 2, 3, 4, 1, 2, 3, 2) + T (1, 2, 3, 4, 1, 2, 3) + T (1, 2, 3, 4, 2, 3, 2)−
T (1, 2, 3, 4, 2, 3)+T (2, 3, 4, 1, 2, 3, 2)−T (2, 3, 4, 1, 2, 3)+T (4, 1, 2, 3, 1)−T (1, 2, 3, 1)−
T (3, 4, 1, 2, 3, 2) + T (3, 4, 1, 2, 3) − T (4, 1, 2, 3) + T (1, 2, 3) − T (4, 2, 3, 1) +
T (2, 3, 1)+T (4, 3, 1)−T (3, 1)−T (2, 3, 4, 2, 3, 2)+T (2, 3, 4, 2, 3)+T (3, 4, 2, 3, 2)−
T (3, 4, 2, 3) + T (4, 2, 3)− T (2, 3)− T (4, 3) + T (3);

e{2} = −T (3, 4, 1, 2, 3, 1, 2, 1) + T (3, 4, 1, 2, 3, 1, 2) + T (4, 1, 2, 3, 1, 2, 1)−
T (1, 2, 3, 1, 2, 1)−T (4, 1, 2, 3, 1, 2)+T (1, 2, 3, 1, 2)+T (3, 4, 2, 3, 1, 2, 1)−T (3, 4, 2, 3, 1, 2)−
T (4, 2, 3, 1, 2, 1)+T (2, 3, 1, 2, 1)+T (4, 2, 3, 1, 2)−T (2, 3, 1, 2)+T (3, 4, 3, 1, 2)−
T (3, 4, 1, 2) − T (4, 3, 1, 2) + T (3, 1, 2) + T (4, 1, 2) − T (1, 2) − T (3, 4, 3, 2) +
T (3, 4, 2) + T (4, 3, 2)− T (3, 2)− T (4, 2) + T (2);

e{1} = T (2, 3, 4, 2, 3, 2, 1)−T (2, 3, 4, 2, 3, 1)−T (2, 3, 4, 3, 2, 1)+T (2, 3, 4, 2, 1)+
T (2, 3, 4, 3, 1)−T (2, 3, 4, 1)−T (3, 4, 2, 3, 2, 1)+T (3, 4, 2, 3, 1)+T (4, 2, 3, 2, 1)−
T (2, 3, 2, 1)−T (4, 2, 3, 1)+T (2, 3, 1)+T (3, 4, 3, 2, 1)−T (3, 4, 2, 1)−T (4, 3, 2, 1)+
T (3, 2, 1)+T (4, 2, 1)−T (2, 1)−T (3, 4, 3, 1)+T (3, 4, 1)+T (4, 3, 1)−T (3, 1)−
T (4, 1) + T (1).

Finally, e∅ is just the signed sum of all elements, with sign determined by
Coxeter length.

One can check (ideally not by hand!) that {eJ : J ⊂ {1, 2, 3, 4}} is a
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complete system of orthogonal idempotents.
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