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Abstract

We show that the notions of R-trivial monoid and weakly ordered
monoid are equivalent. We use this fact to construct a complete system
of orthogonal idempotents for all R-trivial monoids.

1 Introduction

Recently, Denton ([5], [6]) gave a construction for a complete system of or-
thogonal idempotents for the 0-Hecke algebra of type A, the first since the
question was posed by Norton [9] in 1979. A complete system of orthogo-
nal idempotents for left reqular bands was found by Brown [3] and Saliola
[10]. Finding such collections is an important problem in representation
theory because they give a decomposition of the algebra into projective in-
decomposable modules: If {e;}je5 is such a collection for an algebra A, then
A = @ je5Ae; for indecomposable modules Ae;. They also allow for the ex-
plicit computation of the quiver, the Cartan invariants, and the Wedderburn
decomposition of the algebra (see [2], [1]).

Schocker [I1] constructed a class of monoids, called weakly ordered monoids,
to generalize 0-Hecke monoids and left regular bands, with the broader aim
of finding a complete system of orthogonal idempotents for the corresponding
monoid algebras.

A key step in being able to do so is recognizing that the notions of weakly
ordered monoid and R-trivial monoid are one and the same. In Section 2]
we fill out an outline of a proof that Steinberg [12] pointed out to us that
connects the two concepts. In Section [3, we use the equivalence to provide a
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construction of a complete system of orthogonal idempotents for the resulting
monoid algebras.

It should be noted that Denton, Hivert, Schilling and Thiéry [7] give a
construction of a complete system of orthogonal idempotents for J-trivial
monoids, which are a subclass of R-trivial monoids. Left regular bands, for
example, are R-trivial but not necessarily J-trivial. In this paper, we give a
uniform construction for all R-trivial monoids.
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2 Weakly ordered monoids and R-trivial monoids

Given any monoid 7', that is, a set with an associative multiplication and an
identity element, we can define a preorder < on 7' as follows: Given u,v € T,
u < v if there exists w € T such that vw = v. We write u < v if u < v
but u # v. Unless stated otherwise, the monoids throughout the paper are
endowed with this “weak” order.

Definition 2.1. Let (£, =) be an upper semilattice. A weakly ordered
monoid W is a finite monoid with two maps C, D : W — L such that

1. C is a surjection of monoids.
2. If u,v € W are such that uv < u, then C(v) < D(u).
3. If u,v € W are such that C(v) < D(u), then uv = u.

Remark 2.2. In Schocker’s paper, he actually calls these weakly ordered
semigroups. However our understanding is that monoids include a unity and
semigroups do mot. So throughout the paper we call these weakly ordered
monoids.

Definition 2.3. We say that the monoid S is R-trivial if, for all x,y € S,
xS =yS implies x = y.



We restrict our discussion to finite R-trivial monoids.

Example 2.4. A monoid W is called a left regular band if 2> = z and
ryr = xy for all z,y € W. Left-regular bands are R-trivial. Indeed, if
xW = yW, then there exist u,v € W such that xu = y and x = yv. But
then, since uv = uvu,

T =Yv = TUV = TUVU = YUu = TU = Y.

Left regular bands are also weakly ordered monoids, see Shocker [11], Eg.
2.4 and Brown [3], Appendix B.

Example 2.5. Let G be a Coxeter group with simple generators {s; : i € I}
and relations:

o s2=1,

® 55;5;5;...= 5;5;5;5; ... for positive integers m;;.
- A - -

g

Then the 0-Hecke monoid HS(0) has generators {7} : i € I} and relations:
°« 17 =T,

7

o ININTT; ... =T T;1;T; . .. for positive integers m;.

Of particular interest is the case when G is the symmetric group &,,. Norton
[9] gave a decomposition of the monoid algebra CHS"(0) into left ideals and
classified its irreducible representations. She was not able to construct a
complete system of orthogonal idempotents for the algebra. Denton [5] gave
the first construction of a set of orthogonal idempotents for CHS"(0).

The weakly ordered monoid HS"(0) has maps C' and D onto the lattice
of subsets of {1,...,n — 1}. The map C is the content set of an element,
that is, if + =T}, T;, ... T;,, then C(z) is the set containing iy, 4o, ..., 4. The
map D is the subset of right descents of an element, that is, 7; = x if and
only if i € D(x).

Example 2.6. Consider the 3 x 3—matrices over Z given by

10 0 010
gg=10 01 and go=10 1 0
0 01 0 01



Let S be the monoid with identity generated by ¢; and g, that is, S =
{1, g1, 92, 9192, g2g1}. S is both an R-trivial monoid and a weakly ordered
monoid. For example, we can take £ be to be usual lattice of subsets of
{1,2}, with C : S — L given by

c(1) = 0, Clg1) = {1}, Clg2) = {2}, C(g192) = C(g291) = {1, 2},

and D : S — L given by

D(1> = (2)7 D(gl) = {1}7 D(g2> = D<9192) = {2}7 D<g2gl) = {17 2}

S, however, is neither a left regular band, since ¢;¢s is not idempotent, nor
isomorphic to the 0-Hecke monoid CHS?(0) on 2 generators, since the latter
has 6 elements.

The fact that the above examples are both weakly ordered monoids and
R-trivial monoids is no coincidence: these two notions are equivalent.

Proposition 2.7. A monoid S is R-trivial if and only if the preorder <
defined above is a partial order.

Proof. Suppose S is an R-trivial monoid and x,y € S are such that x <y
and y < x. Then there exist u,v € S such that zu = y and yv = x. So
y € xS and x € yS, implying that yS C xS and xS C yS. That is, xS = yS.
Since S is R-trivial, x = y.

On the other hand, suppose that the given preorder is a partial order,
and that S = yS for some z,y € S. Since x = x -1 € xS = yS, we have
that © = yu for some u € §. So y < z. Similarly, y € x5 implies that x < y.
The antisymmetry of < implies then that x = y. So S is R-trivial. 0J

Corollary 2.8. A weakly ordered monoid is an R-trivial monoid.

Proof. Let W be a weakly ordered monoid. Lemma 2.1 in [I1] shows that
the defining conditions of a weakly ordered monoid imply that the preorder
on W is a partial order. The result now follows from Proposition 27 O

Let S be a finite R-trivial monoid. We will show that S is a weakly
ordered monoid using an argument outlined by Steinberg [12].

We must establish the existence of an upper semi-lattice £ and two maps
C and D from S to £ that satisfy the conditions of Definition 2.1l We gather
here the definitions of £, C' and D:



1. L is the set of left ideals Se generated by idempotents e in S, ordered
by reverse inclusion;

2. C': S — Lis defined as C'(x) = Sz¥, where z* is the idempotent power
of z (see Corollary 2Z10);

3. D: S — L is defined as D(u) = C(e), where e is a maximal element
in the set {s € S : us = u} (with respect to the preorder <).

The remainder of this section is dedicated to showing that these objects are
well-defined and that they satisfy the conditions of Definition 2.1

We begin by using Proposition 2.7 to show that the submonoid generated
by any z in S stabilizes at a particular power of x.

Lemma 2.9. For each x € S, there exists a positive integer w = w(x) such
that x¥x = x*.

Proof. If x = 1, we may take w to be 1. If = # 1, consider the set of
positive integers N = {n : 2" = 2% for some 0 < k < n}. Since the set
{1,z,2% 23,...} is a subset of S and S is finite, the set N is nonempty.
Let m 4+ 1 be the smallest member of N. Since x # 1, m + 1 > 2. The
minimality of m + 1 tells us that 1,z,2%, ...,2™ are distinct: Given our
order, 1 < z < 22 < --- < 2™ If 2™ = 2% where k < m, then we
would have that ™ < z¥ because 2™z = ™! = ¥, and 2% < 2™ because
a2Fa™=* = g™ But then Propostion 27 tells us that 2% = 2™, contradicting
% < 2™. So 2! must be 2™ and we may take w to equal m. O

Consequently, every element in an R-trivial monoid has some power that
is idempotent.

Corollary 2.10. For each x € S, there exists a positive integer w = w(x)
such that (:5“)2 = ¥.

Remark 2.11. In what follows, if v € CS and there exists an N such that

2Nt = 2N we sometimes abuse notation by writing V instead of x*.

The next technical lemma sets the groundwork needed to define the lattice
L and the maps C, D : S — L.

Lemma 2.12. Let S be a finite R-trivial monoid. For all x and y in S,



1. (zy)“z = (zy)* 4. (29y°)? = (a¥y*)* (xy)
(zy)“x® = (xy)* 5. (x¥y?)” = (x¥y?)” (vy)*
(z¥y

Proof. ([{l) Since (zy)“x € (zy)¥S, it follows that (zy)“zS C (zy)“S. To
show the reverse inclusion, note that (zy)* = (zy)“(zy) = ((zy)“z)y €
(xy)¥xS, where the first equality follows from Lemma 2.9 So (zy)“S C
(xy)?xS. Thus (zy)“zS = (xy)¥S. Since S is an R-trivial monoid, the
desired result follows.

() This follows from applying (Il repeatedly.

@) Let u = 2¥ and v = y*. Now, by (), (uv)*u = (uv)®.

(@) We compute:

2.
3_ w)wxw — (xwyw>w

(xwyw>w — (xwyw)w—lxwyw
= (zy*) "l yy (by Lemma 20)
= (2“y")"y
= (a¥y*) 2"y (by @)
= (z¥y*)* 2"y (by Lemma 2.9)
= (z"y")"zy (by @)
(B) This follows by repeatedly applying part (4). O

We are now ready to construct a lattice corresponding to the R-trivial
monoid S. Define

L ={Se : e € S such that e* = e}.

That is, £ is the set of left ideals generated by idempotents. Define a partial
order on L by
Se X Sf < Se>D Sf.

Proposition 2.13. Ife and f are idempotents in S, then S(ef)* is the least
upper bound of Se and Sf in L.

Proof. First, let us show that S(ef)“ is an upper bound for Se and Sf.
Since, by Lemma 212/(1), (ef)“ = (ef)“e, we have that (ef)” € Se. Hence

S(ef) C Se and S(ef)” = Se. Moreover, (ef)* = ((ef)“_le>f e Sf. So



S(ef)? € Sf and S(ef)” = Sf. So S(ef)“ is an upper bound for Se and
Sf.

Next, let us show that S(ef)“ is the least upper bound for Se and Sf.
Suppose g is an idempotent in S such that Sg is an upper bound for Se and
Sf. That is, Sg C Se and Sg C Sf. Since Sg C Se, g = te for some t € S.
But then ge = (te)e = te? = te = g. Similarly, Sg C Sf implies that gf = g.
So g(ef) = (ge)f = gf = g and it follows that

g=g(ef) = (gteh)(ef) = glef? = (9eN)(ef? = glef)* = -+ = glef)*.
Consequently, g € S(ef)“, Sg C S(ef)¥, and Sg = S(ef)”. So S(ef)“ is the
least upper bound of Se and Sf. O

Hence, we may define the join of two elements Se and Sf in £ by
Sev Sf=S(ef)~.

That is, £ is an upper semilattice with respect to this join operation.
Define a map C' : S — L by C(x) = Sa¥.

Proposition 2.14. C is a surjective monoid morphism.

Proof. Let x,y € S. By Lemmal[212/(5), we know that (z“y*)* = (z“y*)“(zy)~.
Hence, (z*y~)* € S(xy)¥ and S(z¥y*)* C S(zy)“.

To show the reverse inclusion, we begin by noting that, by Lemma[2.12](2),
(xy)” = (xy)“z¥. So (zy)¥ € Sa* and S(zy)” C Sa¥. That is, S(zy)¥ =
Sx¥. Also, by using Lemmas [Z9 and 2ZT2/(1), we have

(zy)” = (2y)“(zy)
= ((wy)“ﬂr)y = (zy)“y
— (@) ()

= ((xy)waf> y? = (zy)“y”

= ((xy)waf> Yy = (zy)y”.
So (zy)¥ € Sy“, which implies that S(zy)” C Sy* and S(zy)* = Sy“. In
particular, S(zy)“ is an upper bound for both Sz* and Sy“. So S(zy)“ =
Sz¥ v Sy = S(x¥y*)¥, that is, S(zy)* C S(x¥y)~.
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Thus C(zy) = S(zy)* = S(avy?)” = Sav v Sy¥ = C(x) vV C(y), and C
is a monoid morphism. Finally, we know that every element of L is of the
form Se for some idempotent e in S. But then C'(e) = Se¥ = Se; that is, C'
is a surjective morphism. O

Given = € S, we defined C(z) to be the left ideal of S generated by x*.
Here is an alternate characterization of C'(x):

Proposition 2.15. Given x € S, C(xz) ={a €S : ax = a}.

Proof. Take an arbitrary element in Sz¥, say tz*. Since (tm“)x = t(a:wx) =
tz* by Lemma 2.9 we see that tz¥ € {a € S : ax = a}. On the other hand,
take b € {a € S : ax =a}. Then

ba¥ = (bx)z ' =ba* ! = (ba)a¥ P =ba¥ 2 =---=bx = b.
So b e Sxv. O

We now define a map D : S — L. Given u € S, let D(u) = C(e), where
e is a maximal element in the set {s € S : us = u}.

To check whether the map D is well-defined, let e and f be two distinct
maximal elements in {s € S : us = u}. Since e < ef and u(ef) = (ue)f =
uf = wu, by the maximality of e, e = ef. Similarly, since f < fe and
u(fe) = u, the maximality of f implies f = fe. But then, by Proposition
214

Cle) = Clef) = Cle) VO(f) = C(f) v C(e) = C(fe) = C(f).

Note that the maximality of e and ue? = u also implies that e = €2, that is,
e is idempotent.

The next proposition shows that the C' and D maps on S interact in
precisely the manner given in conditions 2 and 3 in Definition 2Tl of a weakly
ordered monoid. The following lemma will help us prove this proposition.

Lemma 2.16. Let z,y € S. If x <y, then C(z) < C(y).

Proof. Take s € C(y). Then sy = s. Since x < y, there exists ¢t € S such
that y = xt. So szt = s implying sx < s. But s < sz. Since, by Proposition
27 the order on S is a partial order, sz = s. That is, s € C'(x). Hence
C(y) € C(z), that is, C(x) = C(y). O



Proposition 2.17. Let u,v € §.
(1) If uv < u, then C(v) = D(u).
(11) If C(v) < D(u), then uwv = u.

Proof. (i) Since u < uv, by Proposition 2.7, ©w = uv. Hence v lies in the set
{s € S : us=u}. Let e be a maximal element in this set such that v < e.
Then, by Lemma 216, C(v) < C(e) = D(u).

(ii) By definition, D(u) = C(e), where e is a maximal element of {s € S :
us = u}. So if C'(v) = D(u), then C(v) < C(e). Hence C(e) C C(v). Since
ue = u, u lies in C'(e). So w is also a member of C'(v); that is, uv =u. O

Propositions 2.14] and .17 tell us that an R-trivial monoid is a weakly
ordered monoid. Combining this with Corollary 2.8, we have the following
result.

Theorem 2.18. A monoid W is a weakly ordered monoid if and only if it
15 an R-trivial monoid.

3 Constructing idempotents

We begin this section with a small technical lemma about R-trivial monoids.
The proof is rather trivial, but we use it often enough in proofs to justify
stating it at the onset.

Lemma 3.1. Suppose W is an R-trivial monoid. If x,y,z € W are such
that xyz = x, then vy = x.

Consequently, if x,y1, Yo, . . ., Ym € W are such that xy1ys . .. ym = x, then
xy; =x for all 1 <1 < m.

Proof. If xyz = = then xyW = xW. Therefore xy = x by the definition
of W being R-trivial. The second statement immediately follows from the
first. O

Definition 3.2. Let A be an algebra. Let A = {e; : J € I} be a set of
nonzero elements of A. We say that A is a complete system of orthogo-
nal idempotents for A if:

1. ey is idempotent, that is, €% = ey for all J € I;

9



2. ey is orthogonal to ey, that is, ejex = 0 for J, K € T with J # K ; and

3. the collection A is a maximal set of nonzero elements with properties (]l
and [2.

Remark 3.3. A collection of nonzero elements that satisfies [, [4 and [J in
the above defintion will also satisfy the following two conditions:

e ey is primitive for all J € I, that is, if e; = x +y, where x and y are
idempotent and xy = yx = 0, then either x or y is zero; and

(] Zerl.

JET

To see primitive, just note that if e; can be written as x + y, then we
could replace ey in A with x and y, contradicting the maximality of A. To
see the second condition, we just note that if Y ,e; # 1, then 1= ey is
idempotent and orthogonal to all other e;. Combining this element with A
would again contradict the mazximality of A.

Let W denote a weakly ordered monoid with C' and D being the associated
“content” and “descent” maps from W to an upper semi-lattice £. We let
G denote a set of generators of W. The main goal of this paper is to build
a method for finding a complete system of orthogonal idempotents for the
monoid algebra CW. In particular, this solves the problem posed by Norton
about the 0-Hecke algebra for the symmetric group.

For each J € L, we define a Norton element A;T;. Let us begin by
defining 7T7;.

For each J € L, let

TJ:< H g“)wew

geg
C(g)=J

Remark 3.4. A different ordering of the set G of generators may produce
different T;’s; so we fiz an (arbitrarily chosen) order.

We now define the A; in the “Norton element” A;7T;. First we let

B; = H (1—g“)€(CW
geg
Clg)AJ
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We would like to raise B; to a high enough power to make it idempotent.
However, B; ¢ W, so BY may not be well defined. The following lemma and
corollary resolve this problem.

Definition 3.5. Given x € CW if x = _,; cow, then the coefficient of
w in x 18 ¢,. We say w is a term of x if the coefficient of w in x is nonzero.

Lemma 3.6. Let b € W and suppose bz = b for some x € G with C(x) £ J.
1. Then the coefficient of b in bB; is zero; and
2. if c is a term of bBy, then ¢ > b.

Proof. Let D = {z* : x € G,C(x) A J,bx* = b}. By assumption D is not
empty. Let g1, 99, ..., 9n be the generators which appear in the definition of

Bj. Then
By= Y (-Dfgrgs--g.
i1 <ip <<y

It follows from Lemma [B.1] that the coefficient of b in bB; is counting the
terms in B; where each of g;,, .. ., g;, come from D, weighted with sign (—1)".
If |D| =n>1then thisis 1 —n+ (5) — (5) + -+ (=1)" = 0.

The second statement follows from the first and the definition of order, as
every term c¢ of bB; must be of the form ¢ = bm for some term m appearing

in By, and hence ¢ > b. O

Lemma 3.7. For every J € L, there exists an integer N such that y* BY =0
for ally € G with C(y) £ J.

Proof. Let N =+ 1, where / is the length of the longest chain of elements
in the poset (W, <).

Suppose y“BY # 0. Let cy be a term of BY. Then cy is a term of cx_; By
for some term cy_; in y*BY !, Since y*y* = y*, LemmaB.0l(1) implies that
y“ is not a term of y* B for any k > 1. Hence, cy_; = y*¢¥ - - - g% for some
m > 1 and ¢g; € G with C(g;) Z J. In particular, cy_19% = cy—1, and so, by
Lemma B.0l(2), cy > cn_1.

Repeated application of this argument produces a decreasing chain

CN > CN_1 >CN_2 > """>C(C

of N elements in W, contradicting the fact that the length of the longest
chain of elements in (W, <) is £ < N. O
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Corollary 3.8. For every J € L there exists an N such that BLZ]VJrl = BY.

Proof. By Lemma 37 (B — 1)BY = 0 for a sufficiently large N since every
element of B — 1 is of the form y* where y € G and C(y) £ J. O

This now allows us to define A; = BY.
Lemma 3.9. Let J € L. Then:
1. Tyx =Ty for all x such that C(x) < J;
2. yWA; =0 for all y such that C(y) £ J and y € G.

Proof. Since J = C(Ty), C(z) < J implies C(z) O C(T;). We also know
that Ty € C(T) because T is idempotent. So T; € C(z), that is, Tyx = T.
The second part follows from Lemma 3.7 since A = BY. O

Remark 3.10. Although T; and A; are idempotents individually, their prod-
uct, the “Norton element” z;, need not be. For example, take the 0-Hecke
algebra Hg(0) corresponding to the symmetric group &g. Let J be the subset
{1, 4, 5} Of{]_, 2, 3, 4, 5} Then TJ = T1T4T5T4, AJ = (]_ —Tg)(l —Tg)(]_ —Tg)
and zj s their product. No power of z; is idempotent.

Recall that 2] = AJTJ.

Lemma 3.11. The coefficient of Ty in z; is 1. All other termsy in z; have
C(y) = J.

Proof. The coefficient of the identity element 1 in A; is 1. Each term of
AyTy is of the form a7} for a term a of A;. If a # 1, then C(a) £ J so
C(aTy) = C(a) vV C(Ty) = C(Ty) = J. Hence the coefficient of Ty in A;T);
is 1 and all other terms have content greater than J. O

Lemma 3.12. If J A K then z;zx = 0.

Proof. Since J A K, there exists a ¢ € G with C(g) < J but C(g) A K.
Expanding the product
ZJRK — AJTJAKTK.

We will show T;Ax = 0. By Lemma 3.9 (), 7;¢g* = Ty and by Lemma 3.9
@), (1—-g“)A; = Ay or g*A; =0. Hence T;A; = T;9*A; = 0. O

12



Definition 3.13. Let J € L. Let

Pri= Y (1—z)"™25=> (k+1)(1—2)" 2

n,m>0 k>0
(Lemma 313 shows there are only finitely many terms in this summation.)

Remark 3.14. A monoid S is called J-trivial if SxS = SyS implies v =y
forall x,y € S. When S is J-trivial it suffices to define

PK = Z(l — ZK)nZK.

n>0

The next result shows that the sum in the definition of P; contains only
finitely many summands, and so P; is a well-defined element of CW for each
JeL.

Lemma 3.15. For all J € L, there exists an N such that (1 — z;)" 22 = 0.

Proof. To simplify the notation, let us temporarily set T'="T;, A = A; and
z = z; = AT. We first note that for any integer k£ > 0,

(1—2)%22 = 2(1 — 2)*2
— AT (1 — AT)FAT
= A(T(1— A)T)FAT.
We will show that (7'(1 — A)T)YA = 0 for N > ¢, where / is the length of
the longest chain in the poset (W, <).

Let us write 1 — A = >, c,a where each term has ¢, # 0 only if
a=gy---gy with C(g;) £ J for all i. Therefore

T1-AT =Y cTal= > cTa + Y cTal.

aceW acW aew
TaT=Ta TaT#Ta

Note that ¢; = 0 since 1 is not a term of (1 — A). If TaT = T'a, then we have

TaT - (T(1—A)T)=Ta(l-—A)T =Ta—TaAT =Ta
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since aA = 0 by Lemma Thus,

TA-ATN = Y cTa+ > coTaT | (T(1—AT)N!
TailTe:V’?al Ta(?l“eyé‘/;/"al

= E co, Tay + E Ca, Ta T | (T(1 —AT)N
a1 EW ajeW
Tay1T=Tay Ta1T#Tay

Next, rewrite the second summand above using the same argument:

> T T | (T(1 = AT)N!
a1 eEW
TayT#Tay
=| > cTaT (Z ca2Ta2T> (T(1— A)T)N—2
a1 EW aseW
TayT#Tay

=| Y cucuTarTaT | (T(1— A)T)V

ay,ap€W
TayT#Tay

= g CayCay T'ar1Tag

Ta1T#Tay
Ta1TagT=TajTagy

+ Z CayCay TarTasT | (T(1 — A)T)N 2,

Ta1T#Tay
TayTagT#TayTay

Continuing in this way, we can write (T'(1 — A)T)Y in the form

(T(1 - AT = (Z co, Tay + -+ anl ccanTay - -TaN>

+ Z Cay " CayL'ay---TanT.

Tay--Ta;T#Tay--Ta;
1<i<N
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By Lemma .9 we have a; A = 0 for all terms a; in 1 — A, and so

(T(1— ATV - A= > Ca, - CayTay - TayT | A.
Tay-Ta;T#Tay--Ta;

1<i<N

This summation is 0 as it ranges over an empty set: indeed, if it is not empty,
we would have an increasing chain of length N > ¢, namely

Ta, < TayTay < TaTasTaz < --+ < TayTas---Tay,
Therefore, (T'(1 — A)T)NA = 0. O

Lemma 3.16. The coefficient of Ty in Py is 1 and all other terms y of Py
have C(y) = J.

Proof. If n+m > 0 then
AJTJAJTJ(l — AJTJ)n+m = AJTJAJ(TJ — TJAJTJ)n+m.

Each term x in (T; — T;A;T;)"™™ has C(x) > J, so no T; appears in
22(1 — z;)™™™. The coefficient of Ty in z; is 1, by Lemma B.I1l Hence T);
appears in 2%(1 — 2;)? with coefficient 1. By Lemma B.IT], since all of the
terms y # T of z; have C(y) = J and Pj is a polynomial in z;, all other
terms w of P; must have C(w) = J. O

Lemma 3.17. As polynomials in x,

N

a:Z(l —z)"=1-(1—-2)V,

n=0
for any nonnegative integer N .
Proof. Induct on N. O

Proposition 3.18. For each J € L, the element Py is idempotent.
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Proof. Let J € L be fixed and let N be such that (1 — 2;)V22 = 0. Let us
temporarily denote z; by z. We can use Lemma B.17 to rewrite P; as

n,m>0
N N-n
_ Z 22(1 Z)n—i—m
n=0 m=0
N N—-n
= Z(l —2)" <z2 (1-— z)m>
n=0 m=0

=1— (12" — (N +1)2(1 — )N

N+1

This implies that 22 Py = 22 since 2?(1 — 2)V ! =0, and so

P? = <Z Z_:(l - z)"+mz2) Py = Z Z_:(l — )"t = P O

n=0 m=0 n=0 m=0
Lemma 3.19. For all J,K € L, with J A K, P;Pg = 0.

Proof. This is implied by Lemma [B.12 and the fact that P; is a polynomial
in z; with no constant term. O

Definition 3.20. For each J € L, let ey := Py <1 — Z €K>.

K>~J

Lemma 3.21. T; occurs in ey with coefficient 1. All other terms y of ey
have C(y) = J. In particular, e; # 0.

Proof. We proceed by induction. If J is maximal, then e; = Pj, so the
statement is implied by Lemma B.16]

Now suppose the statement is true for all M > J. Then e; = P;(1 —
> mwy€n)- By induction, all terms x of ey have C(x) = M > J. So terms
y from Pjep have C'(y) = M > J. The only other terms are those from P;,
for which the statement was proved in Lemma [3.16l O
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Lemma 3.22. exP; =0 for K £ J.

Proof. The proof is by a downward induction on the semilattice. If K is
maximal, then ex = Py, so by Lemma [3.19] ex P; = PxP; = 0.

Now suppose that for every L = K, ef P; = 0 for L £ J, and we will
show that ex Py = 0 for K A J. We expand ex P;:

6KPJ:PK<]-_26L)PJ:PKPJ_ZPKQLPJ-

L-K L>-K

Since K A J, we have Px P; = 0 by Lemma[3.19, and e; P; = 0 by induction,
since L = K and K A J implies L A J. 0J

Corollary 3.23. e; is idempotent.
Proof. We expand e je;:

ese; = Py 1—ZeM>PJ<1—ZeM>

M=J MJ

=P (P=> eMPJ> (1— > eM>

M>J M~J

=P?1- Z eM) (by Lemma [3:22])

=P;(1- Z eM) (by Lemma B.I8)
=€y ]
Lemma 3.24. e jex =0 for J # K.

Proof. The proof is by downward induction on the lattice £. For a maximal
element M € L, eyy = Py, so eyex = PyPr(1 — > er) = 0 by Lemma
BI9 Now suppose that for all M = J, epyrex = 0 for M # K and we will
show that e e = 0 for J # K. We expand ejek:

cser = Py(1=) er)ex = Pylex — ) erex) (1)

L=J L>J

17



If K J, then ), ;erex =0 by our induction hypothesis, so Py(ex —
ZL>J€L6K) = PJeK = PJPK(]. — ZM>K eM) =0 by Lemma.

If K = J, then ZLH erex = ex since ey is idempotent and erex = 0
for L # K by the inductive hypothesis. Therefore ex — >,  ;erex = 0 and
hence the right hand side of () is zero. O

Theorem 3.25. The set {e; : J € L} is a complete collection of orthogonal
tdempotents for CW.

Proof. From [11], we know that the maximal number of such idempotents
is the cardinality of £. The rest of the claim is just Lemma [B.21] Corollary
3.23 and Lemma 324 O

Appendix: Two examples

We show by example how to use the above construction to create orthogonal
idempotents for R-trivial monoids.

Idempotents of the free left regular band on two gener-
ators

Let W be the left regular band freely generated by two elements a,b. Then
W = {1,a,b,ab,ba}. All elements of W are idempotent. Also aba = ab
and bab = ba. The lattice £ has four elements: @ := W,a := Wa,b =
Wb and ab := Wab = Wha, where ) < a < ab and ) < b < ab, but a and b
have no relation.

When J = (), neither of the generators satisfies C(g) < J,s0 Ty =1 € W.
By =(1—-a)(1—10). Also

Bj=(1-a)(1-0b)(1—a)(1l-0)
=(l—a—-b+ab)(1—a)(1l—0)
=(1—a—b+ab)(l1—-0b)
=(l—a—>b+ab)
= By.

Therefore Ay = By =1—a—b+ab, so zp =1 —a— b+ ab. Therefore z;
is idempotent, so Py =1 —a — b+ ab.
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When J = a, then C(a) < aand C(b) Aa,s0 T, =aand B, =1—-b= A4,
since 1—b is idempotent. Therefore z, = (1—b)a = a—ba. 22> = a—ab and one
can check that 22 = 22,80 P, = 22(14+(1—2) +(1—2)%+...) = 22 = a—ab.
One can check that P, is idempotent.

Similarly, P, = b — ba.

When J = ab, C(a),C(b) = ab, so Ty, = ab and Ay = 1. zg = ab is
idempotent, so Py, = ab. Since ab is maximal, ey, = ab.

Since Pyeqp = (@ — ab)ab = ab —ab =0, e, = Py(1 — eqp) = P, = a — ab.

Similarly, e, = b — ba.

Pyeq = (1 —a — b+ ab)(a —ab) = 0. Similarly, Pye, = 0. However,
Pyegy = (1 —a — b+ ab)ab = ab — ab — ba + ab = ab — ba. So we let
ep=Py(l —eq) =FPp— Ppey =1—a—b+ab—ab+ba=1—a—>b+ ba.

One can check that {ey, eq, €, €qp } is a collection of mutually orthogonal
idempotents.

Idempotents of H%(0)

As mentioned above, H%%(0) has generators 17, Ty, Ty, Ty. In this case, the
corresponding lattice is the lattice of subsets of {1,2,3,4}. H%%(0) is actually
a J-trivial monoid, so we can use the simplified formula from Remark B.14l
We use the shorthand notation 7'(iy, . . ., i) to denote the element T;, ... T;, .

It J = {1,2,3,4}, then Ty = T(1,2,3,4)* = T(1,2,3,4,1,2,3,1,2,1).
Also Ay =1,s0 z; = A;T; =T;. Also, P; = z;, and since J is maximal,
ey; — PJ, SO

enosay =1(1,2,3,4,1,2,3,1,2,1).

If J =1{1,2,3}, then T, = 7(1,2,3,1,2,1) and A; = 1 —T(4). Then
2y =(1—TA)T(1,2,3,1,2,1) =T(1,2,3,1,2,1) — T(4,1,2,3,1,2,1). One
can check that 22 = z;, so P; = z;. Also, one can check that P; is orthogonal
to eq1,2,3.4y- S0 e; = P;. Therefore

enozy =1(1,2,3,1,2,1) = 7(4,1,2,3,1,2,1).
Similarly,
erasay = 1(2,3,4,2,3,2) —7(1,2,3,4,2,3,2).

Now let J = {1,2,4}. T, =T(1,2,1,4) and A; = (1 — T'(3)). Letting
2y = ATy, one can check that z;(1 — 2;)? = 0, so P; = z;(1 + (1 — 2y)).
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Again Pj is orthogonal to e 234y, so ey = P;. Therefore

enoay = —T(1,2,3,4,2,3,1,2,1)+T(1,2,3,4,3,1,2,1) = T(3,4,1,2,1) +
T(4,1,2,1).

Similarly,

ensay = —T(1,2,3,4,1,2,3,2,1)+T(1,2,3,4,2,3,2,1)=T(2,3,4,3,1) +
T(3,4,3,1).

When J ={1,2}, T, =T(1,2,1)and A; = (1-T(3))(1-T(4))(1=T(3)).
Then z; is already idempotent, so P; = z;. One can check that Pj is already
orthogonal to eq; 234y, €{1,2,3}, €{1,2,4}. Therefore,

ey = —T(3,4,3,1,2,1) +T(3,4,1,2,1) + T(4,3,1,2,1) = T(3,1,2,1) —
T(4,1,2,1)+T(1,2,1).

Similarly,

cpoay = T 2343 1)+T(1,2,3,43) + 723,481 T, 431) -
7(2,3,4,3)+1(3,4,3).

If J=A{1,3}, T, = 175 and Ay = (1 — T5)(1 — Ty). One can check
that 2;(1 — 2;)%> = 0, and Py = 2;(1 + 1 — z;) is idempotent. P; is or-
thogonal to eg 2341 and eg; 23y, but not orthogonal to eg243. So we define
6{173} = P{Lg}(l — 6{17274}). Then
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We continue in this way, constructing all of the idempotents for the alge-
bra. For the sake of completeness, the other idempotents are:

e = —T(1,2,3,4,1,2,3,1,2, 1)+7(1,2,3,4,1,2,3,1,2)+7(2,3,4,1,2,3,1,2,1)—
T(2,3,4,1,2,3,1,2)+ T(4,1,2,3,2) = T(1,2,3,2) — T(4,2,3,2) + T(2,3,2):

13,4,2,3,1,2,1)—

{14} = _T( 727 374 1 2
1 2,3,4,3,2,1)~T(2,3,4,2,1)+
)

1
T(1,2,3,4,3,1,2
T(2,3,4,1) + T

71727 37
) T(1727 )
747 27 ) (
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[\) \'[\_') )
\.w =
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2)T(1,2,3,4)=T(2,3,4,1,2, 1)+ T(2,3,4,1,2)+T(3,4, 1,2, 1)
(3,41, 2)4T(4, 1,2)+T(2,3,4,2, 1) =T (2, 3,4, 1)=T(3,4,2, 1)+
(3,4, 1) —T(4, 1)~ T(2,3,4,2) + T(2.3,4) +T(3.4,2) ~ T(4, 2) -
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+7(2,3,4,1,2,3,2)-T(2,3,4,1,2,3)+T(4,1,2,3,1)=T(1,2,3,1)—
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ey = T(2,3,4,2,3,2,1)=T(2,3,4,2,3,1)=T(2,3,4,3,2, 1)+T(2,3,4,2, 1)+

T(2,3,4,3,1)—=T(2,3,4,1)~T(3,4,2,3,2,1)+T(3,4,2,3,1)+1(4,2,3,2,1)—
T(2,3,2,1)—T (4,2, 3, 1)+T (2,3, 1)+T(3,4,3,2, 1)~T(3, 4,2, 1)—T(4,3,2, 1)+
T(3,2, 1)+ T(4,2, 1)~ T(2,1) = T(3,4,3, 1)+ T(3,4, 1)+ T(4,3, 1) T(3,1) -
T(4,1) + T(1).

Finally, ey is just the signed sum of all elements, with sign determined by
Coxeter length.
One can check (ideally not by hand!) that {e; : J C {1,2,3,4}} is a
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complete system of orthogonal idempotents.
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