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A REFINED AGLER DECOMPOSITION AND

GEOMETRIC APPLICATIONS

GREG KNESE

Abstract. We prove a refined Agler decomposition for bounded
analytic functions on the bidisk and show how it can be used to
reprove an interesting result of Guo et al. related to extending
holomorphic functions without increasing their norm. In addition,
we give a new treatment of Heath and Suffridge’s characterization
of holomorphic retracts on the polydisk.

1. Introduction

Let D denote the unit disk in C and D2 = D× D the unit bidisk.
[Agler, 1988] proved that a holomorphic function f : D2 → D satisfies

a decomposition (later called an Agler decomposition) of the form

1− f(z)f(ζ) = (1− z1ζ̄1)K1(z, ζ) + (1− z2ζ̄2)K2(z, ζ)

where K1, K2 are positive semi-definite kernel functions. A kernel func-
tion K : Ω × Ω → C is positive semi-definite if for every finite subset
F ⊂ Ω the matrix

(K(z, ζ))z,ζ∈F

is positive semi-definite. (In this article, Ω will be either D2 or D.) The
Agler decomposition generalizes the Pick interpolation theorem from
one-variable complex analysis, which implies that for any f : D → D,
holomorphic,

1− f(z)f(ζ)

1− zζ̄
is a positive semi-definite kernel.
In recent years, more refined versions of the Agler decomposition

have been found for rational inner functions. See [Cole and Wermer, 1999],
[Geronimo and Woerdeman, 2004], [Knese, 2008], or [Knese, 2010]. (Un-
related to rational inner functions, in specific, but still relevant are
[Ball et al., 2005] and [Lata et al., 2009]). It has not been clear which
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2 GREG KNESE

of the “refined” aspects of these decompositions for rational inner func-
tions would extend to more general bounded analytic functions (and
which would actually be useful). The following theorem represents an
offering in this direction. Our hope is that others may find it useful
without having to learn any of the underlying theory required to prove
it.

Theorem 1.1. Let f : D2 → D be holomorphic. Then, there exist
positive semidefinite kernels K1, K2, and holomorphic kernels L1, L2

such that

1− f(z)f(ζ) = (1− z1ζ̄1)K1(z, ζ) + (1− z2ζ̄2)K2(z, ζ)

and
f(z)− f(ζ) = (z1 − ζ1)L1(z, ζ) + (z2 − ζ2)L2(z, ζ),

where (z, ζ) = ((z1, z2), (ζ1, ζ2)). In addition, the following (pointwise)
inequalities hold

|Lj(z, ζ)|2 ≤ Kj(z, z)Kj(ζ, ζ)

for j = 1, 2.

Notice Lj(z, z) =
∂f

∂zj
(z). So, estimates on the positive semi-definite

kernels in this decomposition provide estimates on the derivatives of f .
The analogous inequalities in one variable are
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1− f(z)f(ζ)
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∣

∣

∣

∣
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≤ 1− |f(z)|2
1− |z|2

1− |f(ζ)|2
1− |ζ |2

which are consequences of the Schwarz-Pick lemma.
As an application of this theorem, we are able to reprove a useful

theorem of [Guo et al., 2008] related to norm preserving extensions of
holomorphic functions on the polydisk and holomorphic retracts of the
polydisk. When working in Dn+1 we will typically denote points by
(z, w) where z ∈ Dn and w ∈ D.

Theorem 1.2 ([Guo et al., 2008]). Let V ⊂ Dn+1, and suppose w|V
has a nontrivial norm 1 holomorphic extension to Dn. Then, V is a
subset of the graph of a holomorphic function of z.

Here nontrivial norm 1 extension refers to a function on Dn+1 other
than w which agrees with w on V and whose modulus has supremum
norm at most 1. Guo et al.’s proof involved an interesting use of the
one-variable Denjoy-Wolff theorem. Guo et al. used this result to con-
tinue some of the work initiated in the paper [Agler and McCarthy, 2003].
Additionally, they reproved Heath and Suffridge’s characterization of
holomorphic retracts of the polydisk, which we now define.
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Definition 1.3. A subset V ⊂ Dn is a holomorphic retract if there
exists a holomorphic function (a retraction) ρ : Dn → Dn such that

ρ ◦ ρ = ρ and ρ(Dn) = V

Heath and Suffridge characterized all holomorphic retracts of the
polydisk as graphs.

Theorem 1.4 ([Heath and Suffridge, 1981]). Suppose V ⊂ Dn is a
holomorphic retract. Then, after applying an automorphism of Dn, V
can be put into the form

{(z, f(z)) : z ∈ D
k}

where f : Dk → D
n−k is holomorphic.

The proof of Heath and Suffridge involves an impressive and technical
study of properties of Taylor series of retracts. Guo et al. gave a new
proof by rehashing some of their proof of Theorem 1.2. Although it is
something of an aside, we think it is worth it to show a slightly different
approach in Section 4. While our proofs are different from both Heath
and Suffridge and Guo et al., the general roadmap of our approach
owes a great deal to Guo et al.

2. Proof of Theorem 1.1

Let us first explain the result for rational inner functions and then
use an approximation argument to prove it for all analytic functions
bounded by one on D2.
As shown in [Rudin, 1969] (Theorem 5.2.5), every rational inner

function on D2 can be represented as

f(z) =
p̃(z1, z2)

p(z1, z2)

where p ∈ C[z1, z2] has no zeros in D2, p̃(z1, z2) = zn1 z
m
2 p(1/z̄1, 1/z̄2)

for appropriate powers n,m, and p̃ and p have no common factor.
Necessarily p and p̃ have bidegree at most (n,m) (i.e. degree at most
n in z1 and m in z2).
[Geronimo and Woerdeman, 2004] proved a detailed version of a two-

variable Christoffel-Darboux formula (see their Proposition 2.3.3 and
also [Cole and Wermer, 1999] and [Knese, 2008]), which can be stated
as follows: there exist polynomials A1, . . . , An ∈ C[z1, z2] of bidegree
at most (n− 1, m) and polynomials B1, . . . , Bm ∈ C[z1, z2] of bidegree
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at most (n,m− 1) such that
(2.1)

p(z)p(ζ)−p̃(z)p̃(ζ) = (1−z1ζ̄1)
n

∑

j=1

Aj(z)Aj(ζ)+(1−z2ζ̄2)
m
∑

j=1

Bj(z)Bj(ζ)

Let Ãj(z) := zn−1
1 zm2 Aj(1/z̄1, 1/z̄2), B̃j(z) := zn1 z

m−1
2 Bj(1/z̄1, 1/z̄2). If

we perform a similar reflection operation to (2.1) (i.e. replace (z, ζ)
with ((1/z̄1, 1/z̄2), (1/ζ̄1, 1/ζ̄2)), take complex conjugates and multiply
through by zn1 z

m
2 ζ̄

n
1 ζ̄

m
2 ) we get

(2.2)

p(z)p(ζ)−p̃(z)p̃(ζ) = (1−z1ζ̄1)
n

∑

j=1

Ãj(z)Ãj(ζ)+(1−z2ζ̄2)
m
∑

j=1

B̃j(z)B̃j(ζ)

If we average (2.1) and (2.2) and rewrite using vector notation, we get
(2.3)

p(z)p(ζ)− p̃(z)p̃(ζ) = (1− z1ζ̄1)〈A(z), A(ζ)〉+ (1− z2ζ̄2)〈B(z), B(ζ)〉
where

A =
1√
2
[A1, . . . , An, Ã1, . . . , Ãn]

t

B =
1√
2
[B1, . . . , Bm, B̃1, . . . , B̃m]

t

and 〈v, w〉 = w∗v denotes the standard complex euclidean inner prod-
uct (with dimension taken from context).
If we reflect (2.3) in z alone we get

(2.4) p̃(z)p(ζ)− p(z)p̃(ζ) = (z1 − ζ1)Ã(z) ·A(ζ)+ (z2− ζ2)B̃(z) ·B(ζ)

where “·” denotes the dot product: v · w = wtv.
Now, if we divide (2.3) by p(z)p(ζ) and divide (2.4) by p(z)p(ζ), we

get equations of the form

1− f(z)f(ζ) =
2

∑

j=1

(1− zj ζ̄j)Kj(z, ζ)

f(z)− f(ζ) =
2

∑

j=1

(zj − ζj)Lj(z, ζ)

where K1, K2 are positive semidefinite kernels given explicitly by

K1(z, ζ) =
〈A(z), A(ζ)〉
p(z)p(ζ)

K2(z, ζ) =
〈B(z), B(ζ)〉
p(z)p(ζ)
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and L1, L2 are holomorphic kernels given explicitly by

L1(z, ζ) =
Ã(z) · A(ζ)
p(z)p(ζ)

L2(z, ζ) =
B̃(z) · B(ζ)

p(z)p(ζ)
.

The inequality

|Lj(z, ζ)|2 ≤ Kj(z, z)Kj(ζ, ζ)

follows from Cauchy-Schwarz and the fact that |A| = |Ã| and |B| = |B̃|.
This proves the theorem for rational inner functions.
It is proven in [Rudin, 1969] (Theorem 5.5.1) that holomorphic func-

tions f : D
2 → D can be approximated locally uniformly by ra-

tional inner functions. So, let {f (i)}i be a sequence of rational in-
ner functions converging locally uniformly to f with corresponding

K
(i)
1 , K

(i)
2 , L

(i)
i , L

(i)
2 satisfying the above formulas/inequalities. Because

of the inequalities

|L(i)
j (z, ζ)|2, |K(i)

j (z, ζ)|2 ≤ K
(i)
j (z, z)K

(i)
j (ζ, ζ)

≤ 1

(1− |z1|2)(1− |z2|2)(1− |ζ1|2)(1− |ζ2|2)
the kernel functions are locally bounded and hence form a normal

family. We can select subsequences so that K
(i)
1 → K1, K

(i)
2 → K2,

L
(i)
1 → L1, L

(i)
2 → L2 locally uniformly. Positive semi-definiteness and

pointwise inequalities are preserved under this limit and therefore the
statement of the theorem holds.

3. Guo et al.’s extension theorem

As an application we prove Theorem 1.2 in the following slightly more
detailed form. Except for uniqueness, this is contained in [Guo et al., 2008].

Theorem 3.1. Let V ⊂ Dn+1 be a set with more than one w-value
and let πV be the projection of V onto the first n coordinates. Suppose
w|V has a nontrivial norm 1 holomorphic extension F . Then, there is
a unique holomorphic f : Dn → D such that F (z, f(z)) = f(z) and
V = {(z, f(z)) : z ∈ πV }.

In this section we generally follow the convention of denoting points
in Dn+1 by (z, w) with z ∈ Dn and w ∈ D.

Lemma 3.2. If f : Dn+1 → D is holomorphic, φ is an automorphism
of D, and there exists a z0 ∈ Dn such that f(z0, w) = φ(w) for all w,
then f(z, w) = φ(w) for all (z, w).
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Proof. We may assume φ(w) = w and z0 = (0, . . . , 0). Then,

G(z, w) =
f(z, w)− w

1− w̄f(z, w)

is holomorphic in z, G(0, w) = 0, and |G| ≤ 1.
Write |z|∞ for the maximum modulus of the components of z. By

the Schwarz lemma,
|G(z, w)|2 ≤ |z|2

∞

and

1−|z|2
∞

≤ 1−|G(z, w)|2 = (1− |w|2)(1− |f(z, w)|2)
|1− w̄f(z, w)|2 ≤ 1− |w|2

|1− w̄f(z, w)|2
and so

|w − f(z, w)|2 ≤ |1− w̄f(z, w)|2 ≤ 1− |w|2
1− |z|2

∞

.

Then, by the maximum principle

sup
w∈rD

|w − f(z, w)|2 ≤ 1− r2

1− |z|2
∞

which implies f(z, w) ≡ w after letting r ր 1. �

Lemma 3.3. Let F : Dn+1 → D be holomorphic and suppose F (z0, w0) =
w0 at some point. Necessarily,

(3.1) |∂F
∂w

(z0, w0)| ≤ 1.

If equality holds in (3.1), then F (z, w) = φ(w) for some automorphism
φ. If strict inequality holds in (3.1), then there exists a unique holo-
morphic function f : Ω → D defined in a neighborhood Ω of z0 such
that f(z0) = w0 and F (z, f(z)) = f(z) where defined.

Proof. By the Schwarz lemma

1− |F (z0, w0)|2
1− |w0|2

= 1 ≥ |∂F
∂w

(z0, w0)|.

If equality occurs then F (z0, w) is an automorphism of D and by the
previous lemma F (z, w) = φ(w) identically.
If equality does not hold, then setting G(z, w) = F (z, w) − w we

see that ∂G
∂w

(z0, w0) = ∂F
∂w

(z0, w0) − 1 6= 0. By the implicit function
theorem, there exists a function of z in a neighborhood of z0 such that
G(z, f(z)) = 0; i.e. F (z, f(z)) = f(z).
To see that f is unique, we note that if F (z1, w1) = w1, there cannot

be a different w2 6= w1 such that F (z1, w2) = w2, for then F (z1, w) ≡ w
and hence F (z, w) ≡ w. By assumption this cannot occur, so any
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point (z1, w1) satisfying F (z1, w1) = w1 is uniquely determined by the
z component. In particular, F (z, f(z)) = f(z) cannot hold for two
different choices of f : Ω → D. �

The final lemma is the most important and it utilizes the main the-
orem.

Lemma 3.4. Let F : Dn+1 → D be holomorphic. Suppose F (z0, w0) =
w0, F (z1, w1) = w1, F (z2, w2) 6= w2, where w0 6= w1. Then there exists
a unique f : Dn → D such that F (z, f(z)) = f(z). In particular, if
F (z3, w3) = w3, then f(z3) = w3.

Proof. By the three assumptions, F cannot be an automorphism as a
function of w. So, we are in the second case of the previous lemma
and there locally (say on a domain Ω ⊂ Dn) exists a unique f : Ω → D

satisfying F (z, f(z)) = f(z). We need to extend f to all of Dn.
We will show f can be extended one variable at a time. Letting

ζ = (ζ1, ζ2, . . . , ζn) = (ζ1, ζ
′) ∈ Ω, we plan to show f can be ex-

tended to D × {ζ ′} in such a way that the identity F (z, f(z)) =
f(z) is preserved. By Lemma 3.3, the identity will then extend to
a unique function on an open neighborhood of D×{ζ ′}. So, given any
other point η = (η1, . . . , ηn), we will be able to successively extend f
to (η1, ζ2, . . . , ζn), (η1, η2, ζ3, . . . ), . . . , (η1, . . . , ηn). This will imply f is
holomorphic on all of Dn and F (z, f(z)) = f(z).
For this argument we will use t for the first coordinate of z and write

z = (t, z′) (we are avoiding “z1” since we have used this in a different
way in the lemma statement).
Let g(t) = f(t, ζ ′) and G(t, w) = F (t, ζ ′, w). Now g is holomorphic

in some neighborhood of ζ1 and G(t, g(t)) = g(t) holds in said neigh-
borhood. If g is constant, then clearly g extends to be holomorphic on
D and G(t, g(t)) = g(t) holds on all of D. So, suppose g is nonconstant.
Perturb ζ1 if necessary to make g′(ζ1) 6= 0, and let ∂t, ∂w denote the
partial derivatives with respect to t, w, respectively.
Then, ∂tG(t, g(t)) + ∂wG(t, g(t))∂tg(t) = ∂tg(t), so ∂tG(t, g(t)) =

∂tg(t)(1−∂wG(t, g(t))). Now, ∂tG(ζ1, g(ζ1)) 6= 0 by the previous lemma
(i.e. ∂wG(t, g(t)) cannot equal 1, since this would imply G is an auto-
morphism as a function of w) and since ∂tg(ζ1) 6= 0.
We apply the main theorem to G(t, w). Theorem 1.1 implies

1−G(t, w)G(τ, η) = (1− tτ̄ )K1 + (1− wη̄)K2

with K1, K2 positive semi-definite, where K1, K2 should be evaluated
at ((t, w), (τ, η)).
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Substituting w = g(t), η = g(τ) for t, τ in a neighborhood of ζ1, and
writing v(t, τ) = ((t, g(t)), (τ, g(τ))) for short, we get

1− g(t)g(τ) = (1− tτ̄ )K1(v(t, τ)) + (1− g(t)g(τ))K2(v(t, τ))

or

(3.2) (1− g(t)g(τ))(1−K2(v(t, τ))) = (1− tτ̄)K1(v(t, τ))

We cannot have K2(v(ζ1, ζ1)) = 1 for then K1(v(ζ1, ζ1)) = 0, which
by the main theorem implies a contradiction. Specifically,

|∂tG(ζ1, g(ζ1))| = |L1(v(ζ1, ζ1))| ≤ |K1(v(ζ1, ζ1))| = 0

which is not the case as ∂tG(ζ1, g(ζ1)) 6= 0.
So, |K2(v(t, τ))| < 1 for t, τ in some open set around ζ1. By (3.2),

for such t, τ

1− g(t)g(τ)

1− tτ̄
=

K1(v(t, τ))

1−K2(v(t, τ))
= K1(v(t, τ))

∞
∑

j=0

K2(v(t, τ))
j

is positive semi-definite. By the Pick interpolation theorem, g extends
to be holomorphic on all of D. (See [Agler and McCarthy, 2002] for the
Pick interpolation theorem from this point of view.) Also, G(t, g(t)) =
g(t) then automatically holds on all of D by analyticity. This completes
the proof. �

Theorem 3.1 is just a rephrasal of this lemma.

4. Retracts and Theorem 1.4

We prove the following refinement of Theorem 1.4 (which can also
be found in [Guo et al., 2008]).

Theorem 4.1. Suppose V ⊂ Dn is a holomorphic retract. Then, after
applying an automorphism of Dn, V can be put into the form

{(z, e(z), f(z)) : z ∈ D
k}

where e : Dk → D
m is a coordinate function in each component and

f : Dk → Dn−m−k is holomorphic with no components equal to an
automorphism as a function of a single variable.

An example for e might be e(z1, z2) = (z1, z1, z1, z2, z2).

Lemma 4.2. Suppose V ⊂ Dn+1 is a holomorphic retract, with retrac-
tion ρ(z, w) = (ρ1, . . . , ρn, ρn+1) = (ρ′, ρn+1) where we assume ρn+1 is
not an automorphism as a function of one variable. Then, there exists
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f : Dn → D, holomorphic, such that (z, w) 7→ (ρ′(z, f(z)), f(z)) is a
retraction of V ,

(4.1) V = {(z, f(z)) : z ∈ πV }
and πV is a retract with retraction z 7→ ρ′(z, f(z)).

Proof. If ρn+1 is constant, there is nothing to prove, so assume other-
wise. Then, ρn+1(z, w) = w for two distinct values of w (and necessarily
different values of z) since ρn+1(ρ

′, ρn+1) = ρn+1. Therefore, Theorem
3.1 applies. There exists f : Dn → D holomorphic satisfying

(4.2) ρn+1(z, f(z)) = f(z)

and

(4.3) {(z, w) : ρn+1(z, w) = w} = {(z, f(z)) : z ∈ D
n} ⊃ V.

This proves (4.1).
As ρ(z, f(z)) ∈ V we see that by (4.3) and (4.2), f(ρ′(z, f(z))) =

ρn+1(z, f(z)) = f(z), which shows (z, w) 7→ (ρ′(z, f(z)), f(z)) agrees
with the map (z, w) 7→ ρ(z, f(z)). This is a retraction since its compo-
sition with itself is

ρ(ρ′(z, f(z)), f(ρ′(z, f(z)))) = ρ(ρ′(z, f(z)), ρn+1(z, f(z)))

= ρ(ρ(z, f(z)) = ρ(z, f(z))

as desired.
We need to show that the range of (z, w) 7→ ρ(z, f(z)) contains V

(it certainly is contained in V ). If (z, w) ∈ V , then w = f(z) and
ρ(z, f(z)) = (z, f(z)) = (z, w). So, this map is a retraction of V .
Finally, we must show πV is a retract with retraction z 7→ ρ′(z, f(z)).

This map is indeed a retraction since (z, w) 7→ (ρ′(z, f(z)), f(z)) is, and
the first n components necessarily trace out πV . �

Lemma 4.3. Let ρ = (ρ1, . . . , ρn) : D
n → Dn be a retraction of V . If

ρ1(z1, . . . , zn) is an automorphism as a function of z1, then ρ1(z) ≡ z1.
If ρ1 is an automorphism as a function of z2 then ρ2(z) ≡ z2 and
ρ1(z) ≡ φ(z2) for some φ.

Proof. If ρ1 is an automorphism, say φ, as a function of z1, then φ ◦
φ = φ, which means φ = id. This means ρ1(z) = z1. If ρ1 is an
automorphism, say φ, as a function of z2, then φ(ρ2(z)) = ρ1(ρ(z)) =
ρ1(z) = φ(z2). This implies ρ2(z) = z2. �

Lemma 4.4. Let ρ = (ρ1, . . . , ρn) : D
n → Dn be a retraction of V with

all components equal to an automorphism as a function of a single
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variable. After conjugating by automorphisms of Dn we may put ρ into
the form

ρ(z, w) = (z, e(z))

where z ∈ Dk, w ∈ Dn−k, e : Dk → Dn−k, where each component of e
is a coordinate function.

Proof. Let us just illustrate. If ρ2(z) = z2 and ρ1(z) = φ(z2) for some
one variable automorphism φ, we can conjugate by the automorphism
of Dn given by ψ(z) = (φ−1(z1), z2, . . . , zn) to get

ψ ◦ ρ ◦ ψ−1(z) = (z2, z2, ρ3 ◦ ψ−1(z), . . . , ρn ◦ ψ−1(z))

The lemma then follows from the previous lemma after reordering and
conjugating by analogous automorphisms as necessary. �

Proof of Theorem 4.1. There is no harm in assuming V is not a Carte-
sian product of a point and a retract (this is equivalent to assuming
our retractions do not possess a constant component).
We proceed by induction. Let n = 1 and let ρ : D → V be a retrac-

tion. One variable retractions are either constant (which by assumption
is ruled out) or equal to the identity (by the Schwarz-Pick lemma, a
self-map of the disk with two fixed points equals the identity).
Suppose the theorem holds for n dimensional retracts. Let ρ :

Dn+1 → V be a retraction onto V . If all components of ρ are au-
tomorphisms (in a single variable) then we are finished by Lemma 4.4.
So, we assume some component is not an automorphism in a single
variable and relabel to make ρn+1 such a component. By Lemma 4.2,
we can replace ρ with a retraction r of the form

r(z, w) = (r′(z), f(z))

where z ∈ Dn and w ∈ D and the projection of V onto the first n co-
ordinates, denoted πV , is a retract with retraction r′(z). By induction
(after possibly applying automorphisms of Dn) we may put πV into
the form

πV = {(z, e(z), g(z)) : z ∈ D
k}

where e : Dk → Dm consists of coordinate functions, g : Dk → Dn−m−k

is holomorphic with no components equal to an automorphism.
Then,

V = {(z, e(z), g(z), f(z, e(z), g(z))) : z ∈ D
k}

which is of the desired form. �
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