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EQUIVALENCE OF CONCENTRATION INEQUALITIES FOR

LINEAR AND NON-LINEAR FUNCTIONS

T. J. SULLIVAN AND H. OWHADI

Abstract. We consider a random variable X that takes values in a (possibly
infinite-dimensional) topological vector space X . We show that, with respect

to an appropriate “normal distance” on X , concentration inequalities for linear
and non-linear functions ofX are equivalent. This normal distance corresponds
naturally to the concentration rate in classical concentration results such as
Gaussian concentration and concentration on the Euclidean and Hamming
cubes. Under suitable assumptions on the roundness of the sets of interest,
the concentration inequalities so obtained are asymptotically optimal in the
high-dimensional limit.

1. Introduction

It is by now almost classical that smooth enough convex functions enjoy good
concentration properties; see e.g. [15] [18] [22] [23] for surveys of the literature. It
is also known that convexity can be neglected in the Gaussian case and that the
smoothness assumptions are not essential and can be replaced, for instance, with
bounded martingale differences; see e.g. [20] [21] and also [29].

A common feature of many concentration results is that an appropriate notion of
distance is needed, e.g. Talagrand’s convex distance [27]. In this paper, a notion of
“normal distance” on a topological vector space X is introduced through a technique
commonly used in large deviations theory, Chernoff bounding, i.e. estimating the
measure of a set by using a containing half-space. Although simple, this method
leads to a notion of distance that is in some sense “natural” with respect to the
duality structure on X . Remarkably, with respect to this distance, concentration
inequalities on the tails of linear, convex, quasiconvex and non-linear functions on
X are mutually equivalent.

Concentration of measure is based on a simple but non-trivial observation orig-
inally due to Lévy [17]: in a high-dimensional probability space, “nearly all” the
probability mass lies close to any set with measure at least 1

2 ; put another way,
functions of many independent variables with small sensitivity to each individual
input are very nearly constant. A typical concentration inequality is of the form

P[|f(X)−m| ≥ r] ≤ C1 exp(−C2r
2), (1.1)
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2 T. J. SULLIVAN AND H. OWHADI

where f is a suitably well-behaved function, X is a random variable such that the
push-forward measure (f ◦X)∗P has some concentration property, and m is either
the mean value E[f(X)] or median value M[f(X)]; sometimes the control is one-
sided, and the absolute value in (1.1) is omitted. A notable feature of this paper is
that it provides concentration inequalities with m = f(E[X ]).

The key property of the normal distance of this paper is contained in the following
portmanteau theorem for the equivalence of various concentration inequalities with
respect to normal distance:

Theorem 1.1. Let X be a real topological vector space and X ∗ its continuous dual
space. Let Ψ: X ∗ → [0,+∞] be positively homogeneous of degree one. Define the
Ψ-normal distance from x ∈ X to A ⊆ X by

d⊥,Ψ(x,A) := sup

{ 〈ν, x− p〉+
Ψ(ν)

∣∣∣∣
p ∈ X and ν ∈ X ∗such that,
for all a ∈ A, 〈ν, a〉 ≤ 〈ν, p〉

}
,

with the convention that 0/0 = 0. Then the following statements about any random
variable X that takes values in X are equivalent:
(i) for every closed half-space Hp,ν := {x ∈ X | 〈ν, x− p〉 ≤ 0} ⊆ X , where p ∈ X

and ν ∈ X ∗,

P[X ∈ Hp,ν ] ≤ exp

(
−d⊥,Ψ(E[X ],Hp,ν)

2

2

)
;

(ii) for every convex set K ⊆ X ,

P[X ∈ K] ≤ exp

(
−d⊥,Ψ(E[X ],K)2

2

)
;

(iii) for every measurable A ⊆ X ,

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
;

(iv) for every measurable f : X → R ∪ {±∞} and every θ ∈ R ∪ {±∞},

P[f(X) ≤ θ] ≤ exp

(
−d⊥,Ψ(E[X ], f−1([−∞, θ]))2

2

)
;

(v) for every quasiconvex f : X → R ∪ {±∞} and every θ ∈ R ∪ {±∞},

P[f(X) ≤ θ] ≤ exp

(
−d⊥,Ψ(E[X ], f−1([−∞, θ]))2

2

)
.

Note that if f is quasilinear (i.e. both f and −f are quasiconvex), then formu-
lation (v) yields concentration inequalities for both the lower and upper tails of
f(X).

The notation and setting of the paper are covered in section 2, along with a
review of some definitions and results from the concentration-of-measure literature.
Normal distance is defined and its properties (including theorem 1.1) are examined
in section 3. In section 4, the normalizing function Ψ is determined explicitly in
several cases, thereby connecting theorem 1.1 with classical concentration results.
In particular, proposition 4.4 identifies the normal distance that corresponds to the
concentration of a vector, the entries of which are the empirical (sampled) means
of functions of independent random variables. In section 5, it is shown that the
inequality in theorem 1.1(iii) is asymptotically sharp (in the sense used in large
deviations theory) in the high-dimensional limit, provided that A is convex and
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Figure 2.1. A convex set K and its outward normal cones
at points p, q, r ∈ K. ∂K is smooth at p ∈ ∂K, so N∗

pK is a
half-line; ∂K has a vertex at q, so N∗

qK is a pointed convex
cone with non-empty interior; at the interior point r, N∗

rK is
the empty set.

“sufficiently round” at those points of A that are closest to the center of mass E[X ].
Finally, for completeness, the method of Chernoff bounds and its consequences for
convex sets are reviewed in an appendix (section 6).

2. Notation and Background

Let X be a real topological vector space. Let X ∗ denote the continuous dual
space of X and let 〈ℓ, x〉 denote the dual pairing between ℓ ∈ X ∗ and x ∈ X ; 〈v, ℓ〉
will also denote the dual pairing between v ∈ X ∗∗ and ℓ ∈ X ∗. It is not strictly
necessary to assume that X is locally convex, but the results of this paper may be
trivially true if X ∗ does not contain enough linear functionals.

2.1. Half-Spaces. Given p ∈ X and ν ∈ X ∗, Hp,ν will denote the closed half-space
of X that has p in its frontier and outward-pointing normal ν, i.e.

Hp,ν := {x ∈ X | 〈ν, x〉 ≤ 〈ν, p〉} . (2.1)

Note well the degenerate case Hp,0 = X . Every (p, ν) ∈ X × X ∗ defines a unique
closed half-space of X , whereas a given closed half-space can have multiple distinct
representations: Hp,ν = Hp′,ν′ if, and only if, ν is a positive multiple of ν′ and
〈ν, p− p′〉 = 〈ν′, p− p′〉 = 0.

2.2. Convex Sets and Cones. The closed convex hull of A ⊆ X will be denoted
by co(A). Given a closed convex set K ⊆ X and p ∈ K, N∗

pK denotes the outward
normal cone to K at p, and N∗K denotes the outward normal bundle of K:

N∗
pK := {ν ∈ X ∗ |K ⊆ Hp,ν} , (2.2)

N∗K :=
{
(p, ν) ∈ X × X ∗

∣∣ p ∈ K, ν ∈ N∗
pK
}
. (2.3)

The outward normal cone N∗
pK is a pointed convex cone: it contains 0, is convex,

and s1ν1 + s2ν2 ∈ N∗
pK for all s1, s2 ≥ 0 and all ν1, ν2 ∈ N∗

pK. Also, N∗
pK = {0} if

p is an interior point of K. Note that N∗K ⊆ X × X ∗ is not necessarily a convex
set. See figure 2.1 for an illustration.
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2.3. Quasiconvexity. IfK ⊆ X is a convex set, then a function f : K → R∪{±∞}
is said to be quasiconvex if, for every θ ∈ R ∪ {±∞}, the sublevel set

f−1([−∞, θ]) := {x ∈ K | −∞ ≤ f(x) ≤ θ} (2.4)

is a convex set; equivalently, f is quasiconvex if, for all x, y ∈ K and t ∈ [0, 1],

f((1− t)x+ ty) ≤ max{f(x), f(y)}. (2.5)

f is said to be quasiconcave if −f is quasiconvex, and f is said to be quasilinear
if it is both quasiconvex and quasiconcave. Every convex (resp. concave, linear)
function is quasiconvex (resp. quasiconcave, quasilinear), but not vice versa. In
particular, a function f : RN → R is quasilinear if, and only if, it is the composition
of a monotone function with a linear functional on RN [5, p. 122].

2.4. Indicator and Characteristic Functions. Given a set A ⊆ X , 1A and χA

denote its indicator function and characteristic function respectively:1A(x) :=

{
1, if x ∈ A,

0, if x /∈ A;
(2.6)

χA(x) :=

{
0, if x ∈ A,

+∞, if x /∈ A.
(2.7)

Note that, for any convex set K ⊆ X , χK is a convex function.

2.5. Probabilistic Notions. Let (Ω,F ,P) be a probability space and let X : Ω →
X be an X -valued random variable. E[·] denotes the expectation operator with
respect to the probability measure P: E[X ] is defined to be any m ∈ X such that

E[〈ℓ,X −m〉] ≡
∫

Ω

〈ℓ,X(ω)−m〉dP(ω) = 0 for all ℓ ∈ X ∗; (2.8)

if X ∗ separates the points of X (e.g. if X is a Banach space), then E[X ] is unique.
For Y : Ω → R, any m ∈ R that satisfies

sup

{
v ∈ R

∣∣∣∣P[Y ≤ v] ≤ 1

2

}
≤ m ≤ inf

{
v ∈ R

∣∣∣∣P[Y ≤ v] ≥ 1

2

}
(2.9)

will be called a median of Y and denoted M[Y ]. MX : X ∗ → [0,+∞] denotes the
moment-generating function defined by

MX(ℓ) := E [exp〈ℓ,X〉] for all ℓ ∈ X ∗. (2.10)

ΛX : X ∗ → R ∪ {±∞} denotes the cumulant generating function (or logarithmic
moment-generating function) defined by

ΛX(ℓ) := logMX(ℓ) = logE [exp〈ℓ,X〉] for all ℓ ∈ X ∗. (2.11)

By Hölder’s inequality, ΛX is a convex function.
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2.6. Talagrand’s Inequalities. It has been known for some time that convex sets
and functions enjoy good concentration properties; moreover, to get good concen-
tration results, it is necessary to measure distances in the right way.

For example, a theorem of Talagrand shows that if a convex set K ⊆ RN occupies
a “significant” portion of the Hamming cube {−1,+1}N and t ≫ 1, then “nearly
all” of the points of the Hamming cube lie within Euclidean distance t of K. Define
the Euclidean Hausdorff distance from x ∈ RN to A ⊆ RN by

dHaus(x,A) := inf{‖x− a‖2 | a ∈ A}. (2.12)

Talagrand [26] showed that if X is uniformly distributed in {−1,+1}N then, for any
A ⊆ RN , E[exp(dHaus(X, co(A))2/8)] ≤ P[X ∈ A]−1; hence, Chebyshev’s inequality
implies that, for any t ≥ 0,

P[X ∈ A]P[dHaus(X, co(A)) ≥ t] ≤ exp

(
− t2

8

)
. (2.13)

More interesting results can be obtained if one uses not the Euclidean distance
but the Hamming distance — or, more accurately, an infimum over weighted Ham-
ming distances. For w = (w1, . . . , wN ) ∈ [0,+∞)N , define the w-weighted Hamming

distance dw on a product of sets X =
∏N

n=1 Xn by

dw(x, y) :=
N∑

n=1

wn(1 − δxn,yn
); (2.14)

that is, dw(x, y) is the w-weighted sum of the number of components in which
x, y ∈ X differ. For x ∈ X and A ⊆ X , set dw(x,A) := infa∈A dw(x, a). Define
Talagrand’s convex distance from x ∈ X to A ⊆ X by

dTal(x,A) := sup

{
dw(x,A)

∣∣∣∣∣w ∈ [0,+∞)N ,

N∑

n=1

w2
n = 1

}
, (2.15)

and, for A,B ⊆ X , let dTal(A,B) := infa∈A dTal(a,B). Talagrand [27, §4.1] showed
that if X = (X1, . . . , XN) is any X -valued random variable with independent com-
ponents, then

P[X ∈ A]P[X ∈ B] ≤ exp

(
−dTal(A,B)2

4

)
. (2.16)

These bounds on the probabilities of sets lead to deviation inequalities for convex
Lipschitz functions. For example (cf. [13] [26]), let X be any random variable in the
unit cube in RN with independent components, and let f : [0, 1]N → R be convex
and Lipschitz with ‖f‖Lip ≤ 1; then, for any t ≥ 0,

P[f(X) ≥ M[f(X)] + t] ≤ 2 exp

(
− t2

4

)
. (2.17)

Note, however, that these results use not only the convexity of the function of
interest, but also require Lipschitz continuity. What concentration inequalities can
be shown to hold without smoothness assumptions?
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2.7. McDiarmid’s Inequality. One smoothness-free concentration inequality is
McDiarmid’s inequality [20], also known as the bounded differences inequality, which
itself generalizes an earlier inequality of Hoeffding [11]. McDiarmid’s inequality is
by no means the strongest concentration-of-measure inequality in the literature,
but is useful because of its simple hypotheses and proof.

Define the McDiarmid diameter of f , denoted D[f ], by

D[f ] :=

(
N∑

n=1

Dn[f ]
2

)1/2

, (2.18)

where the nth McDiarmid subdiameter Dn[f ] is defined by

Dn[f ] := sup{|f(x)− f(y)| | xj = yj for j 6= n}. (2.19)

When E[|f(X)|] is finite and X1, . . . , XN are independent, McDiarmid’s inequality
bounds the deviations of f(X) from E[f(X)] in terms of the McDiarmid diameter
of f : for any r > 0,

P[f(X)− E[f(X)] ≤ −r] ≤ exp

(
− 2r2

D[f ]2

)
, (2.20a)

P[f(X)− E[f(X)] ≥ r] ≤ exp

(
− 2r2

D[f ]2

)
. (2.20b)

McDiarmid’s inequality implies that, for any θ ∈ R ∪ {±∞},

P[f(X) ≤ θ] ≤ exp

(
−2(E[f(X)]− θ)2+

D[f ]2

)
, (2.21a)

P[f(X) ≥ θ] ≤ exp

(
−2(θ − E[f(X)])2+

D[f ]2

)
. (2.21b)

McDiarmid’s inequality (and similar inequalities such as martingale inequalities)
have the advantage that a bound on the tails of f(X) is obtained solely in terms
of the mean output E[f(X)] and the McDiarmid diameter D[f ]. However, McDiar-
mid’s inequality cannot take advantage of any other properties of f such as con-
vexity or monotonicity; furthermore, if f has infinite McDiarmid diameter on the
essential range of X , then the trivial upper bound 1 is obtained.

There are many other sources of concentration-of-measure inequalities: these
include logarithmic Sobolev inequalities and the Herbst argument [2] [10] [12], the
entropy method [3] [4] [14], and information-theoretic methods [7] [19]. Of par-
ticular interest are those concentration results that apply to infinite-dimensional
settings [16].

3. Normal Distance

As noted above, efficient presentation of many concentration-of-measure inequal-
ities relies on having an appropriate notion of function variation (e.g. the Lipschitz
norm or McDiarmid diameter) or distance (e.g. Talagrand’s convex distance). The
inequalities that will be established in section 4 can be phrased in terms of trans-
forms of moment-generating functions, but are more transparent if phrased in terms
of a normal distance, which will introduced in this section.

Fix a function Ψ: X ∗ → [0,+∞] that is positively homogeneous of degree one,
i.e. such that Ψ(αℓ) = αΨ(ℓ) for all α ≥ 0 and all ℓ ∈ X ∗. By analogy with the
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situation in finite-dimensional Euclidean space, in which Ψ = ‖·‖2 on (RN )∗, define
the distance from a point x ∈ X to a half-space Hp,ν ⊆ X by

d⊥,Ψ(x,Hp,ν) :=
〈ν, x− p〉+

Ψ(ν)
, (3.1)

with the convention that 0/0 = 0, since the distance from x ∈ X to the trivial
half-space Hp,ν = X ought to be zero. Note that d⊥,Ψ(x,Hp,ν) = 0 whenever
x ∈ Hp,ν ; note also that the homogeneity assumption on Ψ ensures that (3.1) is
an unambiguous definition. We now generalize (3.1) to more general subsets of X
than half-spaces. The heuristic is that the distance from x to A ⊆ X should be
the greatest possible distance (in the sense of (3.1)) from x to any half-space that
contains A; the existence of the degenerate half-space Hp,0 ensures that the normal
distance is zero if there are no proper half-spaces that contain A.

Definition 3.1. Let x ∈ X and A ⊆ X . The Ψ-normal distance from x to A,
denoted d⊥,Ψ(x,A), is defined (with the same convention that 0/0 = 0) by

d⊥,Ψ(x,A) := sup

{ 〈ν, x− p〉+
Ψ(ν)

∣∣∣∣
p ∈ X and ν ∈ X ∗

such that A ⊆ Hp,ν

}
. (3.2)

The Ψ-normal distance from A ⊆ X to B ⊆ X is defined by d⊥,Ψ(A,B) :=
infa∈A d⊥,Ψ(a,B). In the special case X = RN and Ψ = ‖ · ‖2 on (RN )∗, we
shall simply write d⊥ for d⊥,Ψ, i.e.

d⊥(x,A) := sup

{
(ν · (x− p))+

‖ν‖2

∣∣∣∣
p ∈ RN and ν ∈ (RN )∗

such that A ⊆ Hp,ν

}
. (3.3)

Note well that the definition of the normal distance d⊥,Ψ(x,A) does not require
X to be normed; even when X is equipped with a norm ‖ · ‖X and Ψ is the cor-
responding operator norm, the normal distance d⊥,Ψ(x,A) is not the same as the
Hausdorff distance from x to A defined by

dHaus(x,A) := inf{‖x− a‖X | a ∈ A}; (3.4)

see figure 3.1 for an illustration. Note also that it is not generally true that
d⊥,Ψ(A,B) = d⊥,Ψ(B,A): consider e.g. B := {(0, 1)} and A as in figure 3.1, in
which case

d⊥,Ψ(A,B) = inf
a∈A

d⊥,Ψ(a,B) = 1 6= 0 = d⊥,Ψ(B,A).

For any x ∈ X and A ⊆ B ⊆ X , it holds that d⊥,Ψ(x,B) ≤ d⊥,Ψ(x,A). Fur-
thermore, since a closed half-space Hp,ν contains A if, and only if, it contains the
closed convex hull co(A) of A, the following equality holds:

d⊥,Ψ(x,A) = d⊥,Ψ(x, co(A)) for all x ∈ X and all A ⊆ X . (3.5)

Remark 3.2. It is natural to ask what, if any, relation there is between the normal
distance and Talagrand’s convex distance. The simplest answer is to say that the
two distances should be compared only with great caution, since each belongs to
a different setting: Talagrand’s distance is defined on a product of sets, whereas
the normal distance is defined on a topological vector space. Even on RN , the
two distances measure different quantities: in some sense, dTal(x,A) measures how
many of the coordinates of x are covered by A, but does not measure the geometric
distance between them; on the other hand, d⊥,Ψ(x,A) is a much more geometric
measure of how far x is from A in terms of linear functionals on X , and the “size”
of those linear functionals is measured by Ψ. In particular, Talagrand’s convex
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A

0

dHaus(0, A) d⊥(0, A)

Figure 3.1. An example of a subset A of the Euclidean plane
R2 for which the normal distance d⊥(0, A) = 1 unit (cf. the
dashed line), as opposed to the Euclidean Hausdorff distance
dHaus(0, A) = 2 units (cf. the dotted arc).

distance is positively homogeneous of degree zero, whereas the normal distance is
positively homogeneous of degree one: for any x ∈ RN , A ⊆ RN , and α > 0,

dTal(αx, αA) = dTal(x,A),

d⊥,Ψ(αx, αA) = αd⊥,Ψ(x,A).

This section concludes with the proof of the portmanteau theorem (theorem 1.1)
and some final remarks on its applicability:

Proof of theorem 1.1. The equivalence will be established by showing that

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (i).

Suppose that (i) holds. Then

P[X ∈ K]

≤ inf
Hp,ν⊇K

P[X ∈ Hp,ν ] by monotonicity of P,

≤ inf
Hp,ν⊇K

exp

(
−d⊥,Ψ(E[X ],Hp,ν)

2

2

)
by (i),

= exp

(
−1

2
sup

Hp,ν⊇K
d⊥,Ψ(E[X ],Hp,ν)

2

)

= exp

(
−d⊥,Ψ(E[X ],K)2

2

)
by (3.2).

Hence, (i) implies (ii).
Suppose that (ii) holds; then

P[X ∈ A] ≤ P[X ∈ co(A)] since A ⊆ co(A),

≤ exp

(
−d⊥,Ψ(E[X ], co(A))2

2

)
by (ii),

= exp

(
−d⊥,Ψ(E[X ], A)2

2

)
by (3.5),
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and so (ii) implies (iii). (iv) follows from (iii) upon setting A := {x ∈ X | f(x) ≤ θ}.
(v) is clearly a special case of (iv). (i) follows from (v) upon setting f := χHp,ν

and
θ := 1. �

Remark 3.3. It is important to note that all the bounds in theorem 1.1 may be
trivial if the dual space X ∗ is not rich enough. For example, given a measure space
(Z,F , µ), for 0 < p < 1, the space

Lp(Z,F , µ;R) :=

{
f : Z → R

∣∣∣∣∣ ‖f‖p :=

(∫

Z

|f(z)|p dµ(z)
)1/p

< +∞
}

is a topological vector space with respect to the quasinorm topology generated by
‖ · ‖p. This space is not locally convex and has a trivial dual space: the only
continuous linear functional on this space is the zero functional, and so the only
closed half-space is the whole space. See e.g. [24, §1.47] for further discussion of
spaces such as Lp([0, 1];R) for 0 < p < 1.

It is tempting to eliminate these pathologies by working with the algebraic,
instead of the topological, dual of X . This can be done, and most results go
through mutatis mutandis ; in particular, it is necessary to replace all references to
the closed convex hull co(A) of A ⊆ X with the convex hull co(A); the analogue of
(3.5) (with Ψ now defined on the algebraic dual of X ) is

d⊥,Ψ(x,A) = d⊥,Ψ(x, co(A)) for all x ∈ X and all A ⊆ X .

The principal disadvantage of ignoring all topological structure on X , of course, is
that there are no longer notions of interior, closure and frontier — although it still
makes sense to discuss the extremal points of convex sets.

4. Normal Distance as a Concentration Rate

The method of Chernoff bounding (reviewed in lemma 6.1) gives bounds on
P[X ∈ Hp,ν ] in terms of the moment-generating function MX . If these bounds can
be formulated in terms of a suitable normal distance, then theorem 1.1 produces
equivalent bounds for on P[X ∈ K] for convex K, on P[X ∈ A], & c.. As noted
in [18, §2], the best Chernoff bound on P[f(X) ≥ θ] is never better than the best
bound using the all the moments of f(X): if f takes only non-negative values, then

inf
k∈N

θ−kE
[
f(X)k

]
≤ inf

s≥0
e−sθE

[
esf(X)

]
. (4.1)

However, Chernoff bounds have the advantage that they are geometrically very
easy to handle.

The next result provides the normal distance formulation for an X -valued Gauss-
ian random variable (in fact, for a family of such variables). In the special case of a
single Gaussian random vector X on X = RN with covariance operator CX = σIN ,
proposition 4.1 yields the classical Chernoff bound for a multivariate normal random
variable.

Proposition 4.1. Let Γ be a family of Gaussian random vectors in X . For each
X ∈ Γ, let CX : X ∗ → X ∗∗ be its covariance operator defined by

〈CXℓ, ν〉 := E [〈ℓ,X〉〈ν,X〉] . (4.2)

Let E := {E[X ] | X ∈ Γ}, let
Ψ(ν) := sup

X∈Γ

√
〈CXν, ν〉, (4.3)
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and let d⊥,Ψ be the corresponding normal distance. Then, for any A ⊆ X ,

sup
X∈Γ

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E,A)2

2

)
. (4.4)

Proof. For each X ∈ Γ, the moment-generating function for X is given by

MX(ℓ) := E
[
e〈ℓ,X〉

]
= exp

(
〈ℓ,E[X ]〉+ 〈CXℓ, ℓ〉

2

)
. (4.5)

Therefore,

P[X ∈ Hp,ν ]

≤ inf
s≥0

exp

(
s〈ν, p− E[X ]〉+ s2

〈CXν, ν〉
2

)
by (4.5) and lemma 6.1,

= exp

(
−〈ν,E[X ]− p〉2+

2〈CXν, ν〉2
)

≤ exp

(
−〈ν,E[X ]− p〉2+

2Ψ(ν)2

)
by (4.3),

= exp

(
−d⊥,Ψ(E[X ],Hp,ν)

2

2

)
by (3.2).

Hence, by theorem 1.1,

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
,

and so

sup
X∈Γ

P[X ∈ A] ≤ sup
X∈Γ

exp

(
−d⊥,Ψ(E[X ], A)2

2

)

= exp

(
− inf

X∈Γ

d⊥,Ψ(E[X ], A)2

2

)

= exp

(
d⊥,Ψ(E,A)2

2

)
. �

Lemma 6.1 also has the following consequences for random vectors supported in
a cuboid in RN ; this encompasses two standard situations in which concentration is
often studied, namely concentration for functions on the Euclidean unit cube and
on the Hamming cube.

Proposition 4.2. Let X be a random vector in RN with independent components
such that each component Xn almost surely takes values in a fixed interval of length
Ln. Let

Ψ(ν) :=
1

2

√√√√
N∑

n=1

L2
nν

2
n (4.6)

and let d⊥,Ψ be the corresponding normal distance. Then, for any A ⊆ RN ,

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
. (4.7)

A fortiori, if X takes values in (a translate of) the unit cube [0, 1]N , then

P[X ∈ A] ≤ exp
(
−2d⊥(E[X ], A)2

)
, (4.8)
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and if X takes values in (a translate of) the Hamming cube {−1,+1}N, then

P[X ∈ A] ≤ exp

(
−d⊥(E[X ], A)2

2

)
. (4.9)

Proof. The proof is similar to the Gaussian case: it is an application of lemma
6.1 and Hoeffding’s lemma [11, lemma 1 and (4.16)], which bounds the moment-
generating function of Xn as follows:

MXn
(ℓn) := E [exp(ℓnXn)] ≤ exp

(
ℓnE[Xn] +

ℓ2nL
2
n

8

)
.

Note that the claim can also be proved directly by applying McDiarmid’s in-
equality to the function 〈ν, ·〉, which has mean E[〈ν,X〉] = 〈ν,E[X ]〉 and McDiarmid

diameter
√
L2
1 + · · ·+ L2

N . �

Remark 4.3. Note the similarity between the normal distances of propositions 4.1
and 4.2. In the Gaussian case, the norm on X ∗ is the one induced by the “largest”
covariance operator in the family of random variables Γ. In the bounded-range case,
the norm on X ∗ is the one induced by the “largest” covariance operator for random
variables satisfying the range constraint: if X is a real-valued random variable
taking values in an interval [a, b], then Ψ(ν)2 = 1

4 (b−a)2ν2 and Var[X ] ≤ 1
4 (b−a)2;

this upper bound on the variance is attained by a Bernoulli random variable with
law 1

2δa +
1
2δb.

The next result identifies the normal distance that corresponds to the concentra-
tion of a vector, the entries of which are the empirical (sampled) means of functions
of independent random variables.

Proposition 4.4. For n = 1, . . . , N , let Zn := fn(Yn,1, . . . , Yn,K(n)) be a real-
valued function of independent random variables Yn,k, and suppose that fn has finite
McDiarmid diameter D[fn]. Let Z = (Z1, . . . , ZN ). Suppose that the random inputs
of each fn are sampled independently M(n) times according to the distribution P

and that the empirical average

Ê[Z] =


 1

M(n)

M(n)∑

m=1

fn

(
Y

(m)
n,1 , . . . , Y

(m)
n,K(n)

)



N

n=1

∈ RN (4.10)

is formed. Then, for any A ⊆ RN ,

P
[
Ê[Z] ∈ A

]
≤ exp

(
−d⊥,Ψ(E[Z], A)2

2

)
, (4.11)

where the distance Ψ: (RN )∗ → [0,+∞) is given in terms of the McDiarmid diam-
eters of the functions f1, . . . , fN and the sample sizes M(1), . . . ,M(N):

Ψ(ν) :=
1

2

(
N∑

n=1

ν2nD[fn]
2

M(n)

)1/2

. (4.12)

Proof. Let Hp,ν ( RN be a half-space. Consider the real-valued random variable〈
ν, Ê[Z]

〉
as a function of the sampled input random variables Y

(m)
n,k . Suppose

that the McDiarmid subdiameter of fn with respect to Yn,k is Dn,k. Then the
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McDiarmid subdiameter of
〈
ν, Ê[Z]

〉
with respect to the mth sample of Yn,k is

νnDn,k/M(n). Hence, the McDiarmid diameter of
〈
ν, Ê[Z]

〉
is

√√√√
∑

k,n,m

ν2nD
2
n,k

M(n)2
=

√√√√
∑

n,m

ν2nD[fn]2

M(n)2
=

√∑

n

ν2nD[fn]2

M(n)

Therefore, since Ê[Z] is an unbiased estimator for E[Z] (i.e. E
[
Ê[Z]

]
= Ê[Z]),

McDiarmid’s inequality (2.21a) implies that

P
[
Ê[Z] ∈ Hp,ν

]
= P

[〈
ν, Ê[Z]

〉
≤ 〈ν, p〉

]

≤ exp


−

2 (〈ν,E[Z]〉 − 〈ν, p〉)2+∑N
n=1

ν2
n
D[fn]2

M(n)




= exp


− 〈ν,E[Z]− p〉2+

2 · 1
4 ·∑N

n=1
ν2
n
D[fn]2

M(n)




= exp

(
−d⊥,Ψ(E[Z],Hp,ν)

2

2

)
.

The claim now follows from theorem 1.1. �

An example of the application of proposition 4.4 is the following:

Example 4.5 (Functions of empirical means). The Chernoff bounding method
can be used to provide much-improved confidence levels for quantities derived from
many empirical — as opposed to exact — means; see e.g. [25, §5]. Suppose that
H0 : R

N → R is some function of interest: in particular, the quantity of interest is
H0 (E[Z1], . . . ,E[ZN ]) for some absolutely integrable real-valued random variables
Z1, . . . , ZN . If, however, the exact means E[Zn] are unknown, then empirical means

Ê[Zn] may be used in their place if appropriate confidence corrections are made.
Suppose that “error” corresponds to concluding, based on the empirical means,
that H0(E[Z]) is smaller than it actually is. Given α ∈ RN , set

Hα(z1, . . . , zN ) := H0(z1 + α1, . . . , zN + αN ). (4.13)

Therefore, given any ε > 0, we seek an appropriate “margin hit” α = α(ε) ∈ RN

(typically, αn ≥ 0 for each n ∈ {1, . . . , N}) such that

P
[
Hα

(
Ê[Z1], . . . , Ê[ZN ]

)
≥ H0 (E[Z1], . . . ,E[ZN ])

]
≥ 1− ε.

Dually, given α ∈ RN , we seek a sharp upper bound on the probability of error, i.e.
on

P
[
Hα

(
Ê[Z1], . . . , Ê[ZN ]

)
≤ H0 (E[Z1], . . . ,E[ZN ])

]
.

If H0 (and hence Hα) is monotonic in each of its N arguments and Z1, . . . , ZN

are independent, then the probability of non-error can be bounded from below as
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follows:

P
[
Hα

(
Ê[Z]

)
≤ H0(E[Z])

]
= P

[
Hα

(
Ê[Z]

)
≤ Hα(E[Z]− α)

]

≤
N∏

n=1

P
[
Ê[Zn] ≤ E[Zn]− αn

]

≤ 1−
N∏

n=1

(
1− exp

(
−−2M(n)(αn)

2
+

D[fn]2

))
.

Unfortunately, when N is large, the last line of this inequality is typically close
to zero unless the sample sizes are very large, and so this bound is of limited
use. Geometrically, this is analogous to the fact that a high-dimensional orthant
(product of half-lines) appears to be very narrow from the perspective of an observer
at its vertex. In contrast, half-spaces always fill a half of the observer’s field of view.
To bound the probability of sublevel or superlevel sets using half-spaces requires
Hα to have some convexity — not monotonicity — properties.

If Hα is quasiconvex, then the bounds using normal distances can be applied to
good effect, and yield estimates that actually perform better the larger N is. In
particular, if Hα is both quasiconvex and differentiable, then the outward normal
to its t-level set at some point p is just any positive multiple of the derivative of
Hα at p, and this yields the bound

P
[
Hα

(
Ê[Z]

)
≤ θ
]
≤ inf

p:Hα(p)≤θ
exp


−

2
(∑N

n=1 ∂nHα(p)(E[Zn]− pn)
)2
+∑N

n=1
(∂nHα(p))2D[fn]2

M(n)


 .

(4.14)
In particular, taking θ = H0(E[Z]) = Hα(E[Z]−α) and evaluating the exponential
in (4.14) at p = E[Z]− α ∈ RN yields that

P
[
Hα

(
Ê[Z]

)
≤ H0(E[Z])

]
≤ exp


−

2
(∑N

n=1 ∂nHα(p)αn

)2
+∑N

n=1
(∂nHα(p))2D[fn]2

M(n)


 . (4.15)

(4.15) is particularly useful since it links the margin hits αn, the sample sizes
M(n), and the maximum probability of error. For example, given a desired level of
confidence, margin hits αn, and a total number of samples M ∈ N, one can choose
sample sizes M(1), . . . ,M(N) that sum to M and minimize the right-hand side of
(4.15); this yields an optimal distribution of sampling resources so as to ensure that

Hα

(
Ê[Z]

)
≥ H0(E[Z]) with the desired level of confidence.

5. High-Dimensional Asymptotics

The topic of this section is the asymptotic sharpness of the bounds introduced
above as the dimension of the space X becomes large. We begin with a comparison
of the McDiarmid and half-space bounds for a simple function: a quadratic form
on RN .

Example 5.1 (Comparison with McDiarmid’s inequality). The following example
serves to illustrate how the half-space method can produce upper bounds on the
measure of suitable sublevel sets that are superior to those offered by McDiarmid’s
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Figure 5.1. For the quadratic form QN on RN given in (5.1),
a comparison of the McDiarmid upper bound (squares) and
half-space upper bound (triangles) on P[QN(X) ≤ θ] in the
cases θ = 1

4 (dotted line and hollow polygons) and θ = 1
8 (solid

line and filled polygons).

inequality; it also shows how this effect is more pronounced in higher-dimensional
spaces. Consider the following quadratic form QN on RN :

QN (x) := 1
2

∥∥x−
(
1
2 , . . . ,

1
2

)∥∥2
2
. (5.1)

For any θ > 0, the sublevel set Q−1
N ([−∞, θ]) is simply a ball of radius

√
2θ about

the point
(
1
2 , . . . ,

1
2

)
. Suppose that a random vector X takes values in

[
− 1

2 ,+
1
2

]N
with independent components. McDiarmid’s inequality (2.21a) implies that

P[QN(X) ≤ θ] ≤ exp


−8

(√
N

6
− θ√

N

)2

+


 ,

If also E[X ] = 0, then corollary 4.2 implies that

P[QN (X) ≤ θ] ≤ exp

(
− (

√
N −

√
8θ)2+

2

)
.

For small N and large θ, McDiarmid’s bound is the sharper of the two. However,
for small θ (and, notably, as N → ∞ for any fixed θ), the half-space bound is the
sharper bound. See figure 5.1 for an illustration.

The previous example suggests that bounds constructed using the half-space
method may perform very well in high dimension but also that the sharpness of
the bound may depend on “how round” the set whose measure we wish to bound
is. To fix ideas, suppose that X = (X1, . . . , XN) : Ω → RN is a random vector with
independent components, where Xn is supported on an interval of length Ln. For
A ⊆ RN , how sharp is the bound

P[X ∈ A] ≤ exp

(
−d⊥(E[X ], A)2

2

)
? (5.2)
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He1,−e1

Kε
ε

bE[X ]

Figure 5.2. It is not reasonable to expect that (an upper
bound for) the measure of the half-space He1,−e1 is a sharp
upper bound for the measure of the narrow wedge Kε when ε
is small.

First, note that since d⊥(E[X ], A) = d⊥(E[X ], co(A)), the bound cannot be ex-
pected to be sharp if A differs greatly from its closed convex hull, and so it makes
sense to restrict investigation to the case that A = K, a closed and convex subset
of RN . Secondly, it is not reasonable to expect the bound (5.2) on P[X ∈ K] to
be sharp if K is sharply pointed, e.g. if K is the narrow wedge Kε of angle ε ≪ 1
based at e1 := (1, 0, . . . , 0) in RN :

Kε :=

{
x ∈ RN

∣∣∣∣
(x− e1) · e1
‖x− e1‖2

≤ ε

}
; (5.3)

see figure 5.2. Therefore, we wish to consider the opposite situation in which K has
no sharp points, which will be made precise by requiring that K satisfy an interior
ball condition.

Suppose that (p, ν) ∈ N∗K is such that d⊥(x,Hp,ν) = d⊥(x,K). Suppose also
that Br(p−rω) ⊆ K, with r > 0 and ω ∈ RN a unit vector, is an interior ball for K
at p ∈ ∂K; cf. figure 5.3. If the law of X on RN is highly singular, then it cannot be
expected that the bound (5.2) is sharp, so suppose that the law of X has a density
with respect to Lebesgue measure that is bounded above by some constant C > 0.
Then the bound (5.2) is

P[X ∈ K] ≤ exp

(
−2〈ν,E[X ]− p〉2+∑N

n=1 ν
2
nL

2
n

)
.

In the extreme case, K is precisely the closed ball Br(p − rω), the P-measure of
which is at most CrNπN/2/Γ(1 +N/2).

In large deviations theory, the standard notion of asymptotic sharpness is loga-
rithmic equivalence [9, §I.1]; see also e.g. [8] [28] for surveys of the large deviations
literature. Two sequences (αn)n∈N and (βn)n∈N are said to be logarithmically equiv-
alent, denoted αn ≃ βn, if

1

n
logαn − 1

n
log βn ≡ log

(
αn

βn

)1/n

→ 0 as n → ∞. (5.4)

Are the half-space bound (5.2) and the measure of Br(p−rω) logarithmically equiv-
alent? That is, does the conditional probability P

[
X ∈ Br(p− rω)

∣∣X ∈ Hp,ν

]
,
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Hp,ν

K

b q

b
p− rω

b

p

b

E[X ]

Figure 5.3. An interior ball of radius r for the closed convex
set K at the frontier point p. Necessarily, p is a point at which
∂K is smooth; K admits no interior ball of positive radius at
the vertex q. For convenience, the unit vector ω ∈ RN has
been identified with ν ∈ N∗

pK ⊆ (RN )∗.

when raised to the power 1
N , converge to 1 as N → ∞? To simplify the asymp-

totic expansions below, in all lines after the first two, we shall take E[X ] = 0 and
L1 = · · · = LN = 1. Then

1

N
logP

[
X ∈ Br(p− rω)

]
− 1

N
log (r.h.s. of (5.2))

≤ 1

N

(
log

CrNπN/2

Γ(1 +N/2)
+

2〈ν,E[X ]− p〉2+∑N
n=1 ν

2
nL

2
n

)

=
2〈ν, p〉2−
N‖ν‖22

+
log(CrNπN/2)

N
− log Γ(1 +N/2)

N

which, by Stirling’s approximation for the Gamma function [1, p. 256, eq. (6.1.37)],
is approximately

≈ 2〈ν, p〉2−
N‖ν‖22

+
log(CrNπN/2)

N
− 1

N
log

(√
2π

1 +N/2

(
1 +N/2

e

)1+N/2
)

∼ 2〈ν, p〉2−
N‖ν‖22

+
logC

N
− 1

2N
log

4π

N
− 1 +N/2

N
log

N

2e

∼ 2〈ν, p〉2−
N‖ν‖22

+ log r − log
√
N

Note that 〈ν, p〉−/‖ν‖2 ≤
√
Nd1(0, p), where d1 denotes the weighted Hamming

distance with weight w = (1, . . . , 1). Therefore, a necessary (but not sufficient)
condition for the half-space bound to be asymptotically sharp in the sense of loga-
rithmic equivalence is that r is of the same order as

√
N . That is, it is necessary

that K is sufficiently round that it has an interior ball of radius comparable to
√
N

at those frontier points where the normal distance d⊥(E[X ],K) is attained.
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Now suppose thatK = f−1([−∞, θ]) is a convex sublevel set for twice-differentiable
function f . Let η1, . . . , ηN−1, ν be a basis of RN such that

‖η1‖2 = · · · = ‖ηN−1‖2 = ‖ν‖2 = 1

and, for each n ∈ {1, . . . , N − 1}, ηn is perpendicular to ν. Suppose that, in this
system of normal coordinates, near p, the frontier of K can be approximated by a
parabola:

∂K =

{
y1η1 + . . . yN−1ηN−1 − yNν

∣∣∣∣∣ yN =

N−1∑

n=1

λny
2
n

}

with λ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ 0. Then the condition that K admits an interior ball
of radius r at p is the inequality

r −

√√√√r2 −
N−1∑

n=1

y2n ≥
N−1∑

n=1

λny
2
n whenever

N−1∑

n=1

y2n ≤ r2.

This, in turn, leads to the following condition on λ1: it must hold that λ1 ≤ 1
2r . Put

another way, the half-space method cannot be expected to provide asymptotically
sharp bounds for P[f(X) ≤ θ] if, when f is approximated in normal coordinates
near the closest point of f−1([−∞, θ]) to E[X ] by a non-negative quadratic form,
that quadratic form has an eigenvalue greater than (4N)−1/2.

6. Appendix: Chernoff Bounds

The method of Chernoff bounds [5, §7.4.3] [6] is a simple one in which the
probability of a subset of X is bounded by that of a containing half-space, and the
probability of that half-space is bounded using the moment-generating function of
the probability measure.

Lemma 6.1 (Chernoff bounds). For any half-space Hp,ν ⊆ X ,

P[X ∈ Hp,ν ] ≤ inf
s≥0

es〈ν,p〉MX(−sν). (6.1)

For any convex set K ⊆ X ,

P[X ∈ K] ≤ inf
(p,ν)∈N∗K

e〈ν,p〉MX(−ν) (6.2a)

= exp

(
− sup

p∈K
(ΛX + χ−N∗

p
K)⋆(p)

)
. (6.2b)

In particular, for any x ∈ X ,

P[X = x] ≤ exp(−Λ⋆
X(x)). (6.3)

Proof. By the definition of the half-space Hp,ν ,

P [X ∈ Hp,ν ] = P [〈ν,X〉 ≤ 〈ν, p〉]
= E

[1[〈ν,p−X〉≥0]

]

≤ E
[
es〈ν,p−X〉

]
for any s ≥ 0,

= es〈ν,p〉E
[
e〈−sν,X〉

]

≤ es〈ν,p〉MX(−sν).



—
P
R
E
P
R
IN
T
—

18 T. J. SULLIVAN AND H. OWHADI

Since this inequality holds for any s ≥ 0, taking the infimum over all such s yields
(6.1). Recall that the outward normal cone to a convex set at any point is closed
under multiplication by non-negative scalars; hence, for any convex set K ⊆ X ,
taking the infimum of the right-hand side of (6.1) over half-spaces Hp,ν that contain
K yields (6.2a). Now observe that

inf
(p,ν)∈N∗K

e〈ν,p〉MX(−ν)

= inf
(p,ν)∈N∗K

exp(〈ν, p〉+ ΛX(−ν))

= exp

(
inf
p∈K

inf
ν∈N∗

p
K
(〈ν, p〉+ ΛX(−ν))

)

= exp

(
− sup

p∈K
sup

ν∈−N∗

p
K
(〈ν, p〉 − ΛX(ν))

)

= exp

(
− sup

p∈K
(ΛX + χ−N∗

p
K)⋆(p)

)
,

which establishes (6.2b); (6.3) follows as a special case. �

References

1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1992, Reprint of the
1972 edition. MR 1225604 (94b:00012)
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