INVARIANT DISTRIBUTIONS ON PROJECTIVE SPACES OVER LOCAL FIELDS

GUYAN ROBERTSON

Abstract

Let Γ be an \widetilde{A}_{n} subgroup of $\operatorname{PGL}_{n+1}(\mathbb{K})$, with $n \geq 2$, where \mathbb{K} is a local field with residue field of order q and let $\mathbb{P}_{\mathbb{K}}^{n}$ be projective n-space over \mathbb{K}. The module of coinvariants $H_{0}\left(\Gamma ; C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)\right)$ is shown to be finite. Consequently there is no nonzero Γ-invariant \mathbb{Z}-valued distribution on $\mathbb{P}_{\mathbb{K}}^{n}$.

1. Introduction

Let \mathbb{K} be a nonarchimedean local field with residue field k of order q and uniformizer π. Denote by $\mathbb{P}_{\mathbb{K}}^{n}$ the set of one dimensional subspaces of the vector space \mathbb{K}^{n+1}, i.e. the set of points in projective n-space over \mathbb{K}. Then $\mathbb{P}_{\mathbb{K}}^{n}$ is a compact totally disconnected space with the quotient topology inherited from \mathbb{K}^{n+1}, and there is a continuous action of $G=\mathrm{PGL}_{n+1}(\mathbb{K})$ on $\mathbb{P}_{\mathbb{K}}^{n}$.

Let Γ be a lattice subgroup of G. The abelian group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$ of continuous integer-valued functions on $\mathbb{P}_{\mathbb{K}}^{n}$ has the structure of a Γ-module and the module of coinvariants $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}=H_{0}\left(\Gamma ; C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)\right)$ is a finitely generated group. Now suppose that Γ is an \widetilde{A}_{n} group [3, 4, i.e. Γ acts freely and transitively on the vertex set of the Bruhat-Tits building of G, which has type \widetilde{A}_{n}. A free group is an \widetilde{A}_{1} group since it acts freely and transitively on the vertex set of a tree, which is a building of type \widetilde{A}_{1}. For $n \geq 2$, the \widetilde{A}_{n} groups are unlike free groups. This article proves the following.

Theorem 1.1. If Γ is an \widetilde{A}_{n} subgroup of $\mathrm{PGL}_{n+1}(\mathbb{K})$, where $n \geq 2$, then $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$ is a finite group.

The proof depends upon the fact that Γ has Kazhdan's property (T). A distribution on $\mathbb{P}_{\mathbb{K}}^{n}$ is a finitely additive \mathbb{Z}-valued measure μ defined on the clopen subsets of $\mathbb{P}_{\mathbb{K}}^{n}$.

Corollary 1.2. If Γ is an \widetilde{A}_{n} subgroup of $\mathrm{PGL}_{n+1}(\mathbb{K})$, where $n \geq 2$, then there is no nonzero Γ-invariant \mathbb{Z}-valued distribution on $\mathbb{P}_{\mathbb{K}}^{n}$.

This contrasts strongly with the main result of [8] concerning boundary distributions associated with finite graphs. A torsion free lattice subgroup Γ of $\mathrm{PGL}_{2}(\mathbb{K})$ is a free group, of rank r say. It was shown in [8] that in this case the group of Γ-invariant \mathbb{Z}-valued distributions on $\mathbb{P}_{\mathbb{K}}^{1}$ is isomorphic to \mathbb{Z}^{r}. In particular, there are many such distributions.

[^0]
2. Background

2.1. The Bruhat-Tits building. If \mathbb{K} is a local field, with discrete valuation v : $\mathbb{K}^{\times} \rightarrow \mathbb{Z}$, let $\mathcal{O}=\{x \in \mathbb{K}: v(x) \geq 0\}$ and let $\pi \in \mathbb{K}$ satisfy $v(\pi)=1$. A lattice L is an \mathcal{O}-submodule of \mathbb{K}^{n+1} of rank $n+1$. In other words $L=\mathcal{O} e_{1}+\mathcal{O} e_{2}+\cdots+\mathcal{O} e_{n+1}$, for some basis $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ of \mathbb{K}^{n+1}. Two lattices L_{1} and L_{2} are equivalent if $L_{1}=\alpha L_{2}$ for some $\alpha \in \mathbb{K}^{\times}$. The Bruhat-Tits building of $\mathrm{PGL}_{n+1}(\mathbb{K})$ is a two dimensional simplicial complex Δ whose vertices are equivalence classes of lattices in \mathbb{K}^{n+1} 9]. Two lattice classes $\left[L_{0}\right],\left[L_{1}\right]$ are adjacent if, for suitable representatives L_{1}, L_{2}, we have $L_{0} \subset L_{1} \subset \pi^{-1} L_{0}$. A simplex is a set of pairwise adjacent lattice classes. The maximal simplices (chambers) are the sets $\left\{\left[L_{0}\right],\left[L_{1}\right], \ldots,\left[L_{n}\right]\right\}$ where $L_{0} \subset L_{1} \subset \cdots \subset L_{n} \subset \pi^{-1} L_{0}$. These inclusions determine a canonical ordering of the vertices in a chamber, up to cyclic permutation. Each vertex v of Δ has a type $\tau(v) \in \mathbb{Z} /(n+1) \mathbb{Z}$, and each chamber of Δ has exactly one vertex of each type. If the Haar measure on \mathbb{K}^{n+1} is normalized so that \mathcal{O}^{n+1} has measure 1 then the type map may be defined by $\tau([L])=\log _{q}(\operatorname{vol}(L))+(n+1) \mathbb{Z}$. The cyclic ordering of the vertices of a chamber coincides with the natural ordering given by the vertex types (Figure 11). Let E^{1} denote the set of directed edges $e=(x, y)$ of Δ such that $\tau(y)=\tau(x)+1$. Write $o(e)=x$ and $t(e)=y$. The subgraph of the 1 -skeleton of Δ with edge set E^{1} is studied in [5, 7].

Figure 1. \widetilde{A}_{3} case: cyclic ordering of the vertices of a chamber

Lemma 2.1. Let C be a chamber of Δ. Then C contains $n+1$ directed edges $e \in E^{1}$.

Proof. By [9, Chapter 9.2], there is a basis $\left(e_{1}, \ldots, e_{n+1}\right)$ of \mathbb{K}^{n+1} such that the vertices of C are the classes of the lattices

$$
\begin{aligned}
& L_{0}=\pi \mathcal{O} e_{1}+\pi \mathcal{O} e_{2}+\pi \mathcal{O} e_{3}+\cdots+\pi \mathcal{O} e_{n+1} \\
& L_{1}=\mathcal{O} e_{1}+\pi \mathcal{O} e_{2}+\pi \mathcal{O} e_{3}+\cdots+\pi \mathcal{O} e_{n+1} \\
& L_{2}=\mathcal{O} e_{1}+\mathcal{O} e_{2}+\pi \mathcal{O} e_{3}+\cdots+\pi \mathcal{O} e_{n+1} \\
& \ldots \ldots \\
& L_{n}=\mathcal{O} e_{1}+\mathcal{O} e_{2}+\mathcal{O} e_{3}+\cdots+\pi \mathcal{O} e_{n+1}
\end{aligned}
$$

Define $L_{n+1}=L_{0}$. Then the edges C which lie in E^{1} are $\left(\left[L_{k}\right],\left[L_{k+1}\right]\right)$, where $0 \leq k \leq n$.

The building Δ is of type \widetilde{A}_{n} and the action of $\mathrm{GL}_{n+1}(\mathbb{K})$ on the set of lattices induces an action of $\mathrm{PGL}_{n+1}(\mathbb{K})$ on Δ which is transitive on the vertex set. The action of $\mathrm{PGL}_{n+1}(\mathbb{K})$ on Δ is type rotating in the sense that, for each $g \in \mathrm{PGL}_{n+1}(\mathbb{K})$, there exists $i \in \mathbb{Z} /(n+1) \mathbb{Z}$ such that $\tau(g v)=\tau(v)+i$ for all vertices $v \in \Delta$.

Fix a vertex $v_{0} \in \Delta$ of type 0 , and let $\Pi\left(v_{0}\right)$ be the set of vertices adjacent to v_{0}. Then $\Pi\left(v_{0}\right)$ has a natural incidence structure: if $u, v \in \Pi\left(v_{0}\right)$ are distinct, then u and v are incident if u, v and v_{0} lie in a common chamber of Δ. If v_{0} is the lattice class $\left[L_{0}\right]$, then $\Pi\left(v_{0}\right)$ consists of the classes $[L]$ where $L_{0} \subset L \subset \pi^{-1} L_{0}$, and one can associate to $[L] \in \Pi\left(v_{0}\right)$ the subspace $v=L / L_{0}$ of $\pi^{-1} L_{0} / L_{0} \cong k^{n+1}$. Thus we may identify $\Pi\left(v_{0}\right)$ with the flag complex of subspaces of the vector space k^{n+1}. Under this identification, a vertex $v \in \Pi\left(v_{0}\right)$ has type $\tau(v)=\operatorname{dim}(v)+\mathbb{Z} /(n+1) \mathbb{Z}$ where $\operatorname{dim}(v)$ is the dimension of v over k. A chamber C of Δ which contains v_{0} has vertices $v_{0}, v_{1}, \ldots, v_{n}$ where $(0)=v_{0} \subset v_{1} \subset \cdots \subset v_{n} \subset k^{n+1}$ is a complete flag. For brevity, write $C=\left\{v_{0} \subset v_{1} \subset \cdots \subset v_{n}\right\}$.
Definition 2.2. If $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right) \in E^{1}$, where $L_{0} \subset L_{1} \subset \pi^{-1} L_{0}$ and $\tau\left(\left[L_{1}\right]\right)=$ $\tau\left(\left[L_{0}\right]\right)+1$, then define $\Omega(e)$ to be the set of lines $\ell \in \mathbb{P}_{\mathbb{K}}^{n}$ such that $L_{1}=L_{0}+$ ($\ell \cap \pi^{-1} L_{0}$). The sets $\Omega(e), e \in E^{1}$, form a basis for the topology on $P_{\mathbb{K}}^{n}$ (c.f. [10, Ch.II.1.1], [1, 1.6]).
Lemma 2.3. If $e \in E^{1}$, then $\Omega(e)$ may be expressed as a disjoint union of q^{n} sets

$$
\begin{equation*}
\Omega(e)=\bigsqcup_{\substack{o\left(e^{\prime}\right)=t(e) \\ \Omega\left(e^{\prime}\right) \subset \Omega(e)}} \Omega\left(e^{\prime}\right) \tag{1}
\end{equation*}
$$

Proof. Let $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right) \in E^{1}$, where $L_{0} \subset L_{1} \subset \pi^{-1} L_{0}$ and $\tau\left(\left[L_{1}\right]\right)=\tau\left(\left[L_{0}\right]\right)+1$. If $\ell \in \Omega(e)$ then $L_{1}=L_{0}+\left(\ell \cap \pi^{-1} L_{0}\right)$. Choose $e^{\prime}=\left(\left[L_{1}\right],\left[L_{2}\right]\right)$ where $L_{2}=$ $L_{0}+\left(\ell \cap \pi^{-2} L_{0}\right)$. Now $L_{0} \subset L_{1} \subset L_{2} \subset \pi^{-1} L_{1}$ and L_{2} / L_{1} is a 1-dimensional subspace of $\pi^{-1} L_{1} / L_{1} \cong k^{n+1}$. Moreover, L_{2} / L_{1} is not incident with the n dimensional subspace $\pi^{-1} L_{0} / L_{1}$ of $\pi^{-1} L_{1} / L_{1} \cong k^{n+1}$. There are precisely q^{n} such 1-dimensional subspaces of k^{n+1}, each of which corresponds to an edge $e^{\prime} \in E^{1}$.

Lemma 2.4. If ξ is a fixed vertex of Δ, then $\mathbb{P}_{\mathbb{K}}^{n}$ may be expressed as a disjoint union

$$
\begin{equation*}
\mathbb{P}_{\mathbb{K}}^{n}=\bigsqcup_{o(e)=\xi} \Omega(e) \tag{2}
\end{equation*}
$$

Proof. Let $\xi=\left[L_{0}\right]$, where L_{0} is a lattice. If $\ell \in \mathbb{P}_{\mathbb{K}}^{n}$, define the lattice $L_{1}=$ $L_{0}+\left(\ell \cap \pi^{-1} L_{0}\right)$. Then $L_{0} \subset L_{1} \subset \pi^{-1} L_{0}$ and $\tau\left(\left[L_{1}\right]\right)=\tau\left(\left[L_{0}\right]\right)+1$, since L_{0} is maximal in L_{1}. Thus the edge $e=\left(\left[L_{0}\right],\left[L_{1}\right]\right)$ lies in E^{1}, and $\ell \in \Omega(e)$.
Lemma 2.5. Let C be a chamber of Δ and denote the directed edges of $C \cap E^{1}$ by $e_{0}, e_{1}, \ldots, e_{n}$. Then $\mathbb{P}_{\mathbb{K}}^{n}$ may be expressed as a disjoint union

$$
\begin{equation*}
\mathbb{P}_{\mathbb{K}}^{n}=\bigsqcup_{i=0}^{n} \Omega\left(e_{i}\right) \tag{3}
\end{equation*}
$$

Proof. Let C have vertex set $\left\{\left[L_{0}\right],\left[L_{1}\right], \ldots,\left[L_{n}\right]\right\}$ where $L_{0} \subset L_{1} \subset \cdots \subset L_{n} \subset$ $\pi^{-1} L_{0}$. Let $\ell=\mathbb{K} a \in \mathbb{P}_{\mathbb{K}}^{n}$, where $a \in \mathbb{K}^{n+1}$ is scaled so that $a \in \pi^{-1} L_{0}-L_{0}$. Then $a \in L_{i+1}-L_{i}$ for some i, where $L_{i+1} / L_{i} \cong k$ and $L_{n+1}=\pi^{-1} L_{0}$. Thus $\ell \in \Omega\left(e_{i}\right)$.
2.2. \widetilde{A}_{n} groups. From now on let $\Pi=\Pi\left(v_{0}\right)$, the set of neighbours of the fixed vertex $v_{0} \in \Delta$. Thus Π is isomorphic to the flag complex of subspaces of k^{n+1} and a chamber C of Δ which contains v_{0} is a complete flag $\left\{v_{0} \subset v_{1} \subset \cdots \subset v_{n}\right\}$. For $1 \leq r \leq n$, let $\Pi_{r}=\left\{u \in \Pi\left(v_{0}\right): \operatorname{dim} u=r\right\}$.

Now suppose that Γ is an \widetilde{A}_{n} group i.e. Γ acts freely and transitively on the vertex set of Δ [3, 4]. Then for each $v \in \Pi\left(v_{0}\right)$, there is a unique element $g_{v} \in \Gamma$ such that $g_{v} v_{0}=v$. If $v \in \Pi\left(v_{0}\right)$, then $g_{v}^{-1} v_{0}$ also lies in $\Pi\left(v_{0}\right)$, and $\lambda(v)=g_{v}^{-1} v_{0}$ defines an involution $\lambda: \Pi\left(v_{0}\right) \rightarrow \Pi\left(v_{0}\right)$ such that $g_{\lambda(v)}=g_{v}^{-1}$. Let $\mathcal{T}=\{(u, v, w) \in$ $\left.\Pi\left(v_{0}\right)^{3}: g_{u} g_{v} g_{w}=1\right\}$. If $(u, v, w) \in \mathcal{T}$ then w is uniquely determined by (u, v) and there is a bijective correspondence between triples $(u, v, w) \in \mathcal{T}$ and directed triangles $\left(v_{0}, \lambda(u), v\right)$ of Δ containing v_{0}. By [6, Proposition 2.2], the abstract group Γ has a presentation with generating set $\left\{g_{v}: v \in \Pi\left(v_{0}\right)\right\}$ and relations

$$
\begin{align*}
g_{u} g_{\lambda(u)} & =1, \quad u \in \Pi\left(v_{0}\right) \tag{4a}\\
g_{u} g_{v} g_{w} & =1, \quad(u, v, w) \in \mathcal{T} . \tag{4b}
\end{align*}
$$

If $u \in \Pi\left(v_{0}\right)$ and then $\tau\left(g_{u} v_{0}\right)=\tau(u)=\tau(u)+\tau\left(v_{0}\right)$. Hence $\tau\left(g_{u} x\right)=\tau(u)+\tau(x)$ for each vertex x of Δ, since g_{u} is type rotating. In particular, if $u, v \in \Pi\left(v_{0}\right)$ then

$$
\begin{equation*}
\tau\left(g_{u} g_{v} v_{0}\right)=\tau(u)+\tau(v) \tag{5}
\end{equation*}
$$

It follows from (5) that

$$
\tau(\lambda(u))=-\tau(u)
$$

for each $u \in \Pi$. Also, if $(u, v, w) \in \mathcal{T}$, then

$$
\tau(u)+\tau(v)+\tau(w)=0
$$

Let $C=\left\{v_{0} \subset v_{1} \subset \cdots \subset v_{n}\right\}$ be a chamber of Δ containing v_{0}. Since the vertices v_{i-1} and v_{i} are adjacent, so are the vertices $v_{0}=g_{v_{i-1}}^{-1} v_{i-1}$ and $g_{v_{i-1}}^{-1} g_{v_{i}} v_{0}=$ $g_{v_{i-1}}^{-1} v_{i}$. Also $\tau\left(g_{v_{i-1}}^{-1} g_{v_{i}} v_{0}\right)=\tau\left(v_{i}\right)-\tau\left(v_{i-1}\right)=1$. Therefore $g_{v_{i-1}}^{-1} g_{v_{i}}=g_{a_{i}}$ where $a_{i} \in \Pi_{1}, v_{n+1}=v_{0}$ and $g_{v_{0}}=1$. Thus $g_{a_{1}} g_{a_{2}} \ldots g_{a_{k}}=g_{v_{k}}(1 \leq k \leq n)$ and $g_{a_{1}} g_{a_{2}} \ldots g_{a_{n+1}}=1$.

The $(n+1)$-tuple $\sigma(C)=\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \Pi_{1}^{n+1}$ is uniquely determined by the chamber C containing v_{0}. Denote by \mathfrak{S} the set of all $(n+1)$-tuples $\sigma(C)$ associated with such chambers C. If $u \in \Pi\left(v_{0}\right)$ with $\operatorname{dim}(u)=k$, then u is a vertex of a chamber C containing v_{0}. Therefore

$$
\begin{equation*}
g_{u}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{k}}, \quad \text { where } \quad a_{i} \in \Pi_{1}, 1 \leq i \leq k \tag{6}
\end{equation*}
$$

In particular, the set $\left\{g_{a}: a \in \Pi_{1}\right\}$ generates Γ. Since $g_{\lambda(u)}=g_{u}^{-1}$, we have

$$
\begin{equation*}
g_{\lambda(u)}=g_{a_{i+1}} \ldots g_{a_{n+1}} \tag{7}
\end{equation*}
$$

Note that the expression (6) for g_{u} is not unique, but depends on the choice of the chamber C containing u and v_{0}. An edge in E^{1} has the form $\left(x, g_{a} x\right)$ where $a \in \Pi_{1}$.
Lemma 2.6. The \widetilde{A}_{n} group Γ has a presentation with generating set $\left\{g_{a}: a \in \Pi_{1}\right\}$ and relations

$$
\begin{equation*}
g_{a_{1}} g_{a_{2}} \ldots g_{a_{n+1}}=1, \quad\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \mathfrak{S} \tag{8}
\end{equation*}
$$

Proof. It is enough to show that the relations (4) follow from the relations (8). Let $(u, v, w) \in \mathcal{T}$ with $\operatorname{dim}(u)=i, \operatorname{dim} v=j$ and $\operatorname{dim} w=k$, where $i+j+$ $k \equiv 0 \bmod (n+1)$. Choose a chamber $C=\left\{v_{0} \subset v_{1} \subset \cdots \subset v_{n}\right\}$ containing $\left\{v_{0}, g_{u} v_{0}, g_{u} g_{v} v_{0}\right\}$. Let $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)=\sigma(C) \in \Pi_{1}^{n+1}$ be the element of \mathfrak{S} determined by C. Then $g_{u} v_{0}$ is the vertex of C of type i, so $g_{u}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{i}}$.

Suppose that $j<n+1-i$. Then $g_{u} g_{v} v_{0}$ is the vertex of C of type $i+j$ and $g_{u} g_{v}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{i+j}}$. Thus $g_{v}=g_{a_{i+1}} \ldots g_{a_{i+j}}$ and $g_{w}=g_{a_{i+j+1}} \ldots g_{a_{n+1}}$. Therefore

$$
g_{u} g_{v} g_{w}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{n+1}} .
$$

Suppose that $j>n+1-i$. Then $g_{u} g_{v} v_{0}$ has type $i+j-n-1$ and

$$
g_{u} g_{v}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{i+j-n-1}}=g_{a_{1}} g_{a_{2}} \ldots g_{a_{n+1}} g_{a_{1}} \ldots g_{a_{i+j-n-1}} .
$$

Thus $g_{v}=g_{a_{i+1}} \ldots g_{a_{n+1}} g_{a_{1}} \ldots g_{a_{i+j-n-1}}$ and $g_{w}=g_{a_{i+j-n}} \ldots g_{a_{n+1}}$. Therefore

$$
g_{u} g_{v} g_{w}=\left(g_{a_{1}} g_{a_{2}} \ldots g_{a_{n+1}}\right)^{2}
$$

In each case the relations (4b) follow from the relations (8). The same is true for the relations (4a), by equation (7).

3. The coinvariants

If Γ is an \widetilde{A}_{n} group acting on Δ, then Γ acts on $\mathbb{P}_{\mathbb{K}}^{n}$, and the abelian group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$ has the structure of a Γ-module, with $(g \cdot f)(\ell)=f\left(g^{-1} \ell\right), g \in \Gamma, \ell \in$ $\mathbb{P}_{\mathbb{K}}^{n}$. The module of coinvariants, $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$, is the quotient of $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$ by the submodule generated by $\left\{g \cdot f-f: g \in \Gamma, f \in C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)\right\}$. If $f \in C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$ then let $[f]$ denote its class in $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$. Also, let $\mathbf{1}$ denote the constant function defined by $\mathbf{1}(\ell)=1$ for $\ell \in \mathbb{P}_{\mathbb{K}}^{n}$, and let $\varepsilon=[\mathbf{1}]$.

If $e \in E^{1}$, let χ_{e} be the characteristic function of $\Omega(e)$. For each $g \in \Gamma$, the functions χ_{e} and $g \cdot \chi_{e}=\chi_{g e}$ project to the same element in $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$. Any edge $e \in E^{1}$ is in the Γ-orbit of some edge ($v_{0}, g_{a} v_{0}$), where $a \in \Pi_{1}$ is uniquely determined by e. Therefore it makes sense to denote by $[a]$ the class of χ_{e} in $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$.

Lemma 3.1. The group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$ is finitely generated, with generating set $\{[a]$: $\left.a \in \Pi_{1}\right\}$.

Proof. Every clopen set V in $\mathbb{P}_{\mathbb{K}}^{n}$ may be expressed as a finite disjoint union of sets of the form $\Omega(e), e \in E^{1}$. Any function $f \in C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$ is bounded, by compactness of $\mathbb{P}_{\mathbb{K}}^{n}$, and so takes finitely many values $n_{i} \in \mathbb{Z}$. Therefore f may be expressed as a finite sum $f=\sum_{j} n_{j} \chi_{e_{j}}$, with $e_{j} \in E^{1}$. The result follows, since $\left\{\left[\chi_{e}\right]: e \in E^{1}\right\}=$ $\left\{[a]: a \in \Pi_{1}\right\}$.

Suppose that $e, e^{\prime} \in E^{1}$ with $o\left(e^{\prime}\right)=t(e)=x$, so that $o(e)=g_{\lambda(a)} x$ and $t\left(e^{\prime}\right)=g_{b} x$ for (unique) $a, b \in \Pi_{1}$. Then, by the proof of Lemma 2.3, $\Omega\left(e^{\prime}\right) \subset \Omega(e)$ if and only if $b \cap \lambda(a)=(0)$.

Equations (1) and (2) imply the following relations in $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$.

$$
\begin{align*}
\varepsilon & =\sum_{a \in \Pi_{1}}[a] ; \tag{9a}\\
{[a]=} & \sum_{\substack{b \in \Pi_{1} \\
b \cap \lambda(a)=(0)}}[b], \quad a \in \Pi_{1} . \tag{9b}
\end{align*}
$$

It is easy to see that $\left|\Pi_{1}\right|=\frac{q^{n+1}-1}{q-1}$. If $a \in \Pi_{1}$, then $\lambda(a) \in \Pi_{n}$ and so the number of elements $b \in \Pi_{1}$ which are incident with $\lambda(a)$ is $\frac{q^{n}-1}{q-1}$. Thus there exist q^{n} elements $b \in \Pi_{1}$ such that $b \cap \lambda(a)=(0)$. In other words, the right side of (9b) contains q^{n} terms. As a first step towards proving that $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$ is finite, we show that the element $\varepsilon=[\mathbf{1}]$ has finite order.

Lemma 3.2. In the group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma},\left(q^{n}-1\right) \varepsilon=0$.
Proof. By (9a) and (9b),

$$
\varepsilon=\sum_{a \in \Pi_{1}}[a]=\sum_{a \in \Pi_{1}}\left(\sum_{\substack{b \in \Pi_{1} \\ b \cap \lambda(a)=(0)}}[b]\right)=\sum_{b \in \Pi_{1}} q^{n}[b]=q^{n} \varepsilon .
$$

We can now prove Theorem 1.1. It follows from (3) that if $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \mathfrak{S}$ then

$$
\begin{equation*}
\sum_{i=1}^{n+1}\left[a_{i}\right]=\varepsilon \tag{10}
\end{equation*}
$$

Therefore, by Lemmas 2.6 and 3.1, there is a homomorphism θ from Γ onto the abelian group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma} /\langle\varepsilon\rangle$ defined by $\theta\left(g_{a}\right)=[a]+\langle\varepsilon\rangle$, for $a \in \Pi_{1}$.

The \widetilde{A}_{n} group Γ has Kazhdan's property (T) [2, Theorems 1.6.1 and 1.7.1]. It follows that $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma} /\langle\varepsilon\rangle$ is finite [2, Corollary 1.3.5]. Therefore $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$ is also finite, since $\langle\varepsilon\rangle$ is finite, by Lemma 3.2.

Distributions. A distribution on $\mathbb{P}_{\mathbb{K}}^{n}$ is a finitely additive \mathbb{Z}-valued measure μ defined on the clopen subsets of $\mathbb{P}_{\mathbb{K}}^{n}$ [1, 1.4]. By integration, a distribution may be regarded as a \mathbb{Z}-linear function on the group $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)$. Therefore a Γ-invariant distribution defines a homomorphism $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma} \rightarrow \mathbb{Z}$. This homomorphism is necessarily trivial, since $C\left(\mathbb{P}_{\mathbb{K}}^{n}, \mathbb{Z}\right)_{\Gamma}$ is finite. This proves Corollary 1.2 ,

References

[1] G. Alon and E. de Shalit, On the cohomology of Drinfel'd's p-adic symmetric domain, Israel J. Math. 129 (2002), 1-20.
[2] B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), Cambridge University Press, Cambridge, 2008.
[3] D. I. Cartwright, Groups acting simply transitively on the vertices of a building of type \tilde{A}_{n}, Groups of Lie type and their Geometries, W. M. Kantor and L. Di Martino, editors, 43-76. Cambridge University Press, 1995.
[4] D. I. Cartwright and T. Steger, A family of \widetilde{A}_{n} groups, Israel J. Math. 103 (1998), 125-140.
[5] D. I. Cartwright, P. Solé and A. ̇̇uk, Ramanujan geometries of type \widetilde{A}_{n}, Discrete Math. 269 (2003), 35-43.
[6] D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, Groups acting simply transitively on the vertices of a building of type \widetilde{A}_{2}, I, Geom. Ded. 47 (1993), 143-166.
[7] A. Lubotzky, B. Samuels and U. Vishne, Ramanujan complexes of type \widetilde{A}_{d}, Israel J. Math. 149 (2005), 267-299.
[8] G. Robertson, Invariant boundary distributions associated with finite graphs, J. Combin. Theory Ser. A, 115 (2008), 1272-1278.
[9] M. Ronan, Lectures on Buildings, University of Chicago Press, 2009.
[10] J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980.
School of Mathematics and Statistics, University of Newcastle, NE1 7RU, England, U.K.

E-mail address: a.g.robertson@ncl.ac.uk

[^0]: Date: July 1, 2010.
 2000 Mathematics Subject Classification. Primary 20F65, 20G25, 51E24.
 Key words and phrases. Buildings, boundary distributions.

