INVARIANT DISTRIBUTIONS ON PROJECTIVE SPACES OVER LOCAL FIELDS

GUYAN ROBERTSON

ABSTRACT. Let Γ be an \widetilde{A}_n subgroup of $\operatorname{PGL}_{n+1}(\mathbb{K})$, with $n \geq 2$, where \mathbb{K} is a local field with residue field of order q and let $\mathbb{P}_{\mathbb{K}}^n$ be projective n-space over \mathbb{K} . The module of coinvariants $H_0(\Gamma; C(\mathbb{P}_{\mathbb{K}}^n, \mathbb{Z}))$ is shown to be finite. Consequently there is no nonzero Γ -invariant \mathbb{Z} -valued distribution on $\mathbb{P}_{\mathbb{K}}^n$.

1. Introduction

Let \mathbb{K} be a nonarchimedean local field with residue field k of order q and uniformizer π . Denote by $\mathbb{P}^n_{\mathbb{K}}$ the set of one dimensional subspaces of the vector space \mathbb{K}^{n+1} , i.e. the set of points in projective n-space over \mathbb{K} . Then $\mathbb{P}^n_{\mathbb{K}}$ is a compact totally disconnected space with the quotient topology inherited from \mathbb{K}^{n+1} , and there is a continuous action of $G = \operatorname{PGL}_{n+1}(\mathbb{K})$ on $\mathbb{P}^n_{\mathbb{K}}$.

Let Γ be a lattice subgroup of G. The abelian group $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})$ of continuous integer-valued functions on $\mathbb{P}^n_{\mathbb{K}}$ has the structure of a Γ -module and the module of coinvariants $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma} = H_0(\Gamma; C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z}))$ is a finitely generated group. Now suppose that Γ is an \widetilde{A}_n group [3, 4], i.e. Γ acts freely and transitively on the vertex set of the Bruhat-Tits building of G, which has type \widetilde{A}_n . A free group is an \widetilde{A}_1 group since it acts freely and transitively on the vertex set of a tree, which is a building of type \widetilde{A}_1 . For $n \geq 2$, the \widetilde{A}_n groups are unlike free groups. This article proves the following.

Theorem 1.1. If Γ is an \widetilde{A}_n subgroup of $\operatorname{PGL}_{n+1}(\mathbb{K})$, where $n \geq 2$, then $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$ is a finite group.

The proof depends upon the fact that Γ has Kazhdan's property (T). A distribution on $\mathbb{P}^n_{\mathbb{K}}$ is a finitely additive \mathbb{Z} -valued measure μ defined on the clopen subsets of $\mathbb{P}^n_{\mathbb{K}}$.

Corollary 1.2. If Γ is an \widetilde{A}_n subgroup of $\operatorname{PGL}_{n+1}(\mathbb{K})$, where $n \geq 2$, then there is no nonzero Γ -invariant \mathbb{Z} -valued distribution on $\mathbb{P}^n_{\mathbb{K}}$.

This contrasts strongly with the main result of [8] concerning boundary distributions associated with finite graphs. A torsion free lattice subgroup Γ of $\operatorname{PGL}_2(\mathbb{K})$ is a free group, of rank r say. It was shown in [8] that in this case the group of Γ -invariant \mathbb{Z} -valued distributions on $\mathbb{P}^1_{\mathbb{K}}$ is isomorphic to \mathbb{Z}^r . In particular, there are many such distributions.

Date: July 1, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20F65, 20G25, 51E24.

Key words and phrases. Buildings, boundary distributions.

2. Background

2.1. The Bruhat-Tits building. If \mathbb{K} is a local field, with discrete valuation v: $\mathbb{K}^{\times} \to \mathbb{Z}$, let $\mathcal{O} = \{x \in \mathbb{K} : v(x) \geq 0\}$ and let $\pi \in \mathbb{K}$ satisfy $v(\pi) = 1$. A lattice L is an \mathcal{O} -submodule of \mathbb{K}^{n+1} of rank n+1. In other words $L = \mathcal{O}e_1 + \mathcal{O}e_2 + \cdots + \mathcal{O}e_{n+1}$, for some basis $\{e_1, e_2, \dots, e_{n+1}\}$ of \mathbb{K}^{n+1} . Two lattices L_1 and L_2 are equivalent if $L_1 = \alpha L_2$ for some $\alpha \in \mathbb{K}^{\times}$. The Bruhat-Tits building of $\operatorname{PGL}_{n+1}(\mathbb{K})$ is a two dimensional simplicial complex Δ whose vertices are equivalence classes of lattices in \mathbb{K}^{n+1} [9]. Two lattice classes $[L_0]$, $[L_1]$ are adjacent if, for suitable representatives L_1, L_2 , we have $L_0 \subset L_1 \subset \pi^{-1}L_0$. A simplex is a set of pairwise adjacent lattice classes. The maximal simplices (chambers) are the sets $\{[L_0], [L_1], \dots, [L_n]\}$ where $L_0 \subset L_1 \subset \cdots \subset L_n \subset \pi^{-1}L_0$. These inclusions determine a canonical ordering of the vertices in a chamber, up to cyclic permutation. Each vertex v of Δ has a type $\tau(v) \in \mathbb{Z}/(n+1)\mathbb{Z}$, and each chamber of Δ has exactly one vertex of each type. If the Haar measure on \mathbb{K}^{n+1} is normalized so that \mathcal{O}^{n+1} has measure 1 then the type map may be defined by $\tau([L]) = \log_q(\operatorname{vol}(L)) + (n+1)\mathbb{Z}$. The cyclic ordering of the vertices of a chamber coincides with the natural ordering given by the vertex types (Figure 1). Let E^1 denote the set of directed edges e = (x, y) of Δ such that $\tau(y) = \tau(x) + 1$. Write o(e) = x and t(e) = y. The subgraph of the 1-skeleton of Δ with edge set E^1 is studied in [5, 7].

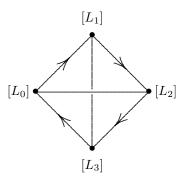


FIGURE 1. \widetilde{A}_3 case: cyclic ordering of the vertices of a chamber

Lemma 2.1. Let C be a chamber of Δ . Then C contains n+1 directed edges $e \in E^1$.

Proof. By [9, Chapter 9.2], there is a basis (e_1, \ldots, e_{n+1}) of \mathbb{K}^{n+1} such that the vertices of C are the classes of the lattices

$$L_0 = \pi \mathcal{O}e_1 + \pi \mathcal{O}e_2 + \pi \mathcal{O}e_3 + \dots + \pi \mathcal{O}e_{n+1}$$

$$L_1 = \mathcal{O}e_1 + \pi \mathcal{O}e_2 + \pi \mathcal{O}e_3 + \dots + \pi \mathcal{O}e_{n+1}$$

$$L_2 = \mathcal{O}e_1 + \mathcal{O}e_2 + \pi \mathcal{O}e_3 + \dots + \pi \mathcal{O}e_{n+1}$$

$$\dots$$

$$L_n = \mathcal{O}e_1 + \mathcal{O}e_2 + \mathcal{O}e_3 + \dots + \pi \mathcal{O}e_{n+1}.$$

Define $L_{n+1} = L_0$. Then the edges C which lie in E^1 are $([L_k], [L_{k+1}])$, where $0 \le k \le n$.

The building Δ is of type A_n and the action of $GL_{n+1}(\mathbb{K})$ on the set of lattices induces an action of $PGL_{n+1}(\mathbb{K})$ on Δ which is transitive on the vertex set. The action of $PGL_{n+1}(\mathbb{K})$ on Δ is type rotating in the sense that, for each $g \in PGL_{n+1}(\mathbb{K})$, there exists $i \in \mathbb{Z}/(n+1)\mathbb{Z}$ such that $\tau(gv) = \tau(v) + i$ for all vertices $v \in \Delta$.

Fix a vertex $v_0 \in \Delta$ of type 0, and let $\Pi(v_0)$ be the set of vertices adjacent to v_0 . Then $\Pi(v_0)$ has a natural incidence structure: if $u, v \in \Pi(v_0)$ are distinct, then u and v are incident if u, v and v_0 lie in a common chamber of Δ . If v_0 is the lattice class $[L_0]$, then $\Pi(v_0)$ consists of the classes [L] where $L_0 \subset L \subset \pi^{-1}L_0$, and one can associate to $[L] \in \Pi(v_0)$ the subspace $v = L/L_0$ of $\pi^{-1}L_0/L_0 \cong k^{n+1}$. Thus we may identify $\Pi(v_0)$ with the flag complex of subspaces of the vector space k^{n+1} . Under this identification, a vertex $v \in \Pi(v_0)$ has type $\tau(v) = \dim(v) + \mathbb{Z}/(n+1)\mathbb{Z}$ where $\dim(v)$ is the dimension of v over k. A chamber C of Δ which contains v_0 has vertices v_0, v_1, \ldots, v_n where $(0) = v_0 \subset v_1 \subset \cdots \subset v_n \subset k^{n+1}$ is a complete flag. For brevity, write $C = \{v_0 \subset v_1 \subset \cdots \subset v_n\}$.

Definition 2.2. If $e = ([L_0], [L_1]) \in E^1$, where $L_0 \subset L_1 \subset \pi^{-1}L_0$ and $\tau([L_1]) = \tau([L_0]) + 1$, then define $\Omega(e)$ to be the set of lines $\ell \in \mathbb{P}^n_{\mathbb{K}}$ such that $L_1 = L_0 + (\ell \cap \pi^{-1}L_0)$. The sets $\Omega(e)$, $e \in E^1$, form a basis for the topology on $P^n_{\mathbb{K}}$ (c.f. [10, Ch.II.1.1], [1, 1.6]).

Lemma 2.3. If $e \in E^1$, then $\Omega(e)$ may be expressed as a disjoint union of q^n sets

(1)
$$\Omega(e) = \bigsqcup_{\substack{o(e') = t(e) \\ \Omega(e') \subset \Omega(e)}} \Omega(e').$$

Proof. Let $e = ([L_0], [L_1]) \in E^1$, where $L_0 \subset L_1 \subset \pi^{-1}L_0$ and $\tau([L_1]) = \tau([L_0]) + 1$. If $\ell \in \Omega(e)$ then $L_1 = L_0 + (\ell \cap \pi^{-1}L_0)$. Choose $e' = ([L_1], [L_2])$ where $L_2 = L_0 + (\ell \cap \pi^{-2}L_0)$. Now $L_0 \subset L_1 \subset L_2 \subset \pi^{-1}L_1$ and L_2/L_1 is a 1-dimensional subspace of $\pi^{-1}L_1/L_1 \cong k^{n+1}$. Moreover, L_2/L_1 is not incident with the n-dimensional subspace $\pi^{-1}L_0/L_1$ of $\pi^{-1}L_1/L_1 \cong k^{n+1}$. There are precisely q^n such 1-dimensional subspaces of k^{n+1} , each of which corresponds to an edge $e' \in E^1$. \square

Lemma 2.4. If ξ is a fixed vertex of Δ , then $\mathbb{P}^n_{\mathbb{K}}$ may be expressed as a disjoint union

(2)
$$\mathbb{P}^n_{\mathbb{K}} = \bigsqcup_{o(e)=\xi} \Omega(e).$$

Proof. Let $\xi = [L_0]$, where L_0 is a lattice. If $\ell \in \mathbb{P}^n_{\mathbb{K}}$, define the lattice $L_1 = L_0 + (\ell \cap \pi^{-1}L_0)$. Then $L_0 \subset L_1 \subset \pi^{-1}L_0$ and $\tau([L_1]) = \tau([L_0]) + 1$, since L_0 is maximal in L_1 . Thus the edge $e = ([L_0], [L_1])$ lies in E^1 , and $\ell \in \Omega(e)$.

Lemma 2.5. Let C be a chamber of Δ and denote the directed edges of $C \cap E^1$ by e_0, e_1, \ldots, e_n . Then $\mathbb{P}^n_{\mathbb{K}}$ may be expressed as a disjoint union

(3)
$$\mathbb{P}_{\mathbb{K}}^{n} = \bigsqcup_{i=0}^{n} \Omega(e_{i}).$$

Proof. Let C have vertex set $\{[L_0], [L_1], \ldots, [L_n]\}$ where $L_0 \subset L_1 \subset \cdots \subset L_n \subset \pi^{-1}L_0$. Let $\ell = \mathbb{K}a \in \mathbb{P}^n_{\mathbb{K}}$, where $a \in \mathbb{K}^{n+1}$ is scaled so that $a \in \pi^{-1}L_0 - L_0$. Then $a \in L_{i+1} - L_i$ for some i, where $L_{i+1}/L_i \cong k$ and $L_{n+1} = \pi^{-1}L_0$. Thus $\ell \in \Omega(e_i)$.

2.2. \widetilde{A}_n groups. From now on let $\Pi = \Pi(v_0)$, the set of neighbours of the fixed vertex $v_0 \in \Delta$. Thus Π is isomorphic to the flag complex of subspaces of k^{n+1} and a chamber C of Δ which contains v_0 is a complete flag $\{v_0 \subset v_1 \subset \cdots \subset v_n\}$. For $1 \leq r \leq n$, let $\Pi_r = \{u \in \Pi(v_0) : \dim u = r\}$.

Now suppose that Γ is an A_n group i.e. Γ acts freely and transitively on the vertex set of Δ [3, 4]. Then for each $v \in \Pi(v_0)$, there is a unique element $g_v \in \Gamma$ such that $g_v v_0 = v$. If $v \in \Pi(v_0)$, then $g_v^{-1}v_0$ also lies in $\Pi(v_0)$, and $\lambda(v) = g_v^{-1}v_0$ defines an involution $\lambda : \Pi(v_0) \to \Pi(v_0)$ such that $g_{\lambda(v)} = g_v^{-1}$. Let $\mathcal{T} = \{(u, v, w) \in \Pi(v_0)^3 : g_u g_v g_w = 1\}$. If $(u, v, w) \in \mathcal{T}$ then w is uniquely determined by (u, v) and there is a bijective correspondence between triples $(u, v, w) \in \mathcal{T}$ and directed triangles $(v_0, \lambda(u), v)$ of Δ containing v_0 . By [6, Proposition 2.2], the abstract group Γ has a presentation with generating set $\{g_v : v \in \Pi(v_0)\}$ and relations

(4a)
$$g_u g_{\lambda(u)} = 1, \quad u \in \Pi(v_0);$$

(4b)
$$g_u g_v g_w = 1, \quad (u, v, w) \in \mathcal{T}.$$

If $u \in \Pi(v_0)$ and then $\tau(g_u v_0) = \tau(u) = \tau(u) + \tau(v_0)$. Hence $\tau(g_u x) = \tau(u) + \tau(x)$ for each vertex x of Δ , since g_u is type rotating. In particular, if $u, v \in \Pi(v_0)$ then

(5)
$$\tau(g_u g_v v_0) = \tau(u) + \tau(v).$$

It follows from (5) that

$$\tau(\lambda(u)) = -\tau(u)$$

for each $u \in \Pi$. Also, if $(u, v, w) \in \mathcal{T}$, then

$$\tau(u) + \tau(v) + \tau(w) = 0.$$

Let $C = \{v_0 \subset v_1 \subset \cdots \subset v_n\}$ be a chamber of Δ containing v_0 . Since the vertices v_{i-1} and v_i are adjacent, so are the vertices $v_0 = g_{v_{i-1}}^{-1} v_{i-1}$ and $g_{v_{i-1}}^{-1} g_{v_i} v_0 = g_{v_{i-1}}^{-1} v_i$. Also $\tau(g_{v_{i-1}}^{-1} g_{v_i} v_0) = \tau(v_i) - \tau(v_{i-1}) = 1$. Therefore $g_{v_{i-1}}^{-1} g_{v_i} = g_{a_i}$ where $a_i \in \Pi_1, \ v_{n+1} = v_0$ and $g_{v_0} = 1$. Thus $g_{a_1} g_{a_2} \dots g_{a_k} = g_{v_k}$ $(1 \leq k \leq n)$ and $g_{a_1} g_{a_2} \dots g_{a_{n+1}} = 1$.

The (n+1)-tuple $\sigma(C) = (a_1, a_2, \dots, a_{n+1}) \in \Pi_1^{n+1}$ is uniquely determined by the chamber C containing v_0 . Denote by \mathfrak{S} the set of all (n+1)-tuples $\sigma(C)$ associated with such chambers C. If $u \in \Pi(v_0)$ with $\dim(u) = k$, then u is a vertex of a chamber C containing v_0 . Therefore

(6)
$$g_u = g_{a_1} g_{a_2} \dots g_{a_k}$$
, where $a_i \in \Pi_1, 1 \le i \le k$.

In particular, the set $\{g_a: a \in \Pi_1\}$ generates Γ . Since $g_{\lambda(u)} = g_u^{-1}$, we have

$$(7) g_{\lambda(u)} = g_{a_{i+1}} \dots g_{a_{n+1}}.$$

Note that the expression (6) for g_u is not unique, but depends on the choice of the chamber C containing u and v_0 . An edge in E^1 has the form $(x, g_a x)$ where $a \in \Pi_1$.

Lemma 2.6. The \widetilde{A}_n group Γ has a presentation with generating set $\{g_a : a \in \Pi_1\}$ and relations

(8)
$$g_{a_1}g_{a_2}\dots g_{a_{n+1}}=1, \qquad (a_1,a_2,\dots,a_{n+1})\in\mathfrak{S}.$$

Proof. It is enough to show that the relations (4) follow from the relations (8). Let $(u, v, w) \in \mathcal{T}$ with $\dim(u) = i, \dim v = j$ and $\dim w = k$, where $i + j + k \equiv 0 \mod(n+1)$. Choose a chamber $C = \{v_0 \subset v_1 \subset \cdots \subset v_n\}$ containing $\{v_0, g_u v_0, g_u g_v v_0\}$. Let $(a_1, a_2, \ldots, a_{n+1}) = \sigma(C) \in \Pi_1^{n+1}$ be the element of \mathfrak{S} determined by C. Then $g_u v_0$ is the vertex of C of type i, so $g_u = g_{a_1} g_{a_2} \ldots g_{a_i}$.

Suppose that j < n+1-i. Then $g_ug_vv_0$ is the vertex of C of type i+jand $g_u g_v = g_{a_1} g_{a_2} \dots g_{a_{i+j}}$. Thus $g_v = g_{a_{i+1}} \dots g_{a_{i+j}}$ and $g_w = g_{a_{i+j+1}} \dots g_{a_{n+1}}$. Therefore

$$g_u g_v g_w = g_{a_1} g_{a_2} \dots g_{a_{n+1}}.$$

Suppose that j > n+1-i. Then $g_u g_v v_0$ has type i+j-n-1 and

$$g_u g_v = g_{a_1} g_{a_2} \dots g_{a_{i+j-n-1}} = g_{a_1} g_{a_2} \dots g_{a_{n+1}} g_{a_1} \dots g_{a_{i+j-n-1}}.$$

Thus $g_v = g_{a_{i+1}} \dots g_{a_{n+1}} g_{a_1} \dots g_{a_{i+j-n-1}}$ and $g_w = g_{a_{i+j-n}} \dots g_{a_{n+1}}$. Therefore

$$g_u g_v g_w = (g_{a_1} g_{a_2} \dots g_{a_{n+1}})^2.$$

In each case the relations (4b) follow from the relations (8). The same is true for the relations (4a), by equation (7).

3. The coinvariants

If Γ is an \widetilde{A}_n group acting on Δ , then Γ acts on $\mathbb{P}^n_{\mathbb{K}}$, and the abelian group $C(\mathbb{P}^n_{\mathbb{K}},\mathbb{Z})$ has the structure of a Γ -module, with $(g\cdot f)(\ell)=f(g^{-1}\ell), g\in \Gamma, \ell\in$ $\mathbb{P}^n_{\mathbb{K}}$. The module of coinvariants, $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$, is the quotient of $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})$ by the submodule generated by $\{g\cdot f-f:g\in\Gamma,f\in C(\mathbb{P}^n_{\mathbb{K}},\mathbb{Z})\}$. If $f\in C(\mathbb{P}^n_{\mathbb{K}},\mathbb{Z})$ then let [f] denote its class in $C(\mathbb{P}^n_{\mathbb{K}},\mathbb{Z})_{\Gamma}$. Also, let **1** denote the constant function defined by $\mathbf{1}(\ell) = 1$ for $\ell \in \mathbb{P}^n_{\mathbb{K}}$, and let $\varepsilon = [\mathbf{1}]$.

If $e \in E^1$, let χ_e be the characteristic function of $\Omega(e)$. For each $g \in \Gamma$, the functions χ_e and $g \cdot \chi_e = \chi_{ge}$ project to the same element in $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$. Any edge $e \in E^1$ is in the Γ -orbit of some edge $(v_0, g_a v_0)$, where $a \in \Pi_1$ is uniquely determined by e. Therefore it makes sense to denote by [a] the class of χ_e in $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$.

Lemma 3.1. The group $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$ is finitely generated, with generating set $\{[a]:$ $a \in \Pi_1$ }.

Proof. Every clopen set V in $\mathbb{P}^n_{\mathbb{K}}$ may be expressed as a finite disjoint union of sets of the form $\Omega(e)$, $e \in E^1$. Any function $f \in C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})$ is bounded, by compactness of $\mathbb{P}^n_{\mathbb{K}}$, and so takes finitely many values $n_i \in \mathbb{Z}$. Therefore f may be expressed as a finite sum $f = \sum_{j} n_j \chi_{e_j}$, with $e_j \in E^1$. The result follows, since $\{[\chi_e] : e \in E^1\}$ $\{[a]: a \in \Pi_1\}.$

Suppose that $e, e' \in E^1$ with o(e') = t(e) = x, so that $o(e) = g_{\lambda(a)}x$ and $t(e') = g_b x$ for (unique) $a, b \in \Pi_1$. Then, by the proof of Lemma 2.3, $\Omega(e') \subset \Omega(e)$ if and only if $b \cap \lambda(a) = (0)$.

Equations (1) and (2) imply the following relations in $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$.

(9a)
$$\varepsilon = \sum_{a \in \Pi_1} [a];$$

(9a)
$$\varepsilon = \sum_{a \in \Pi_1} [a];$$
(9b)
$$[a] = \sum_{\substack{b \in \Pi_1 \\ b \cap \lambda(a) = (0)}} [b], \quad a \in \Pi_1.$$

It is easy to see that $|\Pi_1| = \frac{q^{n+1}-1}{q-1}$. If $a \in \Pi_1$, then $\lambda(a) \in \Pi_n$ and so the number of elements $b \in \Pi_1$ which are incident with $\lambda(a)$ is $\frac{q^n-1}{q-1}$. Thus there exist q^n elements $b \in \Pi_1$ such that $b \cap \lambda(a) = (0)$. In other words, the right side of (9b) contains q^n terms. As a first step towards proving that $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$ is finite, we show that the element $\varepsilon = [1]$ has finite order.

Lemma 3.2. In the group $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$, $(q^n - 1)\varepsilon = 0$.

Proof. By (9a) and (9b),

$$\varepsilon = \sum_{a \in \Pi_1} [a] = \sum_{a \in \Pi_1} \left(\sum_{\substack{b \in \Pi_1 \\ b \cap \lambda(a) = (0)}} [b] \right) = \sum_{b \in \Pi_1} q^n[b] = q^n \varepsilon.$$

We can now prove Theorem 1.1. It follows from (3) that if $(a_1, a_2, \dots, a_{n+1}) \in \mathfrak{S}$ then

(10)
$$\sum_{i=1}^{n+1} [a_i] = \varepsilon.$$

Therefore, by Lemmas 2.6 and 3.1, there is a homomorphism θ from Γ onto the abelian group $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}/\langle \varepsilon \rangle$ defined by $\theta(g_a) = [a] + \langle \varepsilon \rangle$, for $a \in \Pi_1$.

The \widetilde{A}_n group Γ has Kazhdan's property (T) [2, Theorems 1.6.1 and 1.7.1]. It follows that $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}/\langle \varepsilon \rangle$ is finite [2, Corollary 1.3.5]. Therefore $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$ is also finite, since $\langle \varepsilon \rangle$ is finite, by Lemma 3.2.

Distributions. A distribution on $\mathbb{P}^n_{\mathbb{K}}$ is a finitely additive \mathbb{Z} -valued measure μ defined on the clopen subsets of $\mathbb{P}^n_{\mathbb{K}}$ [1, 1.4]. By integration, a distribution may be regarded as a \mathbb{Z} -linear function on the group $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})$. Therefore a Γ -invariant distribution defines a homomorphism $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma} \to \mathbb{Z}$. This homomorphism is necessarily trivial, since $C(\mathbb{P}^n_{\mathbb{K}}, \mathbb{Z})_{\Gamma}$ is finite. This proves Corollary 1.2.

References

- [1] G. Alon and E. de Shalit, On the cohomology of Drinfel'd's p-adic symmetric domain, Israel J. Math. 129 (2002), 1–20.
- [2] B. Bekka, P. de la Harpe and A. Valette, *Kazhdan's Property (T)*, Cambridge University Press, Cambridge, 2008.
- [3] D. I. Cartwright, Groups acting simply transitively on the vertices of a building of type \tilde{A}_n , Groups of Lie type and their Geometries, W. M. Kantor and L. Di Martino, editors, 43–76. Cambridge University Press, 1995.
- [4] D. I. Cartwright and T. Steger, A family of \widetilde{A}_n groups, Israel J. Math. 103 (1998), 125–140.
- [5] D. I. Cartwright, P. Solé and A. Żuk, Ramanujan geometries of type \widetilde{A}_n , Discrete Math. **269** (2003), 35–43.
- [6] D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, Groups acting simply transitively on the vertices of a building of type \widetilde{A}_2 , I, Geom. Ded. 47 (1993), 143–166.
- [7] A. Lubotzky, B. Samuels and U. Vishne, Ramanujan complexes of type A_d , Israel J. Math. **149** (2005), 267–299.
- [8] G. Robertson, Invariant boundary distributions associated with finite graphs, J. Combin. Theory Ser. A, 115 (2008), 1272–1278.
- [9] M. Ronan, Lectures on Buildings, University of Chicago Press, 2009.
- [10] J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980.

School of Mathematics and Statistics, University of Newcastle, NE1 7RU, England, U K

E-mail address: a.g.robertson@ncl.ac.uk