
ar
X

iv
:1

00
9.

48
38

v2
 [

m
at

h.
PR

]
 6

 D
ec

 2
01

0

Feller Processes: The Next Generation in Modeling. Brownian

Motion, Lévy Processes and Beyond

Björn Böttcher

TU Dresden, Institut für mathematische Stochastik,

01062 Dresden, Germany, bjoern.boettcher at tu-dresden.de

Abstract

We present a simple construction method for Feller processes and a framework for the generation of
sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy
processes.

Brownian Motion is one of the most frequently used continuous time Markov processes in applications.
In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly
popular.

Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inho-
mogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes.
These include Lévy processes and in particular Brownian motion as special cases but allow spatial inho-
mogeneities.

Many properties of Feller processes are known, but proving the very existence is, in general, very
technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was
missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular
our simulation technique allows to apply Monte Carlo methods to Feller processes.

Introduction

The paper is written especially for practitioners and applied scientists. It is based on two recent papers
in stochastic analysis [7, 34]. We will start with a survey of applications of Feller processes. Thereafter
we recall some existence and approximation results. In the last part of the introduction we give the
necessary definitions.

The main part of the paper contains a simple existence result for Feller processes and a description
of the general simulation scheme. These results will be followed by several examples.

The source code for the simulations can be found as supporting information (Appendix S1).

Motivation

Brownian motion and more general Lévy processes are used as models in many areas: For example in
medicine to model the spreading of diseases [23], in genetics in connection with the maximal segmental
score [13], in biology for the movement patterns of various animals (cf. [31] and the references therein),
for various phenomena in physics [37] and in financial mathematics [10]. In these models the spatial
homogeneity is often assumed for simplicity, but empirical data or theoretical considerations suggest that
the underlying process is actually state space dependent. Thus Feller processes would serve as more
realistic models. We give some explicit examples:

1

http://arxiv.org/abs/1009.4838v2

2

• In hydrology stable processes are used as models for the movement of particles in contaminated
ground water. It has been shown that state space dependent models provide a better fit to empirical
data [30, 38]. Also on an intuitive level it seems natural that different kinds of soils have different
properties. Thus the movement of a particle should depend on its current position, i.e. the soil it
is currently in.

• In geology also stable processes are used in models for the temperature change. Based on ice-core
data the temperatures in the last-glacial and Holocene periods are recorded. Statistical analysis
showed that the temperature change in the last-glacial periods is stable with index 1.75 and in the
Holocene periods it is Gaussian, i.e. stable with index 2 (see Fig. 4 in [12]).

• For a technical example from physics note that the fluctuations of the ion saturation current mea-
sured by Langmuir probes in the edge plasma of the Uragan-3M stellarator-torsatron are alpha-
stable and the alpha depends on the distance from the plasma boundary [15].

• Anomalous diffusive behavior has been observed in various physical systems and a standard model
for this behavior are continuous time random walks (CTRWs) [27,33]. To study these systems the
limiting particle distribution is a major tool, which is in fact a Feller process [1].

• In mathematical finance the idea of extending Lévy processes to Lévy-like Feller processes was
first introduced in [2]. The proposed procedure is simple: A given Lévy model usually uses a
parameter dependent class of Lévy processes. Now one makes the parameters of the Lévy process
(in its characteristic exponent) price-dependent, i.e. the increment of the process shall depend on
the current price. This procedure is applicable to every class of Lévy processes, but the existence
has to be shown for each class separately [2, 3, 6].

Thus there is plenty of evidence that Feller processes can be used as suitable models for real-world
phenomena.

Existence and Approximation

Up to now general Feller processes were not very popular in applications. This might be due to the fact
that the existence and construction of Feller processes is a major problem. There are many approaches:
Using the Hille-Yosida theorem and Kolmogorov’s construction [18, 20], solving the associated evolution
equation (Kolmogorov’s backwards equation) [4, 5, 24, 25], proving the well-posedness of the martingale
problem [3,18,35], solving a stochastic differential equation [19,22,36]. The conditions for these construc-
tions are usually quite technical. Nevertheless, let us stress that the proof of the very existence is crucial
for the use of Feller processes. Some explicit examples to illustrate this will be given at the end of the
next section.

Our construction will not yield processes as general as the previous ones, but it will still provide a
rich class of examples. In fact the presented method is just a simple consequence of a recent result on
the solutions to certain stochastic differential equations [34].

Furthermore each of the above mentioned methods also provides an approximation to the constructed
Feller process. Most of them are not usable for simulations or work only under technical conditions. Also
further general approximation schemes exist, for example the Markov chain approximation in [26]. But
also the latter is not useful for simulations, since the explicit distribution of the increments of the chain
is unknown.

In contrast to these we derived in [7] a very general approximation scheme for Feller processes which
is also usable for simulations. We will present here this method for practitioners.

3

Lévy processes and Feller processes

Within different fields the terms Lévy process and Feller process are sometimes used for different objects.
Thus we will clarify our notion by giving precise definitions and mentioning some of the common uses of
these terms.

A stochastic process is a family of random variables indexed by a time parameter t ∈ [0,∞) on a
probability space (Ω,F ,P). For simplicity we concentrate on one-dimensional processes. The expectation
with respect to the measure P will be denoted by E.
Although this will not appear explicitly in the sequel, a process will always be equipped with its so-called
natural filtration, which is a formal way of taking into account all the information related to the history
of the process. Technically the filtration, which is an increasing family of sigma fields indexed by time,
is important since a change from the natural filtration to another filtration might alter the properties of
the process dramatically.

A Lévy process starting in L0 := 0 is a stochastic process (Lt)t∈[0,∞) with

- independent increments: The random variables Lt1 , Lt2 − Lt1 , Lt3 − Lt2 , . . . are independent for
every increasing sequence (tn)n∈N,

- stationary increments: Lt − Ls has the same distribution as Lt−s for all s < t,

- càdlàg paths: Almost every sample path is a right continuous function with left limits.

For equivalent definitions and a comprehensive mathematical treatment of Lévy processes and their
properties see [32].

Note that the term Lévy flight often refers to a process which is a continuous time random walk
(CTRW) with spatial increments from a one-sided or two-sided stable distribution (the former is also
called Lévy distribution). In our notion the processes associated with these increments are Lévy processes
which are called stable subordinator and stable process, respectively.

A Lévy process (Lt)t∈[0,∞) on its probability space is completely characterized by its Lévy exponent
ξ 7→ ψ(ξ) calculated via the characteristic function

E(eiξLt) = e−tψ(ξ).

The most popular Lévy process is Brownian motion (ψ(ξ) = 1
2 |ξ|2), which has the special property that

almost every sample path is continuous. In general, Lévy processes have discontinuous sample paths, some
examples with their corresponding exponents are the Poisson process (ψ(ξ) = eiξ − 1), the symmetric α-
stable process (ψ(ξ) = |ξ|α with α ∈ (0, 2]), the Gamma process (ψ(ξ) = ln(1+iξ)) and the normal inverse

Gaussian process (ψ(ξ) = −iµξ + δ
(

√

α2 − (β + iξ)2 −
√

α2 − β2
)

with 0 ≤ |β| < α, δ > 0, µ ∈ R).

Classes of Lévy exponents depend, especially in modeling, on some parameters. Thus one can easily
construct a family of Lévy processes by replacing these parameters by state space dependent functions.
Another approach to construct families of Lévy processes is to introduce a state space dependent mixing
of some given Lévy processes. We will elaborate this in the next section.

Given a family of Lévy processes
(

(L
(x)
t)t∈[0,∞)

)

x∈R

, i.e. given a family of characteristic exponents

(ψx)x∈R, we can construct for fixed x0 ∈ R, T ∈ [0,∞), n ∈ N a Markov chain as follows:

1. The chain starts at time 0 in x0.

2. The first step is at time 1
n
and it is distributed as L

(x0)
1
n

. The chain reaches some point x1.

3. The second step is at time 2
n
and it is distributed as L

(x1)
1
n

. The chain reaches some point x2.

4

4. The third step is at time 3
n
and it is distributed as L

(x2)
1
n

. The chain reaches some point x3.

5. ... etc. until time T .

This Markov chain is spatially inhomogeneous since the distribution of the next step always depends
on the current position. If the chain converges (in distribution for n → ∞ and every fixed T ∈ [0,∞))
then the limit is - under very mild conditions (see [9] and also Theorem 2.5 by [21]) - a Feller process.
Formally, a Feller process is a stochastic process (Xt)t∈[0,∞) such that the operators

Ttf(x) := E(f(Xt)|X0 = x), t ∈ [0,∞), x ∈ R

satisfy
T0 = id, Ts ◦ Tt = Ts+t (s, t ≥ 0) (semigroup property)

and
lim
t→0

sup
x∈R

∣

∣Ttf(x)− f(x)
∣

∣ = 0 (strong continuity)

for all f which are continuous and vanish at infinity.
A Feller processes is sometimes also called: Lévy-type process, jump-diffusion, process generated by

a pseudo-differential operator, process with a Lévy generator or process with a Lévy-type operator as
generator. Note that in mathematical finance often the Cox-Ingersoll-Ross process [11] is called the Feller
process, but in our notion this is a Feller diffusion in the sense of [14]. For a comprehensive mathematical
treatment of Feller processes and their properties see [20].

The generator A of a Feller process is defined via

lim
t→0

sup
x∈R

∣

∣

∣

∣

Af(x) − Ttf(x)− f(x)

t

∣

∣

∣

∣

= 0

for all f such that the limit exists. Moreover, if the limit exists for arbitrarily often differentiable functions
with compact support then the operator A has on these functions the representation

Af(x) = −
∫

R

eixξ ψx(ξ)

∫

R

(2π)−1e−iyξf(y) dy dξ,

where for each fixed x ∈ R the function ξ 7→ ψx(ξ) is a Lévy exponent. Thus a family of Lévy processes
with Lévy exponents (ψx)x∈R corresponds to the Feller process (Xt)t∈[0,∞) with generator A as above.

If the corresponding family of Lévy processes is a subset of a named class of Lévy processes, one calls
the Feller process also by the name of the class and adds -like or -type to it. Thus for example a Feller
process corresponding to a class of symmetric stable processes is called symmetric stable-like process.

In general, as mentioned in the previous section, the construction of a Feller process corresponding to a
given family of Lévy processes is very complicated. It even might be impossible as the following examples

show: Let (L
(x)
t)t≥0 be the family of Lévy processes with characteristic exponents ψx(ξ) = −ia(x)ξ, i.e.

the Lévy processes have deterministic paths L
(x)
t = a(x)t. Now if a(x) = x a corresponding Feller process

exists, starting in x it has the path Xt = xet. But for a(x) = x2 and a(x) = sgn(x)
√
x a corresponding

Feller process does not exist, a(x) = x2 yields paths which do not tend to negative infinity as x → −∞
and a(x) = sgn(x)

√
x yields paths which are not continuous with respect to the starting position.

However, we will present in the next section a very simple method to construct Feller processes.

5

Results and Discussion

Construction of Feller processes by mixing Lévy processes

Suppose we know (for example based on an empirical study) that the process we want to model behaves

like a Lévy process (L
(1)
t)t≥0 in a region K1 and like a different Lévy process (L

(2)
t)t≥0 in a region K2.

Then we know that a Feller process which models this behavior exists by the following result:
Theorem. If the sets K1, K2 are uniformly separated, i.e. there exists an ε > 0 such that

inf
x∈K1, y∈K2

‖x− y‖ > ε

then there exists a Feller process (Xt)t≥0 which behaves like L(1) on K1 and like L(2) on K2.

Proof. Let ψ(i) be the characteristic exponent of (L
(i)
t)t≥0 for i = 1, 2. Under the above condition there

exist non-negative bounded and Lipschitz continuous functions a(1) and a(2) such that

a(1)(x) = 1 for all x ∈ K1 and a(1)(x) = 0 for all x ∈ K2,

a(2)(x) = 0 for all x ∈ K1 and a(2)(x) = 1 for all x ∈ K2.

Now set for ξ1, ξ2, x ∈ R

ψ

(

ξ1
ξ2

)

:= ψ(1)(ξ1) + ψ(2)(ξ2), Φ(x) :=

(

a(1)(x)

a(2)(x)

)⊤

∈ R
1×2

and note that for x, ξ ∈ R

ψ(Φ⊤(x)ξ) = ψ(1)
(

a(1)(x)ξ
)

+ ψ(2)
(

a(2)(x)ξ
)

holds. Thus corresponding to the family of Lévy processes defined by the Lévy exponents

ψx(ξ) := ψ(1)
(

a(1)(x)ξ
)

+ ψ(2)
(

a(2)(x)ξ
)

= ψ(Φt(x)ξ)

there exists a Feller process as a consequence of Corollary 5.2 from [34] and ψx(ξ) = ψ(i)(ξ) for x ∈ Ki

holds (i = 1, 2), i.e. (Xt)t≥0 behaves like L(i) on Ki for i = 1, 2. �

Note that the theorem extends to any finite number of Lévy processes (L
(i)
t)t≥0 (i = 1, .., n) with

corresponding regions Ki. More generally for any finite number of independent Lévy processes (L
(i)
t)t≥0

(i = 1, .., n) with corresponding characteristic exponents ψ(i) and non-negative bounded and Lipschitz
continuous functions x 7→ α(i)(x) the family (ψx)x∈R with

ψx(ξ) := ψ(1)
(

α(1)(x)ξ
)

+ ψ(2)
(

α(2)(x)ξ
)

+ . . .+ ψ(n)
(

α(n)(x)ξ
)

defines a family of Lévy processes
(

(L̃
(x)
t)t≥0

)

x∈R

and there exists a corresponding Feller process (Xt)t≥0.

To avoid pathological cases one should assume α(1)(x) +α(2)(x) + . . .+α(n)(x) > 0 for all x. Further
note that the following equality in distribution holds for all x and t

L̃
(x)
t

d
= α(1)(x)L

(1)
t + α(2)(x)L

(2)
t + . . .+ α(n)(x)L

(n)
t .

Thus if one knows how to simulate increments of the L
(i)
t one can also simulate increments of L̃

(x)
t . We

will see in the next section that simulation of increments of the corresponding family of Lévy processes
is the key to the simulation of the Feller process.

6

Simulation of Feller processes

Given a Feller process (Xt)t∈[0,∞) with corresponding family of Lévy processes
(

(L
(x)
t)t∈[0,∞)

)

x∈R

we can

use the following scheme to approximate the sample path of Xt:

1. Select a starting point x0, the time interval [0, T] and the time-step size h.

2. The first point of the sample path is x = x0 at time t = 0.

3. Draw a random number z from the distribution of L
(x)
h (x is the current position of the sample

path).

4. The next point of the sample path is x x+ z at time t t+ h.

5. Repeat 3. and 4. until t ∈ (T − h, T].

The simulated path is an approximation of the sample path of the Feller process, in the sense that
for h → 0 it converges toward the sample path of the Feller process on [0, T]. To be precise, for the
convergence the Feller process has to be unique for its generator restricted to the test functions and

the family of Lévy processes L
(x)
t has to satisfy some mild condition on the x-dependence: The Lévy

exponent ψx(ξ) has to be bounded by some constant times 1 + |ξ|2 uniformly in x, see [7] for further
details. This condition is satisfied for many common examples of Feller processes, in particular for the
processes constructed in the previous section.

The reader familiar with the Euler scheme for Brownian or Lévy-driven stochastic differential equa-
tions (SDEs) will note that the approximation looks like an Euler scheme for an SDE. In fact it is an
Euler scheme, but the corresponding SDE does not have such a nice form as for example the Lévy-driven
SDEs discussed in [28]. This is due to the fact that in their case for a particular increment all jumps of
the driving term are transformed in the same manner, but in the general Feller case the transformation
of each jump can depend explicitly on the jump size. More details on the relation of this scheme to an
Euler scheme can be found in a forthcoming paper [8].

Examples

We will now present some examples of Feller processes together with simulations of their sample paths.
The first example will show the generality of the mixture approach, the remaining examples are special
cases for which the existence has been shown by different techniques.

All simulations are done with the software package R [29] and the source code of the figures can be
found as supporting information (Appendix S1).

Brownian-Poisson-Cauchy-mixture Feller process

To show the range of possibilities which are covered by the mixture approach we construct a process
which behaves like

Brownian motion on (−∞,−6),

a Poisson process on (−4, 4),

a Cauchy process on (6,∞).

For this we just define a family of Lévy processes by the family of characteristic exponents (ψx)x∈R with

ψx(ξ) := a1(x)
1

2
|ξ|2 + a2(x)(1 − e−iξ) + a3(x)|ξ|

7

where

a1(x) =

1 , if x < −6

1− x+6
2 , if x ∈ (−6,−4)

0 , otherwise

, a2(x) =

1 , if x ∈ [−4, 4]
x+6
2 , if x ∈ (−6,−4)

1− x−4
2 , if x ∈ (4, 6)

0 , otherwise

and

a3(x) =

1 , if x > 6
x−4
2 , if x ∈ (4, 6)

0 , otherwise

.

These functions are Lipschitz continuous and thus a corresponding Feller process exists. Figure 1
shows some samples of this process on [0, 20] with time-step size 1

100 . One can observe that the process
behaves like a Poisson process around the origin, like a Cauchy process above 6 and like Brownian motion
below -6.

Symmetric stable-like process

A Lévy process Lt is a symmetric-α-stable process if there exists an α ∈ (0, 2] such that its characteristic
function is given by

EeiξLt = e−t|ξ|
α

.

If we now define a function x 7→ α(x) where α(x) takes only values in (0, 2] then there exists a family of

of Lévy processes (L
(x)
t)t∈[0,∞) such that for fixed x the the process L

(x)
t has the characteristic function

EeiL
(x)
t
ξ = e−t|ξ|

α(x)

.

A corresponding Feller process exists and is unique if the function x 7→ α(x) is Lipschitz continuous and
bounded away from 0 and 2 [3].

Figure 2 shows some samples of a stable-like Feller process on [0, 20] with time-step size 1
10 and

α(x) := 1 +
19

10

((x

4
−
⌊x

4

⌋)

∧
(⌈x

4

⌉

− x

4

))

,

i.e. x 7→ a(x) is a function which is Lipschitz continuous (but not smooth) oscillating between 1 and
(nearly) 2. To understand the figure note that we color coded the state space: red indicates α ≈ 1,
yellow indicates α ≈ 2 and the values between these extremes are colored with the corresponding shade
of orange. Now one can observe that the process behaves in the red areas like a Cauchy process and the
more yellow the state becomes, the more the process behaves like Brownian motion.

Normal inverse Gaussian-like process

The characteristic function of a normal inverse Gaussian process Lt is given by

EeiξLt = exp
(

tiµ− tδ
(

√

α2 − (β + iξ)2 −
√

α2 − β2
))

where α > 0, −α < β < α, 0 < δ and µ. If we replace α, β, δ, µ by arbitrarily often differentiable
bounded functions α(x), β(x), δ(x), µ(x) with bounded derivatives and assume that ther exist constants
c, C > 0 such that δ(x) > c, α(x)−|β(x)| > c, c ≤ µ(x) ≤ C, then it was stated in [2] that a corresponding
Feller process exists. Therein was also proposed an example of a mean reverting normal inverse Gaussian-
like process, a special case of this model with mean 0 is obtained by setting

α(x) := δ(x) := 1, µ(x) := 0 and β(x) := − 1

π
arctan(x).

8

Note that the mean reversion is not introduced by using simply a drift which drags the process back to
the origin. It is the choice of β which yields an asymmetric distribution that moves the process back to
the origin. The mean reversion can be observed in Figure 3 which shows samples of the normal inverse
Gaussian-like process on [0, 1000] with time-step size 1

10 .

Meixner-like process

The characteristic function of a Meixner process Lt is given by

EeiξLt =

cos
b

2

cosh
aξ − ib

2

2rt

exp (imtξ)

where a, r > 0, −π < b < π, m ∈ R. Details can be found in [16].
A family of Meixner processes which corresponds to a Feller process can be constructed by substituting

the parameters a, b, r, m by arbitrary often differentiable bounded functions a(x), b(x), r(x), m(x) with
bounded derivatives. The functions have to be bounded away from the critical values, i.e. 0 < a0 ≤
a(x), 0 < r0 ≤ r(x) and −π < b− < b(x) < b+ < π for some fixed r0, a0, b−, b+. For further details
see [6].

Figure 4 shows some samples of the Meixner-like process on [0, 100] with time-step size 1
10 and

b(x) := m(x) := 0, r(x) := 1 and a(x) :=

{

1 + 10e
− 1

25−x2 , if |x| < 5

1 , otherwise
.

The chosen functions satisfy the existence conditions from above. Furthermore the function x 7→ a(x)
yields that the process moves with bigger steps around the origin, to be precise: the Meixner distribution
has semiheavy tails [17] and the parameter a determines the rate of the exponential decay factor for the
density. The effect on the sample path can be observed in Figure 4.

Conclusion

Using the presented mixture approach one can easily construct Feller models based on given Lévy models.
In these cases the existence of the process is granted.

Furthermore the presented approximation is a very intuitive way to generate the sample path of a Feller
processes. Obviously the method requires that one can simulate the increments of the corresponding Lévy
processes. But for Lévy processes used in applications, especially together with Monte Carlo techniques,
this poses no new restriction.

Thus all necessary tools are available to use Feller processes as models for a wide range of applications.

Materials and Methods

The simulations where done in R [29] and the source code of the figures can be found as supporting
information (Appendix S1).

Acknowledgments

References

[1] B. Baeumer, M. Meerschaert, and J. Mortensen. Space-time fractional derivative operators. Proc
Amer Math Soc, 133(8):2273–2282, 2005.

9

[2] O. Barndorff-Nielsen and S. Levendorskĭı. Feller processes of normal inverse Gaussian type. Quant
Finance, 1:318–331, 2001.

[3] R. Bass. Uniqueness in law for pure jump Markov processes. Probab. Theory and Relat. Fields,
79:271–287, 1988.

[4] B. Böttcher. A parametrix construction for the fundamental solution of the evolution equation asso-
ciated with a pseudo-differential operator generating a Markov process. Math. Nachr., 278(11):1235–
1241, 2005.

[5] B. Böttcher. Construction of time inhomogeneous Markov processes via evolution equations using
pseudo-differential operators. J. Lon. Math. Soc., 78(2):605–621, 2008. to appear.

[6] B. Böttcher and N. Jacob. Remarks on Meixner-type processes. Probabilistic Methods in Fluids (eds.
I.M. Davies et al.), pages 35–47, 2003. World Scientific Press.

[7] B. Böttcher and R. Schilling. Approximation of Feller processes by Markov chains with Lévy incre-
ments. Stoch Dyn, 9(1):71–80, 2009.

[8] B. Böttcher and A. Schnurr. The Euler scheme for Feller processes. 2010.

[9] P. Chernoff. Product Semigroups, Nonlinear Semigroups and Addition of unbounded Operators.
Number 140 in Mem. AMS, 1974.

[10] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC, 2004.

[11] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest rates. Econo-
metrica, 53(2):385–408, 1985.

[12] P. D. Ditlevsen, H. Svensmark, and S. Johnsen. Contrasting atmospheric and climate dynamics of
the last-glacial and Holocene periods. Nature, 379:810–812, 1996.

[13] R. A. Doney and R. A. Maller. Cramér’s Estimate for a Reflected Lévy Process. Ann Appl Probab,
15(2):1445–1450, 2005.

[14] W. Feller. Diffusion processes in genetics. In J. Neyman, editor, Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, pages 227–246. University of California Press,
1951.

[15] V. Y. Gonchar, A. V. Chechkin, E. L. Sorokovoi, V. V. Chechkin, L. I. Grigoreva, and E. D. Volkov.
Stable Lévy distributions of the density and potential fluctuations in the edge plasma of the U-3M
torsatron. Plasma Physics Reports, 29(5):380–390, 2003.

[16] B. Grigelionis. Processes of Meixner type. Lithuanian Math J, 39(1):33–41, 1999.

[17] B. Grigelionis. Generalized z-distributions and related stochastic processes. Lithuanian Math J,
41(3):239–251, 2001.

[18] W. Hoh. Pseudo differential operators generating Markov processes. Habilitationsschrift. Universität
Bielefeld, 1998.

[19] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, volume 24 of
Math. Library. North-Holland, 2nd edition, 1989.

[20] N. Jacob. Pseudo-differential operators and Markov processes, volume I-III. Imperial College Press,
2001-2005.

10

[21] N. Jacob and A. Potrykus. Roth’s method applied to some pseudo-differential operators with
bounded symbols. A case study. Rend. Cir. Mat. Palermo (Ser. II), 76:45–57, 2005.

[22] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, 2nd edition, 2002.

[23] H. Janssen, K. Oerding, F. van Wijland, and H. Hilhorst. Lévy-flight spreading of epidemic processes
leading to percolating clusters. Eur. Phys. J. B, 7:137–145, 1999.

[24] A. N. Kochubei. Parabolic pseudodifferential equations, hypersingular integrals and Markov pro-
cesses. Math. USSR Izvestija, 33:233–259, 1989.

[25] V. N. Kolokoltsov. Symmetric stable laws and stable-like jump-diffusions. Proc. London Math. Soc.,
80:725–768, 2000.

[26] Z.-M. Ma, M. Röckner, and T.-S. Zhang. Approximation of arbitrary Dirichlet processes by Markov
chains. Ann. Inst. Henri Poincare, 34(1):1–22, 1998.

[27] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, and P. Becker-Kern. Governing equations and
solutions of anomalous random walk limits. Physical Review E, 66:060102, 2002.

[28] P. Protter and D. Talay. The Euler scheme for Lévy driven stochastic differential equations. Ann
Probab, 25(1):393–423, 1997.

[29] R Development Core Team. R: A language and environment for statistical computing, 2010. ISBN
3-900051-07-0.

[30] D. Reeves, D. Benson, M. Meerschaert, and H. Scheffler. Transport of Conservative Solutes in
Simulated Fracture Networks 2. Ensemble Solute Transport and the Correspondence to Operator-
Stable Limit Distributions. Water Resources Research, 44:W05410, 2008.

[31] F. M. Reynolds AM. Free-flight odor tracking in drosophila is consistent with an optimal intermittent
scale-free search. 2(4): e354. doi:. PLoS ONE, 2(4):e354, 2007.

[32] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999.

[33] E. Scalas, R. Gorenflo, and F. Mainardi. Uncoupled continuous-time random walks: Solution and
limiting behavior of the master equation. Physical Review E, 69:011107, 2004.

[34] R. Schilling and A. Schnurr. The Symbol Associated with the Solution of a Stochastic Differential
Equation. Electron J Probab, 15:1369–1393, 2010. To appear in: El J Probab.

[35] D. Stroock. Diffusion processes associated with levy generators. Probab Theory Relat Fields, 32:209–
244, 1975.

[36] D. W. Stroock. Markov Processes from K. Itô’s Perspective. Princeton University Press, 2003.

[37] W. A. Woyczyński. Lévy processes in the physical sciences. In Lévy Process-Theory and Applications,
pages 241–266. Birkhäuser, 2001.

[38] Y. Zhang, D. Benson, M. Meerschaert, and E. M. LaBolle. Space-fractional advection-dispersion
equations with variable parameters: Diverse formulas, numerical solutions, and application to the
MADE-site data. Water Resources Research, 43:W05439, 2007.

11

Figures

0 5 10 15 20

−
4

0
2

4
6

x0 = 0

time

sp
ac

e

0 5 10 15 20

−
10

−
5

0
5

x0 = 0

time

sp
ac

e

0 5 10 15 20

−
14

−
12

−
10

x0 = − 10

time

sp
ac

e

0 5 10 15 20

4
6

8
10

12

x0 = 10

time

sp
ac

e

Figure 1. Brownian-Poisson-Cauchy-mixture Feller process. Around the origin it behaves like
a Poisson process, for smaller values like Brownian motion and a for larger values like a Cauchy process.

12

0 5 10 15 20

−
15

−
5

0

x0 = 0

time

sp
ac

e

0 5 10 15 20
0

2
4

6
8

x0 = 0

time

sp
ac

e

0 5 10 15 20

−
12

−
8

−
4

0

x0 = − 2

time

sp
ac

e

0 5 10 15 20

−
6

−
2

0
2

x0 = 2

time

sp
ac

e

color coding of the values of α(x)

1.0 1.2 1.4 1.6 1.8 2.0

Figure 2. Stable-like processes with α(x) := 1+ 19

10

((

x

4
−
⌊

x

4

⌋)

∧
(⌈

x

4

⌉

− x

4

))

. Each position is
color coded by the corresponding value of the exponent. In the yellow regions it behaves almost like
Brownian motion, in the red regions it behaves almost like a Cauchy process.

13

0 200 600 1000

−
4

0
2

4
6

x0 = 0

time

sp
ac

e

0 200 600 1000

−
5

0
5

x0 = 0

time

sp
ac

e

0 200 600 1000

−
10

0
−

60
−

20

x0 = − 100

time

sp
ac

e

0 200 600 1000

0
20

60
10

0

x0 = 100

time

sp
ac

e

Figure 3. Normal inverse Gaussian-like processes with β(x) := − 1

π
arctan(x). The process

features mean reversion to 0.

14

0 20 40 60 80 100

−
15

−
5

0
5

x0 = 0

time

sp
ac

e

0 20 40 60 80 100

−
30

−
20

−
10

0

x0 = 0

time

sp
ac

e

0 20 40 60 80 100

−
10

0
10

20

x0 = − 10

time

sp
ac

e

0 20 40 60 80 100

10
14

18
22

x0 = 10

time

sp
ac

e

Figure 4. Meixner-like process with a(x) := 1+ 10e
− 1

25−x2 1(−5,5)(x). The process moves with
bigger steps around the origin than for larger (and smaller) values. In fact by the choice of x 7→ a(x) the
rate of the exponential decay of the transition density is reduced around the origin.

15

Appendix S1

##

Simulations of Feller processes - B. Boettcher

##

Code by B. Boettcher (bjoern.boettcher {at} tu-dresden.de) for the paper:

Feller processes: The Next Generation in Modeling. Brownian Motion, Levy

processes and beyond.

#

Code executed within R (http://www.r-project.org/), version 2.11.1

#

Note: We opted for clarity, rather than for the most efficient code. The

functions are written for an educated user, i.e. the functions do in general

not check if the entered parameters have appropriate values.

#

If you want to use this code to simulate Feller processes - instead of just

reproducing the figures of the paper - please note:

#

rfellerprocess(maxtime, timestepsize, startpoint, r1dstep) generates the

sample path and r1dstep is one of

rlevymixture - for a process given by the mixture approach

rstablefamily - for a stable-like process

rnigfamily - for a normal inverse Gaussian-like process

rmeixnerfamily - for a Meixner-like process

#

The components of the mixture can be modified at the beginning of the section

"the Levy mixture approach".

The families can be modified in the functions rstablefamily, rnigfamily and

rmeixnerfamily, respectively.

#

Examples:

plot(rfellerprocess(10,0.001,0,rlevymixture))

plot(rfellerprocess(10,0.001,0,rstablefamily))

plot(rfellerprocess(1000,0.1,0,rnigfamily))

plot(rfellerprocess(1000,0.1,0,rmeixnerfamily))

#

##

rfellerprocess <- function(maxtime,timestepsize,startpoint,r1dstep){

generates the approximation to the path of the Feller process

#

maxtime = time up to which the path will be simulated

timestepsize = time-step size of the increments

startpoint = starting point of the process

r1dstep = a one dimensional function for one step generation

(the function should accept two parameters:

the time-step size and the current position)

#

returns a list containing the time and position of the process as xy.coords

16

n = ceiling(maxtime/timestepsize)

v = numeric(n+1)

v[1] = startpoint

for (i in 1:n) {

v[i+1] = r1dstep(timestepsize,v[i]) + v[i]

}

invisible(xy.coords((0:n)* timestepsize,v,xlab="time",ylab="space"))

}

##

the Levy mixture approach

##

(here we work with global variables for convenience)

#

n = 3 # Number of processes to mix

rlevy = list(n) # the processes

a = list(n) # the coefficients

rlevy[[1]] = function(t) rnorm(1,sd=sqrt(t)) # L^1 = Brownian motion

rlevy[[2]] = function(t) rpois(1,lambda=t) # L^2 = Poisson process

rlevy[[3]] = function(t) rcauchy(1,scale=t) # L^3 = Cauchy process

Now one could define just the functions directly (and the process exists

always if the functions are non-negative, bounded and Lipschitz continuous)

a[[1]] =

a[[2]] =

#

Instead, we define regions and generate the functions by linear interpolation

regions = c(

-6, # right endpoint of the region where the process is just L^1

-4,4, # left & right endpoint of the region where the process is just L^2

6 # left endpoint of the region where the process is just L^3

)

The following yields functions ’a’ such that they are =1 on their region and

=0 on the others. Constructed by linear interpolation.

a[[1]] = approxfun(c(regions[1],regions[2]),c(1,0), method="linear",1,0)

for(i in 2:(n-1)) {

a[[i]]=approxfun(c(regions[i*2-3],regions[i*2-2],regions[i*2-1],regions[i*2])

,c(0,1,1,0),method="linear",0,0)

}

a[[n]] = approxfun(c(regions[n*2-3],regions[n*2-2]),c(0,1), method="linear",0,1)

rlevymixture = function(t,x) {

generates an increment of the Levy family constructed as mixture with the

above defined processes and coefficients

17

#

t = time-step size

x = current position

y = 0

for(i in 1:n)

y = y + a[[i]](x)*rlevy[[i]](t)

return(y)

}

##

the symmetric-alpha-stable family

##

rstable = function(n,t,alpha=1) {

generation of increments of an alpha stable process

#

n = number of increments

t = time-step size

alpha = index of stability

#

We use

* the algorithm form Chambers, J. M.; Mallows, C. L. & Stuck, B. W.

A Method for Simulating Stable Random Variables, Journal of the American

Statistical Association, 1976, 71, 340-344

* the stability, i.e.:

X has char.exp. |xi|^alpha ==> t^(1/alpha) X has char.exp. t |xi|^alpha

W = rexp(n)

Theta = runif(n,-pi/2,pi/2)

return(t^(1/alpha)*(sin(alpha*Theta)/cos(Theta)^(1/alpha)

* (cos((1-alpha)*Theta)/W)^((1-alpha)/alpha)))

}

rstablefamily = function (t,x){

generates an increment of the symmetric alpha stable process family

#

t = time-step size of the increment

x = current position

exponent = function(x) 1+19/10*pmin((x/4-floor(x/4)),(ceiling(x/4)-x/4))

0 < exponent < 2

rstable(1,t,exponent(x))

}

##

18

the normal inverse Gaussian family

##

rinversegaussian = function(t,a,b) {

generates an increment of the inverse Gaussian process

#

t = time-step size

a,b = parameters of the inverse Gaussian process

#

Algorithm from: V. Seshadri, The inverse Gaussian distribution: a case study

in exponential families, Oxford University Press, 1993 (page 203)

y = rnorm(1)^2

u = runif(1)

m = t*a

xtemp = m+m^2*y/(2*b)- m*sqrt(4*m*b*y+m^2*y^2)/(2*b)

if (u <= m/(m+xtemp)) return(xtemp)

else return(m^2/xtemp)

}

rnormalinversegaussian = function(t,alpha,beta,delta) {

generates an increment of the normal inverse Gaussian process

#

t = time-step size

alpha,beta,delta = parameters of the normal inverse Gaussian process

#

Simulation based on subordination of Brownian motion by an inverse Gaussian

process

y = rinversegaussian(t,delta,sqrt(alpha^2-beta^2))

return(beta*y+rnorm(1,sd=sqrt(y)))

}

rnigfamily = function(t,x) {

generates an increment of the normal inverse Gaussian family

#

t = time-step size

x = current position

alpha = function(x) 1 # alpha > 0

beta = function(x) -1/pi*atan(x) # -alpha < beta < alpha

delta = function(x) 1 # delta > 0

mu = function(x) 0 # mu is a real number

return(mu(x)*t+rnormalinversegaussian(t,alpha(x),beta(x),delta(x)))

}

19

##

the Meixner family

##

we use the package cxxPack for an implementation of the complex valued

Gamma function "cgamma()"

to install the package use:

install.packages("cxxPack")

#

Please note, that we have no relation to the author of that package.

library("cxxPack")

rmeixner = function(t,a,b=0,m,r) {

generates an increment of the Meixner process

#

t = time-step size

a,b,m,r = parameters of the Meixner process

#

The code is based on the method proposed in the preprint:

Reiichiro Kawai, Parameter Sensitivity Estimation for Meixner Distribution and

Levy Processes, University of Leicester

#

We only implemented the method for b=0 and checked the results of the proposed

method by an optical comparison of the resulting histogram with the known

density function for various parameters:

#

dmeixner = function(t,a,b,m,r,x) {

density function of the increments of the Meixner process

#

r=r*t

m=m*t

return((2*cos(b/2))^(2*r)/(2*a*pi*gamma(2*r))

exp(b(x-m)/a)*abs(cgamma(r+1i*(x-m)/a))^2)

}

#

t =

a =

m =

r =

#

x=replicate(10000,rmeixner(t,a,0,m,r))

hist(x,freq=F)

f = function(x) dmeixner(t,a,0,m,r,x)

curve(f,col="red",add=T)

#

if (b!=0) {

print("Error: Only the case b=0 is implemented")

return("Error")

}

20

r=t*r

m=t*m

repeat {

Q = runif(1,min=-1,max=1)/runif(1,min=-1,max=1)

V = a/2*max(sqrt(2*r),2*r)*Q

U = runif(1)

if (abs(Q) < 1) {

if (gamma(r)^2*U < abs(cgamma(r+1i*V/a))^2) {

break

}

}

else {

if (!is.na(cgamma(r+1i*V/a)))

Note: if abs(V) is to large then cgamma yields NaN (but in fact the value

is very small, so also the following inequality would be false. So we

just treated the NaN exception separately.)

if (max(1,2*r)*a^2*gamma(r+1)^2*U/(2*r) < abs(cgamma(r+1i*V/a))^2 *V^2){

break

}

}

}

return(V+m)

}

rmeixnerfamily = function(t,x) {

generates an increment of the Meixner family

#

t = time-step size

x = current position

a = function(x) if (abs(x)>=5) return(1) else return(1+10*exp(-1/(25-x^2)))

a>0

b = function(x) 0 # -pi < b < pi (implemented only for b=0 !!)

m = function(x) 0 # m is a real number

r = function(x) 1 # b>0

return(rmeixner(t,a(x),b(x),m(x),r(x)))

}

##

##

Generation of the Figures

##

initialization of the random number generator and some graphic parameters

set.seed(1034)

par(oma = c(0,0,0,0), mar=c(4,3.2,2,0.8))

21

layout(matrix(c(1,2,3,4),nrow=2,byrow=TRUE),respect=TRUE)

plottype = "s"

plotpch = 19

figplot = function(xy,...) {

plot(xy,xlab="",ylab="",pty=plottype,pch=plotpch,...)

title(xlab="time",ylab="space",line=2.2)

}

the levy mixture

figplot(rfellerprocess(20,0.01,0,rlevymixture),main=expression(x[0] == 0))

figplot(rfellerprocess(20,0.01,0,rlevymixture),main=expression(x[0] == 0))

figplot(rfellerprocess(20,0.01,-10,rlevymixture),main=expression(x[0] == -10))

figplot(rfellerprocess(20,0.01,10,rlevymixture),main=expression(x[0] == 10))

dev.copy2eps(file="Brownian-Poisson-Cauchy-mixture.eps",width = 4.8, height = 4.8)

the stable-like process

layout(matrix(c(1,2,3,4,5,5),nrow=3,byrow=TRUE),heights=c(1,1,0.4), respect=TRUE)

par(oma = c(0,0,0,0), mar=c(4,3.2,2,0.8),cex=0.83)

colorexponent = function(x) pmin((x/4-floor(x/4)),(ceiling(x/4)-x/4))

cols = heat.colors(100)

path=rfellerprocess(20,0.01,0,rstablefamily)

figplot(path,main=expression(x[0] == 0)

,col=cols[1+ceiling(colorexponent(path$y)*150)])

path=rfellerprocess(20,0.01,0,rstablefamily)

figplot(path,main=expression(x[0] == 0)

,col=cols[1+ceiling(colorexponent(path$y)*150)])

path=rfellerprocess(20,0.01,-2,rstablefamily)

figplot(path,main=expression(x[0] == -2)

,col=cols[1+ceiling(colorexponent(path$y)*150)])

path=rfellerprocess(20,0.01,2,rstablefamily)

figplot(path,main=expression(x[0] == 2)

,col=cols[1+ceiling(colorexponent(path$y)*150)])

legend for the index of the stable-like process

plotlegend = function() {

par(mar=c(3,0,2,0))

plot(c(1,2),c(0,1),type="n",axes=0,xlab="",ylab="")

title(expression(paste("color coding of the values of ", alpha, "(",x,")")))

axis(1)

n=80

xr = seq(1,n)/n+1

xl = xr-1/n

yb = rep(0,n)

yt = rep(1,n)

rect(xl,yb,xr,yt,col=cols[1:n],border= NA)

}

22

plotlegend()

dev.copy2eps(file="stable-like.eps",width = 4.8, height = 5.76)

the normal inverse Gaussian-like process

par(oma = c(0,0,0,0), mar=c(4,3.2,2,0.8))

layout(matrix(c(1,2,3,4),nrow=2,byrow=TRUE),respect=TRUE)

figplot(rfellerprocess(1000,0.1,0,rnigfamily),main=expression(x[0] == 0))

figplot(rfellerprocess(1000,0.1,0,rnigfamily),main=expression(x[0] == 0))

figplot(rfellerprocess(1000,0.1,-100,rnigfamily),main=expression(x[0] == -100))

figplot(rfellerprocess(1000,0.1,100,rnigfamily),main=expression(x[0] == 100))

dev.copy2eps(file="normal-inverse-gaussian-like.eps",width = 4.8, height = 4.8)

the Meixner-like process

figplot(rfellerprocess(100,0.1,0,rmeixnerfamily),main=expression(x[0] == 0))

figplot(rfellerprocess(100,0.1,0,rmeixnerfamily),main=expression(x[0] == 0))

figplot(rfellerprocess(100,0.1,-10,rmeixnerfamily),main=expression(x[0] == -10))

figplot(rfellerprocess(100,0.1,10,rmeixnerfamily),main=expression(x[0] == 10))

dev.copy2eps(file="meixner-like.eps",width = 4.8, height = 4.8)

