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Abstract

For each N ≥ cdt
d we prove the existence of a spherical t-design on

the sphere Sd consisting of N points, where cd is a constant depending

only on d. This result proves the well-known conjecture of Korevaar

and Meyers concerning an optimal order of minimal number of points

in a spherical t-design on Sd for a fixed d.
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1 Introduction

Let Sd be the unit sphere in R
d+1 with normalized Lebesgue measure dµd

(∫

Sd dµd(x) = 1
)

. The following concept of a spherical design was introduced

by Delsarte, Goethals, and Seidel [8].

A set of points x1, . . . , xN ∈ Sd is called a spherical t-design if

∫

Sd

P (x)dµd(x) =
1

N

N
∑

i=1

P (xi)

for all algebraic polynomials in d+ 1 variables and of total degree at most t.

For each t ∈ N denote by N(d, t) the minimal number of points in a spherical

t-design. The following lower bounds,

(1) N(d, t) ≥
(

d+ k

d

)

+

(

d+ k − 1

d

)

, t = 2k,

N(d, t) ≥ 2

(

d+ k

d

)

, t = 2k + 1,

are also proved in [8].

Spherical t-designs attaining these bounds are called tight. Exactly eight

tight spherical designs are known for d ≥ 2 and t ≥ 4. All such configurations

of points are highly symmetrical and possess other extreme properties; see

Cohn and Kumar [5], and Conway and Sloane [7].

Let us begin by giving a short history of asymptotic upper bounds on

N(d, t) for fixed d and t → ∞. First, Seymour and Zaslavsky [15] have

proved that spherical designs exist for all d, t ∈ N. Then, Wagner [16] and

Bajnok [2] independently proved that N(d, t) ≤ cdt
Cd4 and N(d, t) ≤ cdt

Cd3 ,

respectively. Korevaar and Meyers [10] have improved these inequalities by

showing that N(d, t) ≤ cdt
(d2+d)/2. They have also conjectured that N(d, t) ≤

cdt
d. Note that (1) implies N(d, t) ≥ Cdt

d. In what follows we denote by cd

and bd sufficiently large constants depending only on d.

The conjecture of Korevaar and Meyers was attacked by many mathe-

maticians. For instance, Kuijlaars and Saff [14] emphasized the importance
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of this conjecture and revealed its relation to the energy problems. Then,

Mhaskar, Narcowich, and Ward [12] have constructed positive quadrature

formulas on Sd with cdt
d points having almost equal weights. Very recently,

An, Chen, Sloan, and Womersley, see, e.g. [1], [6], have proved the existence

of spherical t-designs on S2 having (t + 1)2 points, for t ≤ 100. In order to

prove their result they extensively used numerical methods.

For d = 2 there exists even stronger conjecture by Hardin and Sloane [9],

that N(2, t) = 1
2
t2+o(t2) as t → ∞. They also provided a numerical evidence

for the conjecture.

Let us briefly explain our previous attempt to prove the conjecture of

Korevaar and Meyers. In [3], we have suggested nonconstructive approach

for obtaining asymptotic bounds for N(d, t) based on the application of the

Brouwer fixed point theorem. This approach led to the following result.

Theorem BV. For each N ≥ cdt
2d(d+1)

d+2 there exists a spherical t-design

on Sd consisting of N points.

However, during the proof we faced technical problems that didn’t allow

us to obtain an optimal result. In this paper instead of the Brouwer fixed

point theorem we will use the following topological theorem.

Theorem OCC. Let f : R
n → R

n be a continuous mapping and Ω be

an open bounded subset with the boundary ∂Ω such that 0 ∈ Ω ⊂ R
n. If

(x, f(x)) > 0 for all x ∈ ∂Ω, then there exists x ∈ Ω satisfying f(x) = 0.

This fact is an easy result in the Brouwer degree theory [13, Theorem 1.2.6

and Theorem 1.2.9]. Employing this idea we will prove much stronger result.

Theorem 1. For each N ≥ cdt
d there exists a spherical t-design on Sd

consisting of N points, where cd is a constant depending only on d.

This proves the conjecture of Korevaar and Meyers.
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2 Preliminaries and the main idea

Let Pt be the Hilbert space of polynomials P of degree ≤ t on Sd such that

∫

Sd

P (x)dµd(x) = 0,

equipped with the usual inner product

(P,Q) =

∫

Sd

P (x)Q(x)dµd(x).

By Riesz representation theorem, for each point x ∈ Sd there exists a unique

polynomial Gx ∈ Pt such that

(Gx, Q) = Q(x) for all Q ∈ Pt.

Then a set of points x1, . . . , xN ∈ Sd forms a spherical t-design if and only if

(2) Gx1 + · · ·+GxN
= 0.

For a differentiable function f : Rd+1 → R and a point x0 ∈ R
d+1 denote by

∂f

∂x
(x0) :=

(

∂f

∂ξ1
(x0), . . . ,

∂f

∂ξd+1
(x0)

)

the gradient of f at the point x0.

For a polynomial Q ∈ Pt we define the spherical gradient

∇Q(x) :=
∂

∂x
Q(

x

|x|),

where | · | denotes Euclidean norm in R
d+1.

We will apply Theorem OCC to the following open subset of a vector

space Pt

(3) Ω =

{

P ∈ Pt|
∫

Sd

|∇P (x)|dµd(x) < 1

}

.
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Now we observe that the existence of a continuous mapping F : Pt →
(Sd)N such that for all P ∈ ∂Ω

N
∑

i=1

P (xi(P )) > 0, where F (P ) = (x1(P ), ..., xN(P )),

readily implies the existence of a spherical t-design on Sd consisting of N

points. To this end let us consider a mapping L : (Sd)N → Pt defined by

(x1, . . . , xN )
L−→ Gx1 + · · ·+GxN

,

and the following composition mapping f = L ◦ F : Pt → Pt. Clearly

(P, f(P )) =

N
∑

i=1

P (xi(P )),

for each P ∈ Pt. Thus Theorem OCC for the mapping f , vector space

Pt, and the subset Ω defined in (3) immediately gives us the existence of a

polynomial P ∈ Pt such that f(P ) = 0. Hence, by (2), the components of

F (P ) = (x1(P ), ..., xN(P )) form a spherical t-design on Sd consisting of N

points.

The most naive approach to construct such F (P ) = (x1(P ), . . . , xN (P )) is

to start with a certain well-distributed collection of points xi, i = 1, . . . , N ,

put F (0) := (x1, . . . , xN), and then move each point along the spherical

gradient vector field of P (that is the most greedy way to increase each

P (xi(P )) and make
∑N

i=1 P (xi(P )) positive for each P ∈ ∂Ω). We will give an

explicit construction of F in the next section, which will imply immediately

the proof of Theorem 1. To this end we need some auxiliary results.

3 Auxiliary results

We will extensively use the notion of an area-regular partition; see e.g., [4],

for the construction of the corresponding mapping F for each N ≥ cdt
d. Here

is a definition.
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Let R = {R1, . . . , RN} be a finite collection of closed sets Ri ⊂ Sd such

that ∪N
i=1Ri = Sd and µd(Ri ∩ Rj) = 0 for all 1 < i 6= j < N . The partition

R is called area-regular if volRi :=
∫

Ri
dµd(x) = 1/N , i = 1, . . . , N . The

partition norm for R is defined by

‖R‖ := max
R∈R

diamR,

where diamR stands for the maximum geodesic distance between two points

in R. We need the following fact stated in [11].

Theorem SK. For each N ∈ N there exists an area-regular partition

R = {R1, . . . , RN} with ‖R‖ ≤ bdN
−1/d for some constant bd.

We will also use a result which is an easy corollary of Theorem 3.1 in [12].

Theorem MNW. There exists a constant rd such that for each area-

regular partition R = {R1, . . . , RN} with ‖R‖ < rd
m
, each collection of points

xi ∈ Ri, i = 1, . . . , N , and each algebraic polynomial P of total degree m the

following inequality,

(4)
1

2

∫

Sd

|P (x)|dµd(x) <
1

N

N
∑

i=1

|P (xi)| <
3

2

∫

Sd

|P (x)|dµd(x),

holds.

Remark 1. Although Theorem 3.1 in [12] was stated for slightly different

definition of an area-regular partition the presented proof works for our more

general definition as well.

First we prove the following estimate.

Lemma 1. For each area-regular partition R = {R1, . . . , RN} with ‖R‖ <
rd

m+1
, each collection of points xi ∈ Ri, i = 1, . . . , N , and each algebraic

polynomial P of total degree m the following inequality holds

(5)
1

3
√
d

∫

Sd

|∇P (x)|dµd(x) <
1

N

N
∑

i=1

|∇P (xi)| < 3
√
d

∫

Sd

|∇P (x)|dµd(x).
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Proof. Since |∇P | =
√

P 2
1 + . . .+ P 2

d+1, where Pi ∈ Pm+1, we obtain the

Lemma 1 as a immediate consequence of (4) applied to the polynomials Pi,

i = 1, . . . , d+ 1.

Fix d, t ∈ N. Take cd large enough (the exact condition we will write

later) and also fix N ≥ cdt
d. Now we are ready to give an exact construction

of the mapping F : Pt → (Sd)N introduced in section 2. Take an area-regular

partition R = {R1, . . . , RN} with ‖R‖ ≤ bdN
−1/d provided by Theorem SK,

and chose an arbitrary xi ∈ Ri for each i = 1, . . . , N . Put ε = 1
6
√
d
, and

consider the function

hε(s) :=

{

s, s > ε,

ε, s ≤ ε.

For a polynomial P ∈ Pt and each i = 1, . . . , N let yi : [0,∞) → Sd be the

function satisfying a differential equation

(6)
dyi
ds

=
∇P (yi)

hε(|∇P (yi)|)

with the initial condition

yi(0) = xi.

For each i = 1, . . . , N , consider a mapping Yi : Pt × [0,∞) → Sd with the

following action

(P, s)
Yi−→ yi(s),

and finally put

(7) F (P ) = (x1(P ), . . . , xN (P )) := (Y1(P, rd/3t), . . . , YN(P, rd/3t)),

where rd is defined by Theorem MNW. Since the function ∇P (y)
hε(|∇P (y)|) is Lip-

schitz continuous in both P and y, then each mapping Yi, i = 1, . . . , N , is

well defined and continuous in both P and s. Thus, F is continuous in P as

well. So, as we explained in section 2, to finish the proof of Theorem 1 it

suffices to prove the following lemma
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Lemma 2. Let F : Pt → (Sd)N be the mapping defined by (7). Then, for

each P ∈ ∂Ω,

1

N

N
∑

i=1

P (xi(P )) > 0,

where Ω is given by (3).

Proof. We start with the following easy equation

1

N

N
∑

i=1

P (xi(P )) =
1

N

N
∑

i=1

P (yi(rd/3t)) =
1

N

N
∑

i=1

P (xi)

(8) +

∫ rd/3t

0

d

ds

[

1

N

N
∑

i=1

P (yi(s))

]

ds.

To prove Lemma 2 first we will estimate the value
∣

∣

∣

∣

∣

1

N

N
∑

i=1

P (xi)

∣

∣

∣

∣

∣

from above, and then we will estimate the value

d

ds

[

1

N

N
∑

i=1

P (yi(s))

]

from below, for each s ∈ [0, rd/3t]. We have
∣

∣

∣

∣

∣

1

N

N
∑

i=1

P (xi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ri

P (xi)− P (x)dµd(x)

∣

∣

∣

∣

∣

≤
N
∑

i=1

∫

Ri

|P (xi)−P (x)|dµd(x)

≤ 1

N

N
∑

i=1

max
yi∈Sd:dist(yi,xi)≤‖R‖

|∇P (yi)| max
x∈Ri

dist(x, xi),

where dist(x, xi) denotes a geodesic distance between x and xi. Hence, for

some zi ∈ Sd such that dist(zi, xi) ≤ ‖R‖, i = 1, . . . , N , we obtain
∣

∣

∣

∣

∣

1

N

N
∑

i=1

P (xi)

∣

∣

∣

∣

∣

≤ 1

N
‖R‖

N
∑

i=1

|∇P (zi)|.
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Consider another area-regular partition R′ = {R′
1, . . . , R

′
N}, defined by R′

i =

Ri ∪ {zi}. Clearly ‖R′‖ ≤ 2‖R‖, so by the choice of R we get ‖R′‖ ≤
2bdc

−1/d
d t−1. Suppose that

(9) cd > (4bd/rd)
d .

Now we can apply (5) for the partition R′, and obtain immediately

(10)

∣

∣

∣

∣

∣

1

N

N
∑

i=1

P (xi)

∣

∣

∣

∣

∣

≤ 3
√
dbdc

−1/d
d t−1

∫

Sd

|∇P (x)|dµd(x) = 3
√
dbdc

−1/d
d t−1,

for any P ∈ ∂Ω. On the other hand, the differential equation (6) implies

that
d

ds

[

1

N

N
∑

i=1

P (yi(s))

]

=
1

N

N
∑

i=1

|∇P (yi)|2
hε(|∇P (yi)|)

≥

≥ 1

N

∑

i: |∇P (yi)|≥ε

|∇P (yi)| ≥

(11) ≥ 1

N

N
∑

i=1

|∇P (yi)| − ε.

Since
∣

∣

∣

∣

∇P (y)

hε(|∇P (y)|)

∣

∣

∣

∣

≤ 1,

it follows again from (6) that
∣

∣

dyi
ds

∣

∣ ≤ 1. Hence we arrive at

dist(xi, yi(s)) ≤ s.

Now for each s ∈ [0, rd/3t] consider the area-regular partitionR′′ = {R′′
1 , . . . , R

′′
N}

given by R′′
i = Ri ∪ {yi(s)}. Clearly ‖R′′‖ ≤ bdc

−1/d
d t−1 + rd/3t, so if we as-

sume that

(12) cd > (6bd/rd)
d ,
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then we can apply (5) for the partition R′′. By the inequality (11) we obtain

d

ds

[

1

N

N
∑

i=1

P (yi(s))

]

≥ 1

N

N
∑

i=1

|∇P (yi(s))| −
1

6
√
d

(13) ≥ 1

3
√
d

∫

Sd

|∇P (x)|dµd(x)−
1

6
√
d
=

1

6
√
d
,

for each P ∈ ∂Ω and s ∈ [0, rd/3t]. Finally, the inequalities (8), (10) and

(13) imply

(14)
1

N

N
∑

i=1

P (xi(P )) ≥ 1

6
√
d

rd
3t

− 3
√
dbdc

−1/d
d t−1 > 0.

Thus, Lemma 2 holds for all cd satisfying simultaneously the conditions (9),

(12) and (14), say for cd > (54dbd/rd)
d.
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