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Abstract

The construction of adaptive nonparametric procedures by means of wavelet thresh-
olding techniques is now a classical topic in modern mathematical statistics. In this
paper, we extend this framework to the analysis of nonparametric regression on sections
of spin fiber bundles defined on the sphere. This can be viewed as a regression problem
where the function to be estimated takes as its values algebraic curves (for instance,
ellipses) rather than scalars, as usual. The problem is motivated by many important
astrophysical applications, concerning for instance the analysis of the weak gravitational
lensing effect, i.e. the distortion effect of gravity on the images of distant galaxies. We
propose a thresholding procedure based upon the (mixed) spin needlets construction
recently advocated by Geller and Marinucci (2008,2010) and Geller et al. (2008,2009),
and we investigate their rates of convergence and their adaptive properties over spin
Besov balls.
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1 Introduction

Over the last two decades, wavelet techniques have become a well-established tool for the
analysis of statistical nonparametric problems, especially in the framework of minimax esti-
mation. The seminal contribution in this area was provided by Donoho et al. in [16], where it
was proved that nonlinear wavelet estimators based on thresholding techniques achieve nearly
optimal minimax rates (up to logarithmic terms) for a wide class of nonparametric estimation
of unknown density and regression functions. The theory has been enormously developed ever
since - we refer to [33] for a textbook reference.
The bulk of this literature has focussed on estimation in standard Euclidean frameworks,
such as R or Rn. More recently, applications from various scientific fields have drawn a lot
of attention on more general settings, such as spherical data or more general manifolds (see
[1]). This environment has recently experienced a remarkable amount of activity, both from
the purely mathematical point of view and in terms of applications to empirical data.
In particular, a highly successful construction of a second-generation wavelet system on the
sphere (the so-called needlets) has been introduced by [51], [52]; this approach has been ex-
tended to more general manifolds and unbounded support in the harmonic domain by [23],
[24], [25]. The investigation of the stochastic properties of needlets when implemented on
spherical random fields is due to [3], [4], [43], [44] and [49], where applications to several
statistical procedures are also considered. These procedures have been mainly motivated by
issues arising in Cosmology and Astrophysics, and indeed several applications to experimental
data have already been implemented: for instance, those from the satellite WMAP mission
from NASA, focussing on the so-called Cosmic Microwave Background radiation, see [55],
[48], [56], [18], [57], [58], [14], [59], [11] and [31]. These applications, however, have not been
focussed on thresholding estimates and minimax results, but rather to random fields issues,
such as angular power spectrum estimation, higher-order spectra, testing for Gaussianity and
isotropy, and several others (see also [47],[13]).
More recently, a few papers have focussed on the use of needlets to develop estimators within
the thresholding paradigm, in the framework of directional data. The pioneering contribution
here is due to [5], see also [37], [38], [36]; applications to astrophysical data is still under way.
Earlier results on minimax estimators for spherical data, outside the needlets approach, are
due to Kim and coauthors (see [40], [39], [42]).
Another important generalization of the needlet approach has been recently advocated by
[21]; applications to statistics can be found in [20]. This development is again motivated by
Cosmology and Astrophysics. In particular, we noted above as some extremely influential
satellite missions from NASA and ESA (WMAP and Planck, respectively) are currently col-
lecting data on the so-called Cosmic Microwave Background radiation, which can be viewed
as the realization of a scalar, isotropic, mean-square continuous spherical random field (see
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for instance [15] for a review). These same experiments are also collecting data on a much
more elusive cosmological feature, the so-called polarization of CMB. The latter can be loosely
described as observations on random ellipses living on the tangent planes for each location
on the celestial sphere. Mathematically, this can be expressed by defining random sections of
spin fiber bundles, a generalization of the notion of scalar random fields (see [21], [20], [22]
and Sections 2 below for much more details and discussion). Quite interestingly, exactly the
same mathematical framework describes the so-called weak gravitational lensing induced on
the observed shape of distant galaxies by clusters of matter. This is again a major issue in
the analysis of astrophysical data (see for instance [7, 41] and the references therein): huge
amount of observational data are expected in the next decade, by means of satellite missions
in preparations such as Euclid.
The applications of spin needlets to CMB polarization data is discussed in [19]. The charac-
terization of spin Besov spaces by means of needlets decompositions is discussed by [2] and
[22]; the latter reference also introduces an alternative construction for needlets on spin fiber
bundles (so-called mixed needlets), and provide its analytical and statistical properties.
Our purpose in this article is to exploit these results and classical techniques to introduce
and develop spin nonparametric regression, with a view to applications to polarization and
weak lensing data. In particular, we investigate the properties of nonlinear hard thresholding
estimates, and we establish rates of convergence over a wide class of Lps norms and spin Besov
spaces (see again [2], [22] and the sections to follow for more detailed definitions). More
precisely, we shall assume to have observations on independent pairs of random variables, re-
spectively scalar and spin, (Xi, Yi;s), i = 1, . . . , n, (Xi) ∈ S2; we view (Xi) as uniform random
locations on the sphere, which correspond for instance to the positions of observed galaxies.
We shall then be concerned with the regression model:

Yi;s = Fs (Xi) + εi;s , (1)

where Fs (·) is an unknown section of a spin fiber bundle; for instance, for s = 2 Fs can
be taken to represent the geometric effect of the gravitational shear. We assume that this
section belongs to Lps (S

2), the space of the spin s, p-integrable sections on the sphere. On
the other hand, we assume the εi;s are i.i.d. spin random variables, which can be viewed as
an observational error (to be interpreted, for instance, as the intrinsic shape of the galaxy).
We are then led to nonparametric estimation over an unknown functional class, and we aim
at procedures which are robust (i.e. nearly optimal) for a wide class of Lps norms, 1 ≤ p ≤ ∞.
To address this issue, and given the properties of (mixed) spin needlets established in [21],
[22], we follow a classical approach, as discussed for the classical case on R by Donoho et
al. ([16]), Hardle et al. ([33]), ([37]), and many other papers, see for instance ([8],[12], [34])
for some recent developments . In particular, as mentioned before we introduce thresholding
estimates and establish convergence rates for the resulting nonlinear estimators. We stress
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that we consider at the same time estimators based upon both spin constructions we have
mentioned before, i.e. pure and mixed spin needlets; the results with the two approaches
are identical. Sharp adaptation results for nonparametric regression on vector bundles were
recently established in an important paper by [40]. These authors focus on the p = 2, and
therefore exploit Fourier methods rather than wavelets thresholding. For s = 1, our method
can be viewed as a form of adaptive regression for vector fields, and in this sense it relates
also to recent work on filament estimation by [28], [29]. See also [60] for some recent work on
statistical analysis for tensor-valued data.
The plan of the paper is as follows. In Section 2 we review some background material on spin
fiber bundles, while in Section 3 we recall the construction of spin and mixed spin needlets; for
both sections we follow closely earlier references, in particular [21] and [22]. In Section 4 we
review some crucial material on spin Besov spaces, as discussed earlier by [2] and [22]. Section
5 and 6 include the most important contributions of this paper, namely the presentation of
the thresholding procedure and the investigation of its asymptotic properties.

2 Spin functions

2.1 Background and definitions

The purpose of this Section is to review some background material on spin fiber bundles; our
presentation follows closely [21], [20],[22], to which we refer for more discussion and details.
The concept of a spin function was introduced in the sixties by Newman and Penrose in [53],
while working on gravitational radiation, see also [30], [17]. Writing in a physicists’ jargon,
they said that a function η has an integer-valued spin weight s (or, briefly, that η is a spin
s quantity) if, whenever a tangent vector at point x ∈ S2 is rotated by an angle ψ under
a coordinate change, η transforms as η′ = eisψη. This same idea is formalized as follows
by [21]). Let UI := S2/ {N, S} be the chart that covers the sphere with the North and the
South poles subtracted: here we adopt the usual angular coordinates (ϑ, ϕ), ϑ ∈ (0, π) and
ϕ ∈ [−π, π]. Define the rotated charts UR = RUI , where R ∈ SO (3) (the special group
of rotations) and label the corresponding coordinates (ϑR, ϕR). For any x ∈ S2, we can fix
a ”reference direction” in the tangent plane at x (labelled as usual Tx (S

2)) by considering
ρI (x) = ∂/∂ϕ, the unitary tangent vector in the direction of the circle where ϑ is constant and
ϕ is increasing. For every x belonging to the intersection between the charts corresponding
to UR and UI , we can uniquely measure the angle associated to a change of coordinate by
considering the angle between the reference vector in the map UI , and the reference vector
in the rotated chart, namely ρR (x) = ∂/∂ϕR. More generally, given x ∈ S

2 and two charts
UR1 and UR2 such that x ∈ UR1 ∩ UR2 , the angle between UR1 and UR2 , ψx,R1,R2

is defined as
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the angle between ρR1
(x) and ρR2

(x), see [21], [20] for a discussion on the orientation of this
angle.
Fix now an open subset G ⊂ S2. The collection of functions {FR}R∈SO(3) is a spin s function
Fs if and only if ∀R1, R2 ∈ SO (3) and all x ∈ UR1 ∩ UR2 ∩G we have:

FR2 = eisψx,R1,R2FR1

We write Fs ∈ C∞
s (G), if for every R ∈ SO (3) the application x → Fs (x) is smooth. Note

that for s = 0 we are back to the usual scalar functions.
From a differential geometry point of view, C∞

s is the space of sections over G of the complex
line bundle over the sphere S2 (see also [45], [46] for more discussion on this point of view).
The functional spaces Lps (S

2) are then defined as

Fs ∈ Lps
(
S
2
)
⇔ ‖Fs‖Lp

s(S2)
=

(∫

S2

|Fs(x)|p dx
)1/p

<∞

Note that, while Fs (x) is a section of the fiber bundle on S2, |Fs (x)| is a real valued function
on the sphere, because the modulus of Fs does not depend on the choice of the coordinate
system: therefore the Lps (S

2) is well defined.

2.2 Spin Spherical Harmonics

We start by recalling the well-known expression for the spherical Laplacian ∆S2 ,

∆S2 :=
1

sin2 ϑ

∂

∂ϕ2
+

1

sinϑ

∂

∂ϑ

{
sin ϑ

∂

∂ϑ

}
.

A complete orthonormal set of eigenfunctions for the spherical Laplacian is provided by the
family of spherical harmonics {Ylm}, l = 0, 1, 2, ..., m = −l, ..., l :

∆S2Ylm = −l(l + 1)Ylm ,

∫

S2

Ylm(x)Y lm(x)dx = δl′l δ
m′
m ,

where δba denotes the Kronecker delta function. In the spherical coordinates (ϑ, ϕ)

Ylm(ϑ, ϕ) = eimϕ

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cosϑ) ,

Plm(x) = (1− x2)m/2
d

dxm
Pl(x) ,
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where Pl(x) denotes the Legendre polynomials, see for instance ([62]) for more analytic expres-
sions and discussion. Denoting by {Hl} the linear spaces spanned by the spherical harmonics,
the following decomposition holds (see for instance [1]):

L2
(
S
2
)
=
⊕

l≥0

Hl ,

that is, in the L2 sense, for all f ∈ L2 (S2)

f (x) =
∑

l,m

almYlm (x) , alm =

∫

S2

f(x)Y lm(x)dx .

It is possible to introduce spin spherical harmonics as the eigenfunctions of a second-order
differential operator which generalizes the spherical Laplacian (refer again to [64],[21] for more
details). To this aim, consider the (spin raising and spin lowering) operators ð and ð, whose
action on a spin function Fs (·) is provided by:

ðFs (ϑ, ϕ) = − (sin (θ))s
[
∂

∂ϑ
+

i

sin (ϑ)

∂

∂ϕ

]
(sin (θ))−s Fs (ϑ, ϕ) ,

ðFs (ϑ, ϕ) = − (sin (θ))−s
[
∂

∂ϑ
− i

sin (ϑ)

∂

∂ϕ

]
(sin (θ))s Fs (ϑ, ϕ) .

It should be noted that ð transforms spin s functions into spin s + 1 functions, ðC∞
s →

C∞
s+1, while ð transforms spin s functions into spin s − 1 functions, ðC∞

s → C∞
s−1, which

justifies their names. The previous expressions should be written more rigorously in terms of
ðR, ðR, ϑR, ϕR, Fs;R, because both the operators and the spin functions depend on the choice
of coordinates. More important, ð, ð can be used to define a differential operator ðð, which
can be viewed as a generalization of the scalar spherical Laplacian; indeed

−ððYlm;s = elsYlm;s ,

where {els}l=s,s+1 = {(l − s) (l + s+ 1)}l=s,s+1 is the associated sequence of eigenvalues and
{Ylm;s} , l = s, s + 1, ...;m = −l, ..., l is the sequence of orthonormal spherical harmonics,
which we define by

Ylm;s : =

√
(l − s)!

(l + s)!
ðYlm for s > 0 ,

Ylm;s : =

√
(l + s)!

(l − s)!
ðYlm for s < 0 .
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Again, as before it should be noted that in the spin case the operators depend on the choice
of the coordinates, differently from the scalar case. As discussed by [20], [45], [46] the spin
construction could be alternatively provided in terms of the so-called spin-weighted represen-
tation of the special group of rotations SO(3), indeed spin spherical harmonics can be related
to the so-called Wigner’s matrices, see again [62],[63]. In particular, it is then possible to show
that the spin spherical harmonics are themselves an orthonormal system, i.e. they satisfy

∫

S2

Ylm;sY lm;sdx =

∫ 2π

0

∫ π

0

Ylm;s(ϑ, ϕ)Y lm;s(ϑ, ϕ) sinϑdϑdϕ = δl
′
l δ

m′
m .

As for the scalar case,

L2
s

(
S
2
)
=

∞⊕

l=0

Hl Hl := span {Ylm;s;m = −l, . . . , l} ,

and the following representation holds

Fs (x) =
∑

l

∑

m

alm;sYlm;s(x) ,

in the L2
s sense, i.e.

lim
L→∞

∫

S2

∣∣∣∣∣∣
Fs (x)−

L∑

l=|s|

l∑

m=−l

alm;sYlm;s(x)

∣∣∣∣∣∣

2

dx = 0 .

Here, the spherical harmonics coefficients alm;s :=
∫
S2
FsY lmdx are such that

alm;s = alm;E + ialm;M ,

where {alm;E} , {alm;M} are the coefficients of two standard (scalar-valued) spherical functions,
which in the physical literature are labelled the electric and magnetic components of the spin
function Fs, see again [21],[22] for more discussion.

3 Spin and Mixed Needlets

3.1 Definition

We start by recalling the definition of scalar needlets, which were introduced by [51] and [52]
as:

ψjk (x) =
√
λjk
∑

l

b

(
l

Bj

) l∑

m=−l

Ylm (x) Y lm

(
ξjk
)
, ∀x ∈ S

2;
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here
{
ξjk, λjk

}
are a set of cubature points and weights ensuring that:

∑

jk

λjkYlm
(
ξjk
)
Y l′m′

(
ξjk
)
=

∫

S2

Ylm (x) Y l′m′ (x) dx = δl
′
l δ

m′
m ,

b (·) is a compactly supported C∞ function satisfying the partition of unity property:

∑

j

b2(
l

Bj
) ≡ 1

for all l ≥ 1 , and B > 1 is a bandwidth parameter. For a fixed value of B, we denote
{Xj}j≥0 the nested sequence of cubature points corresponding to the space K[2Bj+1], where

[·] represents the integer part and KL = ⊕L
l=0Hl is the space spanned by spherical harmonics

up to order L. For each j, the cubature points are almost distributed as an αj-net, with
αj := kB−j , the coefficients {λjk} are such that cB−2j ≤ λjk ≤ CB−2j , with c, C ∈ R, and
Nj = card {Xj} ≈ B2j, see for instance [4] for more details.
The construction of spin needlets (as provided by ([21])) is formally similar to the scalar
case, although as we discuss below it entails deep differences in terms of the spaces involved.
Indeed, spin needlets are defined as follows:

ψjk;s (x) =
√
λjk
∑

l

b

(√
el,s

Bj

) l∑

m=−l

Y lm;s

(
ξjk
)
Ylm;s (x) , (2)

where
{
λjk, ξjk

}
are, as before, cubature weights and cubature points, b (·) ∈ C∞ is non-

negative, it is compactly supported in [1/B,B] and satisfies the partition of unity property.
Note, however, that the mathematical meaning of (2) is rather different from the scalar case;
indeed ψjk;s (x) is to be viewed as a spin s function with respect to rotations of the tan-
gent plane Tx, and a spin −s function with respect to rotations of the tangent plane Tξjk .

Moreover, as Ylm;s

(
ξjk
)
, Ylm;s (x) live on two different tangent planes Tξjk ,Tx, the product

Y lm;s

(
ξjk
)
Ylm;s (x) is not defined and the notation Y lm;s

(
ξjk
)
⊗ Ylm;s (x) would be more ap-

propriate. As a consequence, the spin needlet operators acts on spin s functions to produce
spin s coefficients

〈
Fs, ψjk;s (x)

〉
=

∫

S2

Fs(x)ψjk;s (x) dx

=
√
λjk
∑

lm

b

(√
el,s

Bj

)
alm;sYlm;s

(
ξjk
)

= : βjk;s . (3)
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Therefore, ψjk;s induces the linear map (3) from spin s quantities to spin s wavelet coefficients
βjk;s, while in the scalar case (s = 0) needlets generate a linear map from scalar quantities
to scalar quantities. Indeed, if u is a spin s vector at ξjk, ψjk;s (x) u becomes a spin s vector
at ξjk, since the product of spin −s and spin s vectors at a point x is a well-defined complex
number, independently of the choice of coordinate system.

To provide a clearer interpretation to the previous expression, recall the decomposition of
the functional space L2

s (S
2) =

⊕
l≥0Hl. We can hence define the following operators on Hl:

Kj (x, y) =
∑

l

b2
(√

el,s

Bj

)
Ylm;s (x) Y lm;s (y)

Λj (x, y) =
∑

l

b

(√
el,s

Bj

)
Ylm;s (x) Y lm;s (y)

such that the reproducing kernel property holds:

∫

S2

Λj (x, y) Λj (y, z) dy = Kj(x, z) .

Spin needlets can be derived by discretizing this operator by using the reproducing kernel
property. In fact Λj is such that:

z → Λj (x, z) ∈ K[B2j+1] ,

and therefore:
z → Λj (x, z) Λj (z, y) ∈ K[B4j+2] .

After discretization, we obtain:

Kj (x, y) =
∑

ξjk∈K[B4j+2]

λjkΛj
(
x, ξjk

)
Λj
(
ξjk, y

)
,

where we exploit the fact that the pairs
{
λjk, ξjk

}
can be chosen to form exact cubature
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points and weights ([2]). Then

Kjf (x) =

∫

S2

Kj (x, y) f (y) dy

=

∫

S2

∑

ξjk∈K[B4j+2]

λjkΛj
(
x, ξjk

)
Λj
(
ξjk, y

)
f (y) dy

=
∑

ξjk∈K[B4j+2]

√
λjkΛj

(
x, ξjk

) ∫

S2

√
λjkΛj

(
ξjk, y

)
f (y)dy

=
∑

ξjk∈K[B4j+2]

βjk;sψjk;s ,

where
ψjk;s =

√
λjkΛj

(
x, ξjk

)
.

As a minor point, note that for the argument of the function b (·) we have used here the
square root of el,s,the eigenvalue of the corresponding spin spherical harmonics, while in the
scalar case [51],[52] proposed to adopt l. However it is trivial to observe that, for fixed s:

lim
l→∞

√
el,s

l
= lim

l→∞

√
(l − s) (l + s+ 1)

l
= 1 .

3.2 Some Properties

We report some important properties for spin needlets, very similar to those in scalar case (see

[51], [52]). Indeed, from the previous discussion it follows easily that
∣∣ψjk;s

∣∣2 is a well-defined
scalar quantity. The following Localization property is hence well-defined (see [21]): for any
M ∈ N, there exists a constant cM > 0 such that for every x ∈ S2:

∣∣ψjk;s (x)
∣∣ ≤ cMB

j

(
1 +Bj arccos

(
〈ξjk, x〉

))M .

Let us recall from (3) that

βjk;s =

∫

S2

Fs (x) Y jk;s (x) dx =
√
λjk
∑

l

b

(√
els
Bj

) l∑

m=−l

alm;sYlm;s

(
ξjk
)
,

and the following reconstruction formula holds:

Fs (x) =
∑

j

∑

k

βjk;sψjk;s (x) .
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It is simple to check that the squared coefficients
∣∣βjk;s

∣∣2 following quantities are scalar. In
the following, we will need both the L2

s (S
2) and the Lps (S

2) norm of ψjk;s. Let us start by
observing that:

∥∥ψjk;s
∥∥2
L2
s(S

2)
= λjk

∑

l

b2
(√

els
Bj

) l∑

m=−l

Ylm;s

(
ξjk
)
Y lm;s

(
ξjk
) ∫

S2

Ylm;s (x) Y lm;s (x) dx =

= λjk

Bj+1∑

l=Bj−1

b2
(√

els
Bj

) l∑

m=−l

Ylm;s

(
ξjk
)
Y lm;s

(
ξjk
)

= λjk

Bj+1∑

l=Bj−1

2l + 1

4π
b2
(√

els
Bj

)
=: τ 2jk;s .

As discussed by [4], [2], [21], there exist positive constants c1, c2 such that c1N
−1
j ≤ λjk ≤

c2N
−1
j .
Throughout the rest of the paper, to simplify notations we shall assume to be dealing with

sections of line bundles such that Fs = (I−Ps)Fs, Ps denoting the projection operator on the
s spin spherical harmonics. In other words, the component at l = s is assumed to be null;
from the point of view of motivating applications, this is a very reasonable assumption, indeed
for polarization or weak lensing experiments the so-called quadrupole term l = s = 2 has no
physical meaning. The situation is indeed analogous to the standard scalar case, where the
constant term s = 0 cannot even be measured by ongoing (so-called differential) experiments.
Under these circumstances, as shown in [2], spin needlets make up a tight frame system, i.e.
for all Fs ∈ L2

s(S
2) ,

‖Fs‖2L2
s(S

2) =
∑

jk

∣∣βjk;s
∣∣2 ,

whence we have easily
∑

jk

∣∣〈ψj1,k1;s, ψjk:s〉
∣∣ 2 =

∥∥ψj1,k1;s
∥∥4
L2
s(S

2)
+

∑

j 6=j1,k 6=k1

∣∣〈ψj1,k1;s|ψjk:s〉
∣∣ 2 ≤

∥∥ψj1,k1;s
∥∥2
L2
s(S

2)
,

whence ∥∥ψjk;s
∥∥
L2
s(S

2)
≤ 1 .

More generally, it is shown in [2], [22] that for all 1 ≤ p ≤ ∞, there exist positive constants
cp, Cp such that

cpB
2j( 1

2
− 1

p) ≤
∥∥ψjk;s

∥∥
Lp
s(S2)

=

(∫

S2

∣∣ψjk;s
∣∣p dx

) 1
p

≤ CpB
2j( 1

2
− 1

p). (4)
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3.3 Mixed Needlets and their properties

Mixed Needlets were introduced in [22]; they are defined as

ψjk;sM (x) =
√
λjk
∑

l≥|s|

b

(√
els
Bj

)∑

m

Ylm;s (x) Y lm

(
ξjk
)
,

with corresponding needlet coefficients

βjk;sM =

∫

S2

ψjk;sM (x)Fs (x) dx .

Mixed needlets form a tight frame system, with the same set of cubature points and weights
as for the scalar case,

{
ξjk, λjk

}
. When Fs ∈ L2

s (S
2) , we have also

βjk;sM =
√
λjk
∑

l≥|s|

b

(√
els
Bj

)∑

m

alm;sYlm
(
ξjk
)
,

and mixed needlets form a tight frame system. It should be noted that the coefficients{
βjk;sM

}
are scalar, complex-valued random variables, indeed for square integrable sections

we have

βjk;sM =
√
λjk
∑

l≥|s|

b

(√
els
Bj

)∑

m

{alm;E + ialm;M} Ylm
(
ξjk
)

= : βjk;E + iβjk;M ,

where βjk;E, βjk;M could be viewed as the scalar needlet coefficients of standard square inte-
grable functions on the sphere. For general Fs ∈ Lps (S

2) the reconstruction formula holds, in
the Lps sense:

Fs =
∑

j

∑

k

βjk;sMψjk;sM .

Other properties of mixed needlets are analogous to those for the pure spin construction.
In particular, note that scalar and pure spin needlets are both constructed by a convolution
of a smooth function b(.) with projection operators such as, for instance,

∑
m Ylm(x)Y lm(y),∑

m Ylm;s(x)Y lm;s(y).
On the other mixed needlets are built by convolving b(.) with

∑
m Ylm(x)Y lm;s(y), which is

not a projection operator (indeed
∑

m Ylm(x)Y lm;s(x) ≡ 0). It comes therefore to some extent

12



as a surprise that mixed needlets do indeed enjoy localization properties, indeed we have (see
again [22]): for each M > 0 there exists a constant CM such that:

∣∣ψjk;sM
∣∣ ≤ CMB

j

(
1 +Bj arccos

(
〈x, ξjk〉

))M .

Building upon this localization property, it is indeed possible to establish the following bounds
(see for more details [22]):

c1B
2j( 1

2
− 1

p) ≤
∥∥ψjk;sM

∥∥
Lp
s(S2)

≤ c2B
2j( 1

2
− 1

p), c1, c2 > 0 . (5)

These constraints on the Lps norms will have the greatest importance for our results to follow.
Also, for positive constants c3, c4 and arbitrary coefficients λk we have

c3
∑

k

|λk|p
∥∥ψjk;sM

∥∥p
Lp
s(S2)

≤
∥∥∥∥∥
∑

k

λkψjk;sM

∥∥∥∥∥

p

Lp
s(S2)

≤ c4
∑

k

|λk|p
∥∥ψjk;sM

∥∥p
Lp
s(S2)

. (6)

Remark 1 While the mathematical construction and the properties that can be developed on
the mixed needlets are very similar to the spin case, there is a very relevant difference among
these approaches that will be very important for our purposes. While, as we have already seen,
ψjk;s is formed by a tensorial product among two terms belonging to two different spaces of
spin −s and s such that βjks belongs to the spin s space, ψjk;sM induces a linear map from a
spin s vector at ξjk to a scalar (spin 0) quantity, such that for a spin s quantity u, the product

ψjk;sM · u is always a scalar quantity. .

4 Spin Besov spaces

Our aim in this Section is to recall the definition of spin Besov spaces in terms of approximation
properties. These definitions and their characterizations were provided by [2], [22], to which
we refer for further details and discussion. Define first,

Gk (Fs, π) = inf
Hs∈Hk

‖Fs −Hs‖Lπ
s (S

2) ,

i.e. the approximation error when replacing Fs by an element in Hk;s . Then the Besov spin
space Brpq;s is defined as the space of functions such that Fs ∈ Lps (S

2) and

(
∞∑

k=0

1

k
(krGk (Fs, π))

q

)
<∞ .

13



As usual, the last condition can be easily shown to be equivalent to
(

∞∑

j=0

(
BjrGBj (Fs, π)

)q
)
<∞ .

Moreover, Fs ∈ Brπq;s if and only if, for every j = 1, 2, . . .

(
∑

k

(∣∣βjk;s
∣∣ ∥∥ψjk;s

∥∥
Lπ
s (S

2)

)π
) 1

π

= εjB
−jr

where εj ∈ ℓq and B > 1. By defining the Besov norm as follows,

‖Fs‖Br
πq;s

=




‖Fs‖Lπ

s (S
2) +

[∑
j B

jq(r+ 1
2
− 1

π )
{∑

k

∣∣βjk;s
∣∣π} q

π

] 1
q

if q <∞
‖Fs‖Lπ

s (S
2) + sup

j
Bj(r+ 1

2
− 1

π )
∥∥(βjk;s

)
k

∥∥
ℓπ if q = ∞

,

we obtain that, if max (0, 1/π − 1/q) < r and π, q > 1, then

Fs ∈ Brπq;s ⇔ ‖Fs‖Br
πq;s

<∞ .

Besov spaces are characterized by come convenient embeddings, which (as always in this
literature) will play a crucial role in our proofs to follow. More precisely, we have that, for
π1 ≤ π2, q1 ≤ q2

Brπq1;s ⊂ Brπq2;s , Brπ2q;s ⊂ Brπ1q;s , Brπ1q;s ⊂ B
r− 1

π1
+ 1

π2
π2q;s . (7)

The proof of (7) is exactly the same as for the scalar case, see [5]. In particular

Brπ1q;s
⊂ B

r− 1
π1

∞∞;s =⇒ sup
k

∣∣βjk;s
∣∣ ∥∥ψjk

∥∥
L∞
s (S2)

= εjB
−j(r− 1

π1
)

⇒ B
j(r+1− 1

π1
)
sup
k

∣∣βjk;s
∣∣ <∞

⇒ Bj sup
k

∣∣βjk;s
∣∣ <∞ .

5 Nonparametric Regression on Spin Fiber Bundles

5.1 The Regression Model

We start by recalling the regression formula (1):

Yi;s = Fs (Xi) + εi;s .

14



Throughout this paper, we shall also assume that supx |Fs(x)| = M < ∞ . As discussed
in the Introduction, we envisage a situation where it is possible to collect data which can
be viewed as measurements on a spin fiber bundles, i.e. for instance the polarization of the
Cosmic Microwave Background (see [35],[61], [10], [20], [19]), or the Weak Gravitational Lens-
ing effect on the images of distant Galaxies (see [7]). To fix ideas, we focus on this second
example. As discussed for instance in [15], the gravitational shear effect may be loosely de-
scribed as gravity transforming into a more elliptical shape the image of galaxies. Of course
the measurement of this shear is subject to an experimental error, for instance because of
the unknown intrinsic ellipticity of the observed galaxy. Likewise, the weak gravitational
lensing may produce an alignment in the inclination of nearby observations, but again this
could be brought in by random fluctuations. We refer to [7, ?] for much more detailed dis-
cussion on motivations and related challenges, which currently involve huge amount of physi-
cists; major satellite experiments are at the planning stage, such as Euclid, see for instance
http://hetdex.org/other projects/euclid.php. To model the above discussed framework, we
introduce random directions of observations {Xi ∈ S2} , which we take to be uniformly sam-
pled over the sky, and observational errors {εi;s}, i = 1, 2, ..., n; the latter are independent
and identically distributed spin s random variables, which we assume to be invariant in law
with respect to rotations in the tangent plane:

ε′i;s
d
= εi;se

isψ, for all ψ ∈ [0, 2π] , i = 1, 2, ..., n, (8)

d
= denoting equality in law. As in [6], (8) implies that

Re εi;s
d
= Im εi;s

d
= ε̃i . (9)

From (8), (9) we have immediately

E [εi;s] = E [Re εi;s + i Im εi;s] = 0 ,

V ar (εi;s) = E |εi;s|2 = 2Eε̃2i =: σ2
ε .

Moreover, we shall assume that {ε̃i} follows a sub-Gaussian distribution (ref.[9]), i.e. there
exists a number a ≥ 0 such that for all λ ∈ R the following inequality holds:

E
[
eλε̃i
]
≤ e

(
a2λ2

2

)

. (10)

We also define the sub-Gaussian standard of the random variable ε̃i as:

τ (ε̃i) = inf

{
a ≥ 0 : E

[
eλε̃i
]
≤ e

(
a2λ2

2

)

, λ ∈ R

}
<∞ .

15
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It is immediate to check ( see [9]) that:

τ (ε̃i) = sup
λ 6=0

[
2 log

(
E
[
eλε̃i
])

λ2

] 1
2

, E
[
eλX
]
≤ e

λ2τ2(ε̃i)
2 .

As well-known, a random variable is sub-Gaussian if and only if the moment generating
function is majorized by the moment generating function of a zero-mean Gaussian random
variable, whence the name sub-Gaussian. Indeed, the class of sub-Gaussian random variables
contains, apart from the Gaussian themselves, all bounded zero-mean random variables and,
more generally, all those random variables whose distribution tails decrease no slower than
the tails of the Gaussian. We recall the following, simple results, whose proofs are available
in [9]:

Lemma 2 Moment characterization for subGaussian random variables.
Let ε̃ be a subGaussian random variable such that E (ε̃) = 0. We have that E

(
(ε̃)2

)
≤ τ (ε̃)

and for all p > 0 E (|ε̃|p) <∞.

In view of Lemma (2), subGaussian random variables enjoy the same moment inequalities
and concentration properties as Gaussian or bounded ones, and hence allow the implemen-
tation of the main technical tools in the proofs of our asymptotic results to follow. In this
sense, they seem to provide a natural general framework for the analysis we must pursue.

5.2 The estimation procedure

The procedure we are going to investigate can be viewed as a form of needlet thresholding
in the spin fiber bundles case (we refer to [5] for a similar approach, in the case of density
estimation for standard scalar directional data). As discussed in the Introduction, we have now
two alternative forms of needlets construction for the spin case, i.e. the pure spin needlets
of [21] and the mixed spin needlets of [22]. Our approach could be implemented for both
techniques, and indeed the proofs would be nearly identical. For definiteness, we shall focus
on the mixed needlets constructions, which yields coefficients which are standard, complex-
valued variables. For brevity’s sake, however, we drop the subscript M. We start by defining,
as usual, an unbiased estimator for needlet coefficients. More precisely, we define

β̂jk;s :=
1

n

n∑

i=1

Yiψjk;s (Xi) , i = 1, 2, ..., n .

16



We have immediately:

E
(
β̂jk;s

)
=

1

n

n∑

i=1

E
[
ψjk;s (Xi)Fs (Xi) + ψjk;s (Xi) εi;s

]
=

=

∫

S2

ψjk;s (Xi)Fs (Xi) = βjk;s . (11)

Moreover

V ar
(
β̂jk;s

)
= V ar

(
1

n

n∑

i=1

ψjk;s (Xi)Fs(Xi) +
1

n

n∑

i=1

ψjk;s (Xi) εi;s

)
= (12)

=
1

n2

n∑

i=1

V ar
(
ψjk;s (Xi)Fs(Xi)

)
+

1

n2

n∑

i=1

V ar
(
ψjk;s (Xi) εi;s

)
.

Now
1

n2

n∑

i=1

V ar
(
ψjk;s (Xi) εi;s

)
=

1

n
σ2
ε

∥∥ψjk;s
∥∥2
L2
s(S

2)
=

1

n
σ2
ετ

2
j =:

1

n
σ2
1ε,j

where in the last equality we used the independence of the εi;s. Note that obviously σ
2
1ε,j ≤ σ2

ε.
Also

0 ≤ 1

n2

n∑

i=1

V ar
(
ψjk;s (Xi)Fs(Xi)

)
=

1

n

∫

S2

∣∣ψjk;s (x)Fs(x)
∣∣2 dx ≤ M2

n
,

and we define σ2
ε,j := σ2

1ε,j+
M2

n
. We then proceed with the (now classical) hard thresholding

procedure (see for instance [16], [33] and [12]). In particular, we fix the threshold as

κtn = κ

√
log n

n
, (13)

where κ is a real positive constant, whose value will be discussed later. Hence we define as
usual

β∗
jk;s = wjkβ̂jk;s , wjk = I{|β̂jk;s|>κtn} , (14)

where IA denotes as usual the indicator function of the set A. The thresholding estimator is
hence

F ∗
s (x) =

Jn∑

j=1

Nj∑

k=1

β∗
jk;sψjk;s (x) . (15)

In 15, Jn represents a cut-off frequency, which we shall fix at BJn =
√

n
logn

, whereas Nj is

the cardinality of the cubature point set at frequency j; it is known (see for instance [4]) that
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there exist positive constants c1, c2 such that c1B
2j ≤ Nj ≤ c2B

2j (written N j ≈ B2j). Our
main result is to show that thresholding estimates achieve ’nearly optimal’ (up to logarithmic
factors) rates with respect to general Lps (S

2) loss functions..

Theorem 3 Let Fs ∈ Brπq;s(G), the Besov ball such that ‖Fs‖Br
πq;s

≤ G < ∞, r − 2
π
> 0, and

consider F ∗
s defined by (15, 13, 14). For 1 ≤ p <∞, there exist κ > 0 such that we have

sup
Fs∈Br

πq;s

E ‖F ∗
s − Fs‖pLp

s
≤ Cp {log n}p

[
n

log n

]−α(r,π,p)
,

α(r, π, p) =

{ rp
2r+2

for π ≥ 2p
2r+2

(regular zone)
p(r−2( 1

π
− 1

p
))

2(r−2( 1
π
− 1

2
))

for π ≤ 2p
2r+2

(sparse zone)
.

Also, for p = ∞

sup
Fs∈Br

πq;s

E ‖F ∗
s − Fs‖L∞

s
≤ C∞

[
n

log n

]−α(r,π,∞)

, α(r, π,∞) =
(r − 2

π
)

2(r − 2( 1
π
− 1

2
))

.

Remark 4 The definitions of regular and sparse zones are classical, and so are the rates we
obtained, which indeed correspond (for instance) to those presented by [5]. For brevity’s sake,
we do not prove that these rates are indeed minimax (up to logarithmic terms), but it seems
easy to achieve this goal by application of classical arguments, as for instance presented by
[37]. It is trivial to note that for π = 2p

2r+2
= p

r+1
we have

(r − 2( 1
π
− 1

p
))

2(r − 2( 1
π
− 1

2
))

=
(r − 2( r+1

p
− 1

p
))

2(r − 2( r+1
p

− 1
2
))

=
r(p− 2)

2r(p− 2) + 2(p− 2)

=
r

2r + 2
,

and also

rp

2r + 2
≥

p(r − 2( 1
π
− 1

p
))

2(r − 2( 1
π
− 1

2
))

in the regular zone ,

rp

2r + 2
≤

p(r − 2( 1
π
− 1

p
))

2(r − 2( 1
π
− 1

2
))

in the sparse zone .

Of course α(r, π, p) < 1
2
, limr→∞ α(r, π, p) = 1

2
.

Remark 5 For s = 0, our results cover adaptive nonparametric regression for complex-
valued, scalar functions. Again, the rates correspond to the usual nearly minimax bounds.

The proof of Theorem 3 is provided in the Section to follow.
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6 Proofs

Our arguments will follow classical approaches in this area, as presented for instance by [37],
[5].

6.1 An auxiliary result

We shall need in the sequel some sharp bounds which are provided in the following result.
The arguments are close, for instance, to those for the inequality (65) on page 1088 of [37]
where the case of a scalar Gaussian noise is considered: see also Proposition 15 in [5].

Proposition 6 Let {εi;s} be such that (8) and (10) are fulfilled. Assume also that M :=

‖Fs‖∞ < ∞. For all γ > 0 and for all j such that Bj ≤
√
n/ logn, there exists κγ > 0 such

that for κ > κγ the following inequality holds:

P

(
1

n

∣∣∣∣∣

n∑

i=1

ψjk;sεi;s

∣∣∣∣∣ > κ

√
logn

n

)
≤ Cn−γ . (16)

where γ ≈ κ4/3. Moreover, for all p > 0 we have

E
[∣∣∣β̂jk;s − βjk;s

∣∣∣
p]

≤ Cpn
− p

2 (17)

E

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
p
]
≤ C∞(j + 1)p−1n−p/2. (18)

Remark 7 It is possible to obtain sharp analytic expressions for κ, Cp, C∞, for instance by
arguing as in Lemma 16 of [5].

Proof Note first that

β̂jk;s =
1

n

n∑

i=1

ψjk;s (Fs (Xi) + εi;s) (19)

βjk;s = E
(
β̂jk;s

)
=

1

n

n∑

i=1

E
(
ψjk;s (Xi)Fs (Xi)

)
, (20)

and

β̂jk;s − βjk;s =
1

n

n∑

i=1

{(
ψjk;sFs (Xi)

)
−E

(
ψjk;sFs (Xi)

)}
+

1

n

n∑

i=1

ψjk;sεi;s

=
1

n

n∑

i=1

Ψjk;s(Xi) +
1

n

n∑

i=1

ψjk;sεi;s .
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where
Ψjk;s(Xi) := ψjk;s(Xi)Fs (Xi)− E

(
ψjk;s(Xi)Fs (Xi)

)
.

Consider Pβ (x) := P

(∣∣∣β̂jk;s − βjk;s

∣∣∣ > x
)
:

Pβ (x) ≤ PF (x) + Pε (x) (21)

where:

PF (x) = P

(
1

n

∣∣∣∣∣

n∑

i=1

Ψjk;s(Xi)

∣∣∣∣∣ >
1

2
x

)
,

Pε (x) = P

(
1

n

∣∣∣∣∣

n∑

i=1

ψjk;sεi;s

∣∣∣∣∣ >
1

2
x

)
.

As before, we can split these sums into a real and imaginary part, to which we can apply
separately the following procedures for both real and imaginary part in PF (x) and Pε (x),
that give the same results.
As far as PF (x) is concerned, we use the fact that Ψjk;s(Xi) are i.i.d random variables such
that for each of them:

sup |Ψjk;s(Xi)| ≤ 2cMBj

E
(
|Ψjk;s(Xi)|2

)
≤ E

(∣∣ψjk;s (Xi)Fs (Xi)
∣∣2
)
≤M2

∥∥ψjk;s
∥∥2
L2
s(S

2)
≤M2 .

We therefore apply Bernstein inequality: For a sequence of i.i.d. random variables {Xi}ni=1

such that E [Xi] = 0, |Xi| ≤M and E [X2
i ] = σ2, we have

P

(
1

n

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > x

)
≤ 2 exp

(
− nx2

2
(
σ2 + 1

3
Mx

)
)

, (22)

see for instance [33]. for a proof.
By applying Bernstein, we obtain:

PF (x) ≤ 4 exp

(
− nx

2

4

2
(
M2 + 1

3
cMBjx

)
)

, (23)

where the value 4 takes on count both real and imaginary parts.
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Fixing x = κtn, the following result is obtained:

PF (κtn) ≤ 4 exp


−

n
(
(k/2)

√
log n/n

)2

2
3

(
3M2 + cMBjk

√
logn
n

)


 ,

and by choosing j such that Bj ≤
√

n
logn

PF (κtn) ≤ 4 exp

(
− 3k2 logn

8M (3M + ck)

)
= 2n

− 3k2

8M(3M+ck) . (24)

As far as Pε (x) is concerned, consider that conditionally on (X ′
1, . . . , X

′
n),

1
n

∑
i ψjk;s(X

′
i)εi;s

is a complex-valued subGaussian variable with mean 0 and variance 1
n2

∑n
i=1

∣∣ψjk;s (Xi)
∣∣2 σ2

ε.
Therefore, by using the Markov’s inequality, we obtain:

Pε (x) ≤ E

(
exp

(
− −nx2

σ2
ε
8
n

∑n
i=1

∣∣ψjk;s
∣∣2

)∣∣∣∣∣X
′
1, . . . , X

′
n

)

Observe that
∣∣ψjk;s (X ′

i)
∣∣2 are i.i.d. variables bounded by CB2j , such that E

(∣∣ψjk;s (X ′
i)
∣∣2
)
=

∫
S2

∣∣ψjk;s
∣∣2 dx =

∥∥ψjk;s
∥∥2
L2
s(S

2)
≤ 1. Therefore we split the denominator into 2 terms, using

I{∣∣∣∣
1
n

∑n
i=1|ψjk;s(X′

i)|2−‖ψjk;s‖2

L2
s(S2)

∣∣∣∣<α
} and I{∣∣∣∣

1
n

∑n
i=1|ψjk;s(X′

i)|2−‖ψjk;s‖2

L2
s(S2)

∣∣∣∣≥α
} , α > 0 ,

Pε (x) ≤ exp

(
− nx2

8σ2
ε (1 + α)

)
+ P

(
1

n

∣∣∣∣∣

n∑

i=1

∣∣ψjk;s
∣∣2 −

∥∥ψjk;s
∥∥2
2

∣∣∣∣∣ > α

)
.

Now, by fixing x = κtn, we obtain the following result:

Pε (κtn) ≤ exp

(
− k2 log n

8σ2
ε (α + 1)

)
+ P

(∣∣∣∣∣
1

n

n∑

i=1

∣∣ψjk;s (X ′
i)
∣∣ 2−

∥∥ψjk;s
∥∥ 2
L2
s(S

2)

∣∣∣∣∣ ≥ α

)

Now, we use on the second term the Hoeffding’s inequality:

P

(∣∣∣∣∣
1

n

n∑

i=1

∣∣ψjk;s (X ′
i)
∣∣2−

∥∥ψjk;s
∥∥2
L2
s(S

2)

∣∣∣∣∣ ≥ α

)
≤ 2 exp

{
−2n2α2

ncB2j

}
.
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Again, because B2j ≤ n
logn

, we obtain:

Pε (κtn) ≤ 2

{
exp

(
−2α2 log n

c

)
+ exp

(
− k2 log n

8σ2
ε (α + 1)

)}
(25)

= 2

{
n− 2α2

c + n
− k2

8σ2
ε(α+1)

}
.

We fix α ∼ k
2
3 in order to obtain the same order of magnitude between the two terms, and

by using 24 and 25 finally we obtain:

Pε,PF ≤ C · n−ck4/3 .

In order to prove 17, we use again 19, to obtain:

E
[∣∣∣β̂jk;s − βjk;s

∣∣∣
p]

≤ 2p−1

(
E

[∣∣∣∣∣
1

n

n∑

i=1

(
ψjk;sFs (Xi)

)
−E

(
ψjk;sFs (Xi)

)
∣∣∣∣∣

p]
+ E

[∣∣∣∣∣
1

n

n∑

i=1

ψjk;sεi;s

∣∣∣∣∣

p])

= 2p−1 (EF + Eε) .

We need to split again both EF and Eε into real and imaginary parts. Note that

EF = E

[∣∣∣∣∣
1

n

n∑

i=1

ReΨjk;s(Xi) + ImΨjk;s(Xi)

∣∣∣∣∣

p]

≤ 2p−1

(
E

(∣∣∣∣∣
1

n

n∑

i=1

ReΨjk;s(Xi)

∣∣∣∣∣

p)
+ E

(∣∣∣∣∣
1

n

n∑

i=1

ImΨjk;s(Xi)

∣∣∣∣∣

p))

≤ 2p−1
(
E1
F + E2

F

)

and

Eε = E

[∣∣∣∣∣
1

n

n∑

i=1

(
Re
{
ψjk;s (Xi) εi;s

}
+ Im

{
ψjk;s (Xi) εi;s

})
∣∣∣∣∣

p]

≤ 2p−1

(
E

(∣∣∣∣∣
1

n

n∑

i=1

Re
{
ψjk;s (Xi) εi;s

}
∣∣∣∣∣

p)
+ E

(∣∣∣∣∣
1

n

n∑

i=1

Im
{
ψjk;s (Xi) εi;s

}
∣∣∣∣∣

p))
(26)

≤ 2p−1
(
E1
ε + E2

ε

)
.
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For 0 < p ≤ 2, we apply the classical convexity inequality, which states that for 0 < p ≤ 2 a
for independent random variables Zi such that E (Zi) = 0 and E (|Zi|p) <∞:

E

(∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣

p)
≤


E



∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣

2





p
2

.

As noted for instance in [33], in the case 2 < p < ∞, we obtain a very similar result by
applying the Rosenthal inequality, i.e.:

Let {Zi}ni=1 be independent random variable such that E (Zi) = 0 and for p ≥ 2,
E (|Zi|p) <∞. Then there exists Cp such that:

E

(∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣

p)
≤ Cp




n∑

i=1

E (|Zi|p) +
(

n∑

i=1

E
(
Z2
i

)
) p

2


 . (27)

A proof of proposition (27) can be found for instance in [33]. We apply (27) to each term in
(26) to obtain:

E1
F ≤ Cp


E (|ReΨjk;s(Xi)|p)

np−1
+

(
E
(
|ReΨjk;s(Xi)|2

))p
2

n
p
2


 , (28)

E2
F ≤ Cp


E (|ImΨjk;s(Xi)|p)

np−1
+

(
E
(
|ImΨjk;s(Xi)|2

)) p
2

n
p
2


 , (29)

E1
ε ≤ Cp



E
(∣∣Re

(
ψjk;s (Xi) εi;s

)∣∣p
)

np−1
+

(
E
(∣∣Re

(
ψjk;s (Xi) εi;s

)∣∣2
))p

2

n
p
2


 , (30)

E2
ε ≤ Cp



E
(∣∣Im

(
ψjk;s (Xi) εi;s

)∣∣p
)

np−1
+

(
E
(∣∣Im

(
ψjk;s (Xi) εi;s

)∣∣2
)) p

2

n
p
2


 . (31)

Recalling that Bj ≤
√

n
logn

≤ √
n, we obtain:

E (Re |Ψjk;s(Xi)|p) = E (Im |Ψjk;s(Xi)|p) ≤

≤ E
(∣∣ψjk;s (Xi)Fs (Xi)

∣∣p
)
≤
∫

S2

∣∣ψjk;s (Xi)Fs (Xi)
∣∣p dx

≤ cMpBj(p−2) ≤ cMpn− p−2
2 .
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As far as the noise-related terms, we obtain:

E
(∣∣Re

(
ψjk;s (Xi) εi;s

)∣∣p
)
= E

(∣∣Im
(
ψjk;s (Xi) εi;s

)∣∣p
)

≤ E (|εi;s|p) cBj(p−2) ≤ cn− p−2
2 .

Then, by substituting the last inequalities in 28, 29, 30 and 31, we obtain:

n
p
2
−1

np−1
= n− p

2

Now we study the case p = ∞: in order to prove (18), we majorize:

E

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
]
≤
∫

R+

xp−1
P

(
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
p

> x

)
dx . (32)

Recalling the procedure used in the proof of 16, for Bj ≤ √
n, (23) becomes:

PF (x) ≤ 4

(
exp

(
− nx2

16M2

)
+ exp

(
−3

√
nx

16cM

))
, (33)

while, in a similar way, we split the first term on 25 as:

exp

(
− nx2

8σ2
ε (1 + α)

)
≤ exp

(
− nx2

16σ2
ε

)
+ exp

(
− nx2

16σ2
εα

)
= P

∗
ε (x) + P

1
ε,α . (34)

By applying on the last term of 25 the Hoeffding inequality and for Bj ≤ √
n, we obtain:

P

(
1

n

∣∣∣∣∣

n∑

i=1

∣∣ψjk;s
∣∣2 −

∥∥ψjk;s
∥∥2
2

∣∣∣∣∣ > α

)
≤ exp

(
−2n2α2

ncB2j

)

≤ exp

(
−2α2

c

)
= P

2
ε,α .

We choose α =
{

c1/3

321/3σ
2/3
ε

· n1/3x2/3
}
, to obtain

P
1
ε,α + P

2
ε,α ≤ C exp

(
− n2/3x4/3

27/3σ
4/3
ε c1/3

)
, (35)

and in view of (21), (33), (35), (34)

Pβ (x) ≤ C

(
exp

(
− nx2

16σ2
ε

)
+ exp

(
− nx2

16M2

)
+ exp

(
−2

√
nx

16cM

)
+ exp

(
− n2/3x4/3

27/3σ
4/3
ε c1/3

))
.
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Now we fix a parameter a = max
(
4
√
2σε, 4

√
2M, 32

3
cM, 211/4σεc

1/4
)
. Write (32) as:

E

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
p
]
≤
∫

0≤x≤ aj√
n

xp−1dx+

+2c

∫

x> aj√
n

Cxp−1Bj


exp

(
nx2

16σ2
ε

)
+ exp

(
− nx2

16M2

)
+ exp

(
−2

√
nx

16cM

)
+ exp


−

(
nx2

27σ2
εc

1
2

) 2
3






= E1
∞ + E2

∞ + E3
∞ . (36)

We observe that for each term depending on exp (−nx2/C), where C = 4
√
2σε, 4

√
2M , and

for x > aj/
√
n, we have:

Bj exp

(
−nx

2

C

)
≤ exp

(
−nx

2

2C
− nx2

2C
+ j

)
≤ exp

(
−nx

2

2C

)
.

Similarly, we have for x > aj/
√
n:

Bj exp

(
−2

√
nx

16cM

)
≤ exp

(
−2

√
nx

32cM

)
,

and finally, again for x > aj/
√
n

Bj exp

(
− n2/3x4/3

27/3σ
4/3
ε

)
≤ exp

(
−n

2/3x4/3

2103σ
4/3
ε

)
.

Likewise, the integral E1
∞ is simply majorized by:

E1
∞ ≤ C

1

p

(
j√
n

)p
≤ Cpj

pn−p/2 . (37)

As far as E2
∞ is concerned, by using a change of variable u =

√
nx we obtain:

E2
∞ ≤ 2C

1

n−p/2

∫

u≥aj

up−1 exp

(
− u4/3

210/3σ
4/3
ε c1/3

)
du ≤ Cpn

−p/2. (38)

A similar procedure is applied to E3
∞ by using the same change of variable u =

√
nx to obtain:

E3
∞ ≤ C ′

pn
−p/2 . (39)

Finally by substituting (37), (38) and (39) in (36) we obtain the thesis. �
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6.2 Proof of Theorem 3

As customary in this literature, the proof can be divided into different cases, as follows.

• Regular zone, p <∞

We start as usual from

E ‖F ∗
s − Fs‖pLp

s
= E

∥∥∥∥∥
∑

j≤Jn

∑

k

wjkβ̂jk;sψjk;s −
∑

j

∑

k

βjk;sψjk;s

∥∥∥∥∥

p

Lp
s(S2)

= E

∥∥∥∥∥
∑

j≤Jn

∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s +
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥

p

Lp
s(S2)

≤ E

∥∥∥∥∥
∑

j≤Jn

∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

+

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥

p

Lp
s(S2)

= : I + II .

For p ≤ π, we have Brπq;s ⊂ Brpq;s, whence we can always take π = p in this case; hence we

focus on p ≥ π. Here we have the embedding Brπq;s ⊂ Br−
2
π
+ 2

p
pq;s , whence

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥
Lp
s(S2)

= O
(
B−2j( r

2
− 1

π
+ 1

p
)
)
= O

({
n

logn

}−( r
2
− 1

π
+ 1

p
)
)

,

and because in the regular zone

r ≥ 2

π
,

r

2r + 2
=

rp

2(r + 1)p
≤ rπ

2p
,

we obtain

(
r

2
− 1

π
+

1

p
)− r

2r + 2
≥ (

r

2
− 1

π
+

1

p
)− rπ

2p
= (

1

π
− 1

p
)(
rπ

2
− 1) > 0 .

Hence the bias term is fixed. For the variance term we have

I ≤ Jp−1
n

∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)
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Now we split I in four zones; more precisely, we shall label A (respectively U) where the
estimated coefficients is above (resp. under) the threshold κtn, and a (respectively u) the
regions where the deterministic coefficients are above or under a new threshold, which is κ

2
tn

in A and 2κtn in U. We hence obtain

∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

=
∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

I{|β̂jk;s|≥κtn}I{|βjk;s|≥κtn/2}

+
∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

I{|β̂jk;s|≥κtn}I{|βjk;s|≤κtn/2}

+
∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

I{|β̂jk;s|<κtn}I{|βjk;s|≥2κtn}

+
∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

I{|β̂jk;s|<κtn}I{|βjk;s|≤2κtn} .

≤ C

{
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

E
[∣∣∣β̂jk;s − βjk;s

∣∣∣
p

I{|β̂jk;s|≥κtn}I{|βjk;s|≥κtn/2}
]

+
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

E
[∣∣∣β̂jk;s − βjk;s

∣∣∣
p

I{|β̂jk;s|≥κtn}I{|βjk;s|≤κtn/2}
]

+
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

∣∣βjk;s
∣∣pE

[
I{|β̂jk;s|<κtn}I{|βjk;s|≥2κtn}

]

+
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

∣∣βjk;s
∣∣pE

[
I{|β̂jk;s|<κtn}I{|βjk;s|≤2κtn}

]}

= Aa+ Au+ Ua + Uu .

This idea is the same as in [5], where the regions are labelled instead Bb,Bs, Sb, Ss; we
preferred to avoid B and b which have a different use in the present work. Heuristically, the

cross/terms Au, Ua are easier to bound, as we can exploit quick decay of Pr
{∣∣∣β̂jk;s − βjk;s

∣∣∣ > 1
2
tn

}
;

for Aa, Uu the crucial bounds will be derived by the tail behaviour in the Besov balls Brpq;s(G).
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Note firstly that

Aa ≤ C
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

E
∣∣∣β̂jk;s − βjk;s

∣∣∣
p

I{|βjk;s|≥κtn/2}

≤ C
∑

j≤Jn

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2}E

∣∣∣β̂jk;s − βjk;s

∣∣∣
p

;

now from 17 and 5 we know that

E
∣∣∣β̂jk;s − βjk;s

∣∣∣
p

≤ Cpn
−p/2 ,

∑

k

Bj(p−2) = O(Bjp) .

Write

∑

j≤Jn

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2}E

∣∣∣β̂jk;s − βjk;s

∣∣∣
p

≤ C

{
n−p/2

∑

j≤J1n

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2} + n−p/2

∑

j>J1n

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2}

}

≤ C

{
n−p/2BpJ1n + n−p/2

∑

j>J1n

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2}

}
.

Fix

BJ1n = κ′
{

n

log n

} 1
2(r+1)

,

and note that we have

∑

j>J1n

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2} ≤

∑

j>J1n

∑

k

∣∣βjk;s
∣∣pBj(p−2) {κtn/2}−p

≤
{

n

log n

}p/2 ∑

j>J1n

{
∑

k

∣∣βjk;s
∣∣p ∥∥ψjk;s

∥∥p
Lp
s(S2)

}
,

where {
∑

k

∣∣βjk;s
∣∣p ∥∥ψjk;s

∥∥p
Lp
s(S2)

}
≤ CB−prj,
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because by assumption Fs ∈ Brpq;s .Hence
{

n

logn

}p/2 ∑

j>J1n

{
∑

k

∣∣βjk;s
∣∣p ∥∥ψjk;s

∥∥p
Lp
s(S2)

}

≤
{

n

logn

}p/2
B−prJ1n ≤ C

{
n

log n

}p/2{
n

log n

}− pr
2(r+1)

≤ C

{
n

log n

} p(r+1)−pr
2(r+1)

≤ C

{
n

logn

} p
2(r+1)

≤ CBpJ1n ,

and

C
∑

j≤Jn

∑

k

Bj(p−2)
I{|βjk;s|≥κtn/2}E

∣∣∣β̂jk;s − βjk;s

∣∣∣
p

≤ Cn−p/2BpJ1n ≤ C

{
n

log n

} p
2(r+1)

n−p/2 ≤ C

{
n

logn

} −pr
2(r+1)

.

Hence the term Aa is fixed. For the term Uu, it suffices to observe that

Uu ≤ C
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

∣∣βjk;s
∣∣p I{|βjk;s|≤2κtn}

≤ C

{
∑

j≤J1n

∑

k

Bj(p−2) |2κtn|p+
∑

j>J1n

∑

k

Bj(p−2)
∣∣βjk;s

∣∣p
}

≤ C

{
BpJ1n

{
n

log n

}−p/2

+B−prJ1n

}

≤ C

{[
n

log n

] p
2(r+1)

[
n

logn

]− p
2

+

[
n

logn

]− pr
2(r+1)

}
= O

([
n

logn

]− pr
2(r+1)

)
.

Now note that

Au ≤ C
∑

j≤Jn

∑

k

Bj(p−2)E
[∣∣∣β̂jk;s − βjk;s

∣∣∣
p

I{|β̂jk;s−βjk;s|≥κtn/2}
]

≤
∑

j≤Jn

∑

k

Bj(p−2)

{
E

[∣∣∣β̂jk;s − βjk;s

∣∣∣
2p
]}1/2 {

P

[∣∣∣β̂jk;s − βjk;s

∣∣∣ ≥ κtn/2
]}1/2

and using (17)

Au ≤ Cn−p/2BpJnn−γ/2 ≤ Cn−p/2

[
n

log n

]p/2
n−γ/2 = C (log n)−

p
2 n−γ/2.
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Finally

Ua ≤
∑

j≤Jn

∑

k

∥∥ψjk;s
∥∥p
Lp
s(S2)

∣∣βjk;s
∣∣pE

[
I{|β̂jk;s−βjk;s|>κtn}

]
≤ Cn−γ ‖Fs‖pLp

s(S2)
.

Because obviously n−γ ≤ n−γ/2 we have to choose γ such that:

n−γ/2 ≤ n− pr
2r+2 −→ γ ≥ pr

r + 1
.

We can hence take κ ∼ γ3/4, which yields

κ ≥ C

(
pr

r + 1

) 3
4

.

• The case p = ∞

Assume first that Fs ∈ Br∞,∞;s. Then

E ‖F ∗
s − Fs‖L∞

s (S2) ≤ E

∥∥∥∥∥
∑

j≤Jn

∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥
L∞
s (S2)

+

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥
L∞
s (S2)

= I + II .

For II, it is sufficient to note that

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥
L∞
s (S2)

≤
∑

j>Jn

∥∥∥∥∥
∑

k

βjk;sψjk;s

∥∥∥∥∥
L∞
s (S2)

= O
(
B−rJn

)

= O

([
n

logn

]−r/2)
= O

([
n

logn

]−r/2(r+1)
)

.

On the other hand,

E

∥∥∥∥∥
∑

j≤Jn

∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥
L∞
s (S2)

≤
∑

j≤Jn

E

∥∥∥∥∥
∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥
L∞
s (S2)

≤ C
∑

j≤Jn

BjE

[
sup
k

∣∣∣wjkβ̂jk;s − βjk;s

∣∣∣
]
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≤ C
∑

j≤Jn

BjE

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
]
I{|βjk;s|≥κtn/2}

+C
∑

j≤Jn

BjE

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
]
I{|β̂jk;s−βjk;s|≥κtn/2}

+C
∑

j≤Jn

Bj sup
k

∣∣βjk;s
∣∣E
[
I{|β̂jk;s−βjk;s|>κtn}

]

+C
∑

j≤Jn

Bj sup
k

∣∣βjk;s
∣∣ I{|βjk;s|≤2κtn}

= Aa + Au+ Ua + Uu .

Now as before, we note that it is possible to choose

J1n : BJ1n ∼ κ′
{

n

log n

} 1
2(r+1)

and for j > J1n , I{|βjk;s|≥κtn/2} ≡ 0 .

Hence, by (18)

Aa ≤ C
∑

j≤Jn

BjE

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
]
I{|βjk;s|≥κtn/2}

≤ C
∑

j≤J1n

BjE

[
sup
k

∣∣∣β̂jk;s − βjk;s

∣∣∣
]
≤ CJ1nn

− 1
2BJ1n

≤ CJ1n (log n)
−1/2

{
n

log n

}− r
2(r+1)

.

Also

∑

j≤Jn

Bj sup
k

∣∣βjk
∣∣ I{|βjk;s|≤2κtn} ≤ C

{
tnB

J1n +
∑

J1n≤j<∞

Bj sup
k

∣∣βjk
∣∣
}

≤ C

{
tnB

J1n +
∑

J1n≤j<∞

‖Fs‖L∞
s

}

≤ C
{
tnB

J1n +B−J1n
}
≤ C

{
n

log n

}− r
2(r+1)

.
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For the remaining two terms the arguments is the same, actually easier. For general π and q,
it is sufficient to note that Brπq;s ⊂ Br′∞,∞;s, r

′ = r − 2/π. By the previous argument

E ‖F ∗
s − Fs‖L∞

s
≤ CJn

{
n

logn

}− r′
2(r′+1)

= CJn

{
n

logn

}−
r−2/π

2(r−2(1/π−1/2)

.

Note that for π = p = ∞ the sparse and regular zone coincide; otherwise for p = ∞ we are
always in the sparse zone

• The sparse case

The argument is very much the same as before. Indeed we have Brπq;s ⊂ Br−2( 1
π
− 1

p
)

p,q;s ,

E ‖F ∗
s − Fs‖pLp

s
≤ E

∥∥∥∥∥
∑

j≤Jn

∑

k

(wjkβ̂jk;s − βjk;s)ψjk;s

∥∥∥∥∥

p

Lp
s(S2)

+

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥

p

Lp
s(S2)

,

∥∥∥∥∥
∑

j>Jn

∑

k

βjk;sψjk;s

∥∥∥∥∥

p

Lp
s(S2)

≤ CB−Jn(r−2( 1
π
− 1

p
)) ≤ CB−2Jn[(r−2( 1

π
− 1

p
))/2(r−2( 1

π
− 1

p
))]

≤
{

n

logn

}−[(r−2( 1
π
− 1

p
))/2(r−2( 1

π
− 1

p
))]

,

because r− 2
π
+1 ≥ 1, given that r− 2

π
≥ 0 by assumption. Hence the bias term has the correct

order. For the variance term, the trick is very much as above, and we omit some details. It is
possible to split the term to be bounded into four terms, after which the two ”cross terms”

Au and Ua are easy because they involve quantities like P

{
|β̂jk;s − βjk;s| > κtn

}
, which can

be made smaller than n−p/2 for all p > 0, given a suitable choice of κ. Fix J2n such that

BJ2n ≈
[

n

log n

] 1

2((r− 2
π )+1)

,

so that

[
n

log n

]π−p
2

BJ2n(p−π(r+1)) ≈
[

n

log n

]π−p
2
[

n

logn

] (p−π(r+1))

2((r− 2
π )+1)

≈
[

n

log n

] (π−p)((r− 2
π )+1)|+(p−π(r+1))

2((r− 2
π )+1)

.
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For the terms of the form Aa and Uu we have

Jp−1
n n−p/2

∑

j≤J1n

Bj(p−2)
∑

k

I{|βjk;s|≥κtn/2} + Jp−1
n

∑

j

Bj(p−2)
∑

k

|βjk;s|pI{|βjk;s|≤2κtn} ,

where to obtain the first summand we have exploited the embedding Brπq;s ⊂ Br−
2
π

∞,∞;s, whence
for j ≥ J2n one has I{|βjk;s|≥κtn/2} ≡ 0. Now

n−p/2
∑

j≤J2n

Bj(p−2)
∑

k

I{|βjk;s|≥κtn/2}

≤ Cn−p/2
∑

j≤J2n

Bj(p−2)
∑

k

|βjk;s|πt−πn

≤ Cn−p/2t−πn
∑

j≤J2n

Bj(p−π)
∑

k

Bj(π−2)|βjk;s|π

≤ Cn−p/2t−πn
∑

j≤J2n

Bj(p−π)B−rπj ≤ C

[
n

logn

]π−p
2

BJ2n(p−π(r+1)).

Likewise
∑

j≤J2n

Bj(p−2)
∑

k

|βjk;s|pI{|βjk;s|≤2κtn} ≤ C
∑

j≤J2n

Bj(p−2)
∑

k

|βjk;s|πtp−πn

≤ C

[
n

logn

]π−p
2 ∑

j≤J2n

Bj(p−π)
∑

k

Bj(π−2)|βjk;s|π

≤ C

[
n

logn

]π−p
2

BJ2n(p−π(r+1)).

Now

(π − p)((r − 2
π
) + 1) + (p− π(r + 1))

2((r − 2
π
) + 1)

=
(π(r + 1)− 2− pr + 2p

π
− p) + (p− π(r + 1))

2((r − 2
π
) + 1)

= − 2 + pr − 2p
π

2((r − 2
π
) + 1)

= −
p(r − 2( 1

π
− 1

p
))

2(r − 2( 1
π
− 1

2
))

,

that is, these terms have the right order. So we are only left with
∑

j≥J2n

Bj(p−2)
∑

k

|βjk;s|pI{|βjk;s|≤2κtn} .
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Consider

m =
p− 2

r − 2
π
+ 1

;

note that

p−m =
pr − 2p

π
+ p− p+ 2

r − 2
π
+ 1

=
pr − 2p

π
+ 2

r − 2
π
+ 1

> 0 ,

m− π =
p− 2

r − 2
π
+ 1

− π

=
p− π(r + 1)

r − 2
π
+ 1

> 0 ,

because p− π(r + 1) > 0 in the sparse zone. We have
∑

j≥J2n

Bj(p−2)
∑

k

|βjk;s|pI{|βjk;s|≤2κtn} ≤ C
∑

j≥J2n

Bj(p−2)
∑

k

|βjk;s|mtp−mn

≤ Ctp−mn

∑

j≥J2n

Bj(p−m)
∑

k

Bj(m−2)|βjk;s|m

≤ Ctp−mn

∑

j≥J2n

Bj(p−m)
∑

k

∥∥ψjk;s
∥∥m
Lm
s (S2)

|βjk;s|m.(40)

Now, because Brπq;s ⊂ Br−
2
π
+ 2

m
m,q;s ,
∑

k

∥∥ψjk;s
∥∥m
Lm
s (S2)

|βjk;s|m ≤ CB−mj(r− 2
π
+ 2

m
),

hence (40) is bounded by

Ctp−mn

∑

J2n≤j≤J

Bj(p−m−2)B−j(r− 2
π
+ 2

m
)m ≤ Ctp−mn

∑

J2n≤j≤J

Bj[(p−m−2)−(r− 2
π
+ 2

m
)m].

Observe that

(p−m)− (r − 2

π
+

2

m
)m =

pr − 2p
π
+ 2

r − 2
π
+ 1

− (r − 2

π
)m− 2

=
pr − 2p

π
+ 2

r − 2
π
+ 1

− (r − 2

π
)

p− 2

r − 2
π
+ 1

− 2

=
2r + 2(1− 2

π
)

r − 2
π
+ 1

− 2 = 0 ,
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hence

∑

J2n≤j≤J

Bj(p−2)
∑

k

|βjk;s|pI{|βjk;s|≤2κtn} ≤ CJnt
p−m
n ≤ C log n

[
n

log n

]− p(r−2( 1
π− 1

p ))

2(r−2( 1
π− 1

2 ))

.

Thus the proof is completed. �
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