
ar
X

iv
:1

00
9.

47
24

v1
  [

m
at

h.
A

G
] 

 2
3 

Se
p 

20
10

SIMPLE MODULES OF CLASSICAL LINEAR GROUPS

WITH NORMAL CLOSURES OF MAXIMAL TORUS ORBITS

K. KUYUMZHIYAN

Abstract. Let T be a maximal torus in a classical linear group G. In this paper we find
all simple rational G-modules V such that for each vector v ∈ V the closure of its T -orbit is
a normal affine variety. For all other G-modules we present a T -orbit with the non-normal
closure. We use a combinatorial criterion of normality formulated in terms of the set of
weights of a simple G-module. This work is a continuation of [4], where the same problem
was solved in the case G = SL(n).

Introduction

Let G be a connected semisimple algebraic group over an algebraically closed field k of
characteristic zero. Let T ⊆ G be a fixed maximal torus. Consider a finite-dimensional
rational G-module V . Let us check the following property of the module V : whether for each
vector v ∈ V the closure of its T -orbit Tv is a normal (affine) algebraic variety.

Earlier this property was checked by J. Morand [5] in the case when G is a simple group and
V is its adjoint module; this problem for G = SL(n) was also considered in [6, Ex. 3.7] and
[7]. In her previous paper [4] the author checks this property for all simple SL(n)-modules.
For completeness this result is included in the table below.

The aim of this paper is to investigate this property for the special orthogonal group SO(n),
the spinor group Spin(n), and the symplectic group Sp(2n) for all their simple modules. Recall
that a simple G-module is uniquely defined by its highest weight λ. Any dominant weight
a1π1 + . . .+ arπr can play the role of λ, where π1, . . . , πr stand for the fundamental weights,
and a1, . . . , ar are nonnegative integers. We enumerate the fundamental weights as in [8,
Section 4].

Theorem 1. The modules below, together with their duals, form the list of all simple modules
of classical groups where all maximal torus orbits’ closures are normal:

Group Highest weight Checked in
SL(n), n > 2 π1 [4]
SL(n), n > 2 π1 + πn−1 [4]

SL(2) 3π1 [4]
SL(2) 4π1 [4]
SL(3) 2π1 [4]
SL(4) π2 [4]
SL(5) π2 [4]
SL(6) π2 [4]
SL(6) π3 [4]

SO(2n+ 1), n > 2 π1 Case 1

SO(2n), n > 4 π1 Case 6
SO(8) π2 Case 7
Spin(7) π3 Case 3
Spin(8) π3 Case 8
Spin(9) π4 Case 3
Spin(10) π4 Case 9
Spin(12) π5 Case 10

Sp(2n), n > 2 π1 Cases 3 and 4
Sp(4) 2π1 Case 2
Sp(6) π2 Case 5
Sp(8) π2 Case 5

Key words and phrases. Toric variety, normality, simple module, classical root system, weight
decomposition.

This research benefited from the support of the «EADS Foundation Chair in Mathematics», RFBR grant
09-01-00648a, and Russian-French Poncelet Laboratory (UMI 2615 of CNRS).

1

http://arxiv.org/abs/1009.4724v1


2 K. KUYUMZHIYAN

The property of normality for the closure of a T -orbit in a module has a well-known
combinatorial interpretation. Let v1, . . . , vr be vectors of a rational vector space. For any set
A of rational numbers we denote by A(v1, . . . , vr) the set of all linear combinations of vectors
v1, . . . , vr with coefficients in A. The set {v1, . . . , vr} is called saturated if

Z>0(v1, v2, . . . , vr) = Z(v1, v2, . . . , vr) ∩Q>0(v1, v2, . . . , vr).

For a simple G-module V (λ) with the highest weight λ we denote by M(λ) the set of all
its weights with respect to the maximal torus T . Now being normal for the closures of all
T -orbits in the module V (λ) is equivalent to the fact that all subsets in M(λ) are saturated.

For every set of weights M(λ) from Theorem 1 one needs to check the saturation property
for all of its subsets. In the most difficult cases we use properties of unimodular sets of
vectors and their generalisations. In the cases which do not appear in Theorem 1 it suffices
to construct one non-saturated subset. We can confine ourselves to those sets of weights
which are minimal with respect to inclusion and which do not appear in Theorem 1. In each
minimal case a nonsaturated subset is constructed explicitly.

The author is grateful to her scientific supervisor I.V. Arzhantsev for the formulation of the
problem and fruitful discussions. Thanks are also due to I.I. Bogdanov for useful comments,
to R.A. Devyatov for the computer-based check of the most difficult cases, and to A.Yu.
Novoseltsev for important remarks.

1. Preliminaries

1.1. Weight decomposition. Let T be an algebraic torus and let Λ = Λ(T ) be the lattice
of its T -characters. For every rational T -module V we have the weight decomposition

V =
⊕

µ∈Λ

Vµ, where Vµ = {v ∈ V | tv = µ(t)v}.

Denote by M(V ) the collection of weights of the module V , i.e. M(V ) = {µ ∈ Λ | Vµ 6= 0}.
For every nonzero vector v we have its weight decomposition v = vµ1

+ · · ·+ vµs
, vµi

∈ Vµi
,

vµi
6= 0. We consider weights µ ∈ Λ as points of the rational vector space ΛQ := Λ⊗Z Q.

Recall that an irreducible affine algebraic variety X is called normal if its algebra of regular
functions k[X ] is integrally closed in its field of fractions. The following statement is a well-
known combinatorial criterion of normality of a T -orbit closure in a T -module, see [3, I, §1,
Lemma 1].

Proposition 1. Let V be a finite dimensional rational T -module and v = vµ1
+ · · ·+ vµs

be
the weight decomposition of a vector v ∈ V . The closure Tv of the T -orbit of v is normal if
and only if the set of characters {µ1, . . . , µs} is saturated.

A finite subset M of a rational vector space Qn is called hereditary normal if all its subsets
are saturated.

Corollary 1. Let V be a finite dimensional rational T -module. The closures of all T -orbits
in the module V are normal if and only if the set M(V ) is hereditary normal.

Notice that for the dual module V ∗ one has

M(V ∗) = −M(V ).

This means that the property of hereditary normality for the set M(V ) is equivalent to the
same property for the set M(V ∗).

Let G be a connected simply connected semisimple algebraic group, B be a Borel sub-
group in G, and T ⊂ B be the maximal torus. Denote by Φ the root system of the Lie
algebra Lie(G) associated with the maximal torus T . Let Φ+ be the set of positive roots, and
∆ = {α1, . . . , αr} be simple roots in Φ+ corresponding to the Borel subgroup B. Denote by πi

the fundamental weight corresponding to the simple root αi. It is well-known that the weights
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π1, . . . , πr form a basis of the character lattice Λ(T ) of torus T . The semigroup generated by
fundamental weights coincides with the semigroup of dominant weights Λ+. The subgroup
of Λ generated by the root system Φ is called the root lattice, we denote it by Ξ. Then Ξ is
the sublattice of Λ of finite index, and α1, . . . , αr form a basis of Ξ.

Let V (λ) be a simple G-module with the highest weight λ ∈ Λ+. Recall the following
description of the set of T -weights of the module V (λ). Let W be the Weyl group of the
root system Φ. Then W can be realized as a finite group of linear transformations of the
vector space ΛQ generated by reflections. The weight polytope P (λ) of the module V (λ) is
the convex hull conv{gλ | g ∈ W} of the W -orbit of the point λ in ΛQ. Then

M(λ) = (λ+ Ξ) ∩ P (λ),

see [2, Theorem 14.18]. There is a partial order on the vector space ΛQ: λ � µ if and only if
λ− µ is a linear combination of simple roots with nonnegative integer coefficients.

Lemma 1. Let λ, λ′ ∈ Λ+. Suppose that λ � λ′, then M(λ) ⊇ M(λ′).

Proof. Use the criterion from [1, Exercice 1 to Section VIII, §7]: the weight λ′ ∈ λ+Ξ belongs
to M(λ) if and only if for all w ∈ W the weight λ−wλ′ is dominant. First, using this criterion,
notice that under our assumptions λ′ belongs to M(λ). Indeed, for w = e the weight λ− λ′

belongs to Λ+ due to the assumption, and for w 6= e it is known that wλ′ = λ′ − µ, where µ
is a sum of positive roots. Hence λ − wλ′ = λ − λ′ + µ ∈ Λ+ as the sum of two dominant
weights. It means that λ′ ∈ M(λ), and all points of the form wλ′, where w ∈ W , belong
to M(λ). Using convexity, we obtain that M(λ′) ⊆ M(λ). �

Corollary 2. Take λ′ ∈ Λ+ and assume that M(λ′) is not hereditary normal. Then for all
λ ∈ Λ+ such that λ � λ′ the set M(λ) is not hereditary normal.

1.2. Unimodular sets. We need some properties of unimodular sets. The proof of the
following lemma can be found in [5].

Lemma 2. Let M be a finite set of vectors in Qn.

(i) If M is linearly independent, then M is saturated.
(ii) If M is not saturated and contains both vectors v and −v, then either M\{v} or

M\{−v} is not saturated.
(iii) Let v ∈ Q>0(M). Then there exists a linearly independent subset M ′ ⊆ M such that

v ∈ Q>0(M
′).

We often say "points" instead of "elements of M".
We refer to a nonsaturated subset as an NSS. By an extended nonsaturated subset we mean

a nonsaturated subset {v1, . . . , vr} augmented by a vector v0 such that

(i) v0 ∈ (Z(v1, v2, . . . , vr) ∩Q>0(v1, v2, . . . , vr)) \ Z>0(v1, v2, . . . , vr),
(ii) there exists a Q>0-representation

v0 = q1vi1 + . . .+ qsvis , vij ∈ {v1, v2, . . . , vr}
with linearly independent vectors vi1, . . . , vis and coefficients qi ∈ [0, 1).

These subsets will be named ENSSes and will be denoted by {v0; v1, . . . , vr}.
The fractional part of a real value q is denoted by {q}, the integer part is denoted by ⌊q⌋.

Lemma 3. Suppose that the set M = {v1, . . . , vr} is not saturated. Then there exists a
vector v0 such that {v0; v1, . . . , vr} is an ENSS.

Proof. Consider any vector v0 ∈ (Z(M) ∩ Q>0(M)) \ Z>0(M), and the corresponding Q>0-
combination v0 = q1v1 + . . .+ qrvr. By Lemma 2(iii) there exists a linearly independent
subset {vi1 , . . . , vis} ⊆ {v1, . . . , vr} and the collection of Q>0-coefficients q′j such that v0 =
q′1vi1 + . . . + q′svis. If some q′j > 1, consider another vector v′0 = v0 − ⌊q′1⌋vi1 − · · · − ⌊q′s⌋vis
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instead of v0. It is easy to see that it also belongs to Z(v1, . . . , vr) and to Q>0(v1, . . . , vr), and
does not belong to Z>0(v1, . . . , vr). However all the coefficients of the new Q>0-combination
belong to the semiopen interval [0, 1). This means that {v′0; v1, . . . , vr} is an ENSS. �

Let v0, v1, . . . , vr be some vectors in a rational vector space L, and let f be a linear function
on L. We call f a discriminating linear function for the collection {v0; v1, . . . , vr} if the
value f(v0) cannot be represented as a linear combination of values f(v1), . . . , f(vr) with
nonnegative integer coefficients. If v0 belongs to Z(v1, v2, . . . , vr) ∩ Q>0(v1, v2, . . . , vr) and
it can be represented as a Q>0-combination of linearly independent vectors v1, . . . , vr with
coefficients from the semiopen interval [0, 1), then the existence of a discriminating function
guarantees that {v0; v1, . . . , vr} is an ENSS.

Assume that the set of vectors M ⊂ Qn has rank d, d 6 n, and L = 〈v | v ∈ M〉 is the
linear span of vectors from M . The set M is called unimodular if for any linearly independent
vectors v1, . . . , vd ∈ M the value of the d-dimensional volume vold(v1, v2, . . . , vd) has constant
absolute value. If one fixes a basis in L, then the condition above is equivalent to the fact that
absolute values of all nonzero determinants | det(v1, v2, . . . , vd)|, v1, v2, . . . , vd ∈ M , computed
in this basis are equal.

If the set M is unimodular, then its intersection with any subspace L1 ⊂ L is also unimod-
ular. This is clear if we choose in L any basis compatible with L1.

Lemma 4. Any unimodular set of vectors M is hereditary normal.

Proof. On the contrary, suppose that there exists an ENSS {v0; v1, . . . , vr} in M . Denote by d′

the dimension of the subspace L1 = 〈v1, . . . , vr〉, d′ 6 d. The set {v1, . . . , vr} is unimodular.
According to the definition of an ENSS, vectors in the corresponding Q>0-combination for v0
are linearly independent. Complete them with elements of M to a basis v1, v2, . . . , vd′ of the
space L1. Due to unimodularity and Cramer’s formulae for the solution of a system of linear
equations, the coordinates of each vi, i > d ′, in the basis v1, v2, . . . , vd′ are equal to 0, 1,
and −1. Then, using the initial Z-combination for v0 and substituting the decompositions
for vi in it, we obtain that v0 has integer coordinates in the basis v1, . . . , vd′ . Since v0 has
a unique decomposition in any fixed basis, all the coefficients of the initial Q>0-combination
are integers. �

We say that a subset M ⊂ Qn of rank d is almost unimodular if we can choose a subset
{v1, v2, . . . , vd} ⊆ M such that vold(v1, v2, . . . , vd) = m, and for any other vector w ∈ M and
for each i the value

vold(v1, v2, . . . , v̂i, . . . , vd, w)

is divisible by m. If one fixes a basis in the linear space 〈M〉, then this property can be
checked by comparing the values of the corresponding determinants in the given basis instead
of computing vold’s. The value m = det(v1, v2, . . . , vd) is called the volume of an almost
unimodular subset.

Lemma 5. Let M be an almost unimodular set of volume m and of rank d. Then all the
determinants in M are divisible by m.

Proof. Expand each w ∈ M in the basis (v1, v2, . . . , vd). By Cramer’s formulae, they all have
integer coordinates:

if w = a1v1 + . . .+ advd, then ai =
det(v1, v2, . . . , v̂i, w, . . . , vd)

det(v1, v2, . . . , vd)
, where all ai ∈ Z,

because of almost unimodularity. Furthermore, for any vectors w1, . . . , wd ∈ M we have
det(w1, . . . , wd) = detA · det(v1, . . . , vd), where A is an integer matrix expressing the set of
vectors w1, . . . , wd in the basis (v1, v2, . . . , vd). Since detA ∈ Z, the value det(w1, . . . , wd) is
divisible by m, and the proof is completed. �
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Lemma 6. Consider an almost unimodular set M such that all determinants in M are
contained in the set m · {1, a1, . . . , ak} and for some vectors w1, . . . , wd ∈ M we have that
det(w1, . . . , wd) equals am. Then, if we decompose any vector w ∈ M in the basis w1, . . . , wd,
the coefficients belong to the set {±1/a,±a1/a, . . . ,±ak/a}.
Proof. The proof follows directly from Cramer’s formulae, see above. �

By a primitive subset {v1, . . . , vd} in an almost unimodular set of volume m we mean any
d-element subset such that its determinant equals ±m. In fact, Lemma 5 says that for any
primitive subset {v1, . . . , vd} ⊆ M the set M belongs to Z(v1, . . . , vd).

Example. Consider the set M containing 16 points {(±1,±1,±1,±1)}. It is easy to see
that determinants of all 4-tuples equal 0, 8, or 16. This means that M is almost unimodular.

Lemma 7. Suppose that an almost unimodular set M of rank d and of volume m is not heredi-
tary normal, and {v0; v1, . . . , vr} is an ENSS. Assume that the corresponding Q>0-combination
for v0 involves only the linearly independent vectors v1, . . . , vd′.

(i) If d′ = rk 〈v1, . . . , vd′〉 = d, then |vold(v1, . . . , vd)| 6= m.
(ii) If d′ < d, then for any vectors wd′+1, . . . , wd ∈ M linearly independent with v1, . . . , vd′

one has |vold(v1, . . . , vd′ , wd′+1, . . . , wd)| 6= m.

Proof. (i) If |vold(v1, . . . , vd′)| = m, then by Lemma 5 the vector v0 decomposes with in-
teger coefficients in the basis v1, . . . , vd. Since v1, . . . , vd are linearly independent, this Z-
combination coincides with the initial Q>0-combination, contradiction with the fact that it is
an ENSS.

(ii) We may suppose that vectors wd′+1, . . . , wd enter in the initial Q>0-combination for v0
with zero coefficients, and then use the reasoning of the previous part. �

Lemma 8. Consider an almost unimodular set M of rank d which is not hereditary normal
and such that all values of determinants in it equal 0, ±m, or ±2m. Let {v0; v1, . . . , vr} be an
ENSS such that the corresponding Q>0-combination for v0 contains exactly vectors v1, . . . , vl.
Then there exists a vector v′0 and a subset {vi1 , . . . , vis} ⊆ {v1, . . . , vl} such that {v′0; v1, . . . , vr}
is an ENSS and all the coefficients in the corresponding Q>0-combination v′0 = q′i1vi1+. . . q′isvis
equal 0 and 1

2
.

Proof. Assume that the set {v1, . . . , vr} has rank d′. First we show that if d′ < d, then in
〈v1, . . . , vr〉 all vold′(w1, . . . , wd′) ∈ {0,±m′,±2m′}, wi ∈ {v1, . . . , vr} for some m′ (if d = d′,
this is a tautology). For this choose a basis from vectors wi ∈ M in L = 〈M〉 compatible with
L1 = 〈v1, . . . , vr〉. Let wd′+1, . . . , wd be vectors from this basis belonging to L \ L1. Consider
all possible values

{vold(u1, . . . , ud′, wd′+1, . . . , wd) | u1, . . . , ud′ ∈ L1}.

In the basis constructed above the corresponding matrices have the form

(
A B
0 E

)
, where E

stands for the identity matrix, which gives detA ∈ {±m,±2m}.
Now we can omit the points from M \ L1 and suppose that d′ = d, m′ = m. Moreover,

vectors v1, . . . , vl are linearly independent. If l < d, then augment {v1, . . . , vl} by (d−l) vectors
vl+1, . . . , vd, linearly independent with {v1, . . . , vl}, and assume that vl+1, . . . , vd appear in the
initial Q>0-combination for v0 with zero coefficients. If vol(v1, . . . , vd) = m, then by Lemma 7
the set {v0; v1, . . . , vr} is not an ENSS. If vol(v1, . . . , vd) = 2m, then by Lemma 6 all the
vectors vi, i > d, can be decomposed in the basis v1, v2, . . . , vd with integer or half-integer
coefficients. Substituting these decompositions in the initial Z-combination for v0, we obtain
that the initial Q>0-combination has integer or half-integer coefficients (last d − l of them
being zero). If some of them are > 1, then, as in Lemma 3, we replace the vector v0 by v′0
and obtain that all coefficients equal 0 or 1

2
. �
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2. The root system Bn

Let e1, . . . , en be the standard basis of Qn. The root system Bn, where n > 2, is formed by
vectors {±ei ± ej ,±ei | 1 6 i, j 6 n, i 6= j}. With respect to the system of simple roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en

the fundamental weights have the form

π1 = e1, π2 = e1 + e2, . . . , πn−1 = e1 + . . .+ en−1, πn =
1

2
(e1 + . . .+ en).

The root lattice Ξ coincides with the lattice of all integer points in Qn. Next, the weight
lattice Λ has the form

Λ = {(ℓ1, ℓ2, . . . , ℓn) | 2ℓi ∈ Z, ℓi − ℓj ∈ Z, i, j = 1, . . . , n}.
The Weyl group W acts by permutations on the set of coordinates and by changing signs
of an arbitrary set of coordinates. A weight λ = (ℓ1, ℓ2, . . . , ℓn) is dominant if and only if
ℓ1 > . . . > ℓn > 0. If all coordinates of λ are integers (or all together half-integers but not
integers), then the set M(λ) consists of all integer (or half-integer but not integer, respectively)
points in the polytope P (λ).

2.1. Positive results.

Case 1. λ = π1 = (1, 0, . . . , 0). Then M(λ) = {±ei | 1 6 i 6 n}. Obviously, this subset is
unimodular, and by Lemma 4 it is hereditary normal.

Case 2. λ = 2π2 = (1, 1), n = 2. It is easy to check case-by-case that any subset in the
set of vectors {±e1 ± e2,±e1,±e2} is saturated.

Case 3. λ = πn =
(
1

2
, . . . , 1

2

)
, 2 6 n 6 4. In this case we have

M(λ) =





(
±1

2
,±1

2
, . . . ,±1

2︸ ︷︷ ︸
n coordinates

)




.

One has to check that this set is hereditary normal.
Multiply all coordinates of all vectors by 2. The problem does not change but now all the

coordinates are integers: M ′(λ) =
{
(±1,±1, . . . ,±1︸ ︷︷ ︸

n coordinates

)
}
.

For n = 2, 3 M ′(λ) is unimodular, so by Lemma 4 it is hereditary normal.
Consider n = 4. The values of all nonzero determinants in M ′(λ) equal ±8 and ±16.

This means that M ′(λ) is almost unimodular. Find all 4-tuples of vectors such that their
determinant equals 16. For any vector v from M ′ the vector −v also belongs to M ′, hence we
will look for such 4-tuples up to sign: we will check only one vector from each pair of opposite
vectors, namely, the one with the first coordinate equalling 1. Also we may assume that the
first vector in this 4-tuple is (1, 1, 1, 1). Using case-by-case consideration, we see that it can
be only the following set (given by rows of the following matrix):




w1

w2

w3

w4


 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 .

Next, suppose that there exists an ENSS {v0; v1, . . . , vr}. Using Lemmas 8 and 7, we obtain
that the corresponding Q>0-combination for v0 is a sum of some ±w1, ±w2, ±w3, ±w4 with
coefficients 0 and 1/2, i.e. q1v1+q2v2+q3v3+q4v4, where each qi ∈ {0, 1

2
} and vi = ±wi. Since

every two coordinates of v0 differ by an even integer, 2(±q3 ± q4) is even, hence (±q3 ± q4)
is integer, hence q3 and q4 are both 0 or 1

2
. For other pairs of coefficients qi one can proceed

analogously. Since v0 6= 0, all the coefficients equal 1

2
. If we augment {v1, v2, v3, v4} by any new
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vector v5 from M ′(λ) (due to Lemma 2(ii) it is not ±wi, i = 1, . . . , 4) we will express v0 as a
Z>0-combination. Indeed, any vector v5 from M(λ) which is not equal to ±wi, i = 1, . . . , 4 can
be represented as ±1

2
w1± 1

2
w2± 1

2
w3± 1

2
w4 (for example, (1, 1, 1,−1) = 1/2(w1+w2+w3−w4)),

which gives a similar representation in vectors v1, v2, v3, v4. But, if we have any vector v5 of
the form ±1

2
v1± 1

2
v2± 1

2
v3± 1

2
v4, the vector 1

2
(v1+v2+v3+v4) can be obtained for any choice

of signs: we add to v5 those vectors vi at which v5 has coefficient −1

2
. This shows that v0 can

be expressed in vi with Z>0-coefficients. Hence, it is not an ENSS.

2.2. Some negative results.

Counterexample 1. λ = 2π1 = 2e1, n = 2. Consider the following subset in M(λ):
v1 = 2e1, v2 = e1 + e2, v3 = e2, v = e1 = v1/2 = v2 − v3. Take a discriminating linear
function: f = 3x1 + 4x2 (see Section 1.2), then f(v1) = 6, f(v2) = 7, f(v3) = 4, f(v) = 3. It
is clear that 3 cannot be represented as a sum of integers 4, 6, and 7.

Counterexample 2. λ = π2 = e1+ e2, n > 3. Let v1 = e1+ e2, v2 = e1 − e2, v3 = e2 − e3,
v4 = −e3. Then v = e1 = 1

2
((e1 + e2) + (e1 − e2)) = (e1 − e2) + (e2 − e3) − (−e3), but

e1 6∈ Z>0(v1, v2, v3, v4). Indeed, let f = 3x1 + x2 − 5x3. Then f(v1) = 4, f(v2) = 2, f(v3) = 6,
f(v4) = 5, f(v) = 3, but 3 cannot be represented as a sum of integers 2, 4, 5, and 6.

Counterexample 3. λ = π1 + πn = (3
2
, 1

2
, . . . , 1

2
), n > 2. Let

v1 =

(
3

2
,
1

2
, . . . ,

1

2

)
, v2 =

(
3

2
,−1

2
, . . . ,−1

2

)
, v3 =

(
1

2
,
1

2
, . . . ,

1

2

)
.

Then v = (1, 0, . . . , 0) = 1/3(v1 + v2) = v1 − v3, and if one considers the first coordinate, it is
clear that

v /∈ Z>0(v1, v2, v3).

Counterexample 4. λ = πn =
(
1

2
, . . . , 1

2

)
, n = 5. To simplify the notation, multiply all

the coordinates by 2. Let



v1
v2
v3
v4
v5
v6




=




1 1 1 1 −1
1 1 1 −1 1
1 1 −1 1 1
1 −1 1 1 1

−1 1 1 1 1
1 1 1 −1 −1




,

v =
1

3
(v1 + v2 + v3 + v4 + v5) = (1, 1, 1, 1, 1) = v1 + v2 − v6,

f = 3x1 + 3x2 + 3x3 + 2x4 + 2x5,

f(v1) = f(v2) = 9, f(v3) = f(v4) = f(v5) = 7, f(v6) = 5, f(v) = 13.

Note that 13 cannot be decomposed as a sum of integers 9, 7, and 5. Hence, it is an NSS.

2.3. Reduction to the already examined cases. By a shift for Bn we call the procedure
of replacing the vector λ = (ℓ1, . . . , ℓn) with the vector λ′ = (ℓ1, . . . , ℓi − 1, . . . , ℓn), if ℓi > 1.
Notice that λ′ always belongs to M(λ) because λ−λ′ ∈ Ξ and λ′ is a convex linear combination
of vectors λ and (ℓ1, . . . ,−ℓi, . . . , ℓn) with suitable coefficients (these vectors both belong
to M(λ)).

Lemma 9. Let n > 3. If λ ∈ Ξ \ Φ, then the vector e1 + e2 belongs to M(λ).

Proof. Let λ = (ℓ1, . . . , ℓn), ℓ1, . . . , ℓn ∈ Z. Since λ is a dominant weight, we have
∑n

1
ℓi > 2.

If
∑n

1
ℓi > 2 and ℓi > 0, then the point (ℓ1, . . . , ℓi−1, ℓi − 1, ℓi+1, . . . , ℓn) belongs to M(λ)

(apply the shift). Repeating this procedure, we show that there is a point λ′ ∈ M(λ) with∑n
1
ℓ′i = 2. It is either a root ei + ej , or 2ei, in the second case we can obtain λ′′ = 2ej by

acting with the Weyl group, and the midpoint of λ′λ′′ is the point ei + ej ∈ M(λ′) ⊆ M(λ),
hence e1 + e2 ∈ M(λ), as well. �
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Now we show how all cases from Bn, which do not appear in Theorem 1, can be reduced
to Examples 1 – 4, using Corollary 2. If all coordinates of λ are integers and n > 3, then any
weight λ which does not belong to Ξ can be reduced to e1+e2 by Lemma 9, i.e. Counterexam-
ple 2 can be applied. If all coordinates of λ are integers and n = 2, then λ = (ℓ1, ℓ2) 6= (2, 0)
but it is not a root, which gives ℓ1 > 2, hence (2, 0) ∈ M(λ), and we can apply Corollary 2
to Counterexample 1.

If all coordinates of λ = (ℓ1, . . . , ℓn) are not integers, i.e. for all i the value 2ℓi is odd,
and if in addition there exists a number i such that 2ℓi > 3, then the point (3

2
, 1
2
, . . . , 1

2
)

belongs to M(λ) (apply several shifts), and one can apply Corollary 2 to Counterexample 3.
Finally, if λ =

(
1

2
, . . . , 1

2

)
, then we have M(λ) = {(±1/2,±1/2, . . . ,±1/2︸ ︷︷ ︸

n coordinates

)}. Multiply all

the coordinates of all the vectors by 2, this does not change the problem, but now all the
coordinates are integers: M ′(λ) = {(±1,±1, . . . ,±1︸ ︷︷ ︸

n coordinates

)}. For n = 5 see Counterexample 4,

for n > 5 an NSS can be constructed in the following way: take Counterexample 4 for n = 5
and append n− 5 coordinates equal to the 5th coordinate to each vector.

3. The root system Cn

Again let e1, . . . , en be the standard basis of Qn. The root system Cn, n > 3, is formed by
vectors {±ei ± ej ,±2ei | 1 6 i, j 6 n, i 6= j}. With respect to the system of simple roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = 2en

the fundamental weights have the form

π1 = e1, π2 = e1 + e2, . . . , πn = e1 + . . .+ en.

The root lattice Ξ coincides with the lattice of all integer points in Qn with the even sum of
coordinates. The weight lattice Λ consists of all integer points in Qn. The Weyl group W
acts by permutations on the set of coordinates and by sign changes on an arbitrary subset of
coordinates. A weight λ = (ℓ1, ℓ2, . . . , ℓn) is dominant if and only if ℓ1 > . . . > ℓn > 0. The
set M(λ) coincides with the set of integer points in P (λ) such that their sum of coordinates
has the same parity as λ.

3.1. Positive results.

Case 4. λ = π1 = e1. Then M is unimodular, hence hereditary normal (cf. Case Bn).
Case 5. λ = π2 = e1+e2, n = 3, 4. For n = 3 this set is unimodular, hence it is hereditary

normal. For n = 4 it is almost unimodular. All nonzero determinants are equal to ±2 or ±4,
and a 4-tuple of vectors with the determinant ±4 without loss of generality coincides with
the set of rows of the matrix 



v1
v2
v3
v4


 =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 .

Now the proof is analogous to Case 3. Suppose that there exists an ENSS {v0; v1, v2, v3, v4}.
Without loss of generality the vectors v1, . . . , v4 are as above, otherwise simultaneously
change the sing of some coordinate in all the vectors. Assume that the corresponding Q>0-
combination is v0 = q1v1+q2v2+q3v3+q4v4. Then all qi ∈ {0, 1/2}, q1 = q2, and q3 = q4. But
the sum of coordinates of v0 is even, consequently, all qi equal 1

2
simultaneously. To obtain

v0 as a Z-combination, it is necessary to append a vector which is not ±vi. However, it is
easy to see that all the other vectors in M(λ) equal ±1

2
v1 ± 1

2
v2 ± 1

2
v3 ± 1

2
v4. If we augment

{v1, . . . , v4} by any vector of this form, then the vector 1

2
v1 +

1

2
v2 +

1

2
v3 +

1

2
v4 will be easily

obtained as a Z>0-combination (cf. Section 2.1).
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3.2. Some negative results.

Counterexample 5. λ = π1 + π2 = (2, 1, 0). Let



v1
v2
v3
v4


 =




2 1 0
0 2 1
1 0 2
1 2 0


 .

Take v = (1, 1, 1). We have v = 1/3(v1 + v2 + v3) = v1 + v2 − v4. To check that v is not
a Z>0-combination of vi, consider the discriminating function f = 100x1 + 10x2 + x3. Then
f(v1) = 210, f(v2) = 21, f(v3) = 102, f(v4) = 120, but f(v) = 111.

Counterexample 6. Let λ = 2π1 = 2e1, n = 3. Consider vectors



v1
v2
v3
v4


 =




2 0 0
0 2 0
1 0 1
0 −1 1


 .

Then v = e1 + e2 = 1/2(v1 + v2) = v3 − v4. To check that v is not a Z>0-combination
of vectors vi, consider the discriminating function f = 5x1 + 3x2 + 9x3. Then f(v1) = 10,
f(v2) = f(v4) = 6, f(v3) = 14, but f(v) = 8.

Counterexample 7. Take λ = π3 = e1 + e2 + e3, n = 3. Consider the following vectors:



v1
v2
v3
v4


 =




1 1 1
1 −1 −1
0 1 0
0 0 −1


 .

Then v = e1 = 1/2(v1 + v2) = v1 − v3 + v4. To verify that v is not a Z>0-combination of
vectors vi, consider the discriminating function f = 11x1 + 6x2 − 14x3. Then f(v1) = 3,
f(v2) = 19, f(v3) = 6, f(v4) = 14, but f(v) = 11.

Counterexample 8. λ = π4 = e1 + e2 + e3 + e4, n = 4. Consider vectors



v1
v2
v3
v4


 =




1 1 1 1
1 1 −1 −1
1 0 1 0
0 −1 1 0


 .

Take v = (1, 1, 0, 0) = 1

2
(v1 + v2) = v3 − v4. Consider the discriminating function f =

5x1 + 5x2 + 8x3 − x4. Then f(v1) = 17, f(v2) = f(v4) = 3, f(v3) = 13, f(v) = 10. It is clear
that v1 and v3 cannot be used in a Z>0-combination. But 10 is not divisible by 3, and we
cannot obtain v, using only v2 and v4.

Counterexample 9. Take λ = π2 = e1 + e2, n = 5. Consider vectors



v1
v2
v3
v4
v5
v6




=




1 0 1 0 0
1 0 −1 0 0
0 1 0 1 0
0 1 0 −1 0
0 0 1 0 1
0 0 0 1 1




.

Then v = e1+e2 = 1/2(v1+v2+v3+v4) = v2+v3+v5−v6. Take f = 5x1+6x2+x3+2x4+20x5.
We have f(v1) = 6, f(v2) = 4, f(v3) = 8, f(v4) = 4, f(v5) = 21, f(v6) = 22, but f(v) = 11.

Remark 1. Counterexamples 5 — 7 work for all n > 3, Counterexample 8 works for all n > 4,
and Counterexample 9 works for all n > 5. Indeed, we can append n − 3 zero coordinates
(n− 4 and n− 5, respectively) to each vector.
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3.3. Reduction to the already examined cases. Consider two cases: (i) all ℓi ∈ {0, 1};
(ii) there is at least one ℓi with |ℓi| > 2.

First consider case (i): all ℓi ∈ {0, 1}, which means that λ = πk = e1+ e2+ . . .+ ek, k 6 n.

Lemma 10. An NSS for the pair (k, n0) is at the same time an NSS for all the pairs (k, n),
where n > n0.

Proof. Append n− n0 zero coordinates to each vector. �

Lemma 11. An NSS for the pair (k, n), where k+2 6 n, is also an NSS for the pair (k+2, n).

Proof. Use Corollary 2: if λ = e1 + . . .+ ek+2, then

e1 + e2 + . . .+ ek = λ− (ek+1 + ek+2) =
1

2
(λ+ (e1 + . . .+ ek − ek+1 − ek+2)),

hence it belongs to M(λ). This means that an NSS for (k, n) is also an NSS for (k+2, n). �

Now take any pair (k, n), not equal to (1, n), (2, 2), (2, 3), and (2, 4), where k 6 n.
If k is even and n 6 4, then it is the pair (4, 4), i.e. we get Counterexample 8. If k

is even and n > 5, then we can modify Counterexample 9 to get the required NSS: first
apply Lemma 10, and then apply Lemma 11. If k is odd and k > 3, then we can modify
Counterexample 7 to get the required NSS in the same way.

Now consider case (ii).

Definition 1. By a shift for Cn we denote the procedure of replacing the point

λ = (. . . , l, . . . , l′, . . . )

with the point λ′ = (. . . , l − 1, . . . , l′ + 1, . . . ) (at the same places) when l − l′ > 2.

The point λ′ belongs to M(λ). Indeed, the point (. . . , l′, . . . , l, . . . ) belongs to M(λ). Its
convex hull with λ with a suitable coefficient equals λ′. Notice that for l − l′ > 2 the sum of
squares of coordinates of the point λ decreases after a shift by a positive integer:

(l − 1)2 + (l′ + 1)2 = l2 − 2l + 1 + l′2 + 2l′ + 1 = l2 + l′2 − 2(l − l′ − 1) < l2 + l′2.

Hence, we can consequently apply only finitely many shifts.

Lemma 12. Let λ = (ℓ1, . . . , ℓn), such that ℓi > 2 for some i. Then either (2, 0, . . . , 0) or
(2, 1, 0, . . . , 0) belongs to M(λ).

Proof. Since λ is dominant, we have ℓ1 > 2. Now change λ, during this process it can be
nondominant. Change sign at any coordinate, e.g. at ℓn, in such a way that ℓn 6 0, and
shift it with ℓ1 several times till the moment when ℓ1 becomes 2. If meanwhile ℓn becomes
positive, then change its sign to make it negative, and so on. Then fix ℓ1 = 2 and shift other
coordinates in any possible way, changing signs at some coordinates, if needed. This process
is finite, and if no further shift is possible, then it is either the point (2, 0, . . . , 0), or the
point (2, 1, 0, . . . , 0). �

In case (ii) we can apply Lemma 12 and then Corollary 2: the required NSS’es for all
highest weights will be produced either from Counterexample 5 or from Counterexample 6.

4. The root system Dn

As before, let e1, . . . , en be the standard basis of Qn. The root system Dn, n > 4, consists
of vectors {±ei ± ej | 1 6 i, j 6 n, i 6= j}. With respect to the system of simple roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en−1 + en
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the fundamental weights have the form

π1 = e1, π2 = e1 + e2, . . . , πn−2 = e1 + . . .+ en−2,

πn−1 =
1

2
(e1 + . . .+ en−1 − en), πn =

1

2
(e1 + . . .+ en−1 + en).

The root lattice Ξ coincides with the lattice of all integer points in Qn with even sum of
coordinates. Next, the weight lattice Λ has the form

Λ = {(ℓ1, ℓ2, . . . , ℓn) | 2ℓi ∈ Z, ℓi − ℓj ∈ Z, i, j = 1, . . . , n}.
The Weyl group W acts by permutations of the set of coordinates and by changing signs
on any set of coordinates of even cardinality. The weight λ = (ℓ1, ℓ2, . . . , ℓn) is dominant if
and only if ℓ1 > . . . > ℓn, ℓn−1 + ℓn > 0. If all the coordinates of λ are integers (strictly
half-integers), then the set M(λ) consists of all integer (strictly half-integer) points in the
polytope P (λ), such that their sum of coordinates differs with the sum of coordinates of λ
by an even number.

The reasoning for Dn has another structure than in the preceding cases. The cases of
integer and noninteger coordinates of a fundamental weight are considered separately. Many
NSS’es are taken from Section 3. Shift for Dn is the same as Shift for Cn.

4.1. Coordinates of all weights are integers.

Case 6. λ = π1 = e1. The set M(λ) is hereditary normal, the proof is analogous to Case 1
of Bn.

Case 7. λ = π2 = e1 + e2, n = 4. The set M(λ) coincides with the analogous set from
Case 5. That set is hereditary normal.

In all other cases we construct NSS’es. We often use NSS’es constructed for Cn, it is only
necessary to check that for Dn the weights under consideration indeed belong to M(λ). If
a point v has a zero coordinate, then its orbits under the Weyl groups in cases Cn and Dn

coincide, because the coordinate equal to 0 can be, if needed, multiplied by −1.
Counterexample 10. λ = π1 + π2 = (2, 1, 0, 0). We can use Counterexample 5.
Counterexample 11. λ = 2π1 = (2, 0, 0, 0), n = 4. Counterexample 6 with the appended

column of zeroes works.
Counterexample 12. λ = π3 + π4 = e1 + e2 + e3, n = 4. Counterexample 7 with the

appended column of zeroes works.
Counterexample 13. λ = π2 = e1 + e2, n = 5. Counterexample 9 can be applied.
Counterexample 14. λ = 2π4 = e1 + e2 + e3 + e4, n = 4. Counterexample 8 can be

applied.

Now, using Corollary 2 applied to Counterexamples 10–14, we show that NSS’es exist in
all the remaining cases: a) all coordinates of the highest weight equal ±1, and their sum is
odd; b) all coordinates of the highest weight equal ±1, and their sum is even; c) λ has a
coordinate such that its absolute value is 2 or more.

In this subsection all coordinates are integer, consequently, any set of weights for any n can
be considered as a set of weights for a greater n, filling new coordinates with zeroes. Hence,
Counterexamples 10, 11, 12, and 14 provide us with NSS’es for highest weights of the same
form for all n > 4, and Counterexample 13 — for all n > 5.

In case a), if there are at least 5 nonzero coordinates, make two last of them zero. For this
take λ′, which differs from λ by the signs of two last coordinates, and take the midpoint of
the interval λλ′ instead of λ. Then make two more coordinates zero, etc., finally we reduce
this case to Counterexample 12.

In case b), if we have only two nonzero coordinates, we can obtain an NSS from Counterex-
ample 13: just append the required number of zeroes. If there are 4 nonzero coordinates,
then an NSS can be obtained from Counterexample 14 by appending the required number of
zeroes. If there are more than 4 nonzero coordinates (recall that their number is even and
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each equals ±1), then make two last of them zero, then two more, and repeat this procedure
up to the moment when their number equals 4.

In case c), depending on the parity of
∑n

1
ℓi , one has to show that either the point

(2, 0 . . . , 0) or the point (2, 1, 0, . . . , 0) belongs to M(λ). The proof is almost the same as in
the case of Cn. On the first step change λ to a point having at least one zero coordinate.
Actually, take λ′ which is obtained from λ by a sign change of ℓn−1 and ℓn simultaneously. It
is important that λ′ has negative coordinates. Now work with λ′. Shift ℓ2 with any negative
coordinate, e.g. with ℓn−1, till the moment when one of them becomes zero. Permute n − 1
last coordinates to make ln = 0. Secondly, apply the algorithm from the proof of Lemma 12 to
n−1 first coordinates of λ′. If in that algorithm it is required to change λ′ with a point wλ′, w
belongs to the Weyl group for Cn, then the same procedure can be applied for Dn. Actually,
if w changes the sign of an odd number of coordinates, which is allowed for Cn but not for Dn,
then to be applicable for Dn, the element w will also change the sign of the nth coordinate, i.e.
the resulting point wλ′ will be the same since ℓn = 0. This modification of w will belong to the
Weyl group of Dn. Now, exactly as in the case of Cn, apply Lemma 12 and then Corollary 2,
obtaining the required NSS’es for all highest weights either from Counterexample 10 or from
Counterexample 11.

4.2. Coordinates of all weights are noninteger and there exists a coordinate whose

absolute value is not less than 3

2
.

Lemma 13. Under these conditions M(λ) contains a point of the form
(
3

2
, 1

2
, 1
2
, l′4, l

′

5, . . . , l
′

n

)
,

where l′i are half-integers, i = 4, . . . , n.

Proof. Since λ = (ℓ1, . . . , ℓn) is dominant, ℓ1 is one of the coordinates with the maximal
absolute value. Now change λ, letting it be nondominant. If ℓ1 > 3/2, we take λ′ which
is obtained from λ by a sign change of two last coordinates. It is important for us that λ′

has negative coordinates. Now work with λ′. Shift ℓ1 with any negative coordinates till the
moment when ℓ1 becomes equal to 3/2. If needed, during this process make a sign change
of two last coordinates again. Now fix ℓ1 and perform the same procedure with ℓ2 till the
moment when ℓ2 = 1/2. If now ℓ3 and ℓ4 have the same sign, then change signs at ℓ2 and ℓ4
and shift ℓ3 and ℓ4 till the moment when one of them becomes ±1/2. If at some step they
have the same sign, change the sign at ℓ2 and ℓ4. Permuting the coordinates, if needed, we
may suppose that we obtained the point (3/2,±1/2,±1/2, . . .). Now, if needed, change the
signs at the pairs of coordinates 2, 4 and 3, 4. �

Now consider the following NSS:

v1 =

(
3

2
,
1

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

)
, v2 =

(
−1

2
,−3

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

)
, v3 =

(
1

2
,
3

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

)
,

v4 =

(
−1

2
,
1

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

)
=

1

2

((
−3

2
,−1

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

)
+

(
1

2
,
3

2
,
1

2
, l′4, l

′

5, . . . , l
′

n

))
.

Then v0 =
(
1

2
,−1

2
, 1

2
, l′4, l

′

5, . . . , l
′

n

)
= 1

2
(v1 + v2) = v1 + v4 − v3. If one looks at the third

coordinate, it is clear that it is indeed an NSS.

4.3. All coordinates of weights are noninteger and all coordinates of the highest

weight are less than 1. Under these conditions λ = (1/2, . . . , 1/2,±1/2) ∈ {πn−1, πn}.
Since πn−1 and πn are dual, it suffices to consider only the case λ = πn.

Case 8. For n = 4 the set M(λ) is a subset of M(π4) for B4 (see Case 3). Since in the
case of Cn all the subsets were saturated, here it is also true.
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Now the aim is to show that for n = 5, 6 the answer is positive, and for n > 7 it is negative.
Case 9. λ = π5 =

(
1

2
, 1
2
, 1
2
, 1

2
, 1

2

)
, n = 5. Here

M(λ) =

{(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
| even number of minuses

}
.

To simplify the notation, multiply all the coordinates by 2. We obtain the set

M ′(λ) = {(±1,±1,±1,±1,±1) | even number of minuses}.
Let us show that M ′(λ) is almost unimodular of volume 16. To compute a determinant of

five arbitrary vectors, write them as a matrix and add the first row of this matrix to all the
other rows. Now rows 2–5 are even, hence the volume of the determinant is divisible by 16.
For the following vectors 



1 1 1 1 1
1 −1 −1 −1 −1

−1 1 −1 −1 −1
−1 −1 1 −1 −1
−1 −1 −1 1 −1




the determinant equals 16, hence M ′(λ) is almost unimodular. Notice that each vector has
length

√
5. The value of the determinant is at the same time the volume of the paral-

lelepiped generated by these vectors, and the absolute value of the last number does not
exceed (

√
5)5 < 64, hence equals 16, 32, or 48.

Letting m = 16, we obtain that all possible nonzero values of determinants are ±m, ±2m,
or ±3m.

Lemma 14. If for some vectors v1, . . . , v5 ∈ M ′(λ) the scalar product (v1, v2) = −3, then

| det(v1, . . . , v5)| < 3m.

Proof. Each vector from M ′(λ) has length
√
5. Let S12 be the area of the parallelogram

generated by vectors v1 and v2. Since (v1, v2) = −3, we have S12 = 4. From geometrical
reasons

| det(v1, . . . , v5)| 6 S12 · (
√
5)3 < 48 = 3m.

�

Lemma 15. Take v1, . . . , v6 ∈ M ′(λ).

(i) If | det(v1, . . . , v5)| = 3m, then one may suppose that



v1
v2
v3
v4
v5




=




1 1 1 1 1
−1 −1 1 1 1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1




up to the permutation of lines and up to the simultaneous sign change in pairs
of columns.

(ii) The following is impossible: | det(v1, v2, v3, v4, v5)| = | det(v1, v2, v3, v4, v6)| = 3m.

Proof. (i) It follows from Lemma 14 that no two of these vectors differ in four coordinates.
Hence, any two of these vectors differ exactly in 2 coordinates. Without loss of generality
v1 = (1, 1, 1, 1, 1) and v2 = (−1,−1, 1, 1, 1). Then each of the three other vectors has exactly
two −1’s. Say that two first coordinates are prefix. To differ with v2 exactly in two coordinates,
each of the remaining vectors must have exactly one prefix coordinate equal to −1. The
pigeonhole principle gives us that two of them (say, v3 and v4) have the same prefix coordinate
equal to −1, without loss of generality this prefix coordinate is the first coordinate. Then the
first coordinate of v5 also equals −1, otherwise v5 cannot differ simultaneously with v2, v3,
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and v4 in two coordinates. Since all the vectors are pairwise distinct, we obtain the same set
as in the formulation of the Lemma.

(ii) It follows from the previous part that v5 and v6 cannot differ in two coordinates.
Hence, if one supposes that first five vectors are as above, then v6 has four coordinates
equal to −1. Without loss of generality this is either vector (1,−1,−1,−1,−1) or vector
(−1, 1,−1,−1,−1). No one of these vectors works. �

Lemma 16. Suppose that for some vectors v1, . . . , v6 ∈ M ′(λ) all the absolute values of their
nonzero determinants are greater than m. Then all these determinants equal ±2m.

Proof. On the contrary, suppose that there is a determinant equalling ±3m. Then Lemma 15
shows that all the other nonzero determinants equal ±2m. But the alternating sum of six
determinants of 5-tuples of our vectors equals det(v1 − v2, v1 − v3, . . . , v1 − v6). In the cor-
responding matrix all the entries are even, hence the determinant is divisible by 32 = 2m.
Contradiction with the fact that 3m± 2m± . . .± 2m is not divisible by 2m. �

Consider an ENSS {v0; v1, v2, . . . , vs}. If the rank d of this set is less than 5, take 5 −
d vectors from M ′(λ) to make the rank equal to 5, and assign to them zero coefficients
in the corresponding to v0 Z- and Q>0-combinations. Now suppose that this ENSS is
{v0; v1, v2, v3, v4, v5, . . . , vs}, and only v1, v2, v3, v4, v5 appear in the Q>0-combination (maybe
with zero coefficients). We may count all the determinants of the form det(v1, . . . , v̂i, . . . , v5, vs),
where one of the first 5 vectors is thrown out and one new vector is taken instead of it. Case a)
one of them equals ±m, case b) for all the nonzero determinants their absolute value is greater
than m.

In case b) Lemma 16 gives us that we have s− 5 unimodular six-element subsets

{v1, . . . , v5, vj}, 6 6 j 6 s,

with m′ = 2m. In each of them vj can be expressed in v1, . . . , v5 with integer coefficients, hence
the determinant of each 5-tuple in the set {v1, . . . , vs} is divisible by 2m, hence equals ±2m.
This ENSS is hereditary normal by Lemma 4, a contradiction.

Case a) needs more punctuality. Lemma 7 gives us that the determinant ±m does not
coincide with det(v1, v2, . . . , v5). Without loss of generality det(v1, . . . , v4, v6) = 16 (if it
equals −16, transpose two first vectors, then the determinant will change sign). By our
assumption det(v1, . . . , v5) = ±2m or ± 3m.

Lemma 17. There are no vectors w1, . . . , w6 in M ′(λ) such that the following is true (simul-
taneously):

det(w1, . . . , w5) = ±2m, det(w5, w2, w3, w4, w6) = ±2m,

these determinants have different signs, and det(w1, . . . , w4, w6) = ±m.

Proof. Straightforward check using software Maple 7, [9]. �

Lemma 18. There are no vectors w1, . . . , w6 in M ′(λ) such that

det(w1, . . . , w5) = −2m and det(w1, . . . , w4, w6) = −3m.

Proof. Using Lemma 15, we may assume that w6 = (1, 1, 1, 1, 1) and



w1

w2

w3

w4


 =




−1 −1 1 1 1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1


 .

The hyperplane 〈w1, w2, w3, w4〉 is defined by the equation 2x1 + x2 + x3 + x4 + x5 = 0.
Since det(w1, . . . , w5) < 0 and det(w1, . . . , w6) < 0, we have that w5 and w6 belong to
the same half-space with respect to this hyperplane. Hence, exactly two coordinates of w5

equal −1. Without loss of generality w5 = (1,−1,−1, 1, 1), but the corresponding determi-
nant equals −16 = −m, a contradiction. �
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Recall that we had an ENSS. Let

(1) v0 = q1v1 + . . .+ q5v5

and

(2) v0 = z1v1 + . . .+ z4v4 + z6v6

be the initial Q>0- and Z-combinations. Consider the decomposition

v5 = y1v1 + . . .+ y4v4 + y6v6

of the vector v5 in the basis {v1, v2, v3, v4, v6}. It can be re-written as

(3) v6 = −y1
y6
v1 − . . .− y4

y6
v4 +

1

y6
v5.

Substituting (3) into (2), we obtain

(4) v0 = z1v1 + z2v2 + z3v3 + z4v4 + z6(−
y1
y6
v1 − . . .− y4

y6
v4 +

1

y6
v5).

Compare (1) and (4). From the uniqueness of the decomposition in a basis it follows that

(5) q1 = z1 − z6
y1
y6
, . . . , q4 = z4 − z6

y4
y6
, q5 = z6

1

y6
, all qi ∈ [0, 1).

If |y6| = 3, i.e. | det(v1, v2, . . . , v5)| = 3m, then by Lemma 15



v1
v2
v3
v4
v5




=




1 1 1 1 1
−1 −1 1 1 1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1




.

The linear combination of these vectors with Q>0-coefficients q1, . . . , q5 must belong to the
weight lattice multiplied by two, this means that all coordinates of the resulting vector must
have the same parity. Subtracting the third coordinate from the second one, we obtain that
2(q2 − q3) is even, which implies q2 = q3, and analogously q2 = q3 = q4 = q5. The first
coordinate of v0 equals q1 − 4q2, while all the others equal q1 + 2q2. These numbers must
also have the same parity, consequently, q2 ∈ {0, 1

3
, 2
3
}. Since q1 − 4q2 and q1 + 2q2 are both

integers and cannot simultaneously equal 0, we obtain that q1 = q2 ∈ {1

3
, 2

3
}. Hence, v0 equals

either (−1, 1, 1, 1, 1) or (−2, 2, 2, 2, 2).

Lemma 19. Take vectors (v1, v2, v3, v4, v5) from Lemma 15 and any vector

v6 ∈ M ′(λ) \ {v1, . . . , v5}.
Then the vector (−1, 1, 1, 1, 1) can be represented as a Z>0-combination of vectors

(v1, v2, v3, v4, v5, v6).

Proof. Up to the permutation of the last four coordinates, we can assume that v6 is either
(1, 1, 1,−1,−1), or (1,−1,−1,−1,−1), or (−1,−1,−1,−1, 1). Consider these cases sepa-
rately.
(i) v6 = (1, 1, 1,−1,−1). Then

(−1, 1, 1, 1, 1) = (1, 1, 1,−1,−1) + (−1,−1, 1, 1, 1) + (−1, 1,−1, 1, 1).

(ii) v6 = (1,−1,−1,−1,−1). Then

(−1, 1, 1, 1, 1) = 2(1,−1,−1,−1,−1) + (1, 1, 1, 1, 1) + (−1,−1, 1, 1, 1)+

+(−1, 1,−1, 1, 1) + (−1, 1, 1,−1, 1) + (−1, 1, 1, 1,−1).
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(iii) v6 = (−1,−1,−1,−1, 1). Then

(−1, 1, 1, 1, 1) = (−1,−1,−1,−1, 1) + (1, 1, 1, 1, 1) + (−1, 1, 1, 1,−1).

�

It remains to consider the case when |y6| = 2. Here all qi ∈ {0, 1
2
}.

If z6 is even, then q1 = z1 − z6
y1
y6

= z1 − y1
z6
y6

is an integer from the interval [0, 1), hence
it equals 0. Analogously all the other qi’s, i = 2, . . . , 5, equal 0, consequently, v0 = 0. A
contradiction.

If z6 is odd, then the saturation property is checked in the following way. We need to
construct a Z>0-combination for v0, to do this take the vector v6 and add several vectors from
v1, . . . , v5 with suitable positive coefficients to obtain v0. To show that it is possible, it is
enough to verify that if we decompose both v0 and v6 in the basis v1, . . . , v5, then any pair of
corresponding coordinates differs by an integer and that all coordinates of v6 are strictly less
than 1. This guarantees that they do not exceed the corresponding coordinates of v0, since
we know that the coordinates of v0 equal qi and belong to the interval [0, 1).

By (5), cases i = 1, 2, 3, 4 and i = 5 should be considered separately. Since cases i = 1, 2, 3, 4
are symmetrical, consider only cases i = 1 and i = 5. Since z6−1

y6
is integer, we have that

q1 −
(
−y1
y6

)
= z1 − z6

y1
y6

+
y1
y6

= z1 +
(1− z6)y1

y6

is integer, analogously q5 − 1

y6
= z6−1

y6
is integer, i.e. all the differences of the corresponding

coordinates are integer. We also know that y1 = det(v5, v2, v3, v4, v6) and

y6 = det(v1, v2, v3, v4, v5),

which means that |y1| ∈ {0, 1, 2, 3} and |y6| = 2. It follows from Lemmas 15, 17, and 18 that
the number −y1

y6
is neither 1 nor 3

2
. In all the other cases the inequality − yi

y6
< 1 is held for

all i, 1 6 i 6 4. It is also clear that 1

y6
< 1. Hence, adding some vi’s (1 6 i 6 5), we can

obtain v0 from v6, and the ENSS under consideration is not an ENSS. Therefore M ′(λ) is
hereditary normal.

Case 10. λ = π6 =
(
1

2
, 1
2
, 1
2
, 1
2
, 1

2
, 1

2

)
, n = 6. Here

M(λ) = {(±1/2,±1/2,±1/2,±1/2,±1/2,±1/2) | even number of minuses}.
For convenience let us work with the set

M ′(λ) = 2M(λ) = {(±1,±1,±1,±1,±1,±1) | even number of minuses}.
Lemma 20. The set M ′(λ) is almost unimodular of volume 64. The values of determinants
equal ±64 and ±128, or, equivalently, ±m and ±2m.

Proof. Consider a subset {v1, v2, . . . , v6} ⊆ M ′. Without loss of generality v1 = (1, 1, 1, 1, 1, 1).
Add v1 to each of the other vectors and write down the obtained 6 vectors as rows of a matrix.
The rows from the second till the sixth are even, hence the determinant is divisible by 32,
and if we divide the rows from the second till the sixth by 2, the number of 1’s in each of the
rows of the remaining matrix will be even. Now add to the first column of the new matrix
the sum of all other columns. The new first column is even, hence the determinant of the
original matrix is divisible by 64. Now find an upper bound for it. Split the vectors in three
pairs and generate a parallelogram with each pair, then the volume of the parallelepiped does
not exceed the product of areas of these three parallelograms. Each vector in M ′(λ) has
length

√
6, the absolute value of the scalar product of two arbitrary vectors equals 2, hence

the area of each parallelogram equals 62/2
√
1− (1/3)2 = 25/2. Finally, the volume does not

exceed 215/2 < 192, consequently, its absolute value equals 64 or 128. �
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Suppose that we have an ENSS {v0; v1, v2, v3, v4, v5, v6} in M ′(λ). Consider a Q>0-combina-
tion corresponding to the vector v0. By Lemma 7 we have that | det(v1, v2, v3, v4, v5, v6)|
equals 128, consequently, by Lemma 6 the coefficients of the initial Q>0-combination equal 0
or 1

2
.

Lemma 21. If the determinant of the set of vectors {v1, v2, . . . , v6} ⊆ M ′ equals 128, then
up to multiplying vectors vi by −1, multiplying pairs of coordinates simultaneously by −1 and
interchanging columns and rows we may assume that it is the set of rows




w1

w2

w3

w4

w5

w6




=




1 1 1 1 1 1
−1 −1 1 1 1 1
−1 1 −1 1 1 1
−1 1 1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1




, wi ∈ {vi,−vi}.

Proof. The set M ′(λ) contains a vector −v for each vector v. Hence, to compute the deter-
minants, we may consider only 16 vectors instead of 32. Indeed, take only vectors with the
positive sum of coordinates:




u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16




=




1 1 1 1 1 1
1 1 1 1 −1 −1
1 1 1 −1 1 −1
1 1 −1 1 1 −1
1 −1 1 1 1 −1

−1 1 1 1 1 −1
1 1 1 −1 −1 1
1 1 −1 1 −1 1
1 −1 1 1 −1 1

−1 1 1 1 −1 1
1 1 −1 −1 1 1
1 −1 1 −1 1 1

−1 1 1 −1 1 1
1 −1 −1 1 1 1

−1 1 −1 1 1 1
−1 −1 1 1 1 1




.

Without loss of generality the minor of size six contains two first rows of this matrix. By
the direct check in Maple 7 [9], we obtain that if its determinant is 128, then it is either the
set of rows (1 2 3 4 5 6) or the set (1 2 7 8 9 10). Now notice that these two
minors interchange if we transpose columns 5 and 6. �

Now reasoning is analogous to Case 3: to obtain v0 as a Z-combination, we have to use
at least one more vector v7. According to Lemma 2(ii), v7 6= −vi, 1 6 i 6 6. Show
that if we augment the given six vectors by any other vector v7, we obtain v0 as a Z>0-
combination. For convenience till the end of this proof we suppose that M ′(λ) consists of
points (±1,±1,±1,±1,±1,±1) having odd number of −1’s. Then we can reformulate the
result of the preceding lemma in the following way: if the determinant of the given 6 vectors
v1, . . . , v6 equals 128, then, acting with the Weyl group, we can map one of the (unordered)
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sets (±v1,±v2, . . . ,±v6) to the set of rows

(6)




−1 1 1 1 1 1
1 −1 1 1 1 1
1 1 −1 1 1 1
1 1 1 −1 1 1
1 1 1 1 −1 1
1 1 1 1 1 −1




.

The vector v7 ∈ M ′(λ) does not equal ±vi, hence three of its coordinates equal 1, and
three other equal −1. It is easy to see that any such vector can be expressed as a Q-
linear combination of rows of matrix (6) if one takes three rows with the coefficient 1/2, and
three others with the coefficient −1/2. Hence, the decomposition of the vector v7 in vectors
v1, . . . , v6 has the form (±1

2
v1 ± 1

2
v2 ± 1

2
v3 ± 1

2
v4 ± 1

2
v5 ± 1

2
v6).

Now express v0 as a Q-linear combination of rows of (6). Let ri be the coefficient of the
ith row. By Lemma 6, each ri equals 0 or ±1

2
(because the rows of (6) may be not the initial

vi’s but −vi’s). Show that all ri are zero. Compare the first and the second coordinates
of v0. Their difference is even. On the other hand, it equals (−r1 + r2 + r3 + r4 + r5 +
r6) − (r1 − r2 + r3 + r4 + r5 + r6) = 2(r2 − r1). Consequently, either r1 and r2 are both
zero or both nonzero. Repeating this procedure for other pairs of columns, we obtain that
if v0 6= 0, then all ri are nonzero. Hence, v0 = 1

2
(v1 + v2 + v3 + v4 + v5 + v6). Notice that

the vector 1

2
(v1 + v2 + v3 + v4 + v5 + v6) can be obtained from any vector v7 of the form

(±1

2
v1 ± 1

2
v2 ± 1

2
v3 ± 1

2
v4 ± 1

2
v5 ± 1

2
v6) by adding several vi’s (cf. Section 2.1). Consequently,

M ′(λ) is hereditary normal.

For n > 7 multiply all the coordinates by 2. After this all the coordinates of the initial
vectors become ±1. Now construct an NSS.

Counterexample 15. Consider vectors



v1
v2
v3
v4

v5
v6
v7




=




1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1
1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 1
1 1 1 1 −1 −1 1
1 −1 1 1 1 1 −1




.

Then v = (2, 0, 0, 0, 0, 0, 0) = 1

2
(v1 + v2 + v3 + v4) = v5 + v6 + v7 − v1. If we consider the

first coordinate, then if v is a Z>0-combination of some vi, it is the sum of two vi’s. But no
pairwise sum equals v, and it is indeed an NSS.

Counterexample 15 can be easily modified for the greater values of n. Indeed, append n−7
coordinates equalling 1 to each vector. It is easy to see that for n > 7 these vectors belong
to M(λ) for λ = πn−1. Since 1 is at the same time the first coordinate of all vi, each linear
combination of vi’s will have the same value on each appended coordinate and on the first
coordinate.

Theorem 1 is proved.
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