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Abstract

It is well known that G = 〈x, y : x2 = y3 = 1〉 represents the
modular group PSL(2, Z), where x : z → −1

z
, y : z → z−1

z
are linear

fractional transformations. Let n = k2m, where k is any non zero
integer and m is square free positive integer. Then the set

Q∗(
√
n) := {a+

√
n

c
: a, c, b =

a2 − n

c
∈ Z and (a, b, c) = 1}

is a G-subset of the real quadratic field Q(
√
m) [12]. We denote α =

a+
√
n

c
in Q∗(

√
n) by α(a, b, c). For a fixed integer s > 1, we say that

two elements α(a, b, c), α′(a′, b′, c′) of Q∗(
√
n) are s-equivalent if and

only if a ≡ a′(mod s), b ≡ b′(mod s) and c ≡ c′(mod s). The class
[a, b, c](mod s) contains all s-equivalent elements of Q∗(

√
n) and En

s

denotes the set consisting of all such classes of the form [a, b, c](mod s).
In this paper we investigate proper G-subsets and G-orbits of the

set Q∗(
√
n) under the action of Modular Group G.
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1 Introduction

An integer m > 0 is said to be square free if its prime decomposition contains
no repeated factors. It is well known that every irrational member of Q(

√
m)

can be uniquely expressed as a+
√
n

c
, where n = k2m for some integer k and

a, a2−n
c

and c are relatively prime integers.

The set Q∗(
√
n) = {a+

√
n

c
: a, c, b = a2−n

c
∈ Z and (a, b, c) = 1} is a proper

G-subset of Q(
√
m) [12]. If α = a+

√
n

c
and ᾱ = a−

√
n

c
have different signs,

then α is called an ambiguous number. These ambiguous numbers play an
important role in the study of action of G on Q(

√
m) ∪ {∞}, as Stabα(G)

are the only non-trivial stabilizers and in the orbit αG, there is only one (up
to isomorphism).
G. Higman (1978) introduced the concept of the coset diagrams for the modu-
lar group PSL(2, Z) and Q. Mushtaq (1983) laid its foundation. By using the
coset diagrams for the orbit of the modular group G = 〈x, y : x2 = y3 = 1〉
acting on the real quadratic fields Mushtaq [12] showed that for a fixed non-
square positive integer n, there are only a finite number of ambiguous num-
bers in Q∗(

√
n), and that the ambiguous numbers in the coset diagram for

the orbit αG form a closed path and it is the only closed path contained in
it. Let C ′ = C ∪ {±∞} be the extended complex plane. The action of the
modular group PSL(2, Z) on an imaginary quadratic field, subsets of C ′, has
been discussed in [11]. The action of the modular group on the real quadratic
fields, subsets of C ′, has been discussed in detail in [2], [12] and [13]. The
exact number of ambiguous numbers in Q∗(

√
n) has been determined in [7],

[15] as a function of n. The ambiguous length of an orbit αG is the number
of ambiguous numbers in the same orbit [7], [15]. The Number of Subgroups
of PSL(2, Z) when acting on Fp ∪ {∞} has been discussed in [14] and the
subgroups of the classical modular group has been discussed in [10].
A classification of the elements (a+

√
p)/c, b = (a2 − p)/c, of Q∗(

√
p), p an

odd prime, with respect to odd-even nature of a, b, c has been given in [3].
M. Aslam Malik et al. [8] proved, by using the notion of congruence, that
for each non-square positive integer n > 2, the action of the group G on a
subset Q∗(

√
n) of the real Quadratic field Q(

√
m) is intransitive.

If p is an odd prime,then t 6≡ 0(mod p) is said to be a quadratic residue of p
if there exists an integer u such that u2 ≡ t(mod p).
The quadratic residues of p form a subgroup Q of the group of nonzero inte-
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gers modulo p under multiplication and |Q| = (p− 1)/2. [1]
Lemma 1.1 If v1, v2 ∈ Q, n1, n2 6∈ Q (v1, v2 are quadratic residues, and n1, n2

are quadratic non-residue, Then
(a) n1v1 is a quadratic non-residue.
(b)n1n2 is a quadratic residue.
(c)v1v2 is a quadratic residue.
In the sequel, q.r and q.nr will stand for quadratic residue and quadratic
non-residue respectively. The Legendre symbol (a/p) is defined as 1 if a is a
quadratic residue of p otherwise it is defined by −1. [1]

We denote the element α = a+
√
n

c
of Q∗(

√
n) by α(a, b, c) and say that two

elements α(a, b, c) and α′(a′, b′, c′) of Q∗(
√
n) are s-equivalent (and write

α(a, b, c) ∼s α
′(a′, b′, c′) or α ∼s α

′) if and only if a ≡ a′(mod s), b ≡ b′(mod s)
and c ≡ c′(mod s). Clearly the relation ∼s is an equivalence relation, so for
each integer s > 1, we get different equivalence classes [a, b, c] modulo s of
Q∗(

√
n). [8]

Let Es denote the set consisting of classes of the form [a, b, c] (mod s), n
modulo s whereas if n ≡ i(mod s) for some fixed i ∈ {0, 1, ..., s− 1} and the
set consisting of elements of the form [a, b, c] with n ≡ i(mod s) is denoted
by Ei

p (or En
s ). Obviously ∪s−1

i=1E
i
s = Es and Ei

s ∩ Ej
s = φ for i 6= j. [6]

The classification of the real quadratic irrational numbers by taking prime
modulus is very helpful in studying the modular group action on the real
quadratic fields. Thus it becomes interesting to determine the proper G-
subsets of Q∗(

√
n) by taking the action of G on the set Q∗(

√
n) and hence

to find the G-orbits of Q∗(
√
n) for each non square n.

2 Modular group G acting on Q∗(
√
n).

In [8], it was shown that the action of the group on Q∗(
√
2) is transitive,

whereas the action of G on Q∗(
√
n), n 6= 2 is intransitive. Specifically, it was

proved with the help of classes [a, b, c](mod 22) of the elements of Q∗(
√
n)

that Q∗(
√
n), n 6≡ 2(mod 4), has two proper G-subsets.

Q. Mushtaq [12], In the case of PSL(2, 13), showed one G-orbit of length
13 in the coset diagram for the natural action of PSL(2, Z) on any subset
of the real projective line. In [6] it was proved that there exist two proper
G-subsets of Q∗(

√
n) when n ≡ 0 (mod p) and four G-subsets of Q∗(

√
n)

when n ≡ 0 (mod pq). In the present studies, with the help of the idea of
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quadratic residues, we generalize this result and prove some crucial results
which provide us proper G-subsets and G-orbits of Q∗(

√
n).

We extend this idea to determine four proper G-subsets of Q∗(
√
n) with

n ≡ 0 (mod 2pq).

Lemma 2.1

Let n ≡ 0(mod 2pq) where p and q are two distinct odd primes, Let α =
a+

√
n

c
∈ Q∗(

√
n) then the sets

S1 = {α ∈ Q∗(
√
n) : (c/pq) = 1 or (b/pq) = 1 },

S2 = {α ∈ Q∗(
√
n) : (c/p) = −1 or (b/p) = −1 with (c/q) = 1 or (b/q) = 1 },

S3 = {α ∈ Q∗(
√
n) : (c/p) = 1 or (b/p) = 1 with (c/q) = −1 or (b/q) = −1 },

and S4 = {α ∈ Q∗(
√
n) : (c/p) = −1 or (b/p) = −1 with (c/q) = −1 or (b/q) =

−1 } are four proper G-subsets of Q∗(
√
n).

Proof.

Let a+
√
n

c
∈ Q∗(

√
n) and n ≡ 0(mod 2pq), then a2 − n = bc forces that

a2 ≡ bc(mod 2pq) (1)

where a, b, c are belonging to the complete residue system {0, 1, 2, ..., ¯2pq−1}.
The congruence (1) implies a2 ≡ bc(mod 2), a2 ≡ bc(mod p) and a2 ≡
bc(mod q) . Since 1 is the only quadratic residue of 2 and there is no quadratic
non-residue of 2. Thus by Lemma 1.1 the quadratic residues and quadratic
non residues of pq and 2pq are the same. We know that, if (t,m) = 1 and
m = 2pq, then the congruence x2 ≡ t (mod m) is solvable and has four
incongruent solutions if and only if t is quadratic residue of m [1], and in this
case congruence (1) is solvable and has exactly four incongruent solutions.
If a = b = c and each of a, b, c are quadratic residue of pq then there exist
four distinct classes

[a, b, c], [−a, b, c], [a,−b,−c], [−a,−b,−c](mod pq)

Thus for each member [a, b, c](mod pq), we have four cases.
Case(i) The classes [a, b, c](mod pq) with (bc/pq) = 1, Then all these classes
are contained in S1.
case(ii) The classes [a, b, c](mod pq) with (b/p) = −1, (b/q) = 1, Then all
these classes are contained in S2.
case(iii) The classes [a, b, c](mod pq) with (b/p) = 1 , (b/q) = −1, Then all
these classes are contained in S3.
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case(iv) The classes [a, b, c](mod pq) with (b/p) = −1 , (b/q) = −1, Then all
these classes are contained in S4.
As x(α) = −a+

√
n

b
= a1+

√
n

c1
, where a1 = −a, b1 = c, c1 = b and y(a+

√
n

c
) =

−a+b+
√
n

b
= a2+

√
n

c2
, where

a2 = −a + b, b2 = −2a+ b+ c, and c2 = b

then by the congruence (1) we have

(−a + b)2 ≡ (−2a+ b+ c)b(mod p) (2)

Since the modular group PSL(2, Z) has the representation G = 〈x, y : x2 =
y3 = 1〉 and every element of G is a word in the generators x, y of G, to prove
that S1 is invariant under the action of G, it is enough to show that every
element of S1 is mapped onto an element of S1 under x and y. Thus clearly
by the congruences (1) and (2) the sets S1, S2, S3 and S4 are G-subsets of
Q∗(

√
n). �

Remark 2.2

Since the quadratic residues and quadratic non residues of pq and 2pq are the
same. Therefore the number of G-subsets of Q∗(

√
n) when n ≡ 0(mod pq)

or n ≡ 0(mod 2pq) are same.

Illustration 2.3

In the coset diagram for Q∗(
√
15) there are four G-orbits namely

(
√
15)G, (−

√
15)G, (

√
15

3
)G and (

√
15

−3
)G

and similarly there are four G-orbits for Q∗(
√
30) namely

(
√
30)G, (−

√
30)G, (

√
30

2
)G and (

√
30

−2
)G

. In the closed path lying in the orbit (
√
15)G, the transformation

(yx)3(y2x)(yx)3

fixes k =
√
15, that is g1(k) = ((yx)3(y2x)(yx)3)(k) = k.

Let k is an ambiguous number then x(k) is also ambiguous but one of the
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number y(k) or y2(k) is ambiguous. The orientation of edges in the coset
diagram is associated with the involution x and the small triangles with y
which has order 3. One of k and x(k) is positive and other is negative but one
of k, y(k) or y2(k) is negative but other two are positive. We use an arrow
head on an edge to indicate its direction from negative to a positive vertex.
The following table shows the details of the orbits αG, transformations which
fixes α, and the ambiguous lengths of each orbit.

Table 1: The Orbits of α ∈ Q∗(
√
n).

G-orbits Transformations Ambiguous Length

(
√
15)G (yx)3(y2x)(yx)3 14

(−
√
15)G (yx)3(y2x)(yx)3 14

(
√
15

3
)G (yx)(y2x)3(yx) 10

(
√
15

−3
)G (yx)(y2x)3(yx) 10

(
√
30)G (yx)5(y2x)2(yx)5 24

(−
√
30)G (yx)5(y2x)2(yx)5 24

(
√
30

2
)G (yx)2(y2x)(yx)2(y2x)(yx)2 16

(
√
30

−2
)G (yx)2(y2x)(yx)2(y2x)(yx)2 16

Now we extend this idea when n ≡ 0(mod p1p2...pr).

Theorem 2.4

Let n ≡ 0(mod p1p2...pr), where p1, p2, ...pr are distinct odd primes, then
there are exactly 2r, G-subsets of Q∗(

√
n).
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Proof.

Let a+
√
n

c
∈ Q∗(

√
n) and n ≡ 0(mod p1p2...pr) where p1, p2, ...pr are distinct

odd primes, then a2 − n = bc gives

a2 ≡ bc(mod p1p2...pr) (3)

The congruence (3) implies a2 ≡ bc(mod p1),

a2 ≡ bc(mod p2), ..., and a2 ≡ bc(mod pr)

.
We know that, if (t,m) = 1 and m = p1p2...pr, then the congruence x2 ≡
t (mod m) is solvable if and only if t is quadratic residue of m [1], and in
this case congruence (3) is solvable and has exactly 2r incongruent solutions.
Since all values of b or c which are quadratic residues and quadratic non-
residues of m lie in the distinct G-subsets and m is the product of r distinct
primes, Thus consequently we obtain 2r, G-subsets of Q∗(

√
n). �

Corollary 2.5

Let n ≡ 0(mod 2p1p2...pr) where p1, p2, ...pr are distinct odd primes, then
there are exactly 2r, G-subsets of Q∗(

√
n).

Proof.

Let a+
√
n

c
∈ Q∗(

√
n) and n ≡ 0(mod 2p1p2...pr) where p1, p2, ...pr are distinct

odd primes, then a2 − n = bc gives

a2 ≡ bc(mod 2p1p2...pr) (4)

The congruence (4) implies a2 ≡ bc(mod 2), a2 ≡ bc(mod p1),

a2 ≡ bc(mod p2), ..., and a2 ≡ bc(mod pr)

Since 1 is the only quadratic residue of 2 and there is no quadratic non-
residue of 2. Thus by Lemma 1.1 the quadratic residues and quadratic non
residues of p1p2...pr and 2p1p2...pr are same. Hence the result follows by the
Theorem 2.4. �

Remark 2.6

The number of G-orbits of Q∗(
√
n) when n ≡ 0(mod p1p2...pr) or n ≡

0(mod 2p1p2...pr) are same.
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Illustration 2.7

Take n = 3.5.7.11 = 1155, Under the action of G on Q∗(
√
1155) there are

sixteen G-orbits in the coset diagram for Q∗(
√
1155) namely

(
√
1155)G, (

√
1155

−1
)G, (

√
1155

3
)G, (

√
1155

−3
)G,

(

√
1155

5
)G, (

√
1155

−5
)G, (

√
1155

7
)G, (

√
1155

−7
)G,

(

√
1155

11
)G, (

√
1155

−11
)G, (

√
1155

15
)G, (

√
1155

−15
)G,

(

√
1155

21
)G, (

√
1155

−21
)G, (

√
1155

33
)G, (

√
1155

−33
)G.

Similarly for n = 2.3.5.7.11 = 2310, Under the action of G on Q∗(
√
2310)

there are sixteen G-orbits in the coset diagram for Q∗(
√
2310) namely

(
√
2310)G, (

√
2310

−1
)G, (

√
2310

2
)G, (

√
2310

−2
)G,

(

√
2310

5
)G, (

√
2310

−5
)G, (

√
2310

7
)G, (

√
2310

−7
)G,

(

√
2310

10
)G, (

√
2310

−10
)G, (

√
2310

11
)G, (

√
2310

−11
)G,

(

√
2310

14
)G, (

√
2310

−14
)G, (

√
2310

22
)G, (

√
2310

−22
)G.

Theorem 2.8

Let h = 2k + 1 ≥ 3 then there are exactly two G-orbits of Q∗(
√
2h) namely

(2k
√
2)G and (2

k
√
2

−1
)G.

Proof.

Let a+
√
n

c
∈ Q∗(

√
2h), then a2 − n = bc forces that

a2 − 2h ≡ bc(mod 2h) ⇒ a2 ≡ bc(mod 2h)

But the congruence a2 ≡ bc(mod 2h) is solvable if and only if bc ≡ 1(mod 8),
Moreover the quadratic residue of 2h, h ≥ 3 are those integers of the form
8l + 1 which are less than 2h. Since all values of b or c which are quadratic
residues and quadratic non-residues of 2h lie in the distinct orbits. Thus the
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classes [a, b, c] (modulo 2h) with b or c quadratic residues of 2h lie in the orbit
(2k

√
2)G and similarly the classes [a, b, c] (modulo 2h) with b or c quadratic

non-residues of 2h lie in the orbit (2
k
√
2

−1
)G, This proves the result. �

Illustration 2.9

There are exactly two G-orbits of Q∗(
√
27) namely (23

√
2)G and (2

3
√
2

−1
)G, In

the closed path lying in the orbit (23
√
2)G, the transformation

(yx)11(y2x)3(yx)5(y2x)3(yx)11

fixes 23
√
2. Similarly in the closed path lying in the orbit (2

3
√
2

−1
)G, the trans-

formation
(yx)11(y2x)3(yx)5(y2x)3(yx)11

fixes −23
√
2.

3 Action of the subgroup G∗ = 〈yx〉 and

G∗∗ = 〈yx, y2x〉 on Q∗(
√
n).

Let us suppose that G∗ = 〈yx〉 and G∗∗ = 〈yx, y2x〉 are two subgroups of G.
In this section, we determine the G-subsets and G-orbits of Q∗(

√
n) by sub-

group G∗ and G∗∗ acting on Q∗(
√
n). Let yx(α) = α+ 1 and y2x(α) = α

α+1
.

Thus yx(a+
√
n

c
) = a1+

√
n

c1
, with a1 = a + c, b1 = 2a + b + c, c1 = c and

y2x(a+
√
n

c
) = a2+

√
n

c2
, with a2 = a+ b, b2 = b, and c2 = 2a+ b+ c.

In the next Lemma we see that the transformation yx fixes the classes [0, 0, c]
(modulo p) and the chain of these classes help us in finding G∗-subsets of
Q∗(

√
n).

Lemma 3.1

Let p be any prime, n ≡ 0(mod p), Then for any k ≥ 1, (yx)k[0, 0, c] =
[kc, k2c, c] (mod p) and in particular (yx)p[0, 0, c] = [0, 0, c] (mod p).
Proof.

Let α = [0, 0, c] (mod p) be a class contained in E0
p . Applying the linear

fractional transformation yx on α successively we see yx[0, 0, c] = [c, c, c],
(yx)2[0, 0, c] = [2c, 4c, c], (yx)3[0, 0, c] = [3c, 9c, c] continuing this process k-
times we obtain
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(yx)k[0, 0, c] = [kc, k2c, c] (mod p)
In particular for k = p, kp ≡ 0(mod p) and k2p ≡ 0(mod p). Thus we get
(yx)p[0, 0, c] = [0, 0, c] (mod p). �

Lemma 3.2

Let p be an odd prime, n ≡ 0(mod p) and G∗ = 〈yx〉, Then the sets
A1 = {α ∈ Q∗(

√
n) : (c/p) = 1}, A2 = {α ∈ Q∗(

√
n) : (c/p) = −1},

C1 = {α ∈ Q∗(
√
n) : c ≡ 0(mod p) with (b/p) = 1}, C2 = {α ∈ Q∗(

√
n) : c ≡

0(mod p) with (b/p) = −1},
are G∗-subsets of Q∗(

√
n).

Proof.

For any α = a+
√
n

c
∈ A1 with n ≡ 0(mod p), a2 − n = bc gives

a2 ≡ bc(mod p) (5)

we have two cases.
(i) If a ≡ 0(mod p), The congruence (5) forces that bc ≡ 0(mod p), Then
either b ≡ 0(mod p) or c ≡ 0(mod p) but not both. So in this case α belongs
to the class [0, b, 0] or [0, 0, c] modulo p.
(ii) If a 6≡ 0(mod p), a2 ≡ bc(mod p), Then (5) forces that either both b, c
are quadratic residues of p or both quadratic non-residues of p.
As yx : [a, b, c] → [a + c, 2a + b + c, c], Then it is clear that the set A1 is
invariant under the action of the mapping yx, So the set A1 is a G∗-subset
Q∗(

√
n). Similarly the set A2 is G∗-subset of Q∗(

√
n).

Again for any α = a+
√
n

c
∈ C1 by congruence (5) c ≡ 0(mod p) ⇒ a ≡

0(mod p), with b 6≡ 0(mod p), so the classes belonging to the set C1 are of
the form [0, b, 0] with b quadratic residue of p. Since the mapping yx fixes
the classes [0, b, 0]. Thus clearly the set C1 is a G∗-subsets. Similarly the set
C2 is G∗-subsets of Q∗(

√
n). �

In the next theorem we determine two G-subsets of Q∗(
√
n) by using A1, A2,

C1 and C2 as given in Lemma 3.2.

Theorem 3.3

The sets S1 = A1 ∪ C1 and S2 = A2 ∪ C2 are two G-subsets of Q∗(
√
n).

Proof.

Let α = a+
√
n

c
∈ S1 then either α ∈ A1 or α ∈ C1 with n ≡ 0(mod p). Thus it

is clear that the classes [a, b, c] (mod p) with b or c quadratic residues of p is
contained in A1 ∪ C1. By Lemma 3.1 yx fixes the classes [0, 0, c] (modulo p).
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Also the classes belonging to A1, A2 are connected to the classes belonging
to C1, C2, respectively under x. Since the modular group PSL(2, Z) has the
representation G = 〈x, y : x2 = y3 = 1〉 and every element of G is a word in
its generators x, y, to prove that S1 is invariant under the action of G, it is
enough to show that every element of S1 is mapped onto an element of S1

under x and y. Thus clearly we see that S1 = A1 ∪ C1 and S2 = A2 ∪ C2 are
both G-subsets of Q∗(

√
n). �

In view of the above theorem we observe that for n = 2 the action of G
on Q∗(

√
n) is transitive. Since 1 is the only quadratic residue of 2 and there

is no quadratic non-residue of 2, Therefore the set S2 becomes empty and S1

is the only G-subset of Q∗(
√
2). While the action of G on Q∗(

√
n), n 6= 2 is

intransitive.

Illustration 3.4

Let p = 5 and α = a+
√
n

c
∈ Q∗(

√
n), with n ≡ 0(mod 5), is of the form

[a, b, c](mod 5).
In modulo 5, the squares of the integers 1, 2, 3, 4 are

12 ≡ 42 ≡ 1 and 22 ≡ 32 ≡ 4

Consequently, the quadratic residues of 5 are 1, 4, and the non residues are
2, 3. Thus A1 consists of elements of Q∗(

√
n) of the form

[0, 0, 1], [0, 0, 4], [1, 1, 1], [4, 1, 1], [2, 4, 1], [2, 1, 4], [3, 1, 4], [3, 4, 1], [1, 4, 4],

[4, 4, 4]mod 5 .

Then A1 is invariant under yx, Thus A1 is G∗-subset of Q∗(
√
n).

The elements of A2 are of the form

[0, 0, 2], [0, 0, 3], [2, 2, 2], [3, 2, 2], [2, 3, 3], [4, 3, 2],

[4, 2, 3], [1, 2, 3), [1, 3, 2] and [3, 3, 3] mod 5 only.

Again A2 is invariant under yx, Thus A2 is also G∗-subset of Q∗(
√
n).

The elements of C1 are of the form [0, 1, 0] and [0, 4, 0], and the elements of
C2 are of the form [0, 2, 0] and [0, 3, 0] Thus C1 and C2 are G∗-subsets.
Then clearly the sets S1 = A1 ∪ C1 and S2 = A2 ∪ C2 are two G-subsets of
Q∗(

√
n).
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In the next lemma we find the conditions when n is quadratic residue of p.

Lemma 3.5

For any α(a, b, c) ∈ Q∗(
√
n), n is quadratic residue of p if and only if either

c or b ≡ 0(mod p).
Proof.

Let α = a+
√
n

c
∈ Q∗(

√
n), Then a2 − n = bc forces that

a2 − n ≡ bc(mod p) (6)

Let either b ≡ 0(mod p) or c ≡ 0(mod p)
then congruence (6) implies that a2 ≡ n(mod p) which shows that n is
quadratic residue of p
Conversely let n be quadratic residue of p then clearly a2 ≡ n(mod p) that
shows either b ≡ 0(mod p) or c ≡ 0(mod p). �

Further we see the action of G∗∗ = 〈yx, y2x〉 on Q∗(
√
n) with n quadratic

residue of p and determine four proper G∗∗-subsets of Q∗(
√
n).

Theorem 3.6

Let p be an odd prime and n is quadratic residue of p, let α = a+
√
n

c
∈ Q∗(

√
n)

and G∗∗ = 〈yx, y2x〉, then the sets
G1 = {α ∈ Q∗(

√
n) : (c/p) = 1}, G2 = {α ∈ Q∗(

√
n) : (c/p) = −1},

are two G∗∗-subsets of Q∗(
√
n). �

Proof.

Let α = a+
√
n

c
∈ Q∗(

√
n), with a2 − n ≡ bc(mod p), and a, b, c modulo p are

belonging to the set {0, 1, 2, ..., p− 1}.
Let p is an odd prime with n quadratic residue of p, then either b ≡ 0(mod p)
or c ≡ 0(mod p).
Since yx : [a, b, c] → [a+c, 2a+b+c, c] and y2x : [a, b, c] → [a+b, b, 2a+b+c],
Since every element of G∗∗ is a word in its generators yx, y2x, Then clearly
the sets G1, G2, are two G∗∗-subsets of Q∗(

√
n). �

Corollary 3.7 〈G∗∗, x〉 = G
Proof.

We know that G = 〈x, y : x2 = y3 = 1〉 and G∗∗ = 〈yx, y2x〉, the result
follows from the fact that the generators x, y of G can be written as word by
the elements of 〈G∗∗, x〉 . �

Finally we find G-orbits of Q∗(
√
37) with help of G∗∗-subsets as given in

12



Theorem 3.6. It is important to note that 37 is the smallest prime which
have four G-orbits and all odd primes less than 37 has exactly two G-orbits.

Illustration 3.9

In the coset diagram forQ∗(
√
37), There are exactly four G-orbits of Q∗(

√
37)

given by
(
√
37)G, (1+

√
37

2
)G, (1+

√
37

−3
)G, (−1+

√
37

−3
)G.

The G1 contains three orbits (
√
37)G, (1+

√
37

−3
)G, (−1+

√
37

−3
)G, While the set G2

contains only one orbit (1+
√
37

2
)G.

In the closed path lying in the orbit (
√
37)G, the transformation

g1 = (yx)6(y2x)12(yx)6

fixes k =
√
37, that is g1(k) = ((yx)6(y2x)12(yx)6)(k) = k, and so gives the

quadratic equation k2 + 37 = 0, the zeros, ±
√
37, of this equation are fixed

points of the transformations g1.
In the closed path lying in the orbit (1+

√
37

2
)G, the transformations

g2 = (yx)3(y2x)(yx)(y2x)5(yx)(y2x)(yx)2

fixes l = 1+
√
37

2
and so gives the quadratic equation l2 − l− 9 = 0, the zeros,

1±
√
37

2
, of this equation are fixed points of g2.

Similarly in the closed path lying in the orbit (1+
√
37

−3
)G the transformation

g3 = (yx)2(y2x)2(yx)(y2x)3(yx)2(y2x)(yx)

fixes (1+
√
37

−3
) and corresponding to the closed lying in the orbit (−1+

√
37

−3
)G,

the transformation

g4 = (yx)(y2x)(yx)2(y2x)3(yx)(y2x)2(yx)2

fixes (−1+
√
37

−3
).

By [7], [15] we see that τ ∗(37) = 124, That is there are 124 ambiguous
numbers in the coset diagram for Q∗(

√
37) while the ambiguous length of

the orbits are 48, 28, 24 and 24 respectively. �
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