
ar
X

iv
:1

00
9.

46
13

v1
  [

m
at

h.
A

P]
  2

3 
Se

p 
20

10

A REMARK CONCERNING FEYNMAN KAC FORMULAS FOR THE

PERTURBED HARMONIC OSCILLATOR

LISETTE JAGER

Laboratoire de Mathématiques
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Abstract. We give the solution of certain parabolic evolution problems (time-depending
perturbations of the heat equation for the harmonic oscillator ) as explicit integrals on
a space of continuous functions, called the Wiener space. The methods are based on
the Mehler formula giving the solution of the unperturbed problem and on the use of
discretization to split the difficulties.

1. Introduction.

The aim of this article is to give an explicit expression for the solutions of the problem

(1)







∂v

∂t
(t, x)− ∂2v

∂x2
(t, x) + (x2 + c(t, x))v(t, x) = 0 on ]0,∞[×R

lim
t→0

v(t, x) = v0(x)

,

as a Feynman Kac type integral on the Wiener space CW , which is the space of continu-
ous functions on [0, 1], equipped with a special measure mW called Wiener measure (see
Subsection 2.1).
Recall that the theory of semigroups and their perturbations gives the existence and
uniqueness of the solution of (1) in C0(R+, L2(R)), if, for example, c is continuous,
bounded and satisfies the following Hölder condition

(2) ∃L > 0, ∃α ∈ [0, 1] : ∀s, t ∈ [0,∞), ∀x ∈ R, |c(t, x)− c(s, x)| ≤ L|t− s|α .

The problem of giving such explicit solutions has already been studied under more re-
strictive conditions than in the present case. In [3], [6], the case when the potential
V (t, x) = x2+ c(t, x) is replaced by a general, unbounded but time-independant potential
V (x) is studied and in [5], the author deals with the case when V (t, x) is bounded.
The present work is devoted to the study of the mixed case (1). The main result of this
paper is the following

Theorem 1. Let v0 ∈ L2(R). Let c be continuous and bounded on [0,∞)× R. Suppose
that c belongs to L2(]0, T [×R) for any T > 0 and satisfies the Hölder condition (2). The
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function v defined on ]0,∞)× R by

(3)

v(t, x) =

∫

CW

v0(
√
2t w(1) + x) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

exp

(

−t
∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds

)

dmW (w)

is the solution of (1) in C0(R+, L2(R)).

This result differs from the usual Feynman-Kac formula, for the function w ∈ CW is
never evaluated in t. No well known change of measure ([6], [1], [9]) on CW allows to get
one formula from the other one.
One interest would be to get regularity results (or to study the dependency on a param-
eter) more easily than using the theory of semi-groups, by straightforward derivations.
Problem (1) will be considered as a perturbation of the heat equation related to the har-
monic oscillatorH . Section 2 contains the notions needed about Wiener integrals, followed
by some facts about the heat kernel for the harmonic oscillator, in particular Mehler’s
formula. The proof of a preliminary version of Theorem 1, under restrictive regularity
conditions, is completed in Sections 3 and 4 by constructing a sequence of functions ex-
pressed as integrals on CW and converging to the solution of (1). The regularity conditions
are weakened in Section 6, which leads to Theorem 1. In section 5, a slight modification
of section 3 gives an alternate demonstration of Feynman-Kac formula, which does not
rely on Itô calculus. Eventually we give some explicit expressions of Wiener integrals,
which can be deduced from Theorem 1 ( annexe A).

2. Preliminaries

2.1. Wiener integrals. The construction of the Wiener measure is detailed, for example,
in [6] and [10]. The (classical) Wiener space, denoted by CW , is the set of all real-valued
continuous functions w on [0, 1], with w(0) = 0. It can be equipped with a probability
measure mW called Wiener measure, which is defined on a σ-field M

∗ containing all sets
of the type

J = {w ∈ CW : (w(t1), . . . , w(tn)) ∈ H},
where t0 = 0 < t1 < · · · < tn ≤ 1 and H is a Borel set of Rn. For this kind of set the
measure is given by

mW (J) =

∫

H
ft1,...,tn(ξ1, . . . , ξn) dξ1 . . . dξn,

where ft1,...,tn is the normal density

ft1,...,tn(ξ1, . . . , ξn) =

(

(2π)n
n∏

i=1

(ti − ti−1)

)−1/2

exp

(

−1

2

n∑

i=1

(ξi − ξi−1)
2

ti − ti−1

)

(with ξ0 = 0).
The integral of an integrable, real-valued function F defined on CW will be denoted by
EW [F ] or

∫

CW
F (w) dmW (w). When F (w) depends on the values of w at finitely many
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fixed points 0 ≤ t1 < t2 < . . . tn of [0, 1], EW [F ] can be expressed as follows. Let ϕ be
a measurable real-valued function on R

n and let R1 denote the Borel sets on R. The
mapping

F : (CW ,M
∗) → (R,R1)

w 7→ ϕ(w(t1), . . . , w(tn))

is measurable and

(4)

∫

CW

F (w) dmW (w) =

∫

Rn

ϕ(ξ1, . . . , ξn)ft1,...,tn(ξ1, . . . , ξn) dξ1 . . . dξn,

in the sense that the existence of one side implies the existence of the other and the
equality. When F depends on the value of w at infinitely many values of t, it is useful
to recall that, if the topology on CW is defined by the uniform norm, any open set is
M

∗-measurable and any real-valued, continuous function is M∗-measurable.
One important propertie is that the so-called coordinate process, defined on CW by

∀t ∈ [0, 1], ∀w ∈ CW , Xt(w) = w(t)

is a Brownian motion. A consequence is Fernique’s Theorem, which states that there

exists a positive α such that the integral

∫

CW

eα||w||2 dmW (w) converges, ||w|| being the

uniform norm of w ([6]).

2.2. Heat equation for the harmonic oscillator. Classically the problem

(5)

{
∂v

∂t
(t, x)− ∂2v

∂x2
(t, x) + x2v(t, x) = 0 (t, x) ∈]0,∞[×R,

v(0) = v0

(where v0 ∈ L2(R)) has a unique solution v belonging to C0([0,∞[, L2(R)) ([8]). More
precisely, there exists a semigroup (Ut)t≥0 of L2(R)-contractions such that, for all t > 0,
v(t, ·) = Utv0. In the case of the harmonic oscillator this semigroup is explicitely given by
Mehler’s formula ([4])

(Utv0)(x) =

∫

R

1
√

2πsh(2t)
exp

(

−1

2

(

(x2 + z2)
ch(2t)

sh(2t)
− 2xz

sh(2t)

))

v0(z) dz.(6)

One can check directly that v : (t, x) 7→ (Utv0)(x) is infinitely derivable on ]0,∞[×R. The

change of variable z − x

ch(2t)
= y gives another expression,

v(t, x) = (Utv0)(x) =

∫

R

q(t, x, y) v0

(

y +
x

ch(2t)

)

dy(7)

where

q(t, x, y) = (2π sh(2t))−1/2 exp

(

−1

2

ch(2t)

sh(2t)
y2 − 1

2

sh(2t)

ch(2t)
x2
)

.

Both formulae give solutions of (5) for initial conditions which do not necessarily belong
to L2. For example, if v0 is continuous and vanishes at infinity, Utv0 is C∞ on ]0,∞[×R

and continuous on [0,+∞)× R. The property

∀t, τ ≥ 0 , UtUτv0 = Ut+τv0
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remains valid as well.

3. Approximation sequence

This Section is the first step in the proof of Theorem 1. It is devoted to the construction

of a sequence (v
(t)
n )n∈N of functions designed to approximate the solution of (1). For a

given positive integer n and a fixed positive t, n factors e
t
n
H coming from (6) alternate

with n factors e
t
n
c(tk ,x) (as in Trotter’s formula), where the tk s are the bounds of a suitable

discretization of [0, t]. The expression thus found can be written as an integral on the
Wiener space which converges to the function v in Theorem 1. The exponent (t) stresses
the fact that the sequence depends on the upper bound of the time interval.

Suppose that the function c = c(t, x) is continuous and bounded on [0,∞)×R and that
v0 = v0(x) is continuous on R and vanishes at infinity. Let us split the interval [0, t] into

2n subintervals bounded by the τk = kt
2n
, k = 0, . . . , 2n and assign v

(t)
n to satisfy, on each

subinterval, an incomplete version of

∂v

∂t
(t, x)− ∂2v

∂x2
(t, x) + x2v(t, x) + c(t, x)v(t, x) = 0.

The sequence v
(t)
n is constructed by induction in the following way

• on the even interval [τ2k, τ2k+1], v
(t)
n is a solution of the heat equation for the

harmonic oscillator

(8)
∂v

∂τ
(τ, x)− 2

(
∂2v

∂x2
(τ, x)− x2v(τ, x)

)

= 0

and satisfies the initial condition lim
τ→τ2k

v(τ, x) = v(t)n (τ2k, x), where v
(t)
n (τ2k, ·) was

built in the preceding step ;

• on the odd interval [τ2k+1, τ2k+2], v
(t)
n satisfies the ordinary differential equation

(9)
∂v

∂τ
(τ, x) + 2c(τ2k+2, x)v(τ, x) = 0,

with the initial condition lim
τ→τ2k+1

v(τ, x) = v(t)n (τ2k+1, x), where v
(t)
n (τ2k+1, ·) was

built in the preceding step.

Both equations have of course an explicit solution

v(t)n (τ, x) =
(
U2(τ−τ2k)v

(t)
n (τ2k, ·)

)
(x) on [τ2k, τ2k+1],

v(t)n (τ, x) = e−2c(τ2k+2,x)(τ−τ2k+1)v(t)n (τ2k+1, x) on [τ2k+1, τ2k+2].

The equation (9) is a constant coefficient linear differential equation since c depends on
the fixed time τ2k+2. The initial conditions ensure the continuity with respect to τ . The
factor 2 in (8) and (9) compensates the fact that each equation is solved on half of the
interval (see Lemma 9 below and [5], where this discretization was introduced, to treat
the usual heat equation.)
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We first write v
(t)
n (t, x) as iterated integrals.

Proposition 2. For all real x we have

v(t)n (t, x) =

∫

Rn

(2πsh(2t/n))−n/2 v0

(

σn +
x

ch(2t/n)n

)

exp

(

−1

2

ch(2t/n)

sh(2t/n)

n∑

j=1

(

σn−j+1 −
σn−j

ch(2t/n)

)2
)

exp

(

−1

2

sh(2t/n)

ch(2t/n)

n∑

j=1

(

σn−j +
x

ch(2t/n)n−j

)2
)

exp

(

− t

n

n∑

j=1

c

(
jt

n
, σn−j +

x

ch(2t/n)n−j

))

dσ1 . . . dσn

with the convention σ0 = 0.

Proof. By induction on k we get that, for all τ ∈ [τ2k, τ2k+1],

(10)

v(t)n (τ, x) =

∫

Rk+1

q(2(τ − τ2k), x, yk+1)

k∏

j=1

q

(

t/n,
k+1∑

l=j+1

yl
ch(2t/n)l−1−j

+
x

ch(4(τ − τ2k))ch(2t/n)k−j
, yj

)

k∏

j=1

exp

(

− t

n
c

(

τ2j ,
k+1∑

l=j+1

yl
ch(2t/n)l−1−j

+
x

ch(4(τ − τ2k))ch(2t/n)k−j

))

v0

(
k+1∑

l=1

yl
ch(2t/n)l−1

+
x

ch(4(τ − τ2k))ch(2t/n)k

)

dy1 . . . dyk+1.

For τ = τ2n = t and k + 1 = n, this gives

v(t)n (t, x) =

∫

Rn

v0

(
n∑

l=1

yl
ch(2t/n)l−1

+
x

ch(2t/n)n

)

n∏

j=1

q

(

t/n,

n∑

l=j+1

yl
ch(2t/n)l−1−j

+
x

ch(2t/n)n−j
, yj

)

n∏

j=1

exp

(

− t

n
c

(

τ2j ,

n∑

l=j+1

yl
ch(2t/n)l−1−j

+
x

ch(2t/n)n−j

))

dy1 . . . dyn,
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with the convention that a sum is equal to zero if its lower index is strictly superior to its
upper index (this is useful for j = n). Let

(11) σk =
n∑

l=n+1−k

yl
ch(2t/n)l−1−n+k

, 1 ≤ k ≤ n

(recall σ0 = 0). Reciprocally,

yj = σn+1−j −
σn−j

ch(2t/n)
, j = 1, . . . , n.

and this change of variables y → σ has Jacobian equal to 1. Hence

v(t)n (t, x) =

∫

Rn

v0

(

σn +
x

(ch(2t/n))n

)

n∏

j=1

q

(
t

n
, σn−j +

x

(ch(2t/n))n−j
, σn+1−j −

σn−j

ch(2t/n)
,

)

n∏

j=1

exp

(

− t

n
c

(

jt/n, σn−j +
x

(ch(2t/n))n−j

))

dσ1 . . . dσn.

Replacing q by its expression gives the Proposition. �

The second step is the transformation of this integral on R
n into an integral on the

Wiener space. Since CW does not depend on n we then shall be able to let n converge to
infinity. These computations lead to the following Proposition.

Proposition 3. Let v0 be continuous and bounded on R. Suppose c is continuous and
has a lower bound on [0,∞) × R. Moreover let c have an x-derivative cx at each point
of ]0,∞) × R and suppose cx has an extension to [0,∞) × R which is continuous and
bounded.
When n goes to infinity the numerical sequence v

(t)
n (t, x) converges to a limit v(t, x) defined

by

v(t, x) =

∫

CW

v0(
√
2t w(1) + x) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

exp

(

−t
∫ 1

0

c
(

t(1− s),
√
2tw(s) + x

)

ds

)

dmW (w).

Proof. To bring out the normal density one uses the change of variables

(12) ξj = σj(n sh(2t/n))−1/2, 1 ≤ j ≤ n
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and the convention ξ0 = σ0 = 0. It follows

v(t)n (t, x) =

∫

Rn

(2π/n)−n/2v0

(

(n sh(2t/n))1/2ξn +
x

ch(2t/n)n

)

exp

(

−1

2
(n ch(2t/n)

n∑

ℓ=1

(

ξn−ℓ+1 −
ξn−ℓ

ch(2t/n)

)2
)

exp

(

−1

2

sh(2t/n)

ch(2t/n)

n∑

ℓ=1

(

(n sh(2t/n))1/2ξn−ℓ +
x

ch(2t/n)n−ℓ

)2
)

exp

(

− t

n

n∑

ℓ=1

c

(
ℓt

n
, (n sh(2t/n))1/2ξn−ℓ +

x

ch(2t/n)n−ℓ

))

dξ1 . . . dξn .

We introduce the normal density for equidistant points 0 ≤ ti = i/n ≤ 1 ,

ft1,...,tn(ξ1, . . . , ξn) = (2π/n)−n/2 exp

(

−1

2

n∑

i=1

n(ξi − ξi−1)
2

)

,

to make the transition to Wiener space more natural. We first obtain

v(t)n (t, x) =

∫

Rn

v0

(

(n sh(2t/n))1/2ξn +
x

ch(2t/n)n

)

ft1,...,tn(ξ1, . . . , ξn)

exp

(

n

2

n∑

i=1

(ξi − ξi−1)
2 − 1

2
(n ch(2t/n)

n∑

j=1

(

ξj −
ξj−1

ch(2t/n)

)2
)

exp

(

−1

2

sh(2t/n)

ch(2t/n)

n−1∑

j=0

(

(n sh(2t/n))1/2ξj +
x

ch(2t/n)j

)2
)

exp

(

− t

n

n−1∑

j=0

c

(
(n− j)t

n
, (n sh(2t/n))1/2ξj +

x

ch(2t/n)j

))

dξ1 . . . dξn ,

and then, by formula (4),

v(t)n (t, x) =

∫

CW

Fn(w)Gn(w)Hn(w) v0

(

(n sh(2t/n))1/2w(1) +
x

ch(2t/n)n

)

dmW (w),



8 LISETTE JAGER

with

Fn(w) = exp

(

n

2

n∑

i=1

[
(1− ch(2t/n))w(ti)

2 + (1− ch(2t/n)−1)w(ti−1)
2
]

)

Gn(w) = exp

(

−1

2

sh(2t/n)

ch(2t/n)

n−1∑

j=0

(

(n sh(2t/n))1/2w(tj) +
x

ch(2t/n)j

)2
)

Hn(w) = exp

(

− t

n

n−1∑

j=0

c

(
(n− j)t

n
, (n sh(2t/n))1/2w(j/n) +

x

ch(2t/n)j

))

.

The Proposition is now a consequence of the dominated convergence Theorem. The
convergences and estimations concerning the four factors are treated in the Lemma just
below

Lemma 4. Denote by m a lower bound of c. For all w ∈ CW ,

• 0 ≤ Fn(w) ≤ 1 and lim
n→∞

Fn(w) = 1,

• 0 ≤ Gn(w) ≤ 1 and lim
n→∞

Gn(w) = exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

,

• 0 ≤ Hn(w) ≤ e−mt and lim
n→∞

Hn(w) = exp
(
−t
∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds
)
,

•
∣
∣
∣
∣
v0

(

(n sh(2t/n))1/2w(1) +
x

ch(2t/n)n

)∣
∣
∣
∣
≤ ||v0||∞ and

lim
n→∞

v0

(

(n sh(2t/n))1/2w(1) +
x

ch(2t/n)n

)

= v0(
√
2t w(1) + x).

Proof of Lemma 4
We shall use more than once the continuity of w ∈ CW to compute limits of Riemann
sums like limn→∞

∑n−1
j=0 w(tj). The positivity and the estimates proposed are obvious,

except for Fn which we shall treat first.
Let us develop the argument of the exponential

An =
n

2

n∑

i=1

[
(1− ch(2t/n))w(ti)

2 + (1− ch(2t/n)−1)w(ti−1)
2
]
.

Since tn = 1 and w(t0) = w(0) = 0,

An =
n

2
(1− ch(2t/n))w(1)2 − n

2

(ch(2t/n)− 1)2

ch(2t/n)

n−1∑

i=1

w(ti)
2 ≤ 0 ,

and then Fn ≤ 1.
Now we claim that An converges to 0. An asymptotic expansion is enough for the term
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containing w(1). The second term can be written as

n2

2

(ch(2t/n)− 1)2

ch(2t/n)
× 1

n

n−1∑

i=1

w(ti)
2.

In this product the second factor converges to
∫ 1

0
w2 ds and the first one to 0, using an

asymptotic expansion.

To compute the limit of Gn we split the argument of the exponential into three terms :

An = −1

2

sh(2t/n)

ch(2t/n)

n−1∑

j=0

(n sh(2t/n))w(tj)
2

Bn = −sh(2t/n)

ch(2t/n)

n−1∑

j=0

(n sh(2t/n))1/2w(tj)
x

ch(2t/n)j

Cn = −1

2

sh(2t/n)

ch(2t/n)

n−1∑

j=0

x2

ch(2t/n)2j
.

A direct computation gives

An = −n
2

2

sh(2t/n)2

ch(2t/n)

1

n

n−1∑

j=0

w(tj)
2 −→ −(2t)2

2

∫ 1

0

w2(s) ds .

The third term is a geometric sum. An asymptotic expansion leads to

Cn −→ −tx2.
The second term is decomposed as

Bn = −x n3/2sh(2t
n
)3/2

ch(2t
n
)

1

n

n−1∑

j=0

w(tj)

︸ ︷︷ ︸

−x n3/2sh(2t
n
)3/2

ch(2t
n
)

1

n

n−1∑

j=0

w(tj)(ch(
2t

n
)−j − 1))

︸ ︷︷ ︸

Dn En

.

Since
n3/2sh(2t/n)3/2

ch(2t/n)
= (2t)3/2(1 + o(1/n)),

one has

Dn −→ −x(2t)3/2
∫ 1

0

w(s) ds.

Moreover

0 ≤ 1− 1

ch(2t/n)j
≤ 1− 1

ch(2t/n)n
∼ 2t2n−1



10 LISETTE JAGER

then

|En| ≤ |x|n
3/2sh(2t/n)3/2

ch(2t/n)
(1− ch(2t/n)−n))

1

n

n−1∑

j=0

|w(tj)| −→ 0.

To sum up, (ch(2t/n))−j can be replaced by 1 in all the w(tj)(ch(2t/n))
−j. We conclude

that

An +Bn + Cn −→ −2t2
∫ 1

0

w2(s) ds − x(2t)3/2
∫ 1

0

w(s) ds − tx2

= −t
∫ 1

0

(
x+ (2t)1/2w(s)

)2
ds.

Let us turn to Hn. For all j and all w we can write

−c
(
(n− j)t

n
, (n sh(2t/n))1/2w(j/n) +

x

ch(2t/n)j

)

≤ −m,

hence the estimate Hn(w) ≤ e−mt. Denote by ||cx||∞ the uniform norm of cx on ∈ [0,∞)×
R. The mean value theorem implies that

∣
∣
∣
∣
c

(

t− j

n
t, (n sh(2t/n))1/2w(j/n) +

x

ch(2t/n)j

)

− c

(

t− j

n
t,
√
2t w(j/n) + x

)∣
∣
∣
∣

≤ ||cx||∞
∣
∣
∣(n sh(2t/n))1/2w(j/n)−

√
2t w(j/n)

∣
∣
∣+ ||cx||∞

∣
∣
∣
∣

x

ch(2t/n)j
− x

∣
∣
∣
∣

≤ ||cx||∞||w||∞
∣
∣
∣(n sh(2t/n))1/2 −

√
2t
∣
∣
∣+ ||cx||∞|x|

∣
∣
∣
∣

1

ch(2t/n)n
− 1

∣
∣
∣
∣
,

in which the last term is independant of j. Therefore

t

n

∣
∣
∣
∣
∣

n−1∑

j=0

c
(
t− j

n
t, (n sh(

2t

n
))1/2w(j/n) +

x

ch(2t
n
)j
)
−

n−1∑

j=0

c
(
t− j

n
t,
√
2t w(j/n) + x

)

∣
∣
∣
∣
∣

≤ t||cx||∞
(
||w||∞

∣
∣
∣(n sh(2t/n))1/2 −

√
2t
∣
∣
∣+ |x|

∣
∣
∣
∣

1

ch(2t/n)n
− 1

∣
∣
∣
∣

)
,

which converges to 0 when n goes to infinity. We deduce that Hn(w) and

exp

(

− t

n

n−1∑

j=0

c

(

t− j

n
t,
√
2t w(j/n) + x

))

converge to the same limit. Since the function u 7→ c
(
t− ut,

√
2t w(u) + x

)
is continuous

on [0, 1], this limit is

exp

(

−t
∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds

)

.
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Let us treat the last point of the Lemma. Recall that v0 is continuous and bounded.
Its argument goes to (2t)1/2w(1) + x because

ch(2t/n)n = exp

(
2t2

n
+ o(

1

n2
)

)

→ 1,

which completes the proof. �

4. Preliminary version of Theorem 1

We still need to show that the function v constructed above as the limit, at time t, of

the sequence (v
(t)
n )n∈N is a solution of (1). The demonstration requires stronger regularity

conditions on v0 and c than the ones used to compute the limit. Here is the ( weaker )
version of Theorem 1 which will be proved in this section.

Theorem 5. Let v0 be a C4 function over R, which has bounded derivatives of order up
to 4. Suppose v0(x) converges to 0 when x goes to infinity.
Let c be a function which

• is continuous and bounded on [0,∞)× R,
• is C1 on ]0,∞)× R,
• has bounded space derivatives, up to order 4, these derivatives being continuous
and bounded on ]0,∞)× R.

The function v defined on ]0,∞)× R by

v(t, x) =

∫

CW

v0(
√
2t w(1) + x) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

exp

(

−t
∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds

)

dmW (w)

is a solution of (1).

We need preliminary results. The first Lemma shows that the sequence (v
(t)
n ) and one of

its derivatives converge on a dyadic subset of [0, t]. The second one gives uniform estimates

concerning some of the derivatives of v
(t)
n . The last result proves that a subsequence of

(v
(t)
n ) converges uniformly, and on [0, t] itself.

Lemma 6. Let t ∈]0,∞[, let D be the set

D =
{

τ ∈ [0, t] : ∃n0 ∈ N, ∃k0 ∈ {0, . . . , 2n0 − 1}, τ =
k0
2n0

t.
}

For all τ ∈ D and all x ∈ R,

lim
n→∞

v
(t)
2n (τ, x) = v(τ, x) and lim

n→∞

∂2v
(t)
2n

∂x2
(τ, x) =

∂2v

∂x2
(τ, x),

where v is the function defined in Theorem 1.
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The rest of this Section is devoted to the proof of the Lemmas and of Theorem 5.

Proof of Lemma 6

It is easier to express v
(t)
n (τ, x) when τ = kt/n is a bound of the subdivision. Therefore we

are led to consider nested subdivisions. A dyadic point τ =
k

2n
t, which is already a bound

of the subdivision with 2·2n intervals, is a bound of all following subdivisions. The set D is

the unions of all such points. Formula (10) gives v
(t)
n (τ, x) for τ ∈ [

2k

2n
t,
2k + 1

2n
t]. Adapting

the proof of Proposition (3) we deduce the expression of v
(t)
2n+p(τ, x) when τ =

k

2n
t =

2pk

2n+p
t

and obtain
(13)

v
(t)
2n+p (τ, x) =

∫

CW

v0

(
√

2pk sh(2t/2n+p)w(1) +
x

ch(2t/2n+p)2pk

)

exp

(

−1

2

sh(2t/2n+p)

ch(2t/2n+p)

2pk−1∑

l=0

(
√

2pk sh(2t/2n+p)w

(
l

2pk

)

+
x

ch(2t/2n+p)l

)2
)

exp

(

2pk

2
(1− ch(2t/2n+p)w(1)2 − 2pk

2

(ch(2t/2n+p)− 1)
2

ch(2t/2n+p)

2pk−1∑

l=1

w

(
l

2pk

)2
)

exp

(

− t

2n+p

2pk−1∑

l=0

c
(2pk − l

2n+p
t,
√

2pk sh(2t/2n+p)w
( l

2pk

)
+

x

ch(2t/2n+p)l
)

)

dmW (w).

The integrated terms are similar to the Fn, Gn, Hn treated in Lemma 4. We get the limit

of v
(t)
2n+p(τ, x) by letting p go to infinity in the integral and do not need the additional

hypotheses. The only difference is that

lim
p→∞

2pk sh(2t/2n+p) = τ.

To find the limit of ∂2xv
(t)
2n (τ, x), one has to derivate (13) twice with respect to x. The

derivatives of the first exponential term contain the expression

M = −sh(2t/2n+p)

ch(2t/2n+p)

2pk−1∑

l=0

(
√

2pk sh(2t/2n+p)w

(
l

2pk

)

+
x

ch(2t/2n+p)l

)
1

ch(2t/2n+p)l
,

as well as its square and its derivative (with respect to x). We estimate M by K(||w||∞+
|x|) with a constant K depending only on t. The other exponential terms and their deriva-
tives are bounded with respect to w. Therefore we can apply the dominated convergence
Theorem, since

∫

CW
||w||2 dmW (w) is bounded (by Fernique’s Theorem, see Section 2 ).

As for the limits themselves, the same techniques can be applied as in the proof of Lemma
4. Note that the estimate of ∂3xc is needed to treat terms containing ∂2xc for we use the
mean value theorem. �
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Lemma 7. There exists C > 0, depending on t and x, such that

∀j ∈ {0, . . . , 4}, ∀n ∈ N
∗, ∀k ∈ {0, . . . , n− 1}, ∀τ ∈

[
kt

n
,
(k + 1)t

n

]

,

∣
∣
∣
∣
∣

∂jv
(t)
n (τ, x)

∂xj

∣
∣
∣
∣
∣
≤ C.

Proof of Lemma 7

We first treat the interval [2kt
2n
, (2k+1)t

2n
]. Formula (10) shows that

vn(τ, x) =

∫

Rk+1

(2πsh(4(τ − kt/n)))−1/2(2πsh(2t/n))−k/2

exp

(

−1

2

sh(4(τ − kt/n))

ch(4(τ − kt/n))
x2
)

exp

(

−1

2

ch(4(τ − kt/n))

sh(4(τ − kt/n))
σ2
1

)

exp

(

−1

2

ch(2t/n)

sh(2t/n)

k∑

j=1

(

σk+2−j −
σk+1−j

ch(2t/n)

)2
)

exp

(

−1

2

sh(2t/n)

ch(2t/n)

k∑

j=1

(

σk+1−j +
x

ch(4(τ − kt/n))ch(2t/n)k−j

)2
)

exp

(

− t

n

k∑

j=1

c

(
j

n
t, σk+1−j +

x

ch(4(τ − kt/n))ch(2t/n)k−j

))

v0

(

σk+1 +
x

ch(4(τ − kt/n))ch(2t/n)k

)

dσ1 . . . dσk+1.

The space-derivatives of order at most 4 of all terms but one are bounded by constants

depending on t, ||v(j)0 || and ||∂jxc|| (j ≤ 4), but not on k, n, τ or x. The derivative of

exp

(

−1

2

sh

ch
(4(τ − kt

n
))x2

)

exp



−1

2

sh

ch
(
2t

n
)

k∑

j=1

(

σk+1−j +
x

ch(4(τ − kt
n
))ch(2t

n
)k−j

)2




is less easy to treat. It is the product of the exponential term and of

−sh

ch
(4(τ−kt

n
))x− sh

ch
(
2t

n
)

k∑

j=1

(

σk+1−j +
x

ch(4(τ − kt
n
))ch(2t

n
)k−j

)

1

ch(4(τ − kt
n
))ch(2t

n
)k−j

.

We then have to estimate expressions such as

(∑

asbscs

)j

exp

(

−1

2

∑

asb
2
s

)

,



14 LISETTE JAGER

where the as are quotients sh/ch and the cs are the (ch(4(τ − kt
n
))−1ch(2t

n
)−s. Applying

Cauchy-Schwartz inequality to the sum outside of the exponential term shows it is smaller
than

√∑
asb2s

∑
asc2s. The first factor is absorbed by the exponential and the second one

is a geometric sum, which is bounded.
It is eventually possible to estimate the derivatives of order 0 ≤ j ≤ 4 by

C

∫

Rk+1

(2πsh(4(τ − kt/n)))−1/2(2πsh(2t/n))−k/2 exp

(

−1

2

ch(4(τ − kt/n))

sh(4(τ − kt/n))
σ2
1

)

exp

(

−1

2

ch(2t/n)

sh(2t/n)

k∑

j=1

(

σk+2−j −
σk+1−j

ch(2t/n)

)2
)

dσ1 . . . dσk+1 ,

where the constant C depends on t, ||v(j)0 ||∞ et ||∂jc||∞ (0 ≤ j ≤ 4) only. The integral is
equal to

ch

(

4(τ − kt

n
)

)−1/2

ch(2t/n)−k/2 ≤ 1,

which establishes our claim for the interval [ 2k
2n
t, 2k+1

2n
].

On the following interval, [2k+1
2n

t, 2k+2
2n

],

v(t)n (τ, x) = exp

(

−2(τ − 2k + 1

2n
t)c(

k + 1

n
t), x)

)

v(t)n (
2k + 1

2n
t, x).

It is the product of two functions having bounded space-derivatives (of order at most 4).
This proves the estimations on [0, t]. �

Lemma 8. Let (un)n∈N be a sequence of functions continuous on [0, T ], piecewise C1 on
[0, T ] and satisfying

∃C > 0 : ∀n ∈ N, ∀τ ∈ [0, T ] such that u′n(τ) exists, |u′n(τ)| ≤ C.

Suppose D is a dense subset of [0, T ] and u, a continuous function on [0, T ], such that

∀τ ∈ D, lim
n
un(τ) = u(τ).

Then the sequence (un) has a subsequence which converges to u uniformly on [0, T ].

Proof. The bounds on the derivatives show that (un)n∈N is bounded and equicontinuous
on [0, T ]. Ascoli’s Theorem yields the existence of a uniformly converging subsequence.
Its limit ũ is continuous on [0, T ] and equal to u on the dense subset D, which justifies
the Lemma. �

Proof of Theorem 5.

Let x be fixed. We have proved that the (numerical) sequences (v
(t)
2n (τ, x))n∈N and ((∂x)

2v
(t)
2n (τ, x))n∈N

converge (respectively) to v(τ, x) and ∂2xv(τ, x) for all τ belonging to the dense subset D
defined in Lemma 6. Now to prove the uniform convergence on [0, t] we apply Lemma 8.

The continuity of v
(t)
2n (·, x) is a consequence of its definition. The continuity of ∂2xv

(t)
2n (·, x)

can be proved by studying the expressions appearing in the proof of Lemma 7 and so is
the derivability with respect to τ .

To establish the bounds on the τ -derivatives let us recall that
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(1) On the even intervals [2kt/2.2n, (2k + 1)t/2.2n],

∂v
(t)
2n (τ, x)

∂τ
= 2

∂2v
(t)
2n (τ, x)

∂x2
− 2x2v

(t)
2n (τ, x),

(2) on the odd intervals [(2k + 1)t/2.2n, (2k + 2)t/2.2n],

∂v
(t)
2n (τ, x)

∂τ
= −2c((2k + 2)t/2.2n, x)v

(t)
2n (τ, x).

The bounds on the time derivatives come from the estimates on the space derivatives : to

show that ∂τv
(t)
2n is bounded one needs the x-derivatives up to order 2, to treat ∂τ (∂x)

2v
(t)
2n (τ, x)

one needs the x- derivatives up to order 4. The bounds concerning the space-derivatives

have been established in Lemma 7. It follows that a subsequence of (v
(t)
2n ) (resp. of (∂τv

(t)
2n )

) converges uniformly on [0, t]. Let us denote its indexes by ϕ(n).

Next we write more concisely the system of equations defining v
(t)
n (according to the

interval). On [0, t] \ {kt/2n}, 0 ≤ k ≤ 2n, v
(t)
n satisfies

∂v
(t)
n (τ, x)

∂τ
= 2βn(τ)

(

∂2v
(t)
n (τ, x)

∂x2
− x2v(t)n (τ, x)

)

− 2(1− βn(τ))cn(τ, x)v
(t)
n (τ, x),

with

βn(τ) = 1 on

]
2k

2n
t,
2k + 1

2n
t

]

= 0 on

]
2k + 1

2n
t,
2k + 2

2n
t

]

and cn(τ, x) = c(2k+2
2n

t, x) on

]
2k

2n
t,
2k + 2

2n
t

]

.

This equation still holds for the subsequence indexed by ϕ(n). The uniform convergence
allows us to integrate on any subinterval [0, s] of [0, t] :

v
(t)
ϕ(n)(s, x)− v

(t)
ϕ(n)(0, x) =

2

∫ s

0

βϕ(n)(τ)

(
∂2v

(t)
ϕ(n)(τ, x)

∂x2
− x2v

(t)
ϕ(n)(τ, x)

)

− (1− βϕ(n)(τ))cϕ(n)(τ, x)v
(t)
ϕ(n)(τ, x) dτ.

Now let n tend to infinity. The following result ([5]) shows what become of βn and of the
factor 2 :

Lemma 9. Let βn be the function defined above. Let (ψn) be a sequence of functions
belonging to ∈ L1([0, t]) and suppose it converges uniformly on [0, t] to a limit ψ. Then,
for all 0 ≤ τ ≤ σ ≤ t,

lim
n→∞

∫ σ

τ

βnψn ds = lim
n→∞

∫ σ

τ

(1− βn)ψn ds =
1

2

∫ σ

τ

ψ ds.
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Eventually, for all s ≤ t, we obtain

v(s, x)− v0(x) =

∫ s

0

(
∂2v(τ, x)

∂x2
− x2vτ, x)

)

− c(τ, x)v(τ, x) dτ .

As v(s, x) does not depend on t (the intermediates v
(t)
n depend on t but not the limit),

the function v is a solution of (1). �

5. Another proof of Feynman Kac formula

Before completing the proof of Theorem 1 we shall see that a small modification of the
method developped in Section3 yields the following expression for v. For sufficiently small
t,

v(t, x) =

∫

CW

v0(w(2t) + x) exp

(

−1

2

∫ 2t

0

(x+ w(s))2 ds

)

exp

(

−1

2

∫ 2t

0

c (t− s/2, w(s) + x) ds

)

dmW (w) .

With u(t, x) = v(t/2, x), u satisfies

∂u

∂t
(t, x)− 1

2

∂2u

∂x2
(t, x) +

1

2
(x2 + c(t/2, x))u(t, x) = 0,

which explains the differences with the usual expression.
The first point is that the demonstration does not use the Itô integral at all. What

is, perhaps, more significant is that both expressions of v are not linked by a “classical”
change of variable on Wiener space.
Proof. It essentially follows the same steps as in Section 3. Starting from Proposition 2,
we consider the time sequence (tk)0≤k≤n with tk = k 2t

n
instead of tk = k/n. This yields

v(t)n (t, x) =

∫

CW

(
2t

nsh(2t/n)

)n/2

v0

(

w(2t) +
x

ch(2t/n)n

)

exp

(

−1

2

ch(2t/n)

sh(2t/n)

n∑

j=1

[

w(2jt/n)− w(2(j − 1)t/n)

ch(2t/n)

]2
)

exp

(

n

4t

n∑

j=1

[w(2jt/n)− w(2(j − 1)t/n)]2
)

exp

(

−1

2

sh(2t/n)

ch(2t/n)

n−1∑

j=0

(

w(2jt/n) +
x

ch(2t/n)j

)2
)

exp

(

− t

n

n−1∑

j=0

c

(
(n− j)t

n
, w(2jt/n) +

x

ch(2t/n)j

))

dmW (w).
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Most of the terms are bounded and converge as in Section 3 or even more easily. It just
remains to treat

−1

2

ch(2t/n)

sh(2t/n)

n∑

j=1

[

w(2jt/n)− w(2(j − 1)t/n)

ch(2t/n)

]2

+
n

4t

n∑

j=1

[w(2jt/n)− w(2(j − 1)t/n)]2 .

This expression splits into An +Bn where

An =

(
n

4t
− 1

2

ch(2t/n)

sh(2t/n)

)

w(2t)2 −
n−1∑

j=1

w(2jt/n)2
(ch(2t/n)− 1)2

2ch(2t/n)sh(2t/n)

and

Bn =

(
n

2t
− 1

sh(2t/n)

) n−1∑

j=1

w(2jt/n) (w(2jt/n)− w(2(j − 1)t/n)) .

The first term is negative and converges to 0. The second one can be estimated as follows

|Bn| ≤
∣
∣
∣
∣

n

2t
− 1

sh(2t/n)

∣
∣
∣
∣

n

2t

√
√
√
√

2t

n

n−1∑

j=1

w(2jt/n)2

√
√
√
√

2t

n

n−1∑

j=1

(w(2jt/n)− w(2(j − 1)t/n))2

≤ M
√
2t||w||

√
√
√
√

2t

n

n−1∑

j=1

(w(2jt/n)− w(2(j − 1)t/n))2.

As
∑n−1

j=1 (w(2jt/n)− w(2(j − 1)t/n))2 is the quadratic variation of a Brownian motion,

the subsequence for n = 2p converges to
√
2t and it is smaller than 4n||w||2. To sum up,

|Bn| ≤ 4tM ||w||2 and converges to 0. This estimation and Fernique’s theorem allow us to
use Lebesgue dominated convergence theorem, provided t is small enough. �

6. Proof of Theorem 1

To get the optimal form of the Theorem, it remains to prove that formula (3) gives
a solution of Problem (1) even if v0 and c satisfy much weaker assumptions. This will
be done by approximating general v0 and c by regular functions and showing that the
solution of the approximating problem converges to that of the real problem.

Proposition 10. For v0 ∈ L2(R) and c measurable and inferiorly bounded on ]0,∞)×R

we define, following formula (3),

S(v0, c)(t, x) =

∫

CW

v0(
√
2t w(1) + x) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

exp

(

−t
∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds

)

dmW (w) .
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For all 0 ≤ α < β <∞, S(v0, c) belongs to L
2([α, β]× R). Moreover,

(14)

∫

[α,β]×R

|S(v0, c)(t, x)|2 dtdx ≤ ||v0||2
∫ β

α

e−2t inf(c) dt .

Proof .
Let us consider

I =

∫ β

α

∫

R

∫

CW

|v0(
√
2t w(1) + x)|2 exp

(

−2t

∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

× exp

(

−2t

∫ 1

0

c
(

t(1− s),
√
2t w(s) + x

)

ds

)

dmW (w) dxdt .

The first exponential factor is smaller than 1 and the second one, than exp(−2t inf(c)).
By Fubini’s Theorem,

I ≤
∫ β

α

e−2t inf(c)

∫

CW

(∫

R

|v0(
√
2t w(1) + x)|2 dx

)

dmW (w)dt

≤
∫ β

α

e−2t inf(c)

∫

CW

(∫

R

|v0(ξ)|2 dξ
)

dmW (w)dt ,

with ξ =
√
2t w(1) + x. Eventually,

I ≤ ||v0||2
∫ β

α

e−2t inf(c) dt.

This shows that the integral

∫

CW

|v0(
√
2t w(1) + x)|2e−2t

∫ 1
0 (x+

√
2t w(s))

2
dse−2t

∫ 1
0
c(t(1−s),

√
2t w(s)+x) ds dmW (w)

converges for almost all (t, x) ∈ [α, β] × R. By Hölder’s inequality it follows that
S(v0, c)(t, x) is defined for the same (t, x) and that S(v0, c) satisfies the inequality (14).
�

Proposition 11. Let (v
(n)
0 ) ∈ L2(R)N converge to v0 in L2(R) and (c(n)) ∈ L2(R+ × R)N

converge to c ∈ L2(R+ × R). Assume that the c(n) and c have a common lower bound
µ ∈ R.

Then, for all α, β ∈ R
+ satisfying 0 ≤ α ≤ β < ∞, S(v

(n)
0 , c(n)) converges to S(v0, c) in

L2([α, β]× R).

Proof . Let us introduce the intermediate S(v0, c
(n)). Then by the preceding Proposition

||S(v0, c(n))− S(v
(n)
0 , c(n))||L2([α,β]×R) ≤ ||v0 − v

(n)
0 ||L2(R)

(∫ β

α

e−2tµ dt

)1/2
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and this term converges to 0.
The second term S(v0, c

(n))− S(v0, c) is more delicate. Let

In(t, x) =

∫

CW

v0(
√
2tw(1) + x)e−t

∫ 1
0 (x+

√
2tw(s))

2
ds

(

e−t
∫ 1
0 c(n)(t(1−s),

√
2tw(s)+x)ds − e−t

∫ 1
0 c(t(1−s),

√
2tw(s)+x)ds

)

dmW ,

so that we may write

||S(v0, c(n))− S(v0, c)||2L2([α,β]×R) =

∫ β

α

∫

R

In(t, x)
2 dt dx.

We shall prove that the sequence (In(t, x))n converges to 0 when n goes to infinity and that
it is uniformly bounded by a function g(t, x) belonging to L2([α, β]×R). Then, thanks to
the dominated convergence Theorem, ||S(v0, c(n))− S(v0, c)||2L2([α,β]×R) will converge to 0.

As usual, the first exponential term of In(t, x) is smaller than 1. Both −t
∫ 1

0
c(n)(t(1 −

s),
√
2tw(s) + x)ds and −t

∫ 1

0
c(t(1− s),

√
2tw(s) + x)ds being smaller than −tµ,

∣
∣
∣e−t

∫ 1
0
c(n)(t(1−s),

√
2tw(s)+x)ds − e−t

∫ 1
0
c(t(1−s),

√
2tw(s)+x)ds

∣
∣
∣

≤
∣
∣
∣
∣
t

∫ 1

0

(c(n) − c)(t(1− s),
√
2t w(s) + x)ds

∣
∣
∣
∣
e−tµ

and we can estimate |In| by

|In(t, x)| ≤ te−tµ

∫

CW

|v0(
√
2tw(1) + x)|

∫ 1

0

∣
∣
∣(c(n) − c)(t(1− s),

√
2t w(s) + x)

∣
∣
∣ dsdmW

︸ ︷︷ ︸

.

Mn(t, x)

Thanks to (4), Mn(t, x) can be written as an integral on R :

Mn(t, x) =

∫ 1

0

∫

R2

|v0(
√
2tξ2 + x)|

∣
∣
∣(c(n) − c)(t(1− s),

√
2t ξ1 + x)

∣
∣
∣ fs,1(ξ1, ξ2)dξ1dξ2 ds,

where fs,1 is the gaussian density. The change of variables

u =
√
2tξ2 + x, v = t(1− s), w =

√
2t ξ1 + x

gives

Mn(t, x) =
1

4πt

∫

R3

1[0,t](v)
√

v(t− v)

∣
∣(c(n) − c)(v, w)

∣
∣ e

− (w−x)2

4(t−v) e−
(u−w)2

4v |v0(u)| dudvdw.

As
∫

R

e−
(u−w)2

4v |v0(u)| du ≤ ||v0||L2(R)(2πv)
1/4,
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Mn(t, x) is smaller than

1

4πt
||v0||L2(R)(2π)

1/4||c− c(n)||L2(R+×R)

√
∫

R2

1[0,t](v)

v(t− v)
v1/2 exp

(

−(w − x)2

2(t− v)

)

dvdw.

The integral appearing in the square root converges and does not depend on n, which
shows that Mn(t, x) and In(t, x) go to 0.
Now for the uniform estimate. Clearly

|In(t, x)| ≤
∫

CW

|v0(
√
2tw(1) + x)|(e−tµ + e−tµ)dmW := g(t, x).

The function g is in L2([α, β]× R) since

∫ β

α

∫

R

g(t, x)2 dxdt ≤
∫ β

α

4e−2tµ

∫

R

(∫

CW

|v0(
√
2tw(1) + x)|dmW

)2

dxdt

≤
∫ β

α

4e−2tµ

∫

R

∫

CW

|v0(
√
2tw(1) + x)|2dmW dxdt

≤
∫ β

α

4e−2tµ

∫

CW

∫

R

|v0(
√
2tw(1) + x)|2 dx dmWdt .

The change of variables ξ =
√
2tw(1) + x allows to write

∫ β

α

∫

R

g(t, x)2 dxdt ≤ ||v0||2L2(R) ≤
∫ β

α

4e−2tµdt <∞,

which concludes the proof. �

Any v0 ∈ L2(R) can be approximated (in L2(R)) by a sequence (v
(n)
0 ) of functions

satisfying the hypotheses of Theorem 5. Similarly, any function c belonging to L2(]0,∞)×
R) ∩ L∞(]0,∞) × R) is the limit (in L2(]0,∞) × R)) of a sequence (c(n))n of functions
satisfying the hypotheses of Theorem 5. Moreover we can suppose this sequence to be

bounded in L∞(]0,∞)×R). Then, according to Theorem 5, vn := S(v
(n)
0 , c(n)) is a solution

of






∂vn
∂t

(t, x)− ∂2vn
∂x2

(t, x) + (x2 + c(n)(t, x))vn(t, x) = 0 on ]0,∞[×R

vn(0, x) = v
(n)
0 (x) .

Let ϕ be a smooth test function on ]0,∞[×R. Integrations by part give

< vn,
∂ϕ

∂t
> − < vn,

∂2ϕ

∂x2
> + < x2vn, ϕ > + < c(n)vn, ϕ >= 0,



A REMARK CONCERNING FEYNMAN KAC FORMULAS FOR THE PERTURBED HARMONIC OSCILLATOR21

where the brackets stand for L2(]0,∞[×R) products. As vn converges to S(v0, c) in any
L2([α, β]× R), we obtain

< S(v0, c),
∂ϕ

∂t
> − < S(v0, c),

∂2ϕ

∂x2
> + < x2S(v0, c), ϕ > + < cS(v0, c), ϕ >= 0.

Moreover, vn(0, ·) = v(n) converges to v0, which gives the equality S(v0, c)(0, ·) = v0.
Hence S(v0, c) is a solution of (1) in a weak sense.

Appendix A. Computation of some Wiener integrals

Another consequence of Theorem 1 is the following Proposition :

Proposition 12. Suppose v0 satisfies, for all positive t and real x
∫

R

(2π sh(2t))−1/2 exp

(

−1

2

ch(2t)

sh(2t)
y2 − 1

2

sh(2t)

ch(2t)
x2
) ∣
∣
∣
∣
v0

(

y +
x

ch(2t)

)∣
∣
∣
∣
dy <∞.

Then for all t > 0 and x ∈ R we can write
∫

CW

v0(
√
2t w(1) + x) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

dmW (w)

=

∫

R

(2π sh(2t))−1/2 exp

(

−1

2

ch(2t)

sh(2t)
y2 − 1

2

sh(2t)

ch(2t)
x2
) ∣
∣
∣
∣
v0

(

y +
x

ch(2t)

)∣
∣
∣
∣
dy .

Proof. Suppose v0 belongs to L2(R). Then Theorem 1 shows that, as the perturbation
c is equal to 0, the left hand side is the solution of the heat equation for the harmonic
oscillator, with initial condition v0. The right hand side is the solution Utv0 of the same
problem, given by Mehler’s formula. The equality follows.
When v0 is not in L

2(R), the equality holds for v0ϕn where ϕn is a convenient truncature.
Then the assumption on v0 allows to use the Theorems of dominated and of monotone
convergence. �

When v0(x) = 1, x or x2, it is easy to compute Utv0 and to deduce the following
equalities from these computations :

Corollary 13. For v0 = 1 we obtain

k(t, x) :=

∫

CW

e−t
∫ 1
0 (x+

√
2t w(s))

2
ds dmW (w) =

1
√

ch(2t)
exp

(

−1

2

sh(2t)

ch(2t)
x2
)

.

The case v0(x) = x gives
∫

CW

w(1) exp

(

−t
∫ 1

0

(

x+
√
2t w(s)

)2

ds

)

dmW (w) =
x(1 − ch(2t))√

2t ch(2t)
k(t, x)

and for v0(x) = x2 we get
∫

CW

w(1)2 exp
(
−t
∫ 1

0

(
x+

√
2t w(s)

)2
ds
)
dmW (w) =

1

2t

(
(1− ch(2t))2x2

ch2(2t)
+

sh(2t)

ch(2t)

)

k(t, x) .
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As the perturbation c is equal to 0, [3] and [6] prove that, under certain conditions, the
l.h.s. is the solution of the heat equation problem for H . Nevertheless these integrals are
not mentioned explicitly in the literature, to the author’s knowledge.
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