CLASSIFICATION OF NON-SYMPLECTIC AUTOMORPHISMS ON $K 3$ SURFACES WHICH ACT TRIVIALLY ON THE NÉRON-SEVERI LATTICE.

SHINGO TAKI

Abstract

We treat non-symplectic automorphisms on $K 3$ surfaces which act trivially on the Néron-Severi lattice. In this paper, we classify non-symplectic automorphisms of prime-power order, especially 2 -power order on $K 3$ surfaces, i.e., we describe their fixed locus.

1. Introduction

Let X be a $K 3$ surface. In the following, we denote by S_{X}, T_{X} and ω_{X} the Néron-Severi lattice, the transcendental lattice and a nowhere vanishing holomorphic 2 -form on X, respectively.

An automorphism of X is symplectic if it acts trivially on $\mathbb{C} \omega_{X}$. This paper is devoted to study of non-symplectic automorphisms of primepower order for which act trivially on S_{X}. The study of non-symplectic automorphisms of $K 3$ surfaces was pioneered by V.V. Nikulin.

We suppose that g is a non-symplectic automorphism of order I on X such that $g^{*} \omega_{X}=\zeta_{I} \omega_{X}$ where ζ_{I} is a primitive I-th root of unity. Then g^{*} has no non-zero fixed vectors in $T_{X} \otimes \mathbb{Q}$ and hence $\phi(I)$ divides $\operatorname{rank} T_{X}$, where ϕ is the Euler function. In particular $\phi(I) \leq \operatorname{rank} T_{X}$ and hence $I \leq 66$ [9, Theorem 3.1 and Corollary 3.2].

The following proposition was announced by Vorontsov [18] and then it was proved by Kondo [6].

Proposition 1.1. Let φ be a non-symplectic automorphism on X which acts trivially on S_{X}. Then the order of φ is prime-power; $p^{k}=$ $2^{\alpha}(1 \leq \alpha \leq 4), 3^{\beta}(1 \leq \beta \leq 3), 5^{\gamma}(1 \leq \gamma \leq 2), 7,11,13,17$ or 19 . Moreover S_{X} is a p-elementary lattice, that is, S_{X}^{*} / S_{X} is a p-elementary group where $S_{X}^{*}=\operatorname{Hom}\left(S_{X}, \mathbb{Z}\right)$.

Non-symplectic automorphisms of prime order have been studied by several authors e.g. Nikulin [11], Oguiso, Zhang [12], [13], Artebani,

Sarti [1] and Taki [16]. Recently, we have the classification of nonsymplectic automorphisms of prime order on $K 3$ surfaces [2].

Theorem 1.2. We assume that S_{X} is p-elementary. Let r be the Picard number of X and let a be the minimal number of generators of S_{X}^{*} / S_{X}.

Then there exists a non-symplectic automorphism φ of order p on X if and only if $22-r-(p-1) a \in 2(p-1) \mathbb{Z}_{\geq 0}$.

Moreover if X has a non-symplectic automorphism φ of order p which acts trivially on S_{X}. then the fixed locus $X^{\varphi}:=\{x \in X \mid \varphi(x)=x\}$ has the form

$$
X^{\varphi}=\left\{\begin{array}{lr}
\phi & \text { if } S_{X}=U(2) \oplus E_{8}(2), \\
C^{(1)} \amalg C^{(1)} & \text { if } S_{X}=U \oplus E_{8}(2), \\
\left\{P_{1}, \ldots, P_{M}\right\} \amalg C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N} \quad \text { otherwise },
\end{array}\right.
$$

and

$$
\begin{gathered}
g=\frac{22-r-(p-1) a}{2(p-1)}, \\
M= \begin{cases}\frac{0}{\frac{(p-2) r+22}{p-1}} & \text { if } p=17,19 \\
\frac{(p-2) r-2}{p-1} & \text { otherwise }\end{cases} \\
N= \begin{cases}\frac{r-s}{2} & \text { if } p=2, \\
0 & \text { if } p=17,19, \\
\frac{2+r-(p-1) a}{2(p-1)} & \text { otherwise }\end{cases}
\end{gathered}
$$

where P_{j} is an isolated point, $C^{(g)}$ is a non-singular curve with genus g and E_{k} is a non-singular rational curve.

On the other hand, studies of prime power order have progressed, too. Schütt [15] classified $K 3$ surfaces with non-symplectic automorphisms whose the order is 2-power and equals rank T_{X}. Machida and Oguiso [8] or Oguiso and Zhang [12] have proved that the $K 3$ surface with non-symplectic automorphisms of order 25 or 27 , respectively, is unique. Recently, Taki [17] classified non-symplectic automorphisms of 3 -power order. The following theorem is known.

Theorem 1.3. (1) X has a non-symplectic automorphism φ of order 9 acting trivially on S_{X} if and only if $S_{X}=U \oplus A_{2}, U \oplus E_{8}$,
$U \oplus E_{6} \oplus A_{2}$ or $U \oplus E_{8} \oplus E_{6}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} & \text { if } S_{X}=U \oplus A_{2}, \\ \left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} & \text { if } S_{X}=U \oplus E_{8} \text { or } U \oplus E_{6} \oplus A_{2}, \\ \left\{P_{1}, P_{2}, \ldots, P_{14}\right\} \amalg E_{1} \amalg E_{2} & \text { if } S_{X}=U \oplus E_{8} \oplus E_{6} .\end{cases}
$$

(2) X has a non-symplectic automorphism φ of order 27 acting trivially on S_{X} if and only if $S_{X}=U \oplus A_{2}$. Moreover the fixed locus X^{φ} has the form $X^{\varphi}=\left\{P_{1}, P_{2}, \ldots, P_{6}\right\}$.
Here we denote by P_{i} an isolated point and by E_{j} a non-singular rational curve.

By Proposition 1.1, if the order of a non-symplectic automorphism is non-prime-power then S_{X} is unimodular. The cases are studied by Kondo [6].

Theorem 1.4. Let φ be a non-symplectic automorphism on X and ϕ the Euler function.
(1) If $S_{X}=U$, then ord $\varphi \mid 66,44$ or 12.
(2) If $S_{X}=U \oplus E_{8}$, then ord $\varphi \mid 42,36$ or 28.
(3) If $S_{X}=U \oplus E_{8}^{\oplus 2}$, then ord $\varphi \mid 12$.
(4) If $\phi(\varphi)=\operatorname{rank} T_{X}$, then ord $\varphi=66,44,42,36,28$ or 12 . Moreover for $m=66,44,42,36,28$ or 12 , there exists a unique (up to isomorophisms) $K 3$ surface with ord $\varphi=m$.

Hence, in order to classify non-symplectic automorphisms on X which act trivially on S_{X}, we need the complete classification of nonsymplectic automorphisms of 2-power order, i.e., generalization of Schütt's result. The main purpose of this paper is to prove the following theorem.

Main Theorem. We assume that S_{X} is 2-elementary.
(1) X has a non-symplectic automorphism φ of order 4 acting trivially on S_{X} if and only if S_{X} has $\delta=0$ and $S_{X} \neq U \oplus E_{8}(2)$, $U(2) \oplus E_{8}(2), U \oplus D_{4}^{\oplus 3}$ and $U \oplus D_{8}^{\oplus 2}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{4}\right\} & \text { if } \operatorname{rank} S_{X}=2, \\ \left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } \operatorname{rank} S_{X}=6, \\ \left\{P_{1}, P_{2}, \ldots, P_{8}\right\} \amalg E_{1} \amalg E_{2} & \text { if } \operatorname{rank} S_{X}=10, \\ \left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} \amalg E_{2} \amalg E_{3} & \text { if } \operatorname{rank} S_{X}=14, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} \amalg E_{3} \amalg E_{4} & \text { if } \operatorname{rank} S_{X}=18 .\end{cases}
$$

(2) X has a non-symplectic automorphism φ of order 8 acting trivially on S_{X} if and only if $S_{X}=U \oplus D_{4}, U(2) \oplus D_{4}$ or $U \oplus D_{4} \oplus E_{8}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } \operatorname{rank} S_{X}=6, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} & \text { if } \operatorname{rank} S_{X}=14 .\end{cases}
$$

(3) X has a non-symplectic automorphism φ of order 16 acting trivially on S_{X} if and only if $S_{X}=U \oplus D_{4}$ or $U \oplus D_{4} \oplus E_{8}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } S_{X}=U \oplus D_{4}, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} & \text { if } S_{X}=U \oplus D_{4} \oplus E_{8} .\end{cases}
$$

Here, P_{i} is an isolated point and E_{j} is a non-singular rational curve.
We summarize the contents of this paper. In Section 2, we review the classification of even indefinite 2 -elementary lattices. And we check that the non-existence of lattice isometries of order 4. As a result, we get the Néron-Severi lattice of $K 3$ surfaces with non-symplectic automorphisms of order 4,8 or 16 which act trivially on S_{X}. Section 3 is a preliminary section. We recall some basic results about non-symplectic automorphisms on $K 3$ surfaces. Section 4 is the main part of this paper. Here, we classify non-symplectic automorphisms of order 4. By using the Lefschetz formula and the classification of non-symplectic involution, we study fixed locus of non-symplectic automorphisms of order 4. In Section 5 and Section 6, we treat non-symplectic automorphisms of order 8 and 16, respectively. In Section 7 we collect examples of $K 3$ surface with a non-symplectic automorphism of 2-power order.

Acknowledgments. The author would like to express his gratitude to Professor Shigeyuki Kondo for giving him many useful comments and informing Example 7.8.

2. The Néron-Severi and p-Elementary lattices

A lattice L is a free abelian group of finite rank r equipped with a non-degenerate symmetric bilinear form, which will be denoted by \langle,$\rangle . The bilinear form \langle$,$\rangle determines a canonical embedding L \subset$ $L^{*}=\operatorname{Hom}(L, \mathbb{Z})$. We denote by A_{L} the factor group L^{*} / L which is a finite abelian group. $L(m)$ is the lattice whose bilinear form is the one on L multiplied by m.

We denote by U the hyperbolic lattice defined by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ which is an even unimodular lattice of signature $(1,1)$, and by A_{m}, D_{n} or E_{l}
an even negative definite lattice associated with the Dynkin diagram of type A_{m}, D_{n} or $E_{l}(m \geq 1, n \geq 4$ and $l=6,7,8)$.

Let p be a prime number. A lattice L is called p-elementary if $A_{L} \simeq(\mathbb{Z} / p \mathbb{Z})^{\oplus a}$, where a is the minimal number of generator of A_{L}. For a p-elementary lattice we always have the inequality $a \leq r$, since $\left|L^{*} / L\right|=p^{a},\left|L^{*} / p L^{*}\right|=p^{r}$ and $p L^{*} \subset L \subset L^{*}$.

Example 2.1. For all p, lattices $E_{8}, E_{8}(p), U$ and $U(p)$ are p-elementary. A_{1}, D_{4}, D_{8} and E_{7} are 2-elementary.
Definition 2.2. For a 2-elementary lattice L, we put

$$
\delta_{L}= \begin{cases}0 & \text { if } x^{2} \in \mathbb{Z}, \forall x \in L^{*} \\ 1 & \text { otherwise }\end{cases}
$$

Even indefinite 2-elementary lattices were classified by [10, Theorm 3.6.2].

Theorem 2.3. An even indefinite 2-elementary lattice L is determined by the invariants ($\delta_{L}, t_{+}, t_{-}, a$) where the pair $\left(t_{+}, t_{-}\right)$is the signature of L.

By the Theorem, we can get the Néron-Severi lattice of $K 3$ surfaces with a non-symplectic automorphism of order 2^{k} acting trivially on S_{X}. See Table [11, Table 1].

If $k \geq 2$ then $\phi\left(2^{k}\right)$ is even. Since $\phi\left(2^{k}\right)$ divides $\operatorname{rank} T_{X}, \operatorname{rank} T_{X}$ is even. Hence if X has a non-symplectic automorphisms of 2-power order then rank S_{X} is even. Moreover we have the following.

Proposition 2.4. Let L be a 2-elementary lattice. If $\delta_{L}=1$ then L has no non-trivial isometries f of order 4 which act trivially on A_{L} and do not have eigenvalues 1 or -1 .

Proof. Let $f: L \rightarrow L$ be an isometry of order 4 which acts trivially on A_{L} and does not have eigenvalues 1 or -1 . Since the induced isometry $A_{L} \rightarrow A_{L}\left(\bar{x} \mapsto \overline{f^{*}(x)}\right)$ is identity, for all $x \in L^{*}$, there exists an $l \in L$ such that $f^{*}(x)=x+l$.

By the assumption, we have $f^{*}+f^{* 3}=0$. This implies $0=\left\langle f^{*}(x)+\right.$ $\left.f^{* 3}(x), x\right\rangle=\left\langle f^{*}(x), x\right\rangle+\left\langle f^{* 3}(x), x\right\rangle=2\left\langle f^{*}(x), x\right\rangle=2(\langle x, x\rangle+\langle l, x\rangle)$. Thus we have $\langle x, x\rangle=-\langle l, x\rangle \in \mathbb{Z}$. Hence $\delta_{L}=0$.

The following tables are lists of 2-elementary lattices with and $\delta=0$. Hence if X has a non-symplectic automorphisms of order 4,8 or 16 which act trivially on S_{X} then S_{X} is one of the lattices in the following table. (See also Lemma 3.1 (1).)

rank S_{X}	a	S_{X}	T_{X}
2	0	U	$U^{\oplus 2} \oplus E_{8}^{\oplus 2}$
2	2	$U(2)$	$U \oplus U(2) \oplus E_{8}^{\oplus 2}$
6	2	$U \oplus D_{4}$	$U^{\oplus 2} \oplus E_{8} \oplus D_{4}$
6	4	$U(2) \oplus D_{4}$	$U(2)^{\oplus 2} \oplus E_{8} \oplus D_{4}$
10	0	$U \oplus E_{8}$	$U^{\oplus 2} \oplus E_{8}$
10	2	$U \oplus D_{8}$	$U^{\oplus 2} \oplus D_{8}$
10	4	$U \oplus D_{4}^{\oplus 2}$	$U^{\oplus 2} \oplus D_{4}^{\oplus 2}$
10	6	$U(2) \oplus D_{4}^{\oplus 2}$	$U \oplus U(2) \oplus D_{4}^{\oplus 2}$
10	8	$U \oplus E_{8}(2)$	$U^{\oplus 2} \oplus E_{8}(2)$
10	10	$U(2) \oplus E_{8}(2)$	$U \oplus U(2) \oplus E_{8}(2)$
14	2	$U \oplus E_{8} \oplus D_{4}$	$U^{\oplus 2} \oplus D_{4}$
14	4	$U \oplus D_{8} \oplus D_{4}$	$U \oplus U(2) \oplus D_{4}$
14	6	$U \oplus D_{4}^{\oplus 3}$	$U(2)^{\oplus 2} \oplus D_{4}$
18	0	$U \oplus E_{8}^{\oplus 2}$	$U^{\oplus 2}$
18	2	$U \oplus E_{8} \oplus D_{8}$	$U \oplus U(2)$
18	4	$U \oplus D_{8}^{\oplus 2}$	$U(2)^{\oplus 2}$

Table 1: 2-elementary lattices

Remark 2.5. Let $\{e, f\}$ be a basis of U (resp. $U(2)$) with $\langle e, e\rangle=$ $\langle f, f\rangle=0$ and $\langle e, f\rangle=1$ (resp. $\langle e, f\rangle=2$). If necessary replacing e by $\varphi(e)$, where φ is a composition of reflections induced from nonsingular rational curves on X, we may assume that e is represented by the class of an elliptic curve F and the linear system $|F|$ defines an elliptic fibration $\pi: X \rightarrow \mathbb{P}^{1}$. Note that π has a section $f-e$ in case U. In case $U(2)$, there are no (-2)-vectors r with $\langle r, e\rangle=1$, and hence π has no sections.

It follows from Remark 2.5 and Table 1 that X has an elliptic fibration $\pi: X \rightarrow \mathbb{P}^{1}$. In the following, we fix such an elliptic fibration.

The following lemma follows from [14, §3 Corollary 3] and the classification of singular fibers of elliptic fibrations [5].

Lemma 2.6. Assume that $S_{X}=U(m) \oplus K_{1} \oplus \cdots \oplus K_{r}$, where $m=$ 1 or 2 , and K_{i} is a lattice isomorphic to A_{m}, D_{n} or E_{l}. Then π has a reducible singular fiber with corresponding Dynkin diagram K_{i}.

3. Preliminaries

Lemma 3.1. Let φ be a non-symplectic automorphism of 2-power order on X. Then we have :
(1) $\varphi^{*} \mid T_{X} \otimes \mathbb{C}$ can be diagonalized as:

$$
\left(\begin{array}{cccccc}
\zeta I_{q} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \zeta^{3} I_{q} & & & & \vdots \\
\vdots & & \ddots & & & \vdots \\
\vdots & & & \zeta^{n} I_{q} & & \vdots \\
\vdots & & & & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & 0 & \zeta^{2 k-1} I_{q}
\end{array}\right)
$$

where I_{q} is the identity matrix of size q, ζ is a primitive 2^{k}-th root of unity, n is a odd number.
(2) Let P be an isolated fixed point of φ on X. Then φ^{*} can be written as

$$
\left(\begin{array}{cc}
\zeta^{i} & 0 \\
0 & \zeta^{j}
\end{array}\right) \quad\left(i+j \equiv 1 \quad \bmod 2^{k}\right)
$$

under some appropriate local coordinates around P.
(3) Let C be an irreducible curve in X^{φ} and Q a point on C. Then φ^{*} can be written as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right)
$$

under some appropriate local coordinates around Q. In particular, fixed curves are non-singular.

Proof. (1) This follows form [9, Theorem 3.1].
(2), (3) Since φ^{*} acts on $H^{0}\left(X, \Omega_{X}^{2}\right)$ as a multiplication by ζ, it acts on the tangent space of a fixed point as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
\zeta^{i} & 0 \\
0 & \zeta^{j}
\end{array}\right)
$$

where $i+j \equiv 1\left(\bmod 2^{k}\right)$.
Thus the fixed locus of φ consists of disjoint union of non-singular curves and isolated points. Hence we can express the irreducible decomposition of X^{φ} as

$$
X^{\varphi}=\left\{P_{1}, \ldots, P_{M}\right\} \amalg C_{1} \amalg \cdots \amalg C_{N},
$$

where P_{j} is an isolated point and C_{k} is a non-singular curve.
In the following, we assume that $k \geq 2$. Hence we treat nonsymplectic automorphisms of order 4,8 and 16 .

Lemma 3.2. Let r be the Picard number of X. Then $\chi\left(X^{\varphi}\right)=r+2$.

Proof. We apply the topological Lefschetz formula:

$$
\chi\left(X^{\varphi}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\varphi^{*} \mid H^{i}(X, \mathbb{R})\right)
$$

Since φ^{*} acts trivially on $S_{X}, \operatorname{tr}\left(\varphi^{*} \mid S_{X}\right)=r$. By Lemma 3.1 (1), $\operatorname{tr}\left(\varphi^{*} \mid T_{X}\right)=q\left(\zeta+\zeta^{3}+\cdots+\zeta^{n}+\cdots+\zeta^{2 k-1}\right)=-q\left(1+\zeta^{2}+\cdots+\zeta^{2 k-2}\right)=0$. Hence we can calculate the right -hand side of the Lefschetz formula as follows: $\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\varphi^{*} \mid H^{i}(X, \mathbb{R})\right)=1-0+\operatorname{tr}\left(\varphi^{*} \mid S_{X}\right)+\operatorname{tr}\left(\varphi^{*} \mid T_{X}\right)-$ $0+1=r+2$.

4. Order 4

We shall study the fixed locus of non-symplectic automorphisms of order 4. In this section, let φ be a non-symplectic automorphism of order 4.
Proposition 4.1. Let r be the Picard number of X. Then the number of isolated points M is $(r+6) / 2$.
Proof. First we calculate the holomorphic Lefschetz number $L(\varphi)$ in two ways as in [3, page 542] and [4, page 567]. That is

$$
\begin{aligned}
L(\varphi) & =\sum_{i=0}^{2} \operatorname{tr}\left(\varphi^{*} \mid H^{i}\left(X, \mathcal{O}_{X}\right)\right), \\
L(\varphi) & =\sum_{j=1}^{M} a\left(P_{j}\right)+\sum_{l=1}^{N} b\left(C_{l}\right) .
\end{aligned}
$$

Here

$$
\begin{aligned}
a\left(P_{j}\right): & =\frac{1}{\operatorname{det}\left(1-\varphi^{*} \mid T_{P_{j}}\right)} \\
& =\frac{1}{\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
\zeta^{2} & 0 \\
0 & \zeta^{3}
\end{array}\right)\right)}, \\
b\left(C_{l}\right) & :=\frac{1-g\left(C_{l}\right)}{1-\zeta}-\frac{\zeta C_{l}^{2}}{(1-\zeta)^{2}},
\end{aligned}
$$

where $T_{P_{j}}$ is the tangent space of X at $P_{j}, g\left(C_{l}\right)$ is the genus of C_{l}.
Using the Serre duality $H^{2}\left(X, \mathcal{O}_{X}\right) \simeq H^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)^{\vee}$, we calculate from the first formula that $L(\varphi)=1+\zeta^{3}$. From the second formula, we obtain

$$
L(\varphi)=\frac{M}{\left(1-\zeta^{2}\right)\left(1-\zeta^{3}\right)}+\sum_{l=1}^{N} \frac{(1+\zeta)\left(1-g\left(C_{l}\right)\right)}{(1-\zeta)^{2}}
$$

Combing these two formulae, we have $M=4+\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right.$. By $\chi\left(X^{\varphi}\right)=M+\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right)$ and Lemma 3.2, we have $M=(r+$ $6) / 2$.

Proposition 4.2. If $S_{X}=U \oplus E_{8}(2), U(2) \oplus E_{8}(2), U \oplus D_{4}^{\oplus 3}$ or $U \oplus D_{8}^{\oplus 2}$ then X has no non-symplectic automorphisms of order 4 which act trivially on S_{X}.

Proof. We will check the statement for each S_{X} individually.
We assume $S_{X}=U \oplus E_{8}(2)$ or $U(2) \oplus E_{8}(2)$. If X has a nonsymplectic automorphism φ of order 4 which acts trivially on S_{X} then X^{φ} contains non-singular rational curves by Lemma 3.2 and Proposition 4.1. Although these curves are fixed by φ^{2}, it is a contradiction by Theorem 1.2. This settles Proposition 4.2 in cases $S_{X}=U \oplus E_{8}(2)$ and $U(2) \oplus E_{8}(2)$.

We assume $S_{X}=U \oplus D_{4}^{\oplus 3}$ and X has a non-symplectic automorphism φ of order 4 which acts trivially on S_{X}. Then $X^{\varphi^{2}}=$ $C^{(1)} \amalg E_{1} \amalg \cdots \amalg E_{4}$ by Theorem 1.2.

Since φ acts trivially on S_{X}, φ preserves reducible singular fibers of an elliptic fibration π. Hence the automorphism φ acts trivially on the base of π and the section (c.f. Remark (2.5) is fixed by φ. By Lemma 2.6, π has three singular fibers of type I_{0}^{*}. The component with multiplicity 2 is pointwisely fixed by φ. Hence X^{φ} contains at least four non-singular rational curves.

On the other hand $\chi\left(C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}\right)=16-10=6$ by Lemma 3.2 and Proposition 4.1. Thus X^{φ} contains non-singular curve $C^{(g)}$ with $g \geq 2$. But this is a contradiction because $X^{\varphi^{2}}$ does not contain $C^{(2)}$. This settles Proposition 4.2 in cases $S_{X}=U \oplus D_{4}^{\oplus 3}$.

By [15, Theorem 1], X with $S_{X}=U \oplus D_{8}^{\oplus 2}$ has no non-symplectic automorphisms of order 4 .

In other cases of Table 1 , there exist $K 3$ surfaces with a non-symplectic automorphism of order 4. See Section 7.

Proposition 4.3. Assume S_{X} is 2-elementary and $\delta=0$. If $S_{X} \neq$ $U \oplus E_{8}(2), U(2) \oplus E_{8}(2), U \oplus D_{4}^{\oplus 3}$ or $U \oplus D_{8}^{\oplus 2}$ then X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{4}\right\} & \text { if } \operatorname{rank} S_{X}=2, \\ \left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } \operatorname{rank} S_{X}=6, \\ \left\{P_{1}, P_{2}, \ldots, P_{8}\right\} \amalg E_{1} \amalg E_{2} & \text { if } \operatorname{rank} S_{X}=10, \\ \left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} \amalg E_{2} \amalg E_{3} & \text { if } \operatorname{rank} S_{X}=14, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} \amalg E_{3} \amalg E_{4} & \text { if } \operatorname{rank} S_{X}=18 .\end{cases}
$$

Proof. We will check the form of X^{φ} for each S_{X} individually.
Assume $S_{X}=U$. By Theorem 1.2, $X^{\varphi^{2}}=C^{(10)} \amalg E_{1}$. If X^{φ} contains a non-singular rational curve E_{2} or a non-singular curve $C^{(1)}$ then E_{2} or $C^{(1)}$ are also contained $X^{\varphi^{2}}$. This is a contradiction. Thus X^{φ} contains at most one non-singular rational curve and no non-singular curves with genus 1 . We remark that $\chi\left(C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}\right)=4-4=0$ by Lemma 3.2 and Proposition 4.1. If X^{φ} contains E_{1} then X^{φ} contains a nonsingular curve $C^{(2)}$. But this is a contradiction because $X^{\varphi^{2}}$ does not contain $C^{(2)}$. Hence $X^{\varphi}=\left\{P_{1}, P_{2}, \ldots, P_{4}\right\}$. This settles Proposition 4.3 in the case $S_{X}=U$.

Assume $S_{X}=U \oplus E_{8} \oplus D_{4}$. Then $X^{\varphi^{2}}=C^{(3)} \amalg E_{1} \amalg \cdots \amalg E_{6}$ by Theorem 1.2. We remark that $\chi\left(C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}\right)=16-10=6$ by Lemma 3.2 and Proposition 4.1. If X^{φ} contains $C^{(3)}$ then $X^{\varphi}=$ $\left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg C^{(3)} \amalg E_{1} \amalg \cdots \amalg E_{5}$. Since E_{6} is not fixed by φ, isolated fixed points P_{i} lie on E_{6}. But this is a contradiction because a non-singular rational curve has exactly two fixed points. Hence $X^{\varphi}=$ $\left\{P_{1}, P_{2}, \ldots, P_{10}\right\} \amalg E_{1} \amalg E_{2} \amalg E_{3}$. This settles Proposition 4.3 in the case $S_{X}=U \oplus E_{8} \oplus D_{4}$.

In the other case we can check the claim by similar arguments.

5. Order 8

In this section, let φ be a non-symplectic automorphism of order 8 . And we shall describe $X^{\varphi}=\left\{P_{1}, \ldots, P_{M}\right\} \amalg C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}$.

Proposition 5.1. Let r be the Picard number of X. Then the number of isolated points M is $(3 r+6) / 4$.
Proof. By the holomorphic Lefschetz formulae, we have

$$
\left\{\begin{array}{l}
0=2 m_{3,6}-m_{4,5}-\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right) \\
2=m_{2,7}-m_{3,6}+m_{4,5}-\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right)
\end{array}\right.
$$

We remark that $\varphi^{2}\left(P^{u, v}\right)$ is a fixed point of a non-symplectic automorphism of order 4. It is easy to see that $\varphi^{2}\left(P^{2,7}\right)$ and $\varphi^{2}\left(P^{3,6}\right)$ are isolated fixed points of φ^{2}. By proposition 4.1 and Lemma 5.2, we have

$$
\begin{equation*}
m_{2,7}+m_{3,6}=\frac{r+6}{2} \tag{1}
\end{equation*}
$$

By (田), (11) and Lemma 3.2, we have $M=(3 r+6) / 4$.
Lemma 5.2. Let P be an isolated fixed point of φ^{2}. Then $\varphi(P)=P$.
Proof. Let $m \neq 0$ be the number of such P. Then m satisfies $m_{2,7}+$ $m_{3,6}+m=(r+6) / 2$. By the equation and $\left.\mathbb{H}\right)$, we have $m_{2,7}=$
$(r+14) / 4-3 m / 2, m_{3,6}=(r-2) / 4+m / 2, m_{4,5}=(r-6) / 4+3 m / 2$ and $\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right)=(r+2) / 4-m / 2$.

Since $m_{2,7}+m_{3,6}$ is even by $(\mathbb{Z}), m$ is even, $m_{2,7}$ and $m_{3,6}$ are odd. Hence we have $m \leq(r+6) / 2-1-1=(r+2) / 2$. By the parity of $m_{2,7}, m_{3,6}$ and $m_{4,5}$, if $r=2,10$ and 18 (resp. 6 and 14) then $m=2 \times$ odd number (resp. $2 \times$ even number).

Assume $r=10$. Then $m=2$ or 6 . If $m=6$ then $m_{2,7}=6-9<0$. This is a contradiction. If $m=2$ then $m_{4,5}=4$ and $\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right)=$ 2. Since $\varphi^{2}\left(P^{4,5}\right)$ is a point on a irreducible fixed curve by φ^{2}, these two equations imply that φ^{2} has 3 fixed non-singular rational curves. This is a contradiction by Proposition 4.3. This settles Lemma 5.2 in the case $r=10$.

In other cases we can check the claim by similar the argument.
Remark 5.3. $m_{2,7}=(r+14) / 4, m_{3,6}=(r-2) / 4, m_{4,5}=(r-6) / 4$.
Corollary 5.4. If X has a non-symplectic automorphism of order 8 then $\operatorname{rank} S_{X}=6$ or 14 .

Proof. If $\operatorname{rank} S_{X}=2,10$ or 18 then M is odd by Proposition 5.1. But $\chi\left(X^{\varphi}\right)=M+\sum_{l=1}^{N}\left(2-2 g\left(C_{l}\right)\right)$ is even by Lemma 3.2.

If $S_{X}=U \oplus D_{4}$ or $U(2) \oplus D_{4}$ then there exist $K 3$ surfaces with non-symplectic automorphisms of order 8 by Example 7.3 and 7.4 . And Schütt [15, Theorem 1] proved that the $K 3$ surface with a nonsymplectic automorphism of order 8 and $\operatorname{rank} S_{X}=14$ is unique.

Proposition 5.5. X has a non-symplectic automorphism φ of order 8 acting trivially on S_{X} if and only if $S_{X}=U \oplus D_{4}, U(2) \oplus D_{4}$ or $U \oplus D_{4} \oplus E_{8}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } \operatorname{rank} S_{X}=6, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} & \text { if } \operatorname{rank} S_{X}=14 .\end{cases}
$$

Proof. Note $\chi\left(C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}\right)=(2+r) / 4$ by Lemma 3.2 and Proposition 5.1. We remark that $X^{\varphi^{2}}$ does not contain non-singular curve with genus ≥ 1 by Proposition 4.3. Thus $N=(2+r) / 8$.

6. Order 16

In this section, let φ be a non-symplectic automorphism of order 16. And we shall describe $X^{\varphi}=\left\{P_{1}, \ldots, P_{M}\right\} \amalg C^{(g)} \amalg E_{1} \amalg \cdots \amalg E_{N}$. We remark that if X has a non-symplectic automorphism of order 16 then $\operatorname{rank} S_{X}=6$ or 14 .

Proposition 6.1. Let r be the Picard number of X. Then the number of isolated points M is $(3 r+6) / 4$.
Proof. It is similar to the proof of Proposition 5.1.
Remark 6.2. $m_{2,15}=(r+10) / 4, m_{3,14}=(r+2) / 8, m_{4,13}=(r-6) / 8$, $m_{5,12}=(r-6) / 8, m_{6,11}=(r-6) / 8, m_{7,10}=1, m_{8,9}=0$.

Schütt [15, Theorem 1] proved that the $K 3$ surface with a nonsymplectic automorphism of order 16 and $\operatorname{rank} S_{X}=6$ is unique. That is $S_{X}=U \oplus D_{4}$.

By Proposition 5.5, if X has a non-symplectic automorphism of order 16 and rank $S_{X}=14$ then $S_{X}=U \oplus D_{4} \oplus E_{8}$. Indeed there exists a $K 3$ surface with non-symplectic automorphisms of order 16 and $S_{X}=$ $U \oplus D_{4} \oplus E_{8}$. See Example 7.9.
Proposition 6.3. X has a non-symplectic automorphism φ of order 16 acting trivially on S_{X} if and only if $S_{X}=U \oplus D_{4}$ or $U \oplus D_{4} \oplus E_{8}$. Moreover the fixed locus X^{φ} has the form

$$
X^{\varphi}= \begin{cases}\left\{P_{1}, P_{2}, \ldots, P_{6}\right\} \amalg E_{1} & \text { if } S_{X} \simeq U \oplus D_{4}, \\ \left\{P_{1}, P_{2}, \ldots, P_{12}\right\} \amalg E_{1} \amalg E_{2} & \text { if } S_{X} \simeq U \oplus D_{4} \oplus E_{8} .\end{cases}
$$

Proof. It is similar to the proof of Proposition 5.5.

7. Examples

In this section, we give examples of $K 3$ surfaces with a non-symplectic automorphism of 2-power order. We remark that $K 3$ surfaces have an elliptic fibration from Remark 2.5 and Table 1
Example 7.1. [6, (3.1)]](Case: $\left.S_{X}=U\right)$

$$
X: y^{2}=x^{3}+x+t^{11}, \varphi(x, y, t)=\left(\zeta_{44}^{22} x, \zeta_{44}^{11} y, \zeta_{44}^{2} t\right)
$$

Example 7.2. (Case: $\left.S_{X}=U(2)\right)$ Let λ_{i} be distinct 4 complex numbers. Let $\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right)$ be the bi-homogeneous coordinates on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Consider a smooth divisor C in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of bidegree $(4,4)$ given by

$$
\left(y_{0}^{4}+y_{1}^{4}\right) \cdot \prod_{i=1}^{4}\left(x_{0}-\lambda_{i} x_{1}\right)=0
$$

Let ι be an involution of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by

$$
\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right) \rightarrow\left(\left[x_{0}: x_{1}\right],\left[y_{1}: y_{0}\right]\right)
$$

which preserves C.
Let X the double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ branched along C. Then X is a $K 3$ surface with $S_{X}=U(2)$. And the involution ι induces an automorphism φ which satisfies $\varphi^{*} \omega_{X}=\zeta_{4} \omega_{X}$.

Example 7.3. [[15]] (Case: $\left.S_{X}=U \oplus D_{4}\right)$

$$
X: y^{2}=x^{3}+t^{2} x+t^{11}, \varphi(x, y, t)=\left(\zeta_{16}^{2} x, \zeta_{16}^{3} y, \zeta_{16}^{2} t\right)
$$

Example 7.4. [[8, Propositon 4 (15)]](Case: $\left.S_{X}=U(2) \oplus D_{4}\right)$
Let X be the minimal resolution of the surface $\widetilde{X}:=\left\{z^{2}=x_{0}\left(x_{0}^{4} x_{2}+\right.\right.$ $\left.\left.x_{1}^{5}-x_{2}^{5}\right)\right\}$ having 5 ordinary double points $\left[0: 1: \zeta_{5}^{i}: 0\right](i=0,1,2,3,4)$ and $\varphi\left(\left[x_{0}: x_{1}: x_{2}: z\right]\right)=\left[x_{0}: \zeta_{20} x_{1}: \zeta_{4} x_{2}: \zeta_{8}^{5} z\right]$.
Example 7.5. [[6, (3.2)]](Case: $\left.S_{X}=U \oplus E_{8}\right)$
$X: y^{2}=x^{3}-t^{5} \prod_{i=1}^{6}\left(t-\zeta_{6}^{i}\right), \varphi(x, y, t)=\left(\zeta_{36}^{2} x, \zeta_{36}^{3} y, \zeta_{36}^{30} t\right)$.
Example 7.6. (Case: $S_{X}=U \oplus D_{8}$)

$$
X: y^{2}=x^{3}+t \prod_{i=1}^{6}\left(t-\zeta_{6}^{i}\right) x^{2}+t \prod_{i=1}^{6}\left(t-\zeta_{6}^{i}\right), \varphi(x, y, t)=\left(-x, \zeta_{4} y,-t\right) .
$$

Example 7.7. (Case: $S_{X}=U \oplus D_{4}^{\oplus 2}$)

$$
X: y^{2}=x^{3}-t^{3} \prod_{i=1}^{6}\left(t-\zeta_{6}^{i}\right), \varphi(x, y, t)=\left(-x, \zeta_{4} y,-t\right)
$$

Example 7.8. [[7, §2.1]](Case: $\left.S_{X}=U(2) \oplus D_{4}^{\oplus 2}\right)$
Let $\left\{\left[\lambda_{i}: 1\right]\right\}$ be a set of distinct 8 points on the projective line. Let $\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right)$ be the bi-homogeneous coordinates on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Consider a smooth divisor C in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ of bidegree $(4,2)$ given by

$$
y_{0}^{2} \cdot \prod_{i=1}^{4}\left(x_{0}-\lambda_{i} x_{1}\right)+y_{1}^{2} \cdot \prod_{i=5}^{8}\left(x_{0}-\lambda_{i} x_{1}\right)=0 .
$$

Let L_{0} (resp. L_{1}) be the divisor defined by $y_{0}=0$ (resp. $y_{1}=0$). Let ι be an involution of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by

$$
\left(\left[x_{0}: x_{1}\right],\left[y_{0}: y_{1}\right]\right) \rightarrow\left(\left[x_{0}: x_{1}\right],\left[y_{0}:-y_{1}\right]\right)
$$

which preserves C, L_{0} and L_{1}.
Note that the double cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ branched along $C+L_{0}+L_{1}$ has 8 rational double points of type A_{1} and its minimal resolution X is a $K 3$ surface. The involution ι lifts to an automorphism φ which satisfies $\varphi^{*} \omega_{X}=\zeta_{4} \omega_{X}$.

Example 7.9. (Case: $S_{X}=U \oplus E_{8} \oplus D_{4}$)

$$
X: y^{2}=x^{3}+t^{2} x+t^{7}, \varphi(x, y, t)=\left(\zeta_{16}^{10} x, \zeta_{16}^{7} y, \zeta_{16}^{2} t\right)
$$

Example 7.10. (Case: $S_{X}=U \oplus D_{8} \oplus D_{4}$)

$$
X: y^{2}=x^{3}+t \prod_{i=1}^{4}\left(t-\zeta_{4}^{i}\right) x^{2}+t^{3} \prod_{i=1}^{4}\left(t-\zeta_{4}^{i}\right), \varphi(x, y, t)=\left(-x, \zeta_{4} y,-t\right)
$$

Example 7.11. [[6, (3.4)]](Case: $\left.S_{X}=U \oplus E_{8}^{\oplus 2}\right)$
$X: y^{2}=x^{3}-t^{5}(t-1)(t+1), \varphi(x, y, t)=\left(\zeta_{12}^{2} x, \zeta_{12}^{3} y,-t\right)$.
Example 7.12. [[15]](Case: $S_{X}=U \oplus E_{8} \oplus D_{8}$)
$X: y^{2}=x^{3}+t x^{2}+t^{7}, \varphi(x, y, t)=\left(-x, \zeta_{4} y,-t\right)$.

References

[1] M. Artebani, A. Sarti, Non-symplectic automorphisms of order 3 on $K 3$ surfaces, Math. Ann., 342 (2008), 903-921.
[2] M. Artebani, A. Sarti, S. Taki, K3 surfaces with non-symplectic automorphisms of prime order, to appear in Math. Z.
[3] M.F. Atiyah, G.B. Segal, The index of elliptic operators: II, Ann. of Math., 87 (1968), 531-545.
[4] M.F. Atiyah, I.M. Singer, The index of elliptic operators: III, Ann. of Math., 87 (1968), 546-604.
[5] K. Kodaira, On compact analytic surface II, III, Ann. of Math., 77 (1963), 563-626; 78 (1963), 1-40.
[6] S. Kondo, Automorphisms of algebraic $K 3$ surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75-98.
[7] S. Kondo, The moduli space of 8 points of \mathbb{P}^{1} and automorphic forms. Algebraic geometry, Contemp. Math., 422 (2007), 89-106.
[8] N. Machida, K. Oguiso, On $K 3$ surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo, 5 (1998), no. 2, 273-297.
[9] V.V. Nikulin, Finite automorphism groups of Kählerian $K 3$ surfaces, Trans. Moscow Math. Soc., 38 (1980), No 2, 71-135.
[10] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14 (1980), 103-167.
[11] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications, J. Soviet Math., 22 (1983), 1401-1475.
[12] K. Oguiso, D.-Q. Zhang, On Vorontsov's theorem on $K 3$ surfaces with nonsymplectic group actions. Proc. Amer. Math. Soc., 128 (2000), no. 6, 15711580.
[13] K. Oguiso, D.-Q. Zhang, K3 surfaces with order 11 automorphisms, preprint, (1999).
[14] I.I. Pjatečkii-Sapiro, I.R. Šafarevič, A Torelli theorem for algebraic surfaces of type $K 3$, Math. USSR Izv., 5 (1971), 547-588.
[15] M. Schütt, K3 surfaces with non-symplectic automorphisms of 2-power order, J. Algebra., 323 (2010), 206-223
[16] S. Taki, Classification of non-symplectic automorphisms of order 3 on K3 surfaces, to appear in Math. Nachr.
[17] S. Taki, Non-symplectic automorphisms of 3-power order on $K 3$ surfaces, to appear in Proc. Japan Acad. Ser. A Math. Sci.
[18] S.P. Vorontsov, Automorphisms of even lattices that arise in connection with automorphisms of algebraic $K 3$ surfaces, Vestnik Mosk. Univ. Math. 38 (1983), 19-21.

Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea

E-mail address: taki@kias.re.kr

