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CLASSIFICATION OF NON-SYMPLECTIC
AUTOMORPHISMS ON K3 SURFACES WHICH ACT
TRIVIALLY ON THE NERON-SEVERI LATTICE.

SHINGO TAKI

ABSTRACT. We treat non-symplectic automorphisms on K3 sur-
faces which act trivially on the Néron-Severi lattice. In this paper,
we classify non-symplectic automorphisms of prime-power order,
especially 2-power order on K3 surfaces, i.e., we describe their
fixed locus.

1. INTRODUCTION

Let X be a K3 surface. In the following, we denote by Sx, Tx and
wy the Néron-Severi lattice, the transcendental lattice and a nowhere
vanishing holomorphic 2-form on X, respectively.

An automorphism of X is symplectic if it acts trivially on Cwy. This
paper is devoted to study of non-symplectic automorphisms of prime-
power order for which act trivially on Sx. The study of non-symplectic
automorphisms of K3 surfaces was pioneered by V.V. Nikulin.

We suppose that g is a non-symplectic automorphism of order I on
X such that g*wy = (qwx where (; is a primitive I-th root of unity.
Then ¢g* has no non-zero fixed vectors in Tx ® Q and hence ¢(I) divides
rank T'x, where ¢ is the Euler function. In particular ¢(/) < rank T’y
and hence I < 66 [9, Theorem 3.1 and Corollary 3.2].

The following proposition was announced by Vorontsov [18] and then
it was proved by Kondo [6].

Proposition 1.1. Let ¢ be a non-symplectic automorphism on X
which acts trivially on Sx. Then the order of ¢ is prime-power; p¥ =
20 (1<a<4),3(1<B<3),5 (1<~y<2),7, 11, 13,17 or 19.
Moreover Sy is a p-elementary lattice, that is, S% /Sx is a p-elementary
group where S% = Hom(Sx,Z).

Non-symplectic automorphisms of prime order have been studied by
several authors e.g. Nikulin [11], Oguiso, Zhang [12], [13], Artebani,
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Sarti [I] and Taki [I6]. Recently, we have the classification of non-
symplectic automorphisms of prime order on K3 surfaces [2].

Theorem 1.2. We assume that Sx is p-elementary. Let r be the
Picard number of X and let a be the minimal number of generators of
S%/Sx.

Then there exists a non-symplectic automorphism ¢ of order p on X
if and only if 22 —r — (p — 1)a € 2(p — 1)Z>y.

Moreover if X has a non-symplectic automorphism ¢ of order p which
acts trivially on Sx. then the fixed locus X¥ := {x € X|p(x) = z} has
the form

¢ if Sx =U(2) @ Es(2),
X =¢0ocW1chm if Sy = U @ Fg(2),
{(P,...,Py}ICYWIIE II---I1 Exy otherwise,

and

2 —r—(p—1)a
. )

2p—-1)
0 if p=2,
-2 22
M= w if p=17,19,
~ )y —
(p Jr—2 otherwise,
p—1
T;S it p =2,
N=<¢0 if p=17,19,
2 —(p—1
= )e otherwise,
2(p—1)

where P; is an isolated point, C9) is a non-singular curve with genus
g and FJ is a non-singular rational curve.

On the other hand, studies of prime power order have progressed,
too. Schiitt [15] classified K3 surfaces with non-symplectic automor-
phisms whose the order is 2-power and equals rank T’x. Machida and
Oguiso [§] or Oguiso and Zhang [12] have proved that the K3 surface
with non-symplectic automorphisms of order 25 or 27, respectively, is
unique. Recently, Taki [I7] classified non-symplectic automorphisms of
3-power order. The following theorem is known.

Theorem 1.3. (1) X has a non-symplectic automorphism ¢ of or-
der 9 acting trivially on Sx if and only if Sx = U & A,, U & Eg,
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U® FEg® Ay or U ® Es & Eg. Moreover the fixed locus X% has

the form
(P, P, ... P} if Sy = U @ As,
X% = {Pl,PQ,...,Plo}HEl ifSX:UEBEgOI'UEBEﬁ@AQ,

{Pl,PQ,...,P14}HE1HE2 lfSX:UEBEg@Eﬁ

(2) X has a non-symplectic automorphism ¢ of order 27 acting
trivially on Sx if and only if Sx = U & A,. Moreover the fixed
locus X¥ has the form X% = {P, P, ..., B}.
Here we denote by P, an isolated point and by FE; a non-singular
rational curve.

By Proposition [I1] if the order of a non-symplectic automorphism
is non-prime-power then Sy is unimodular. The cases are studied by
Kondo [6].

Theorem 1.4. Let ¢ be a non-symplectic automorphism on X and ¢
the Euler function.

(1) If Sx = U, then ord ¢|66, 44 or 12.

(2) If Sx = U & Ejs, then ord 9|42, 36 or 28.

(3) If Sy = U @ E$?, then ord p|12.

(4) If ¢(p) = rank T'x, then ord ¢ = 66, 44, 42, 36, 28 or 12. More-
over for m = 66, 44, 42, 36, 28 or 12, there exists a unique (up
to isomorophisms) K3 surface with ord p = m.

Hence, in order to classify non-symplectic automorphisms on X
which act trivially on Sy, we need the complete classification of non-
symplectic automorphisms of 2-power order, i.e., generalization of Schiitt’s
result. The main purpose of this paper is to prove the following theo-
rem.

Main Theorem. We assume that Sy is 2-elementary.

(1) X has a non-symplectic automorphism ¢ of order 4 acting triv-
ially on Sy if and only if Sy has 6 = 0 and Sy # U @ Eg(2),
U(2) @ Fs(2), U@ DY? and U @ DZ?. Moreover the fixed locus
X¥ has the form

({P, Py, ..., P} if rank Sx = 2,
{P,Py,..., B} 11 Ey if rank Sy = 6,
X¢={{P,P,... P}E1E, if rank Sy = 10,
(P, Ps,..., P} TLE 1 E, 11 E; if rank Sy — 14,
(P, Ps,..., Pl I E T B, TN E5 11 Ey  if rank Sy = 18,
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(2) X has a non-symplectic automorphism ¢ of order 8 acting triv-
ially on Sy if and only if Sx = U® Dy, U(2)® Dy or US D,y D Es.
Moreover the fixed locus X% has the form

X — {Pl,Pg,...,Pﬁ}HEl ifrankSX:6,
N {Pl,PQ,...,PlQ}HElHEQ ifrankSX:14.

(3) X has a non-symplectic automorphism ¢ of order 16 acting
trivially on Sx if and only if Sx = U & Dy or U ® Dy ® Eg.
Moreover the fixed locus X% has the form

X@: {Pl,Pg,...,Pﬁ}HEl lfSX:U@D4,
{P,,P,,...,Pu,YIE IIE, if Sy=U@&® D, ® Es.

Here, P is an isolated point and £ is a non-singular rational curve.

We summarize the contents of this paper. In Section 2 we review
the classification of even indefinite 2-elementary lattices. And we check
that the non-existence of lattice isometries of order 4. As a result, we
get the Néron-Severi lattice of K3 surfaces with non-symplectic auto-
morphisms of order 4, 8 or 16 which act trivially on Sx. Section [3is a
preliminary section. We recall some basic results about non-symplectic
automorphisms on K3 surfaces. Section [ is the main part of this pa-
per. Here, we classify non-symplectic automorphisms of order 4. By
using the Lefschetz formula and the classification of non-symplectic
involution, we study fixed locus of non-symplectic automorphisms of
order 4. In Section Bl and Section [6] we treat non-symplectic automor-
phisms of order 8 and 16, respectively. In Section [7] we collect examples
of K3 surface with a non-symplectic automorphism of 2-power order.

Acknowledgments. The author would like to express his gratitude
to Professor Shigeyuki Kondo for giving him many useful comments
and informing Example [Z.8l

2. THE NERON-SEVERI AND p-ELEMENTARY LATTICES

A lattice L is a free abelian group of finite rank r equipped with
a non-degenerate symmetric bilinear form, which will be denoted by
(, ). The bilinear form ( , ) determines a canonical embedding L C
L* = Hom(L,Z). We denote by Ay the factor group L*/L which is a
finite abelian group. L(m) is the lattice whose bilinear form is the one
on L multiplied by m.

We denote by U the hyperbolic lattice defined by <(1) (1)) which is

an even unimodular lattice of signature (1,1), and by A,,, D, or E;
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an even negative definite lattice associated with the Dynkin diagram
of type A,,, Dy or B (m>1,n>4and [ =6,7,8).

Let p be a prime number. A lattice L is called p-elementary if
Ay ~ (Z/pZ)®*, where a is the minimal number of generator of Ay.

For a p-elementary lattice we always have the inequality a < r, since
| L*/L |=p®, | L*/pL* |=p" and pL* C L C L*.

Example 2.1. For all p, lattices Eg, Fs(p), U and U(p) are p-elementary.
Ay, Dy, Dg and E; are 2-elementary.

Definition 2.2. For a 2-elementary lattice L, we put

_Jo ifa*eZ, Vo e L*
L= 1 otherwise.

Even indefinite 2-elementary lattices were classified by [10, Theorm
3.6.2].

Theorem 2.3. An even indefinite 2-elementary lattice L is determined
by the invariants (07,t,,¢_,a) where the pair (t,,¢_) is the signature
of L.

By the Theorem, we can get the Néron-Severi lattice of K3 surfaces
with a non-symplectic automorphism of order 2 acting trivially on Sx.
See Table |11, Table 1].

If k > 2 then ¢(2%) is even. Since ¢(2*) divides rank Ty, rank T
is even. Hence if X has a non-symplectic automorphisms of 2-power
order then rank Sx is even. Moreover we have the following.

Proposition 2.4. Let L be a 2-elementary lattice. If 6, = 1 then L
has no non-trivial isometries f of order 4 which act trivially on Ay and
do not have eigenvalues 1 or —1.

Proof. Let f: L — L be an isometry of order 4 which acts trivially on
Ap and does not have eigenvalues 1 or —1. Since the induced isometry
Ap — Ap (Z — f*(z)) is identity, for all x € L*, there exists an [ € L
such that f*(z) =z + L.

By the assumption, we have f*+ f*3 = 0. This implies 0 = (f*(z) +
f2@), ) = (f*(@),2) + (f?(2),2) = 2(f*(2),2) = 2((z,2) + (I, 2)).
Thus we have (z,z) = —(l,z) € Z. Hence 61, = 0. O

The following tables are lists of 2-elementary lattices with and § = 0.
Hence if X has a non-symplectic automorphisms of order 4, 8 or 16
which act trivially on Sx then S is one of the lattices in the following
table. (See also Lemma [B1] (1).)
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rank SX a SX TX
2 0 U U™ & EJ?
2 2 U(2) UaU2) ® ES?
6 2 U® D, U2 @ Es ® Dy
6 41 UR)e Dy (U2 @ Es® Dy
10 0 U Eg U2 o Ey
10 2 U ® Dy U @ Dy
10 4| U DJ? U2 ¢ DJ?
10 6| U)o DY | UsU(2)® D5?
10 8| U Ex(2) U®Z @ Eg(2)
10 [10[UQ2) @ Es(2) | U U2) @ Ex(2)
14 2| U@ Es® Dy U2 @ D,
14 4 UeDs@Dy| UdU(Q2) @ Dy
14 6| UeDP U(2)* @ D,
18 0] U®ES” U®?
18 2 |U® FEs® Ds UaU(2)
18 4| Ue Dg? U(2)%2

Table 1: 2-elementary lattices

Remark 2.5. Let {e, f} be a basis of U (resp. U(2)) with (e,e) =
(f,f) =0and (e, f) =1 (resp. (e, f) =2 ) . If necessary replacing
e by ¢(e), where ¢ is a composition of reflections induced from non-
singular rational curves on X, we may assume that e is represented by
the class of an elliptic curve F' and the linear system |F'| defines an
elliptic fibration 7 : X — P!. Note that 7 has a section f — e in case
U. In case U(2), there are no (—2)-vectors r with (r,e) = 1, and hence
7 has no sections.

It follows from Remark and Table [l that X has an elliptic fibra-
tion 7 : X — P!. In the following, we fix such an elliptic fibration.

The following lemma follows from [I4] §3 Corollary 3] and the clas-
sification of singular fibers of elliptic fibrations [5].

Lemma 2.6. Assume that Sy = U(m) @ K; @ --- @ K,., where m =
1 or 2, and Kj; is a lattice isomorphic to A,,, D,, or E;. Then 7 has a
reducible singular fiber with corresponding Dynkin diagram K.

3. PRELIMINARIES

Lemma 3.1. Let ¢ be a non-symplectic automorphism of 2-power
order on X. Then we have :



NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES 7

(1) ¢* | Tx ® C can be diagonalized as:

Cl, 0 oor oo 0
0 ¢, :
"Iy
: - 0
0 0 eee .. 0 §2k—1]q

where I, is the identity matrix of size ¢, ¢ is a primitive 2*-th
root of unity, n is a odd number.

(2) Let P be an isolated fixed point of ¢ on X. Then ¢* can be
written as

<%Z CO]> (i+j=1 mod 2%

under some appropriate local coordinates around P.
(3) Let C be an irreducible curve in X¥ and @) a point on C. Then

©* can be written as
10
0 ¢

under some appropriate local coordinates around (). In partic-
ular, fixed curves are non-singular.

Proof. (1) This follows form [9] Theorem 3.1].
(2), (3) Since ¢* acts on H°(X, Q%) as a multiplication by (, it acts
on the tangent space of a fixed point as

10 ¢t 0

0 ¢ or 0 ¢
where i +j = 1 (mod 2F). O
Thus the fixed locus of ¢ consists of disjoint union of non-singular

curves and isolated points. Hence we can express the irreducible de-
composition of X% as

X¢={P,....,Py}lIC 1. -1 Cy,

where P; is an isolated point and Cj is a non-singular curve.
In the following, we assume that & > 2. Hence we treat non-
symplectic automorphisms of order 4, 8 and 16.

Lemma 3.2. Let r be the Picard number of X. Then y(X¥) =r+ 2.
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Proof. We apply the topological Lefschetz formula:
4
V(X%) = 0 (1) r( | (X, R)).
i=0

Since * acts trivially on Sy, tr(¢*|Sx) = r. By Lemma B (1),
tr((p*‘TX) — Q(C+C3‘|" c (- ._|_§2k—1) — _Q(1+C2+' . .+§2k—2) = 0.
Hence we can calculate the right -hand side of the Lefschetz formula as
follows: Z?:O(—l)itr(cpﬂHi(X, R)) =1—0+tr(¢*|Sx) + tr(e*|Tx) —
O+1=7r+2. O

4. ORDER 4

We shall study the fixed locus of non-symplectic automorphisms of
order 4. In this section, let ¢ be a non-symplectic automorphism of
order 4.

Proposition 4.1. Let r be the Picard number of X. Then the number
of isolated points M is (r 4 6)/2.

Proof. First we calculate the holomorphic Lefschetz number L(y) in
two ways as in [3 page 542] and [4, page 567]. That is

Ztr *|HI(X,Ox)),

=2 alP)+ ) M),

7j=1
Here
1
lF3) = G = 2" Tp,)
1
— ~ ,
(o 1)-(5 &)
1—-g(C C?
b(C) = = 13(41) N (1C— ZC)Q’

where Tp, is the tangent space of X at Pj, g(C}) is the genus of Cj.
Using the Serre duality H*(X,Ox) ~ H*(X,Ox(Kx))V, we calcu-
late from the first formula that L(p) = 1+¢3. From the second formula,

we obtain
N

(1+ 1— C
L(p) = (1_C2 s +; C (z))
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Combing these two formulae, we have M =4 + S (2 — 2¢(C}). By
X(X?) = M + 32V (2 — 2¢(C))) and Lemma B2, we have M = (r +
6)/2. O

Proposition 4.2. If Sx = U @ Fx(2), U(2) © Ex(2), U ® DY* or
U @ Dg? then X has no non-symplectic automorphisms of order 4
which act trivially on S.

Proof. We will check the statement for each Sx individually.

We assume Sx = U @ Eg(2) or U(2) & Es(2). If X has a non-
symplectic automorphism ¢ of order 4 which acts trivially on Sx then
X¥ contains non-singular rational curves by Lemma and Proposi-
tion .1l Although these curves are fixed by ¢?, it is a contradiction
by Theorem This settles Proposition A2 in cases Sx = U & E5(2)
and U(2) @ Es(2).

We assume Sy = U @ D$® and X has a non-symplectic auto-
morphism ¢ of order 4 which acts trivially on Sx. Then X S
COIIE, II---11 E; by Theorem

Since ¢ acts trivially on Sx, ¢ preserves reducible singular fibers
of an elliptic fibration 7. Hence the automorphism ¢ acts trivially on
the base of m and the section (c.f. Remark 1) is fixed by ¢. By
Lemma [2.6, 7 has three singular fibers of type I§. The component with
multiplicity 2 is pointwisely fixed by ¢. Hence X% contains at least
four non-singular rational curves.

On the other hand y(CW I E, -+ -1 Ey) = 16 — 10 = 6 by Lemma
and Proposition @1l Thus X¥ contains non-singular curve C
with g > 2. But this is a contradiction because X ©* does not contain
C®. This settles Proposition B2 in cases Sy = U @ D,

By [15, Theorem 1], X with Sy = U @ D$* has no non-symplectic
automorphisms of order 4 . O

In other cases of Table[I], there exist K3 surfaces with a non-symplectic
automorphism of order 4. See Section [7

Proposition 4.3. Assume Sy is 2-elementary and 6 = 0. If Sx #
U@ Eg(2), U(2) @ Eg(2), U@ DY? or U@ D$? then X¥ has the form

({P, Py, ..., P} if rank Sx = 2,
{P,Py,..., B} 11 Ey if rank Sy = 6,
X¢={{P,P,... P}E1E, if rank Sy = 10,
(P, Ps,..., P} TLE 1 Ey 11 E; if rank Sy — 14,
(P, Ps,..., Pl T E T E, TN E5 11 Ey  if rank Sy = 18,
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Proof. We will check the form of X% for each Sx individually.

Assume Sy = U. By Theorem [[[Z, X¢* = CUO I E,. If X¥ contains
a non-singular rational curve F, or a non-singular curve C!) then E, or
C'® are also contained X¥#°. This is a contradiction. Thus X% contains
at most one non-singular rational curve and no non-singular curves with
genus 1. We remark that y(CWIIE,II-- -1 Ey) = 4—4 = 0 by Lemma
and Proposition [4.I If X¥ contains F; then X¥ contains a non-
singular curve C®. But this is a contradiction because X #* does not
contain C®. Hence X¥ = {P|, P,,..., P,}. This settles Proposition
43 in the case Sy = U.

Assume Sy = U @ Eg ® Dy. Then X?* = C® I E, 11 --- 11 Eg by
Theorem [L2. We remark that xy(CW T E; IT--- 1T Ey) =16 —-10=6
by Lemma and Proposition B1l If X% contains C® then X¢ =
{P,Py,..., P} HCO I E 1T ---1I E5. Since Eg is not fixed by ¢,
isolated fixed points P; lie on Fg. But this is a contradiction because a
non-singular rational curve has exactly two fixed points. Hence X¥ =
{P\,Ps,...,Pyo} 11 Ey 11 E5 IT E5. This settles Proposition in the
case Sx = U @ Ex ® Dy.

In the other case we can check the claim by similar arguments. [

5. ORDER 8

In this section, let ¢ be a non-symplectic automorphism of order 8.
And we shall describe X¢ = {P,,..., Py} HCYW I E II---1I Ey.

Proposition 5.1. Let r be the Picard number of X. Then the number
of isolated points M is (3r + 6)/4.

Proof. By the holomorphic Lefschetz formulae, we have

0 =2mgg—mas— Y, (2—29(C1)),
2 =maor—m3e+ Mys — 21111(2 —29(Ch)).
We remark that p?(P%?) is a fixed point of a non-symplectic auto-

morphism of order 4. It is easy to see that ¢*(P*") and @*(P3%) are
isolated fixed points of p?. By proposition .1l and Lemma [5.2], we have

(#)

r+6
(1) Mo 7 + M3e = 5
By (), (1) and Lemma 2] we have M = (3r + 6)/4. O

Lemma 5.2. Let P be an isolated fixed point of ¢?. Then p(P) = P.

Proof. Let m # 0 be the number of such P. Then m satisfies mg 7 +
mse + m = (r + 6)/2. By the equation and (), we have mqy; =
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(r+14)/4—=3m/2, mge = (r —2)/44+m/2, mys = (r — 6)/4+ 3m/2
and Yo, (2 - 2g(C)) = (r +2)/4—m/2.

Since mg 7 + mgye is even by ({), m is even, my7 and mse are odd.
Hence we have m < (r+6)/2 —1—1 = (r + 2)/2. By the parity of
Moz, My and mys, if r = 2,10 and 18 (resp. 6 and 14) then m = 2x
odd number (resp. 2x even number).

Assume r = 10. Then m = 2 or 6. If m = 6 then my7 =6 —9 < 0.
This is a contradiction. If m = 2 then my 5 = 4 and 3.1 | (2—2¢(C))) =
2. Since p?(P*%) is a point on a irreducible fixed curve by ¢?, these
two equations imply that ¢? has 3 fixed non-singular rational curves.
This is a contradiction by Proposition [£.3l This settles Lemma [5.2] in
the case r = 10.

In other cases we can check the claim by similar the argument. [

Remark 5.3. my7 = (r+14)/4, mge = (r — 2)/4, my5 = (r — 6)/4.

Corollary 5.4. If X has a non-symplectic automorphism of order 8
then rank Sx = 6 or 14.

Proof. If rank Sx = 2, 10 or 18 then M is odd by Proposition 5.1l But
X(X?) =M+ 3V (2 —29(Cy)) is even by Lemma B2 O

If Sx = U® Dy or U(2) ® Dy then there exist K3 surfaces with
non-symplectic automorphisms of order 8 by Example and [7.4l
And Schiitt [I5, Theorem 1] proved that the K3 surface with a non-
symplectic automorphism of order 8 and rank Sy = 14 is unique.

Proposition 5.5. X has a non-symplectic automorphism ¢ of order
8 acting trivially on Sx if and only if Sx = U @ Dy, U(2) ® Dy or
U ® D, ® Es. Moreover the fixed locus X% has the form

X — {Pl,PQ,...,PG}HEl ifrankSX:6,
 \{P,P,,..., Py} I E 11 E, ifrankSy = 14.

Proof. Note x(CW N E, IT1---1 Ey) = (2 +7)/4 by Lemma and
Proposition 5.1 We remark that X¥* does not contain non-singular
curve with genus > 1 by Proposition Thus N = (24 r)/8. O

6. ORDER 16

In this section, let ¢ be a non-symplectic automorphism of order 16.
And we shall describe X? = {P;,..., Py} ICYWIIE, II---11 Ex. We
remark that if X has a non-symplectic automorphism of order 16 then
rank Sx = 6 or 14.
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Proposition 6.1. Let r be the Picard number of X. Then the number
of isolated points M is (3r + 6)/4.

Proof. It is similar to the proof of Proposition (.11 O

Remark 6.2. ma 15 = (’f’—l— 10)/4, ms14 = (T—|—2)/8, mg13 = (7“—6)/8,
m5712 = (’f’ — 6)/8, m6711 = (’f’ — 6)/8, m7710 = 1, m&g = 0

Schiitt [I5] Theorem 1] proved that the K3 surface with a non-
symplectic automorphism of order 16 and rank Sy = 6 is unique. That
is SX =U D D4.

By Proposition 5.5 if X has a non-symplectic automorphism of order
16 and rank Sy = 14 then Sx = U & D4 & FEg. Indeed there exists a

K3 surface with non-symplectic automorphisms of order 16 and Sy =
U@ Dy & Eg. See Example [7.9.

Proposition 6.3. X has a non-symplectic automorphism ¢ of order
16 acting trivially on Sx if and only if Sy =U & Dy or U ® Dy @ FEg.
Moreover the fixed locus X% has the form

X — {Pl,PQ,...,PG}HEl 1fSX2UEBD4,
{Pl,PQ,...,PlQ}HElHEQ lfSXZUEBD4EBE8
Proof. It is similar to the proof of Proposition O

7. EXAMPLES

In this section, we give examples of K 3 surfaces with a non-symplectic
automorphism of 2-power order. We remark that K3 surfaces have an
elliptic fibration from Remark and Table 1l

Example 7.1. [[6, (3.1)]](Case: Sx =U)

Xy =2+ a4+t p(x,y,t) = (CFie, Ciiy, Cat).
Example 7.2. (Case: Sx = U(2)) Let \; be distinct 4 complex num-
bers. Let ([xo : x1],[y0 : v1]) be the bi-homogeneous coordinates on

P! x P*. Consider a smooth divisor C'in P! x P! of bidegree (4, 4) given
by

1
y0+y1 Hl’o—)\l’l =0.
=1
Let ¢ be an involution of P! x IP’l given by

([0 : @1, [yo : 1)) = ([wo : @], [y1 : wo])

which preserves C.

Let X the double cover of P! x P! branched along C. Then X
is a K3 surface with Sx = U(2). And the involution ¢ induces an
automorphism ¢ which satisfies p*wx = (wx.
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Example 7.3. [[15]](Case: Sx = U & Dy)

X: y2 = :LB + tzz + tlla (,0(1', Y, t) = (<126x> C?ﬁya C126t)
Example 7.4. [[8, Propositon 4 (15)]](Case: Sx = U(2) & Dy)

Let X be the minimal resolution of the surface X := {2? = xo(xjz2+
2 —23)} having 5 ordinary double points [0: 1:¢{: 0] (i =0,1,2,3,4)
and p([xg : z1 : xg 1 2]) = [x0 : (o1 1 Qaa : (B2].

Example 7.5. [[6, (3.2)]](Case: Sx =U @ Es)

Xy =a® =TI (= G, wl@,y,t) = (G, Gy, GRED)-
Example 7.6. (Case: Sy = U & Dy)

Xy = ot [T (=) + T (), ol ) = (=2, Gy, =),
Example 7.7. (Case: Sy = U @ D{?)

X y2 = x?’ - tg Hf:l(t - Cé)v ()0(:1:7y7t) = (—LU, 44?% _t>
Example 7.8. [[7, §2.1]](Case: Sx = U(2) @ D{?)

Let {[A\; : 1]} be a set of distinct 8 points on the projective line.

Let ([zo : 1], [yo : y1]) be the bi-homogeneous coordinates on P! x P!
Consider a smooth divisor C' in P* x P! of bidegree (4,2) given by

4 8
Yo - H(xo — Nit1) + i - H(xo — Aiag) = 0.
i=1 i=5
Let Ly (resp. L;) be the divisor defined by yo = 0 (resp. y; = 0). Let
¢ be an involution of P* x P! given by

([wo = 2], [yo : 1)) = ([0 : 1), [yo + —w1])

which preserves C', Lo and L.

Note that the double cover of P! x P! branched along C + Lq + L;
has 8 rational double points of type A; and its minimal resolution X
is a K3 surface. The involution ¢ lifts to an automorphism ¢ which
satisfies p*wy = Qwy.

Example 7.9. (Case: Sxy =U @ Es @ Dy)

X y2 = *Tg + t2$ + t77 go(m, Ys t) = ( 11(?:(:7 C176y7 g126t>
Example 7.10. (Case: Sx =U @& Dg @ D)

Xoy? = T (= T (=), ey, ) = (=2, Gy, =),
Example 7.11. [[6, (3.4)]](Case: Sx = U @ E$?)

X y2 = I,?, - ts(t - 1)(t + 1)7 (p<$7y7t) = (g1221', g%Zyu _t)

Example 7.12. [[15]](Case: Sx =U & Eg @ Ds)
Xoy? =a® +ta® +17, p(a,y,t) = (=2, Gy, —1).
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