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CLASSIFICATION OF NON-SYMPLECTIC

AUTOMORPHISMS ON K3 SURFACES WHICH ACT

TRIVIALLY ON THE NÉRON-SEVERI LATTICE.

SHINGO TAKI

Abstract. We treat non-symplectic automorphisms on K3 sur-
faces which act trivially on the Néron-Severi lattice. In this paper,
we classify non-symplectic automorphisms of prime-power order,
especially 2-power order on K3 surfaces, i.e., we describe their
fixed locus.

1. Introduction

Let X be a K3 surface. In the following, we denote by SX , TX and
ωX the Néron-Severi lattice, the transcendental lattice and a nowhere
vanishing holomorphic 2-form on X , respectively.
An automorphism of X is symplectic if it acts trivially on CωX . This

paper is devoted to study of non-symplectic automorphisms of prime-
power order for which act trivially on SX . The study of non-symplectic
automorphisms of K3 surfaces was pioneered by V.V. Nikulin.
We suppose that g is a non-symplectic automorphism of order I on

X such that g∗ωX = ζIωX where ζI is a primitive I-th root of unity.
Then g∗ has no non-zero fixed vectors in TX⊗Q and hence φ(I) divides
rankTX , where φ is the Euler function. In particular φ(I) ≤ rankTX

and hence I ≤ 66 [9, Theorem 3.1 and Corollary 3.2].
The following proposition was announced by Vorontsov [18] and then

it was proved by Kondo [6].

Proposition 1.1. Let ϕ be a non-symplectic automorphism on X
which acts trivially on SX . Then the order of ϕ is prime-power; pk =
2α (1 ≤ α ≤ 4), 3β (1 ≤ β ≤ 3), 5γ (1 ≤ γ ≤ 2), 7, 11, 13, 17 or 19.
Moreover SX is a p-elementary lattice, that is, S∗

X/SX is a p-elementary
group where S∗

X = Hom(SX ,Z).

Non-symplectic automorphisms of prime order have been studied by
several authors e.g. Nikulin [11], Oguiso, Zhang [12], [13], Artebani,
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Sarti [1] and Taki [16]. Recently, we have the classification of non-
symplectic automorphisms of prime order on K3 surfaces [2].

Theorem 1.2. We assume that SX is p-elementary. Let r be the
Picard number of X and let a be the minimal number of generators of
S∗
X/SX .
Then there exists a non-symplectic automorphism ϕ of order p on X

if and only if 22− r − (p− 1)a ∈ 2(p− 1)Z≥0.
Moreover ifX has a non-symplectic automorphism ϕ of order p which

acts trivially on SX . then the fixed locus Xϕ := {x ∈ X|ϕ(x) = x} has
the form

Xϕ =





φ if SX = U(2)⊕ E8(2),

C(1) ∐ C(1) if SX = U ⊕ E8(2),

{P1, . . . , PM} ∐ C(g) ∐ E1 ∐ · · · ∐ EN otherwise,

and

g =
22− r − (p− 1)a

2(p− 1)
,

M =






0 if p = 2,
(p− 2)r + 22

p− 1
if p = 17, 19,

(p− 2)r − 2

p− 1
otherwise,

N =





r − s

2
if p = 2,

0 if p = 17, 19,
2 + r − (p− 1)a

2(p− 1)
otherwise,

where Pj is an isolated point, C(g) is a non-singular curve with genus
g and Ek is a non-singular rational curve.

On the other hand, studies of prime power order have progressed,
too. Schütt [15] classified K3 surfaces with non-symplectic automor-
phisms whose the order is 2-power and equals rankTX . Machida and
Oguiso [8] or Oguiso and Zhang [12] have proved that the K3 surface
with non-symplectic automorphisms of order 25 or 27, respectively, is
unique. Recently, Taki [17] classified non-symplectic automorphisms of
3-power order. The following theorem is known.

Theorem 1.3. (1) X has a non-symplectic automorphism ϕ of or-
der 9 acting trivially on SX if and only if SX = U ⊕A2, U ⊕E8,
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U ⊕E6 ⊕A2 or U ⊕E8 ⊕E6. Moreover the fixed locus Xϕ has
the form

Xϕ =





{P1, P2, . . . , P6} if SX = U ⊕ A2,

{P1, P2, . . . , P10} ∐E1 if SX = U ⊕ E8 or U ⊕E6 ⊕ A2,

{P1, P2, . . . , P14} ∐E1 ∐ E2 if SX = U ⊕ E8 ⊕ E6.

(2) X has a non-symplectic automorphism ϕ of order 27 acting
trivially on SX if and only if SX = U ⊕A2. Moreover the fixed
locus Xϕ has the form Xϕ = {P1, P2, . . . , P6}.

Here we denote by Pi an isolated point and by Ej a non-singular
rational curve.

By Proposition 1.1, if the order of a non-symplectic automorphism
is non-prime-power then SX is unimodular. The cases are studied by
Kondo [6].

Theorem 1.4. Let ϕ be a non-symplectic automorphism on X and φ
the Euler function.

(1) If SX = U , then ordϕ|66, 44 or 12.
(2) If SX = U ⊕ E8, then ordϕ|42, 36 or 28.
(3) If SX = U ⊕ E⊕2

8 , then ordϕ|12.
(4) If φ(ϕ) = rankTX , then ordϕ = 66, 44, 42, 36, 28 or 12. More-

over for m = 66, 44, 42, 36, 28 or 12, there exists a unique (up
to isomorophisms) K3 surface with ordϕ = m.

Hence, in order to classify non-symplectic automorphisms on X
which act trivially on SX , we need the complete classification of non-
symplectic automorphisms of 2-power order, i.e., generalization of Schütt’s
result. The main purpose of this paper is to prove the following theo-
rem.

Main Theorem. We assume that SX is 2-elementary.

(1) X has a non-symplectic automorphism ϕ of order 4 acting triv-
ially on SX if and only if SX has δ = 0 and SX 6= U ⊕ E8(2),
U(2)⊕E8(2), U ⊕D⊕3

4 and U ⊕D⊕2
8 . Moreover the fixed locus

Xϕ has the form

Xϕ =






{P1, P2, . . . , P4} if rankSX = 2,

{P1, P2, . . . , P6} ∐ E1 if rankSX = 6,

{P1, P2, . . . , P8} ∐ E1 ∐ E2 if rankSX = 10,

{P1, P2, . . . , P10} ∐ E1 ∐ E2 ∐ E3 if rankSX = 14,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 ∐ E3 ∐E4 if rankSX = 18.
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(2) X has a non-symplectic automorphism ϕ of order 8 acting triv-
ially on SX if and only if SX = U⊕D4, U(2)⊕D4 or U⊕D4⊕E8.
Moreover the fixed locus Xϕ has the form

Xϕ =

{
{P1, P2, . . . , P6} ∐ E1 if rankSX = 6,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 if rankSX = 14.

(3) X has a non-symplectic automorphism ϕ of order 16 acting
trivially on SX if and only if SX = U ⊕ D4 or U ⊕ D4 ⊕ E8.
Moreover the fixed locus Xϕ has the form

Xϕ =

{
{P1, P2, . . . , P6} ∐ E1 if SX = U ⊕D4,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 if SX = U ⊕D4 ⊕ E8.

Here, Pi is an isolated point and Ej is a non-singular rational curve.

We summarize the contents of this paper. In Section 2, we review
the classification of even indefinite 2-elementary lattices. And we check
that the non-existence of lattice isometries of order 4. As a result, we
get the Néron-Severi lattice of K3 surfaces with non-symplectic auto-
morphisms of order 4, 8 or 16 which act trivially on SX . Section 3 is a
preliminary section. We recall some basic results about non-symplectic
automorphisms on K3 surfaces. Section 4 is the main part of this pa-
per. Here, we classify non-symplectic automorphisms of order 4. By
using the Lefschetz formula and the classification of non-symplectic
involution, we study fixed locus of non-symplectic automorphisms of
order 4. In Section 5 and Section 6, we treat non-symplectic automor-
phisms of order 8 and 16, respectively. In Section 7 we collect examples
of K3 surface with a non-symplectic automorphism of 2-power order.

Acknowledgments. The author would like to express his gratitude
to Professor Shigeyuki Kondo for giving him many useful comments
and informing Example 7.8.

2. The Néron-Severi and p-elementary lattices

A lattice L is a free abelian group of finite rank r equipped with
a non-degenerate symmetric bilinear form, which will be denoted by
〈 , 〉. The bilinear form 〈 , 〉 determines a canonical embedding L ⊂
L∗ = Hom(L,Z). We denote by AL the factor group L∗/L which is a
finite abelian group. L(m) is the lattice whose bilinear form is the one
on L multiplied by m.

We denote by U the hyperbolic lattice defined by

(
0 1
1 0

)
which is

an even unimodular lattice of signature (1, 1), and by Am, Dn or El
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an even negative definite lattice associated with the Dynkin diagram
of type Am, Dn or El (m ≥ 1, n ≥ 4 and l = 6, 7, 8).
Let p be a prime number. A lattice L is called p-elementary if

AL ≃ (Z/pZ)⊕a, where a is the minimal number of generator of AL.
For a p-elementary lattice we always have the inequality a ≤ r, since
| L∗/L |= pa, | L∗/pL∗ |= pr and pL∗ ⊂ L ⊂ L∗.

Example 2.1. For all p, latticesE8, E8(p), U and U(p) are p-elementary.
A1, D4, D8 and E7 are 2-elementary.

Definition 2.2. For a 2-elementary lattice L, we put

δL =

{
0 if x2 ∈ Z, ∀x ∈ L∗,

1 otherwise.

Even indefinite 2-elementary lattices were classified by [10, Theorm
3.6.2].

Theorem 2.3. An even indefinite 2-elementary lattice L is determined
by the invariants (δL, t+, t−, a) where the pair (t+, t−) is the signature
of L.

By the Theorem, we can get the Néron-Severi lattice of K3 surfaces
with a non-symplectic automorphism of order 2k acting trivially on SX .
See Table [11, Table 1].
If k ≥ 2 then φ(2k) is even. Since φ(2k) divides rankTX , rankTX

is even. Hence if X has a non-symplectic automorphisms of 2-power
order then rankSX is even. Moreover we have the following.

Proposition 2.4. Let L be a 2-elementary lattice. If δL = 1 then L
has no non-trivial isometries f of order 4 which act trivially on AL and
do not have eigenvalues 1 or −1.

Proof. Let f : L → L be an isometry of order 4 which acts trivially on
AL and does not have eigenvalues 1 or −1. Since the induced isometry
AL → AL (x̄ 7→ f ∗(x)) is identity, for all x ∈ L∗, there exists an l ∈ L
such that f ∗(x) = x+ l.
By the assumption, we have f ∗+ f ∗3 = 0. This implies 0 = 〈f ∗(x)+

f ∗3(x), x〉 = 〈f ∗(x), x〉 + 〈f ∗3(x), x〉 = 2〈f ∗(x), x〉 = 2(〈x, x〉 + 〈l, x〉).
Thus we have 〈x, x〉 = −〈l, x〉 ∈ Z. Hence δL = 0. �

The following tables are lists of 2-elementary lattices with and δ = 0.
Hence if X has a non-symplectic automorphisms of order 4, 8 or 16
which act trivially on SX then SX is one of the lattices in the following
table. (See also Lemma 3.1 (1).)
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rankSX a SX TX

2 0 U U⊕2 ⊕E⊕2
8

2 2 U(2) U ⊕ U(2)⊕ E⊕2
8

6 2 U ⊕D4 U⊕2 ⊕E8 ⊕D4

6 4 U(2)⊕D4 U(2)⊕2 ⊕ E8 ⊕D4

10 0 U ⊕E8 U⊕2 ⊕ E8

10 2 U ⊕D8 U⊕2 ⊕D8

10 4 U ⊕D⊕2
4 U⊕2 ⊕D⊕2

4

10 6 U(2)⊕D⊕2
4 U ⊕ U(2)⊕D⊕2

4

10 8 U ⊕ E8(2) U⊕2 ⊕E8(2)
10 10 U(2)⊕E8(2) U ⊕ U(2)⊕ E8(2)
14 2 U ⊕E8 ⊕D4 U⊕2 ⊕D4

14 4 U ⊕D8 ⊕D4 U ⊕ U(2)⊕D4

14 6 U ⊕D⊕3
4 U(2)⊕2 ⊕D4

18 0 U ⊕ E⊕2
8 U⊕2

18 2 U ⊕E8 ⊕D8 U ⊕ U(2)
18 4 U ⊕D⊕2

8 U(2)⊕2

Table 1: 2-elementary lattices

Remark 2.5. Let {e, f} be a basis of U (resp. U(2)) with 〈e, e〉 =
〈f, f〉 = 0 and 〈e, f〉 = 1 (resp. 〈e, f〉 = 2 ) . If necessary replacing
e by ϕ(e), where ϕ is a composition of reflections induced from non-
singular rational curves on X , we may assume that e is represented by
the class of an elliptic curve F and the linear system |F | defines an
elliptic fibration π : X → P1. Note that π has a section f − e in case
U . In case U(2), there are no (−2)-vectors r with 〈r, e〉 = 1, and hence
π has no sections.

It follows from Remark 2.5 and Table 1 that X has an elliptic fibra-
tion π : X → P1. In the following, we fix such an elliptic fibration.
The following lemma follows from [14, §3 Corollary 3] and the clas-

sification of singular fibers of elliptic fibrations [5].

Lemma 2.6. Assume that SX = U(m) ⊕K1 ⊕ · · · ⊕Kr, where m =
1 or 2, and Ki is a lattice isomorphic to Am, Dn or El. Then π has a
reducible singular fiber with corresponding Dynkin diagram Ki.

3. Preliminaries

Lemma 3.1. Let ϕ be a non-symplectic automorphism of 2-power
order on X . Then we have :
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(1) ϕ∗ | TX ⊗ C can be diagonalized as:



ζIq 0 · · · · · · · · · 0

0 ζ3Iq
...

...
. . .

...
... ζnIq

...
...

. . . 0
0 · · · · · · · · · 0 ζ2k−1Iq




,

where Iq is the identity matrix of size q, ζ is a primitive 2k-th
root of unity, n is a odd number.

(2) Let P be an isolated fixed point of ϕ on X . Then ϕ∗ can be
written as (

ζ i 0
0 ζj

)
(i+ j ≡ 1 mod 2k)

under some appropriate local coordinates around P .
(3) Let C be an irreducible curve in Xϕ and Q a point on C. Then

ϕ∗ can be written as
(
1 0
0 ζ

)

under some appropriate local coordinates around Q. In partic-
ular, fixed curves are non-singular.

Proof. (1) This follows form [9, Theorem 3.1].
(2), (3) Since ϕ∗ acts on H0(X,Ω2

X) as a multiplication by ζ , it acts
on the tangent space of a fixed point as

(
1 0
0 ζ

)
or

(
ζ i 0
0 ζj

)

where i+ j ≡ 1 (mod 2k). �

Thus the fixed locus of ϕ consists of disjoint union of non-singular
curves and isolated points. Hence we can express the irreducible de-
composition of Xϕ as

Xϕ = {P1, . . . , PM} ∐ C1 ∐ · · · ∐ CN ,

where Pj is an isolated point and Ck is a non-singular curve.
In the following, we assume that k ≥ 2. Hence we treat non-

symplectic automorphisms of order 4, 8 and 16.

Lemma 3.2. Let r be the Picard number of X . Then χ(Xϕ) = r+ 2.
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Proof. We apply the topological Lefschetz formula:

χ(Xϕ) =

4∑

i=0

(−1)itr(ϕ∗|H i(X,R)).

Since ϕ∗ acts trivially on SX , tr(ϕ
∗|SX) = r. By Lemma 3.1 (1),

tr(ϕ∗|TX) = q(ζ+ζ3+· · ·+ζn+· · ·+ζ2k−1) = −q(1+ζ2+· · ·+ζ2k−2) = 0.
Hence we can calculate the right -hand side of the Lefschetz formula as
follows:

∑4
i=0(−1)itr(ϕ∗|H i(X,R)) = 1− 0 + tr(ϕ∗|SX) + tr(ϕ∗|TX)−

0 + 1 = r + 2. �

4. Order 4

We shall study the fixed locus of non-symplectic automorphisms of
order 4. In this section, let ϕ be a non-symplectic automorphism of
order 4.

Proposition 4.1. Let r be the Picard number of X . Then the number
of isolated points M is (r + 6)/2.

Proof. First we calculate the holomorphic Lefschetz number L(ϕ) in
two ways as in [3, page 542] and [4, page 567]. That is

L(ϕ) =
2∑

i=0

tr(ϕ∗|H i(X,OX)),

L(ϕ) =
M∑

j=1

a(Pj) +
N∑

l=1

b(Cl).

Here

a(Pj) : =
1

det(1− ϕ∗|TPj
)

=
1

det

((
1 0
0 1

)
−

(
ζ2 0
0 ζ3

)) ,

b(Cl) : =
1− g(Cl)

1− ζ
−

ζC2
l

(1− ζ)2
,

where TPj
is the tangent space of X at Pj, g(Cl) is the genus of Cl.

Using the Serre duality H2(X,OX) ≃ H0(X,OX(KX))
∨, we calcu-

late from the first formula that L(ϕ) = 1+ζ3. From the second formula,
we obtain

L(ϕ) =
M

(1− ζ2)(1− ζ3)
+

N∑

l=1

(1 + ζ)(1− g(Cl))

(1− ζ)2
.
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Combing these two formulae, we have M = 4 +
∑N

l=1(2 − 2g(Cl). By

χ(Xϕ) = M +
∑N

l=1(2 − 2g(Cl)) and Lemma 3.2, we have M = (r +
6)/2. �

Proposition 4.2. If SX = U ⊕ E8(2), U(2) ⊕ E8(2), U ⊕ D⊕3
4 or

U ⊕ D⊕2
8 then X has no non-symplectic automorphisms of order 4

which act trivially on SX .

Proof. We will check the statement for each SX individually.
We assume SX = U ⊕ E8(2) or U(2) ⊕ E8(2). If X has a non-

symplectic automorphism ϕ of order 4 which acts trivially on SX then
Xϕ contains non-singular rational curves by Lemma 3.2 and Proposi-
tion 4.1. Although these curves are fixed by ϕ2, it is a contradiction
by Theorem 1.2. This settles Proposition 4.2 in cases SX = U ⊕E8(2)
and U(2)⊕E8(2).
We assume SX = U ⊕ D⊕3

4 and X has a non-symplectic auto-
morphism ϕ of order 4 which acts trivially on SX . Then Xϕ2

=
C(1) ∐ E1 ∐ · · · ∐ E4 by Theorem 1.2.
Since ϕ acts trivially on SX , ϕ preserves reducible singular fibers

of an elliptic fibration π. Hence the automorphism ϕ acts trivially on
the base of π and the section (c.f. Remark 2.5) is fixed by ϕ. By
Lemma 2.6, π has three singular fibers of type I∗0. The component with
multiplicity 2 is pointwisely fixed by ϕ. Hence Xϕ contains at least
four non-singular rational curves.
On the other hand χ(C(g)∐E1∐· · ·∐EN ) = 16−10 = 6 by Lemma

3.2 and Proposition 4.1. Thus Xϕ contains non-singular curve C(g)

with g ≥ 2. But this is a contradiction because Xϕ2

does not contain
C(2). This settles Proposition 4.2 in cases SX = U ⊕D⊕3

4 .
By [15, Theorem 1], X with SX = U ⊕ D⊕2

8 has no non-symplectic
automorphisms of order 4 . �

In other cases of Table 1, there existK3 surfaces with a non-symplectic
automorphism of order 4. See Section 7.

Proposition 4.3. Assume SX is 2-elementary and δ = 0. If SX 6=
U ⊕ E8(2), U(2)⊕ E8(2), U ⊕D⊕3

4 or U ⊕D⊕2
8 then Xϕ has the form

Xϕ =






{P1, P2, . . . , P4} if rankSX = 2,

{P1, P2, . . . , P6} ∐ E1 if rankSX = 6,

{P1, P2, . . . , P8} ∐ E1 ∐ E2 if rankSX = 10,

{P1, P2, . . . , P10} ∐ E1 ∐ E2 ∐ E3 if rankSX = 14,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 ∐ E3 ∐E4 if rankSX = 18.
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Proof. We will check the form of Xϕ for each SX individually.
Assume SX = U . By Theorem 1.2, Xϕ2

= C(10)∐E1. If X
ϕ contains

a non-singular rational curve E2 or a non-singular curve C
(1) then E2 or

C(1) are also contained Xϕ2

. This is a contradiction. Thus Xϕ contains
at most one non-singular rational curve and no non-singular curves with
genus 1. We remark that χ(C(g)∐E1∐· · ·∐EN) = 4−4 = 0 by Lemma
3.2 and Proposition 4.1. If Xϕ contains E1 then Xϕ contains a non-
singular curve C(2). But this is a contradiction because Xϕ2

does not
contain C(2). Hence Xϕ = {P1, P2, . . . , P4}. This settles Proposition
4.3 in the case SX = U .
Assume SX = U ⊕ E8 ⊕ D4. Then Xϕ2

= C(3) ∐ E1 ∐ · · · ∐ E6 by
Theorem 1.2. We remark that χ(C(g) ∐ E1 ∐ · · · ∐ EN) = 16− 10 = 6
by Lemma 3.2 and Proposition 4.1. If Xϕ contains C(3) then Xϕ =
{P1, P2, . . . , P10} ∐ C(3) ∐ E1 ∐ · · · ∐ E5. Since E6 is not fixed by ϕ,
isolated fixed points Pi lie on E6. But this is a contradiction because a
non-singular rational curve has exactly two fixed points. Hence Xϕ =
{P1, P2, . . . , P10} ∐ E1 ∐ E2 ∐ E3. This settles Proposition 4.3 in the
case SX = U ⊕ E8 ⊕D4.
In the other case we can check the claim by similar arguments. �

5. Order 8

In this section, let ϕ be a non-symplectic automorphism of order 8.
And we shall describe Xϕ = {P1, . . . , PM} ∐ C(g) ∐ E1 ∐ · · · ∐ EN .

Proposition 5.1. Let r be the Picard number of X . Then the number
of isolated points M is (3r + 6)/4.

Proof. By the holomorphic Lefschetz formulae, we have
{
0 = 2m3,6 −m4,5 −

∑N

l=1(2− 2g(Cl)),

2 = m2,7 −m3,6 +m4,5 −
∑N

l=1(2− 2g(Cl)).
(♯)

We remark that ϕ2(P u,v) is a fixed point of a non-symplectic auto-
morphism of order 4. It is easy to see that ϕ2(P 2,7) and ϕ2(P 3,6) are
isolated fixed points of ϕ2. By proposition 4.1 and Lemma 5.2, we have

(1) m2,7 +m3,6 =
r + 6

2
.

By (♯), (1) and Lemma 3.2, we have M = (3r + 6)/4. �

Lemma 5.2. Let P be an isolated fixed point of ϕ2. Then ϕ(P ) = P .

Proof. Let m 6= 0 be the number of such P . Then m satisfies m2,7 +
m3,6 + m = (r + 6)/2. By the equation and (♯), we have m2,7 =
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(r + 14)/4− 3m/2, m3,6 = (r − 2)/4 +m/2, m4,5 = (r − 6)/4 + 3m/2

and
∑N

l=1(2− 2g(Cl)) = (r + 2)/4−m/2.
Since m2,7 + m3,6 is even by (♯), m is even, m2,7 and m3,6 are odd.

Hence we have m ≤ (r + 6)/2 − 1 − 1 = (r + 2)/2. By the parity of
m2,7, m3,6 and m4,5, if r = 2, 10 and 18 (resp. 6 and 14) then m = 2×
odd number (resp. 2× even number).
Assume r = 10. Then m = 2 or 6. If m = 6 then m2,7 = 6− 9 < 0.

This is a contradiction. If m = 2 then m4,5 = 4 and
∑N

l=1(2−2g(Cl)) =
2. Since ϕ2(P 4,5) is a point on a irreducible fixed curve by ϕ2, these
two equations imply that ϕ2 has 3 fixed non-singular rational curves.
This is a contradiction by Proposition 4.3. This settles Lemma 5.2 in
the case r = 10.
In other cases we can check the claim by similar the argument. �

Remark 5.3. m2,7 = (r + 14)/4, m3,6 = (r − 2)/4, m4,5 = (r − 6)/4.

Corollary 5.4. If X has a non-symplectic automorphism of order 8
then rankSX = 6 or 14.

Proof. If rankSX = 2, 10 or 18 then M is odd by Proposition 5.1. But
χ(Xϕ) = M +

∑N

l=1(2− 2g(Cl)) is even by Lemma 3.2. �

If SX = U ⊕ D4 or U(2) ⊕ D4 then there exist K3 surfaces with
non-symplectic automorphisms of order 8 by Example 7.3 and 7.4.
And Schütt [15, Theorem 1] proved that the K3 surface with a non-
symplectic automorphism of order 8 and rankSX = 14 is unique.

Proposition 5.5. X has a non-symplectic automorphism ϕ of order
8 acting trivially on SX if and only if SX = U ⊕ D4, U(2) ⊕ D4 or
U ⊕D4 ⊕E8. Moreover the fixed locus Xϕ has the form

Xϕ =

{
{P1, P2, . . . , P6} ∐ E1 if rankSX = 6,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 if rankSX = 14.

Proof. Note χ(C(g) ∐ E1 ∐ · · · ∐ EN ) = (2 + r)/4 by Lemma 3.2 and

Proposition 5.1. We remark that Xϕ2

does not contain non-singular
curve with genus ≥ 1 by Proposition 4.3. Thus N = (2 + r)/8. �

6. Order 16

In this section, let ϕ be a non-symplectic automorphism of order 16.
And we shall describe Xϕ = {P1, . . . , PM} ∐C(g) ∐E1 ∐ · · · ∐EN . We
remark that if X has a non-symplectic automorphism of order 16 then
rankSX = 6 or 14.
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Proposition 6.1. Let r be the Picard number of X . Then the number
of isolated points M is (3r + 6)/4.

Proof. It is similar to the proof of Proposition 5.1. �

Remark 6.2. m2,15 = (r+10)/4, m3,14 = (r+2)/8, m4,13 = (r−6)/8,
m5,12 = (r − 6)/8, m6,11 = (r − 6)/8, m7,10 = 1, m8,9 = 0.

Schütt [15, Theorem 1] proved that the K3 surface with a non-
symplectic automorphism of order 16 and rankSX = 6 is unique. That
is SX = U ⊕D4.
By Proposition 5.5, ifX has a non-symplectic automorphism of order

16 and rankSX = 14 then SX = U ⊕ D4 ⊕ E8. Indeed there exists a
K3 surface with non-symplectic automorphisms of order 16 and SX =
U ⊕D4 ⊕E8. See Example 7.9.

Proposition 6.3. X has a non-symplectic automorphism ϕ of order
16 acting trivially on SX if and only if SX = U ⊕D4 or U ⊕D4 ⊕ E8.
Moreover the fixed locus Xϕ has the form

Xϕ =

{
{P1, P2, . . . , P6} ∐ E1 if SX ≃ U ⊕D4,

{P1, P2, . . . , P12} ∐ E1 ∐ E2 if SX ≃ U ⊕D4 ⊕E8.

Proof. It is similar to the proof of Proposition 5.5. �

7. Examples

In this section, we give examples ofK3 surfaces with a non-symplectic
automorphism of 2-power order. We remark that K3 surfaces have an
elliptic fibration from Remark 2.5 and Table 1.

Example 7.1. [[6, (3.1)]](Case: SX = U)
X : y2 = x3 + x+ t11, ϕ(x, y, t) = (ζ2244x, ζ

11
44y, ζ

2
44t).

Example 7.2. (Case: SX = U(2)) Let λi be distinct 4 complex num-
bers. Let ([x0 : x1], [y0 : y1]) be the bi-homogeneous coordinates on
P1×P1. Consider a smooth divisor C in P1×P1 of bidegree (4, 4) given
by

(y40 + y41) ·
4∏

i=1

(x0 − λix1) = 0.

Let ι be an involution of P1 × P1 given by

([x0 : x1], [y0 : y1]) → ([x0 : x1], [y1 : y0])

which preserves C.
Let X the double cover of P1 × P1 branched along C. Then X

is a K3 surface with SX = U(2). And the involution ι induces an
automorphism ϕ which satisfies ϕ∗ωX = ζ4ωX .
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Example 7.3. [[15]](Case: SX = U ⊕D4)
X : y2 = x3 + t2x+ t11, ϕ(x, y, t) = (ζ216x, ζ

3
16y, ζ

2
16t).

Example 7.4. [[8, Propositon 4 (15)]](Case: SX = U(2)⊕D4)

Let X be the minimal resolution of the surface X̃ := {z2 = x0(x
4
0x2+

x5
1−x5

2)} having 5 ordinary double points [0 : 1 : ζ i5 : 0] (i = 0, 1, 2, 3, 4)
and ϕ([x0 : x1 : x2 : z]) = [x0 : ζ20x1 : ζ4x2 : ζ

5
8z].

Example 7.5. [[6, (3.2)]](Case: SX = U ⊕ E8)
X : y2 = x3 − t5

∏6
i=1(t− ζ i6), ϕ(x, y, t) = (ζ236x, ζ

3
36y, ζ

30
36 t).

Example 7.6. (Case: SX = U ⊕D8)
X : y2 = x3+t

∏6
i=1(t−ζ i6)x

2+t
∏6

i=1(t−ζ i6), ϕ(x, y, t) = (−x, ζ4y,−t).

Example 7.7. (Case: SX = U ⊕D⊕2
4 )

X : y2 = x3 − t3
∏6

i=1(t− ζ i6), ϕ(x, y, t) = (−x, ζ4y,−t).

Example 7.8. [[7, §2.1]](Case: SX = U(2)⊕D⊕2
4 )

Let {[λi : 1]} be a set of distinct 8 points on the projective line.
Let ([x0 : x1], [y0 : y1]) be the bi-homogeneous coordinates on P1 × P1.
Consider a smooth divisor C in P1 × P1 of bidegree (4, 2) given by

y20 ·

4∏

i=1

(x0 − λix1) + y21 ·

8∏

i=5

(x0 − λix1) = 0.

Let L0 (resp. L1) be the divisor defined by y0 = 0 (resp. y1 = 0). Let
ι be an involution of P1 × P1 given by

([x0 : x1], [y0 : y1]) → ([x0 : x1], [y0 : −y1])

which preserves C, L0 and L1.
Note that the double cover of P1 × P1 branched along C + L0 + L1

has 8 rational double points of type A1 and its minimal resolution X
is a K3 surface. The involution ι lifts to an automorphism ϕ which
satisfies ϕ∗ωX = ζ4ωX .

Example 7.9. (Case: SX = U ⊕ E8 ⊕D4)
X : y2 = x3 + t2x+ t7, ϕ(x, y, t) = (ζ1016x, ζ

7
16y, ζ

2
16t).

Example 7.10. (Case: SX = U ⊕D8 ⊕D4)

X : y2 = x3+t
∏4

i=1(t−ζ i4)x
2+t3

∏4
i=1(t−ζ i4), ϕ(x, y, t) = (−x, ζ4y,−t).

Example 7.11. [[6, (3.4)]](Case: SX = U ⊕ E⊕2
8 )

X : y2 = x3 − t5(t− 1)(t+ 1), ϕ(x, y, t) = (ζ212x, ζ
3
12y,−t).

Example 7.12. [[15]](Case: SX = U ⊕ E8 ⊕D8)
X : y2 = x3 + tx2 + t7, ϕ(x, y, t) = (−x, ζ4y,−t).
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