CLASSIFICATION OF NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES WHICH ACT TRIVIALLY ON THE NÉRON-SEVERI LATTICE.

SHINGO TAKI

ABSTRACT. We treat non-symplectic automorphisms on K3 surfaces which act trivially on the Néron-Severi lattice. In this paper, we classify non-symplectic automorphisms of prime-power order, especially 2-power order on K3 surfaces, i.e., we describe their fixed locus.

1. INTRODUCTION

Let X be a K3 surface. In the following, we denote by S_X , T_X and ω_X the Néron-Severi lattice, the transcendental lattice and a nowhere vanishing holomorphic 2-form on X, respectively.

An automorphism of X is symplectic if it acts trivially on $\mathbb{C}\omega_X$. This paper is devoted to study of *non*-symplectic automorphisms of prime-power order for which act trivially on S_X . The study of non-symplectic automorphisms of K3 surfaces was pioneered by V.V. Nikulin.

We suppose that g is a non-symplectic automorphism of order I on X such that $g^*\omega_X = \zeta_I\omega_X$ where ζ_I is a primitive I-th root of unity. Then g^* has no non-zero fixed vectors in $T_X \otimes \mathbb{Q}$ and hence $\phi(I)$ divides rank T_X , where ϕ is the Euler function. In particular $\phi(I) \leq \operatorname{rank} T_X$ and hence $I \leq 66$ [9, Theorem 3.1 and Corollary 3.2].

The following proposition was announced by Vorontsov [18] and then it was proved by Kondo [6].

Proposition 1.1. Let φ be a non-symplectic automorphism on X which acts trivially on S_X . Then the order of φ is prime-power; $p^k = 2^{\alpha}$ $(1 \leq \alpha \leq 4), 3^{\beta}$ $(1 \leq \beta \leq 3), 5^{\gamma}$ $(1 \leq \gamma \leq 2), 7, 11, 13, 17 \text{ or } 19.$ Moreover S_X is a *p*-elementary lattice, that is, S_X^*/S_X is a *p*-elementary group where $S_X^* = \text{Hom}(S_X, \mathbb{Z})$.

Non-symplectic automorphisms of prime order have been studied by several authors e.g. Nikulin [11], Oguiso, Zhang [12], [13], Artebani,

Date: September 24, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 14J28; Secondary 14J50.

Key words and phrases. K3 surface, non-symplectic automorphism.

Sarti [1] and Taki [16]. Recently, we have the classification of non-symplectic automorphisms of prime order on K3 surfaces [2].

Theorem 1.2. We assume that S_X is *p*-elementary. Let *r* be the Picard number of *X* and let *a* be the minimal number of generators of S_X^*/S_X .

Then there exists a non-symplectic automorphism φ of order p on X if and only if $22 - r - (p-1)a \in 2(p-1)\mathbb{Z}_{>0}$.

Moreover if X has a non-symplectic automorphism φ of order p which acts trivially on S_X . then the fixed locus $X^{\varphi} := \{x \in X | \varphi(x) = x\}$ has the form

$$X^{\varphi} = \begin{cases} \phi & \text{if } S_X = U(2) \oplus E_8(2), \\ C^{(1)} \amalg C^{(1)} & \text{if } S_X = U \oplus E_8(2), \\ \{P_1, \dots, P_M\} \amalg C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N & \text{otherwise,} \end{cases}$$

and

$$g = \frac{22 - r - (p - 1)a}{2(p - 1)},$$

$$M = \begin{cases} 0 & \text{if } p = 2, \\ \frac{(p - 2)r + 22}{p - 1} & \text{if } p = 17, 19, \\ \frac{(p - 2)r - 2}{p - 1} & \text{otherwise}, \end{cases}$$

$$N = \begin{cases} \frac{r - s}{2} & \text{if } p = 2, \\ 0 & \text{if } p = 17, 19, \\ \frac{2 + r - (p - 1)a}{2(p - 1)} & \text{otherwise}, \end{cases}$$

where P_j is an isolated point, $C^{(g)}$ is a non-singular curve with genus g and E_k is a non-singular rational curve.

On the other hand, studies of prime power order have progressed, too. Schütt [15] classified K3 surfaces with non-symplectic automorphisms whose the order is 2-power and equals rank T_X . Machida and Oguiso [8] or Oguiso and Zhang [12] have proved that the K3 surface with non-symplectic automorphisms of order 25 or 27, respectively, is unique. Recently, Taki [17] classified non-symplectic automorphisms of 3-power order. The following theorem is known.

Theorem 1.3. (1) X has a non-symplectic automorphism φ of order 9 acting trivially on S_X if and only if $S_X = U \oplus A_2$, $U \oplus E_8$,

 $\mathbf{2}$

 $U \oplus E_6 \oplus A_2$ or $U \oplus E_8 \oplus E_6$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_6\} & \text{if } S_X = U \oplus A_2, \\ \{P_1, P_2, \dots, P_{10}\} \amalg E_1 & \text{if } S_X = U \oplus E_8 \text{ or } U \oplus E_6 \oplus A_2, \\ \{P_1, P_2, \dots, P_{14}\} \amalg E_1 \amalg E_2 & \text{if } S_X = U \oplus E_8 \oplus E_6. \end{cases}$$

(2) X has a non-symplectic automorphism φ of order 27 acting trivially on S_X if and only if $S_X = U \oplus A_2$. Moreover the fixed locus X^{φ} has the form $X^{\varphi} = \{P_1, P_2, \ldots, P_6\}$.

Here we denote by P_i an isolated point and by E_j a non-singular rational curve.

By Proposition 1.1, if the order of a non-symplectic automorphism is non-prime-power then S_X is unimodular. The cases are studied by Kondo [6].

Theorem 1.4. Let φ be a non-symplectic automorphism on X and ϕ the Euler function.

- (1) If $S_X = U$, then ord $\varphi|_{66}$, 44 or 12.
- (2) If $S_X = U \oplus E_8$, then ord $\varphi | 42$, 36 or 28.
- (3) If $S_X = U \oplus E_8^{\oplus 2}$, then ord $\varphi|_{12}$.
- (4) If $\phi(\varphi) = \operatorname{rank} T_X$, then $\operatorname{ord} \varphi = 66, 44, 42, 36, 28$ or 12. Moreover for m = 66, 44, 42, 36, 28 or 12, there exists a unique (up to isomorphisms) K3 surface with $\operatorname{ord} \varphi = m$.

Hence, in order to classify non-symplectic automorphisms on X which act trivially on S_X , we need the complete classification of non-symplectic automorphisms of 2-power order, i.e., generalization of Schütt's result. The main purpose of this paper is to prove the following theorem.

Main Theorem. We assume that S_X is 2-elementary.

(1) X has a non-symplectic automorphism φ of order 4 acting trivially on S_X if and only if S_X has $\delta = 0$ and $S_X \neq U \oplus E_8(2)$, $U(2) \oplus E_8(2)$, $U \oplus D_4^{\oplus 3}$ and $U \oplus D_8^{\oplus 2}$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_4\} & \text{if rank } S_X = 2, \\ \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if rank } S_X = 6, \\ \{P_1, P_2, \dots, P_8\} \amalg E_1 \amalg E_2 & \text{if rank } S_X = 10, \\ \{P_1, P_2, \dots, P_{10}\} \amalg E_1 \amalg E_2 \amalg E_3 & \text{if rank } S_X = 14, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 \amalg E_3 \amalg E_4 & \text{if rank } S_X = 18. \end{cases}$$

S. TAKI

(2) X has a non-symplectic automorphism φ of order 8 acting trivially on S_X if and only if $S_X = U \oplus D_4$, $U(2) \oplus D_4$ or $U \oplus D_4 \oplus E_8$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if rank } S_X = 6, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 & \text{if rank } S_X = 14. \end{cases}$$

(3) X has a non-symplectic automorphism φ of order 16 acting trivially on S_X if and only if $S_X = U \oplus D_4$ or $U \oplus D_4 \oplus E_8$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if } S_X = U \oplus D_4, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 & \text{if } S_X = U \oplus D_4 \oplus E_8. \end{cases}$$

Here, P_i is an isolated point and E_j is a non-singular rational curve.

We summarize the contents of this paper. In Section 2, we review the classification of even indefinite 2-elementary lattices. And we check that the non-existence of lattice isometries of order 4. As a result, we get the Néron-Severi lattice of K3 surfaces with non-symplectic automorphisms of order 4, 8 or 16 which act trivially on S_X . Section 3 is a preliminary section. We recall some basic results about non-symplectic automorphisms on K3 surfaces. Section 4 is the main part of this paper. Here, we classify non-symplectic automorphisms of order 4. By using the Lefschetz formula and the classification of non-symplectic involution, we study fixed locus of non-symplectic automorphisms of order 4. In Section 5 and Section 6, we treat non-symplectic automorphisms of order 8 and 16, respectively. In Section 7 we collect examples of K3 surface with a non-symplectic automorphism of 2-power order.

Acknowledgments. The author would like to express his gratitude to Professor Shigeyuki Kondo for giving him many useful comments and informing Example 7.8.

2. The Néron-Severi and *p*-elementary lattices

A lattice L is a free abelian group of finite rank r equipped with a non-degenerate symmetric bilinear form, which will be denoted by \langle , \rangle . The bilinear form \langle , \rangle determines a canonical embedding $L \subset L^* = \text{Hom}(L,\mathbb{Z})$. We denote by A_L the factor group L^*/L which is a finite abelian group. L(m) is the lattice whose bilinear form is the one on L multiplied by m.

We denote by U the hyperbolic lattice defined by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ which is an even unimodular lattice of signature (1, 1), and by A_m , D_n or E_l

4

an even negative definite lattice associated with the Dynkin diagram of type A_m , D_n or E_l $(m \ge 1, n \ge 4$ and l = 6, 7, 8).

Let p be a prime number. A lattice L is called p-elementary if $A_L \simeq (\mathbb{Z}/p\mathbb{Z})^{\oplus a}$, where a is the minimal number of generator of A_L . For a p-elementary lattice we always have the inequality $a \leq r$, since $|L^*/L| = p^a$, $|L^*/pL^*| = p^r$ and $pL^* \subset L \subset L^*$.

Example 2.1. For all p, lattices E_8 , $E_8(p)$, U and U(p) are p-elementary. A_1 , D_4 , D_8 and E_7 are 2-elementary.

Definition 2.2. For a 2-elementary lattice L, we put

$$\delta_L = \begin{cases} 0 & \text{if } x^2 \in \mathbb{Z}, \forall x \in L^*, \\ 1 & \text{otherwise.} \end{cases}$$

Even indefinite 2-elementary lattices were classified by [10, Theorm 3.6.2].

Theorem 2.3. An even indefinite 2-elementary lattice L is determined by the invariants (δ_L, t_+, t_-, a) where the pair (t_+, t_-) is the signature of L.

By the Theorem, we can get the Néron-Severi lattice of K3 surfaces with a non-symplectic automorphism of order 2^k acting trivially on S_X . See Table [11, Table 1].

If $k \geq 2$ then $\phi(2^k)$ is even. Since $\phi(2^k)$ divides rank T_X , rank T_X is even. Hence if X has a non-symplectic automorphisms of 2-power order then rank S_X is even. Moreover we have the following.

Proposition 2.4. Let *L* be a 2-elementary lattice. If $\delta_L = 1$ then *L* has no non-trivial isometries *f* of order 4 which act trivially on A_L and do not have eigenvalues 1 or -1.

Proof. Let $f: L \to L$ be an isometry of order 4 which acts trivially on A_L and does not have eigenvalues 1 or -1. Since the induced isometry $A_L \to A_L$ $(\bar{x} \mapsto \overline{f^*(x)})$ is identity, for all $x \in L^*$, there exists an $l \in L$ such that $f^*(x) = x + l$.

By the assumption, we have $f^* + f^{*3} = 0$. This implies $0 = \langle f^*(x) + f^{*3}(x), x \rangle = \langle f^*(x), x \rangle + \langle f^{*3}(x), x \rangle = 2 \langle f^*(x), x \rangle = 2 \langle \langle x, x \rangle + \langle l, x \rangle$. Thus we have $\langle x, x \rangle = -\langle l, x \rangle \in \mathbb{Z}$. Hence $\delta_L = 0$.

The following tables are lists of 2-elementary lattices with and $\delta = 0$. Hence if X has a non-symplectic automorphisms of order 4, 8 or 16 which act trivially on S_X then S_X is one of the lattices in the following table. (See also Lemma 3.1 (1).)

S. TAKI

$\operatorname{rank} S_X$	a	S_X	T_X
2	0	U	$U^{\oplus 2} \oplus E_8^{\oplus 2}$
2	2	U(2)	$U \oplus U(2) \oplus E_8^{\oplus 2}$
6	2	$U \oplus D_4$	$U^{\oplus 2} \oplus E_8 \oplus D_4$
6	4	$U(2)\oplus D_4$	$U(2)^{\oplus 2} \oplus E_8 \oplus D_4$
10	0	$U \oplus E_8$	$U^{\oplus 2} \oplus E_8$
10	2	$U \oplus D_8$	$U^{\oplus 2} \oplus D_8$
10	4	$U \oplus D_4^{\oplus 2}$	$U^{\oplus 2} \oplus D_4^{\oplus 2}$
10	6	$U(2) \oplus D_4^{\oplus 2}$	$U \oplus U(2) \oplus D_4^{\oplus 2}$
10	8	$U \oplus E_8(2)$	$U^{\oplus 2} \oplus E_8(2)$
10	10	$U(2) \oplus E_8(2)$	$U \oplus U(2) \oplus E_8(2)$
14	2	$U \oplus E_8 \oplus D_4$	$U^{\oplus 2} \oplus D_4$
14	4	$U \oplus D_8 \oplus D_4$	$U \oplus U(2) \oplus D_4$
14	6	$U\oplus D_4^{\oplus 3}$	$U(2)^{\oplus 2} \oplus D_4$
18	0	$U \oplus E_8^{\oplus 2}$	$U^{\oplus 2}$
18	2	$U \oplus E_8 \oplus D_8$	$U \oplus U(2)$
18	4	$U \oplus D_8^{\oplus 2}$	$U(2)^{\oplus 2}$

Table 1: 2-elementary lattices

Remark 2.5. Let $\{e, f\}$ be a basis of U (resp. U(2)) with $\langle e, e \rangle = \langle f, f \rangle = 0$ and $\langle e, f \rangle = 1$ (resp. $\langle e, f \rangle = 2$). If necessary replacing e by $\varphi(e)$, where φ is a composition of reflections induced from nonsingular rational curves on X, we may assume that e is represented by the class of an elliptic curve F and the linear system |F| defines an elliptic fibration $\pi : X \to \mathbb{P}^1$. Note that π has a section f - e in case U. In case U(2), there are no (-2)-vectors r with $\langle r, e \rangle = 1$, and hence π has no sections.

It follows from Remark 2.5 and Table 1 that X has an elliptic fibration $\pi: X \to \mathbb{P}^1$. In the following, we fix such an elliptic fibration.

The following lemma follows from [14, §3 Corollary 3] and the classification of singular fibers of elliptic fibrations [5].

Lemma 2.6. Assume that $S_X = U(m) \oplus K_1 \oplus \cdots \oplus K_r$, where m = 1 or 2, and K_i is a lattice isomorphic to A_m , D_n or E_l . Then π has a reducible singular fiber with corresponding Dynkin diagram K_i .

3. Preliminaries

Lemma 3.1. Let φ be a non-symplectic automorphism of 2-power order on X. Then we have :

(1) $\varphi^* \mid T_X \otimes \mathbb{C}$ can be diagonalized as:

ζI_q	0	• • •	• • •	•••	0)	
0	$\zeta^3 I_q$				÷	
1 :		·			:	
:			$\zeta^n I_q$:	,
				۰.	0	
$\int 0$	•••	• • •	• • •	0	$\zeta^{2k-1}I_q$	

where I_q is the identity matrix of size q, ζ is a primitive 2^k -th root of unity, n is a odd number.

(2) Let P be an isolated fixed point of φ on X. Then φ^* can be written as

$$\begin{pmatrix} \zeta^i & 0\\ 0 & \zeta^j \end{pmatrix} \quad (i+j \equiv 1 \mod 2^k)$$

under some appropriate local coordinates around P.

(3) Let C be an irreducible curve in X^{φ} and Q a point on C. Then φ^* can be written as

$$\begin{pmatrix} 1 & 0 \\ 0 & \zeta \end{pmatrix}$$

under some appropriate local coordinates around Q. In particular, fixed curves are non-singular.

Proof. (1) This follows form [9, Theorem 3.1].

(2), (3) Since φ^* acts on $H^0(X, \Omega_X^2)$ as a multiplication by ζ , it acts on the tangent space of a fixed point as

$$\begin{pmatrix} 1 & 0 \\ 0 & \zeta \end{pmatrix} \qquad \text{or} \qquad \begin{pmatrix} \zeta^i & 0 \\ 0 & \zeta^j \end{pmatrix}$$

where $i + j \equiv 1 \pmod{2^k}$.

Thus the fixed locus of φ consists of disjoint union of non-singular curves and isolated points. Hence we can express the irreducible decomposition of X^{φ} as

$$X^{\varphi} = \{P_1, \dots, P_M\} \amalg C_1 \amalg \cdots \amalg C_N,$$

where P_j is an isolated point and C_k is a non-singular curve.

In the following, we assume that $k \geq 2$. Hence we treat nonsymplectic automorphisms of order 4, 8 and 16.

Lemma 3.2. Let r be the Picard number of X. Then $\chi(X^{\varphi}) = r + 2$.

Proof. We apply the topological Lefschetz formula:

$$\chi(X^{\varphi}) = \sum_{i=0}^{4} (-1)^{i} \operatorname{tr}(\varphi^{*} | H^{i}(X, \mathbb{R}))$$

Since φ^* acts trivially on S_X , $\operatorname{tr}(\varphi^*|S_X) = r$. By Lemma 3.1 (1), $\operatorname{tr}(\varphi^*|T_X) = q(\zeta + \zeta^3 + \dots + \zeta^n + \dots + \zeta^{2k-1}) = -q(1 + \zeta^2 + \dots + \zeta^{2k-2}) = 0$. Hence we can calculate the right -hand side of the Lefschetz formula as follows: $\sum_{i=0}^{4} (-1)^i \operatorname{tr}(\varphi^*|H^i(X,\mathbb{R})) = 1 - 0 + \operatorname{tr}(\varphi^*|S_X) + \operatorname{tr}(\varphi^*|T_X) - 0 + 1 = r + 2$.

4. Order 4

We shall study the fixed locus of non-symplectic automorphisms of order 4. In this section, let φ be a non-symplectic automorphism of order 4.

Proposition 4.1. Let r be the Picard number of X. Then the number of isolated points M is (r+6)/2.

Proof. First we calculate the holomorphic Lefschetz number $L(\varphi)$ in two ways as in [3, page 542] and [4, page 567]. That is

$$L(\varphi) = \sum_{i=0}^{2} \operatorname{tr}(\varphi^{*} | H^{i}(X, \mathcal{O}_{X})),$$
$$L(\varphi) = \sum_{j=1}^{M} a(P_{j}) + \sum_{l=1}^{N} b(C_{l}).$$

Here

$$a(P_j) := \frac{1}{\det(1 - \varphi^* | T_{P_j})} \\ = \frac{1}{\det\left(\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \zeta^2 & 0\\ 0 & \zeta^3 \end{pmatrix}\right)}, \\ b(C_l) := \frac{1 - g(C_l)}{1 - \zeta} - \frac{\zeta C_l^2}{(1 - \zeta)^2},$$

where T_{P_i} is the tangent space of X at P_j , $g(C_l)$ is the genus of C_l .

Using the Serre duality $H^2(X, \mathcal{O}_X) \simeq H^0(X, \mathcal{O}_X(K_X))^{\vee}$, we calculate from the first formula that $L(\varphi) = 1 + \zeta^3$. From the second formula, we obtain

$$L(\varphi) = \frac{M}{(1-\zeta^2)(1-\zeta^3)} + \sum_{l=1}^N \frac{(1+\zeta)(1-g(C_l))}{(1-\zeta)^2}.$$

Combing these two formulae, we have $M = 4 + \sum_{l=1}^{N} (2 - 2g(C_l))$. By $\chi(X^{\varphi}) = M + \sum_{l=1}^{N} (2 - 2g(C_l))$ and Lemma 3.2, we have $M = (r + C_l)$ 6)/2.

Proposition 4.2. If $S_X = U \oplus E_8(2)$, $U(2) \oplus E_8(2)$, $U \oplus D_4^{\oplus 3}$ or $U \oplus D_8^{\oplus 2}$ then X has no non-symplectic automorphisms of order 4 which act trivially on S_X .

Proof. We will check the statement for each S_X individually.

We assume $S_X = U \oplus E_8(2)$ or $U(2) \oplus E_8(2)$. If X has a nonsymplectic automorphism φ of order 4 which acts trivially on S_X then X^{φ} contains non-singular rational curves by Lemma 3.2 and Proposition 4.1. Although these curves are fixed by φ^2 , it is a contradiction by Theorem 1.2. This settles Proposition 4.2 in cases $S_X = U \oplus E_8(2)$ and $U(2) \oplus E_8(2)$.

We assume $S_X = U \oplus D_4^{\oplus 3}$ and X has a non-symplectic auto-morphism φ of order 4 which acts trivially on S_X . Then $X^{\varphi^2} =$ $C^{(1)} \amalg E_1 \amalg \cdots \amalg E_4$ by Theorem 1.2.

Since φ acts trivially on S_X , φ preserves reducible singular fibers of an elliptic fibration π . Hence the automorphism φ acts trivially on the base of π and the section (c.f. Remark 2.5) is fixed by φ . By Lemma 2.6, π has three singular fibers of type I₀^{*}. The component with multiplicity 2 is pointwisely fixed by φ . Hence X^{φ} contains at least four non-singular rational curves.

On the other hand $\chi(C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N) = 16 - 10 = 6$ by Lemma 3.2 and Proposition 4.1. Thus X^{φ} contains non-singular curve $C^{(g)}$ with $g \ge 2$. But this is a contradiction because X^{φ^2} does not contain $C^{(2)}$. This settles Proposition 4.2 in cases $S_X = U \oplus D_4^{\oplus 3}$. By [15, Theorem 1], X with $S_X = U \oplus D_8^{\oplus 2}$ has no non-symplectic

automorphisms of order 4 .

In other cases of Table 1, there exist K3 surfaces with a non-symplectic automorphism of order 4. See Section 7.

Proposition 4.3. Assume S_X is 2-elementary and $\delta = 0$. If $S_X \neq U \oplus E_8(2), U(2) \oplus E_8(2), U \oplus D_4^{\oplus 3}$ or $U \oplus D_8^{\oplus 2}$ then X^{φ} has the form

 $X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_4\} & \text{if rank } S_X = 2, \\ \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if rank } S_X = 6, \\ \{P_1, P_2, \dots, P_8\} \amalg E_1 \amalg E_2 & \text{if rank } S_X = 10, \\ \{P_1, P_2, \dots, P_{10}\} \amalg E_1 \amalg E_2 \amalg E_3 & \text{if rank } S_X = 14, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 \amalg E_3 \amalg E_4 & \text{if rank } S_X = 18. \end{cases}$

Proof. We will check the form of X^{φ} for each S_X individually.

Assume $S_X = U$. By Theorem 1.2, $X^{\varphi^2} = C^{(10)} \amalg E_1$. If X^{φ} contains a non-singular rational curve E_2 or a non-singular curve $C^{(1)}$ then E_2 or $C^{(1)}$ are also contained X^{φ^2} . This is a contradiction. Thus X^{φ} contains at most one non-singular rational curve and no non-singular curves with genus 1. We remark that $\chi(C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N) = 4 - 4 = 0$ by Lemma 3.2 and Proposition 4.1. If X^{φ} contains E_1 then X^{φ} contains a nonsingular curve $C^{(2)}$. But this is a contradiction because X^{φ^2} does not contain $C^{(2)}$. Hence $X^{\varphi} = \{P_1, P_2, \dots, P_4\}$. This settles Proposition 4.3 in the case $S_X = U$.

Assume $S_X = U \oplus E_8 \oplus D_4$. Then $X^{\varphi^2} = C^{(3)} \amalg E_1 \amalg \cdots \amalg E_6$ by Theorem 1.2. We remark that $\chi(C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N) = 16 - 10 = 6$ by Lemma 3.2 and Proposition 4.1. If X^{φ} contains $C^{(3)}$ then $X^{\varphi} =$ $\{P_1, P_2, \ldots, P_{10}\} \amalg C^{(3)} \amalg E_1 \amalg \cdots \amalg E_5$. Since E_6 is not fixed by φ , isolated fixed points P_i lie on E_6 . But this is a contradiction because a non-singular rational curve has exactly two fixed points. Hence $X^{\varphi} =$ $\{P_1, P_2, \ldots, P_{10}\} \amalg E_1 \amalg E_2 \amalg E_3$. This settles Proposition 4.3 in the case $S_X = U \oplus E_8 \oplus D_4$.

In the other case we can check the claim by similar arguments. \Box

5. Order 8

In this section, let φ be a non-symplectic automorphism of order 8. And we shall describe $X^{\varphi} = \{P_1, \ldots, P_M\} \amalg C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N$.

Proposition 5.1. Let r be the Picard number of X. Then the number of isolated points M is (3r+6)/4.

Proof. By the holomorphic Lefschetz formulae, we have

(#)
$$\begin{cases} 0 = 2m_{3,6} - m_{4,5} - \sum_{l=1}^{N} (2 - 2g(C_l)), \\ 2 = m_{2,7} - m_{3,6} + m_{4,5} - \sum_{l=1}^{N} (2 - 2g(C_l)). \end{cases}$$

We remark that $\varphi^2(P^{u,v})$ is a fixed point of a non-symplectic automorphism of order 4. It is easy to see that $\varphi^2(P^{2,7})$ and $\varphi^2(P^{3,6})$ are isolated fixed points of φ^2 . By proposition 4.1 and Lemma 5.2, we have

(1)
$$m_{2,7} + m_{3,6} = \frac{r+6}{2}$$

By (\sharp) , (1) and Lemma 3.2, we have M = (3r+6)/4.

Lemma 5.2. Let P be an isolated fixed point of φ^2 . Then $\varphi(P) = P$.

Proof. Let $m \neq 0$ be the number of such *P*. Then *m* satisfies $m_{2,7} + m_{3,6} + m = (r+6)/2$. By the equation and (\sharp) , we have $m_{2,7} =$

 $(r+14)/4 - 3m/2, m_{3,6} = (r-2)/4 + m/2, m_{4,5} = (r-6)/4 + 3m/2$ and $\sum_{l=1}^{N} (2 - 2g(C_l)) = (r+2)/4 - m/2.$

Since $m_{2,7} + m_{3,6}$ is even by (\sharp) , m is even, $m_{2,7}$ and $m_{3,6}$ are odd. Hence we have $m \leq (r+6)/2 - 1 - 1 = (r+2)/2$. By the parity of $m_{2,7}$, $m_{3,6}$ and $m_{4,5}$, if r = 2, 10 and 18 (resp. 6 and 14) then $m = 2 \times$ odd number (resp. $2 \times$ even number).

Assume r = 10. Then m = 2 or 6. If m = 6 then $m_{2,7} = 6 - 9 < 0$. This is a contradiction. If m = 2 then $m_{4,5} = 4$ and $\sum_{l=1}^{N} (2 - 2g(C_l)) = 2$. Since $\varphi^2(P^{4,5})$ is a point on a irreducible fixed curve by φ^2 , these two equations imply that φ^2 has 3 fixed non-singular rational curves. This is a contradiction by Proposition 4.3. This settles Lemma 5.2 in the case r = 10.

In other cases we can check the claim by similar the argument. \Box

Remark 5.3.
$$m_{2,7} = (r+14)/4$$
, $m_{3,6} = (r-2)/4$, $m_{4,5} = (r-6)/4$.

Corollary 5.4. If X has a non-symplectic automorphism of order 8 then rank $S_X = 6$ or 14.

Proof. If rank $S_X = 2$, 10 or 18 then M is odd by Proposition 5.1. But $\chi(X^{\varphi}) = M + \sum_{l=1}^{N} (2 - 2g(C_l))$ is even by Lemma 3.2.

If $S_X = U \oplus D_4$ or $U(2) \oplus D_4$ then there exist K3 surfaces with non-symplectic automorphisms of order 8 by Example 7.3 and 7.4. And Schütt [15, Theorem 1] proved that the K3 surface with a nonsymplectic automorphism of order 8 and rank $S_X = 14$ is unique.

Proposition 5.5. X has a non-symplectic automorphism φ of order 8 acting trivially on S_X if and only if $S_X = U \oplus D_4$, $U(2) \oplus D_4$ or $U \oplus D_4 \oplus E_8$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if rank } S_X = 6, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 & \text{if rank } S_X = 14. \end{cases}$$

Proof. Note $\chi(C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N) = (2+r)/4$ by Lemma 3.2 and Proposition 5.1. We remark that X^{φ^2} does not contain non-singular curve with genus ≥ 1 by Proposition 4.3. Thus N = (2+r)/8. \Box

6. Order 16

In this section, let φ be a non-symplectic automorphism of order 16. And we shall describe $X^{\varphi} = \{P_1, \ldots, P_M\} \amalg C^{(g)} \amalg E_1 \amalg \cdots \amalg E_N$. We remark that if X has a non-symplectic automorphism of order 16 then rank $S_X = 6$ or 14. S. TAKI

Proposition 6.1. Let r be the Picard number of X. Then the number of isolated points M is (3r + 6)/4.

Proof. It is similar to the proof of Proposition 5.1.

Remark 6.2. $m_{2,15} = (r+10)/4$, $m_{3,14} = (r+2)/8$, $m_{4,13} = (r-6)/8$, $m_{5,12} = (r-6)/8$, $m_{6,11} = (r-6)/8$, $m_{7,10} = 1$, $m_{8,9} = 0$.

Schütt [15, Theorem 1] proved that the K3 surface with a nonsymplectic automorphism of order 16 and rank $S_X = 6$ is unique. That is $S_X = U \oplus D_4$.

By Proposition 5.5, if X has a non-symplectic automorphism of order 16 and rank $S_X = 14$ then $S_X = U \oplus D_4 \oplus E_8$. Indeed there exists a K3 surface with non-symplectic automorphisms of order 16 and $S_X = U \oplus D_4 \oplus E_8$. See Example 7.9.

Proposition 6.3. X has a non-symplectic automorphism φ of order 16 acting trivially on S_X if and only if $S_X = U \oplus D_4$ or $U \oplus D_4 \oplus E_8$. Moreover the fixed locus X^{φ} has the form

$$X^{\varphi} = \begin{cases} \{P_1, P_2, \dots, P_6\} \amalg E_1 & \text{if } S_X \simeq U \oplus D_4, \\ \{P_1, P_2, \dots, P_{12}\} \amalg E_1 \amalg E_2 & \text{if } S_X \simeq U \oplus D_4 \oplus E_8. \end{cases}$$

Proof. It is similar to the proof of Proposition 5.5.

7. Examples

In this section, we give examples of K3 surfaces with a non-symplectic automorphism of 2-power order. We remark that K3 surfaces have an elliptic fibration from Remark 2.5 and Table 1.

Example 7.1. [[6, (3.1)]](Case: $S_X = U$) $X: y^2 = x^3 + x + t^{11}, \varphi(x, y, t) = (\zeta_{44}^{22}x, \zeta_{44}^{11}y, \zeta_{44}^2t).$

Example 7.2. (Case: $S_X = U(2)$) Let λ_i be distinct 4 complex numbers. Let $([x_0 : x_1], [y_0 : y_1])$ be the bi-homogeneous coordinates on $\mathbb{P}^1 \times \mathbb{P}^1$. Consider a smooth divisor C in $\mathbb{P}^1 \times \mathbb{P}^1$ of bidegree (4, 4) given by

$$(y_0^4 + y_1^4) \cdot \prod_{i=1}^4 (x_0 - \lambda_i x_1) = 0.$$

Let ι be an involution of $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$([x_0:x_1], [y_0:y_1]) \to ([x_0:x_1], [y_1:y_0])$$

which preserves C.

Let X the double cover of $\mathbb{P}^1 \times \mathbb{P}^1$ branched along C. Then X is a K3 surface with $S_X = U(2)$. And the involution ι induces an automorphism φ which satisfies $\varphi^* \omega_X = \zeta_4 \omega_X$.

12

Example 7.3. [[15]](Case: $S_X = U \oplus D_4$) $X : y^2 = x^3 + t^2 x + t^{11}, \varphi(x, y, t) = (\zeta_{16}^2 x, \zeta_{16}^3 y, \zeta_{16}^2 t).$

Example 7.4. [[8, Propositon 4 (15)]](Case: $S_X = U(2) \oplus D_4$)

Let X be the minimal resolution of the surface $\widetilde{X} := \{z^2 = x_0(x_0^4x_2 + x_1^5 - x_2^5)\}$ having 5 ordinary double points $[0:1:\zeta_5^i:0]$ (i = 0, 1, 2, 3, 4)and $\varphi([x_0:x_1:x_2:z]) = [x_0:\zeta_{20}x_1:\zeta_4x_2:\zeta_8^5z].$

Example 7.5. [[6, (3.2)]](Case:
$$S_X = U \oplus E_8$$
)
 $X : y^2 = x^3 - t^5 \prod_{i=1}^6 (t - \zeta_6^i), \ \varphi(x, y, t) = (\zeta_{36}^2 x, \zeta_{36}^3 y, \zeta_{36}^{30} t).$

Example 7.6. (Case: $S_X = U \oplus D_8$) $X : y^2 = x^3 + t \prod_{i=1}^6 (t - \zeta_6^i) x^2 + t \prod_{i=1}^6 (t - \zeta_6^i), \varphi(x, y, t) = (-x, \zeta_4 y, -t).$

Example 7.7. (Case:
$$S_X = U \oplus D_4^{\oplus 2}$$
)
 $X : y^2 = x^3 - t^3 \prod_{i=1}^6 (t - \zeta_6^i), \ \varphi(x, y, t) = (-x, \zeta_4 y, -t).$

Example 7.8. [[7, §2.1]](Case: $S_X = U(2) \oplus D_4^{\oplus 2}$)

Let $\{[\lambda_i : 1]\}$ be a set of distinct 8 points on the projective line. Let $([x_0 : x_1], [y_0 : y_1])$ be the bi-homogeneous coordinates on $\mathbb{P}^1 \times \mathbb{P}^1$. Consider a smooth divisor C in $\mathbb{P}^1 \times \mathbb{P}^1$ of bidegree (4, 2) given by

$$y_0^2 \cdot \prod_{i=1}^4 (x_0 - \lambda_i x_1) + y_1^2 \cdot \prod_{i=5}^8 (x_0 - \lambda_i x_1) = 0.$$

Let L_0 (resp. L_1) be the divisor defined by $y_0 = 0$ (resp. $y_1 = 0$). Let ι be an involution of $\mathbb{P}^1 \times \mathbb{P}^1$ given by

 $([x_0:x_1], [y_0:y_1]) \to ([x_0:x_1], [y_0:-y_1])$

which preserves C, L_0 and L_1 .

Note that the double cover of $\mathbb{P}^1 \times \mathbb{P}^1$ branched along $C + L_0 + L_1$ has 8 rational double points of type A_1 and its minimal resolution Xis a K3 surface. The involution ι lifts to an automorphism φ which satisfies $\varphi^* \omega_X = \zeta_4 \omega_X$.

Example 7.9. (Case: $S_X = U \oplus E_8 \oplus D_4$) $X : y^2 = x^3 + t^2 x + t^7, \ \varphi(x, y, t) = (\zeta_{16}^{10} x, \zeta_{16}^7 y, \zeta_{16}^2 t).$

Example 7.10. (Case: $S_X = U \oplus D_8 \oplus D_4$) $X : y^2 = x^3 + t \prod_{i=1}^4 (t - \zeta_4^i) x^2 + t^3 \prod_{i=1}^4 (t - \zeta_4^i), \varphi(x, y, t) = (-x, \zeta_4 y, -t).$

Example 7.11. [[6, (3.4)]](Case: $S_X = U \oplus E_8^{\oplus 2})$ $X : y^2 = x^3 - t^5(t-1)(t+1), \ \varphi(x,y,t) = (\zeta_{12}^2 x, \zeta_{12}^3 y, -t).$

Example 7.12. [[15]](Case: $S_X = U \oplus E_8 \oplus D_8$) $X : y^2 = x^3 + tx^2 + t^7, \ \varphi(x, y, t) = (-x, \zeta_4 y, -t).$

S. TAKI

References

- M. Artebani, A. Sarti, Non-symplectic automorphisms of order 3 on K3 surfaces, Math. Ann., 342 (2008), 903-921.
- [2] M. Artebani, A. Sarti, S. Taki, K3 surfaces with non-symplectic automorphisms of prime order, to appear in Math. Z.
- M.F. Atiyah, G.B. Segal, The index of elliptic operators: II, Ann. of Math., 87 (1968), 531–545.
- [4] M.F. Atiyah, I.M. Singer, The index of elliptic operators: III, Ann. of Math., 87 (1968), 546–604.
- [5] K. Kodaira, On compact analytic surface II, III, Ann. of Math., 77 (1963), 563–626; 78 (1963), 1–40.
- [6] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75–98.
- [7] S. Kondo, The moduli space of 8 points of P¹ and automorphic forms. Algebraic geometry, Contemp. Math., 422 (2007), 89–106.
- [8] N. Machida, K. Oguiso, On K3 surfaces admitting finite non-symplectic group actions, J. Math. Sci. Univ. Tokyo, 5 (1998), no. 2, 273–297.
- [9] V.V. Nikulin, Finite automorphism groups of Kählerian K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), No 2, 71–135.
- [10] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv., 14 (1980), 103–167.
- [11] V.V. Nikulin, Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Algebrogeometric applications, J. Soviet Math., 22 (1983), 1401–1475.
- [12] K. Oguiso, D.-Q. Zhang, On Vorontsov's theorem on K3 surfaces with nonsymplectic group actions. Proc. Amer. Math. Soc., 128 (2000), no. 6, 1571– 1580.
- [13] K. Oguiso, D.-Q. Zhang, K3 surfaces with order 11 automorphisms, preprint, (1999).
- [14] I.I. Pjatečkii-Sapiro, I.R. Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., 5 (1971), 547–588.
- [15] M. Schütt, K3 surfaces with non-symplectic automorphisms of 2-power order, J. Algebra., 323 (2010), 206–223
- [16] S. Taki, Classification of non-symplectic automorphisms of order 3 on K3 surfaces, to appear in Math. Nachr.
- [17] S. Taki, Non-symplectic automorphisms of 3-power order on K3 surfaces, to appear in Proc. Japan Acad. Ser. A Math. Sci.
- [18] S.P. Vorontsov, Automorphisms of even lattices that arise in connection with automorphisms of algebraic K3 surfaces, Vestnik Mosk. Univ. Math. 38 (1983), 19–21.

Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea

E-mail address: taki@kias.re.kr