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ON EXTENDING THE LANGLANDS-SHAHIDI METHOD TO

ARITHMETIC QUOTIENTS OF LOOP GROUPS

HOWARD GARLAND

To Gregg Zuckerman on his 60th birthday

Abstract. We discuss certain Eisenstein series on arithmetic quotients of loop

groups, Ĝ, which are associated to cusp forms on finite-dimensional groups

associated with maximal parabolics of Ĝ.

Introduction

In his paper ”Euler Products” ([L]), Langlands uses the meromorphic contin-
uation of Eisenstein series associated with certain cusp forms ϕ on an arithmetic
quotient of a Chevalley group H , to derive the meromorphic continuation of cer-
tain L -functions associated to ϕ and certain finite-dimensional representations
π, of the L -group of H. His method was effective because he had already ob-
tained the meromorphic continuation of the Eisenstein series ([L2]). However, there
were limitations, one being that in order to apply the Langlands method, H must
(up to local isomorphism) be realized as the semi-simple part of a maximal par-
abolic subgroup of a higher-dimensional group, since the method requires using
the meromorphic continuation of an Eisenstein series associated with such a par-
abolic. There are then cases which are excluded; e.g., H1 = E8 and any π, and
H2 = SL3(R) × SL3(R) × SL3(R) and π being the representation π̃, the triple
tensor product of the standard representation of SL3(R). The latter case has been
of particular interest in the theory of automorphic L-functions.

Another limitation of the Langlands method has been that, by itself, it does not
yield a holomorphic continuation in cases where that is expected and desired - only
a meromorphic one. This limitation, and other issues (e.g., obtaining a functional
equation) were dealt with to a significant extent by Shahidi and others, using the
Langlands-Shahidi method.

In the present paper, we describe a possible alternative method for overcoming
these limitations in a number of cases (including the case of (H2, π̃), above). This
method is based on the theory of Eisenstein series on arithmetic quotients of loop
groups (see e.g., [LG], [R], [AC]), on a bold suggestion of A. Braverman and D.
Kazhdan, which we will describe in more detail in §5 and later in this Introduction,
and on a lemma of F. Shahidi (Lemma 4.1). Then for example, H1, H2 can each

be realized as the semi-simple part of a maximal parabolic subgroup of Ê8 (=

affine E8) and Ê6 (= affine E6), respectively. Remarkably, one can then obtain the
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2 HOWARD GARLAND

holomorphic continuation of appropriate Eisenstein series, with relative ease in a
number of cases (again, including H2).

Here we obtain the existence of the desired Eisenstein series (establishing a Gode-
ment criterion (3.11)), and then obtain the Maass-Selberg relations (see (4.3)). In
fact, obtaining the latter proved remarkably easy, thanks to a result of F. Shahidi
(Lemma 4.1). The proof of the Godement criterion (Cor. 1 to Theorem 3.2) de-
pends on the convergence theorem in [AC] for minimal parabolics, and an argument
in [GMRV] for extending convergence theorems for minimal parabolics to more gen-
eral ones. It might seem then, that we are in a good position to extend the results
of [L]. However, the same result of Shahidi, that simplifies the derivation of the
Maass-Selberg relations for our Eisenstein series, also seems at first to prevent the
extraction of the desired L-functions from the constant terms of such Eisenstein
series: the problem is that when Shahidi’s result does yield something like (4.3),
the reason is precisely that the constant term is ”elementary” and does not involve
L-functions. This is what happens for example, for the pair (Ê6, H2).

A. Braverman and D.Kazhdan proposed a way out of this dilemma. Before dis-
cussing their idea, we note two things: first, thanks to (4.3) we obtain a holomorphic
continuation of our Eisenstein series in some cases and second, the methods used in
§§2-4 of this paper apply equally well to number fields and to function fields over
finite fields (see e.g., [Lo]).

Braverman and Kazhdan proposed that instead of only computing the constant
terms with respect to ”upper triangular” parabolics (which are sufficient for ob-
taining convergence and the Maass-Selberg relations), that if possible, one also
computes the constant terms with respect to ”lower triangular” parabolics in order
to obtain the L-functions (see §5, for the definition of upper and lower triangular
parabolic subgroups). Of course in the finite-dimensional case there is no essential
difference between lower and upper triangular parabolics: lower triangular parabol-
ics are conjugate to upper triangular ones.

As in the finite-dimensional case treated in [L], the computation of the constant
terms will depend on local computations, and in particular, on certain formulae of
Gindikin-Karpelevich type for the lower triangular case. Such formulae have been
conjectured in [BFK] in the non-archimedean case, and proved there for F ((t)), F
a finite field. A proof for all non-archimedean fields will be given in [BGKP]. We
will discuss this in §5. For now let it suffice to say that the situation for lower
triangular parabolics is more subtle than for upper triangular ones.

A striking feature of the loop case is that one has reproduced a significant portion
of the theory of automorphic forms for finite-dimensional groups, and now, consid-
ering the two theories together, the loop case and the finite-dimensional case, one
might obtain new results about the classical theory (e.g., holomorphic continuation
of automorphic L-functions associated with (finite-dimensional)cusp forms). The
situation is reminiscent of the proof of Bott periodicity, using the space of based
loops of compact symmetric spaces: one obtains cell decompositions for general-
ized flag manifolds -grassmannians for example (parameterized by coset spaces of
finite Weyl groups), and also, cell decompositions of based loop spaces of compact
symmetric spaces (parameterized by coset spaces of affine Weyl groups), and then,
comparing the finite-dimensional cases and the loop cases, Bott periodicity falls
out - a deep result about the homotopy of (finite-dimensional) compact, symmetric
spaces. One might say, we are dealing here with a ”Bott principle” for the theory of
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automorphic forms: comparing the loop and finite-dimensional theories, one might
obtain new results about (finite-dimensional) automorphic forms and automorphic
L -functions.

I am submitting this paper in honor of Gregg Zuckerman’s 60th birthday. Over
a period of many years, I have had the pleasure of collaborating with him on three
papers, and of having an infinite number of discussions. These discussions ranged
over a wide spectrum of mathematics and, as many of his colleagues know from
their own experience, discussions with Gregg are memorable for his clear grasp of
deep mathematical ideas and his uncanny ability to explain them with utter clarity.

1. The Setting

We let A be an irreducible, l × l, classical, Cartan matrix, and we let Ã be the
corresponding affine, Cartan matrix. We let g = g(A), ĝ = g(Ã) be the complex,

Kac-Moody Lie algebras corresponding to A, Â, respectively. We let gZ ⊆ g, ĝZ ⊆ ĝ

denote the Chevalley Z -forms, with ĝZ constructed from gZ, as in [LA]. We let

ĝe = ĝ⊕ CD,

ĝeZ = ĝZ ⊕ ZD

denote the extended, affine, Kac-Moody Lie algebra and Z -form, respectively (D
being the usual, homogeneous degree operator (see e.g., [LG], §3(after Prop. 3.3))).

We let {ei, fi, hi}i=1,...,l+1 be the Kac-Moody generators of ĝ, ordered so that
{ei, fi, hi}i=1,...,l generate g, which we may regard as a subalgebra of ĝ. We let h

(resp., ĥ) be the complex, linear span of the hi, i = 1, ..., l (resp., i = 1, ...., l + 1),

and set ĥe = ĥ⊕CD, ĥZ = Z−span of the hi, i = 1, ...., l+1, ĥe
Z
= ĥZ ⊕ZD. Recall

that λ ∈ (ĥ)∗ is called dominant integral, in case

λ(hi) ∈ Z≥0, i = 1, ...., l+ 1.

We further adopt the convention that λ(hi) must be > 0,for at least one i.

Given λ ∈ ĥ∗ dominant integral, we let V λ denote the corresponding irreducible
highest weight module of ĝ, and we let V λ

Z
⊆ V λ be a Chevalley Z -form, as

constructed in [LA]. For a commutative ring with unit, we set V λR = R ⊗Z V
λ
Z

(we
also set ĝR = R⊗Z ĝZ, gR = R⊗Z gZ, etc.).

For an algebraically closed field k,we let Ĝλk (= Ĝλk(Â)) be the Chevalley group
contained in Aut(V λk ), as defined in [LG], Definition (7.21). For an arbitrary field
k with algebraic closure k̄, we let

Ĝλk(= Ĝλk(Â))

be the subgroup of Ĝλ
k̄
defined by

(1.1) Ĝλk = {g ∈ Ĝλk̄ |g(V
λ
k ) = V λk }.

In general, for k not algebraically closed, Ĝλk so defined, is larger than the corre-
sponding group of [LG], Definition (7.21).

We let

(1.2) ĜλZ(= Γ̂) = {γ ∈ ĜλR|γ(V
λ
Z ) = V λZ }.

We adopt the notation of [LG], [R], [AC]. For

ν : ĥR → C (real, linear)
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satisfying Godement’s criterion

(1.3) Re ν(hi) < −2, i = 1, ...., l + 1,

we have from [R], Theorem 5.1, and [AC], Theorem 12.1:

Theorem 1.1. The infinite sum

(1.4)
∑

γ∈Γ̂/Γ̂∩B̂

Φν(g exp(−rD)γ)

converges absolutely. Moreover, the convergence is uniform on sets K̂ΩAη(s)ÛD,where

s = e−r, ΩA ⊆ Â is compact, ÛD ⊆ Û , as in [AC].

The notation is as in [AC], but for the sake of completeness, we add a few
words of explanation: As in [LG], V λ

C
admits a positive-definite, Hermitian inner

product {, },which is invariant with respect to a certain ”compact form” k̂ ⊆ ĝC (as

defined in [LA] (̂k being k(Ã) of [LA], §4). The form {, } then restricts to a real,

positive-definite inner product on V λ
R

and K̂ ⊆ Ĝλ
R
is defined by

K̂ = {k ∈ ĜλR|{kξ, kη} = {ξ, η}, ξ, η ∈ V λR }.

We fix a coherently ordered basis (see [LG], beginning of §12 for the definition) B,

say, of V λ
Z
, and we let Â ⊆ Gλ

R
be the subgroup of all diagonal (with respect to the

basis B)elements with positive entries. We let Û ⊆ Gλ
R
be the subgroup of all upper

triangular elements with diagonal elements all equal to one (again, with respect to
B).We then have the Iwasawa decomposition

(1.5) GλR = K̂ÂÛ

(with uniqueness of expression)( see [LG], Lemma 16.14).

Now ĥR is the Lie algebra of Â and ν defines a quasi-character

ν : Â→ C×,

a 7→ aν , a ∈ Â.

Given g ∈ Ĝλ
R
, g has a decomposition

g = kgagug,

with respect to (1.5). We then set

Φν(g) = aνg .

2. Extensions of the Convergence Theorem (Preliminaries).

For a field k with algebraic closure k̄, we let B̂k̄ ⊆ Gλ
k̄
be the upper triangular

subgroup (with respect to the coherently ordered basis B ), and B̂k = B̂k̄ ∩G
λ
k . We

let P̂k ⊇ B̂k be a proper, parabolic subgroup of Ĝk (= Ĝλk ; we drop the superscript
“λ” when there is no ambiguity about which λ we mean).

We consider various subgroups of P̂k. We first let α1, ...., αl+1 ∈ (ĥe)∗, the com-

plex dual of ĥe, be the simple roots:

αi(hj) = Ãij , i, j = 1, ...., l+ 1,

where

Ã = (Ãij)i,j=1,....,l+1.
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We let Ξ = {si}i=1,....,l+1 denote the corresponding, simple root reflections (so si
is the root reflection corresponding to αi). Then the si generate the (affine) Weyl

group Ŵ of ĝ (with respect to ĥ) and for θ ⊆ Ξ, we let Wθ ⊆ Ŵ be the subgroup

generated by the elements of θ. Then every subgroup P̂k ⊇ B̂k is a group of the
form

P̂k = P̂θ,k = B̂kWθB̂k,

and every proper, parabolic subgroup of Ĝk is a conjugate of a P̂θ,k for some θ  Ξ
(in fact, we take this as the definition of “proper parabolic”).

We let

∆̂ ⊆ (ĥe)∗

be the affine roots of ĥ, and we let ∆̂+ ⊆ ∆̂ be the positive roots determined by the
choice of simple roots α1, ...., al+1. When convenient, we identify Ξ with the set of

simple roots. For θ ⊆ Ξ (considered then as the set of simple roots), we let [θ] ⊆ ∆̂

denote the set of all roots in ∆̂ which are linear combinations of the elements of θ.
We let Ĥk ⊆ B̂k be the diagonal subgroup (with respect to the coherently ordered
basis B), and for θ ⊆ Ξ, we let

Hθ,k = {h ∈ Ĥk|h
αi = 1, αi ∈ θ}.

For an algebraically closed field k̄, we let Lθ,k̄ ⊆ Ĝk̄ be the subgroup generated by

elements {χα(u)}α∈[θ],u∈k̄. For an arbitrary field k with algebraic closure k̄,we set

Lθ,k = Lθ,k̄ ∩ Ĝk.

One lets Ûθ,k ⊆ P̂θ,k be the pro-unipotent radical; then

P̂θ,k =Mθ,kÛθ,k,

with Ûθ,k normal, Mθ,k̄ = Lθ,k̄Hθ,k̄, and Mθ,k = Mθ,k̄ ∩ Ĝk (see [LG2], Theorem
6.1).

We now consider the case when k = R. For k = R,we set Ĝλ (= Ĝ) = Ĝλ
R
, and

Ĥ = ĤR,

Hθ = Hθ,R ,

P̂θ = P̂θ,R ,

Lθ = Lθ,R, Mθ =Mθ,R,

etc.. We let

Z ⊆ Ĥ

be the subgroup of all elements whose diagonal elements are ±1. We let

λ : Ĥ → C×

be a quasi-character such that λ|Z is identically equal to 1.We may identify λ with
a real, linear function

λ : ĥR → C,

where ĥR is the Lie algebra of Ĥ.
We are assuming g = g(A) is simple (for recall, we assumed at the beginning,

that A is irreducible), and that we have ordered the hi so that h1, ...., hl span h, the
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Cartan subalgebra of g(A) ⊆ g(Â). We let α0 be the corresponding highest root of
g(A) (α0 ∈ h∗, the complex dual of h) and we let

c = hα0
+ hl+1 ∈ ĥ,

(hα0
denoting the coroot corresponding to α0). Then c spans the center of ĝ. We

have the extended Cartan

ĥe = ĥ⊕ CD

= h⊕ Cc⊕ CD,

and a corresponding decomposition of (ĥe)∗, the complex dual of ĥe,

(ĥe)∗ = h∗ ⊕ Cλl+1 ⊕ Cι,

where, e.g.,

λl+1(c) = 1, ι(D) = 1.

Note that ι is the generating, imaginary root and λl+1 is the l + 1st fundamental
weight defined by

λl+1(hi) =

{

0, i 6= l+ 1
1, i = l + 1.

Now with these conventions and notations, assume

θ = θ0 = {α1, ...., αl};

then (over R)

hθ = Rc (hθ = Lie algebra of Hθ),

Lθ = G,

a real, connected Lie group with Lie algebra gR = R⊗Z gZ.

3. Extensions of the Convergence Theorem (Continued).

We return to ν and to Φν , as considered in (1.3) and (1.4) - see the exact
definition of Φν at the end of §1. We now further assume that ν is R -valued; i.e.,
that

(3.1) ν : ĥR → R

(so now ν(hi) < −2, i = 1, ...., l + 1). We let P̂ = P̂θ ⊇ B̂ be a proper, parabolic
subgroup, and we consider the sum (1.4):

(3.2)
∑

γ∈Γ̂/Γ̂∩B̂

Φν(g exp(−rD)γ)

=
∑

γ∈Γ̂/Γ̂∩P̂

∑

β∈Γ̂∩P̂/Γ̂∩B̂

Φν(g exp(−rD)γβ).

Thanks to our present assumption (3.1), the series on either side of (3.2) are in
fact series of positive terms, and since the left side is convergent (Theorem 1.1), so
is the right side, and in particular, the series

(3.3)
∑

β∈Γ̂∩P̂ /Γ̂∩B̂

Φν(g exp(−rD)γβ)

(γ ∈ Γ̂/Γ̂ ∩ P̂ now fixed) is convergent (and of course, is absolutely convergent,
since it is a sum of positive terms).
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However, the series (3.3) is in fact a convergent Eisenstein series for the (finite-
dimensional) reductive group

Mθ

(where recall P̂ = P̂θ). More precisely, let

π : P̂θ →Mθ

be the projection. Let

Kθ = K̂ ∩ P̂θ = K̂ ∩Mθ,

where K̂ is as in §1; then of course

π(K̂ ∩ P̂θ) = Kθ.

Consider the elements g, γ appearing in (3.3). We have

g exp(−rD)γ = kgγmgγ exp(−rD)ugγ , kgγ ∈ K̂, mgγ ∈Mθ, ugγ ∈ Ûθ;

then (β as in (3.3))

Φν(g exp(−rD)γβ) = Φν(mgγ exp(−rD)β),

and the sum (3.3) becomes

(3.3′)
∑

β∈Γ̂∩P̂ /Γ̂∩B̂

Φν(mgγ exp(−rD)β).

Set

Bθ = π(B̂) ⊆Mθ,

Γθ = π(Γ̂ ∩ P̂θ).

Then (3.3′) equals

(3.3′′)
∑

β∈Γθ/Γθ∩Bθ

Φν(mgγ exp(−rD)β),

where Γθ is an arithmetic subgroup of Mθ. For m ∈Mθ, we set

Φν(m) = Φν(m exp(−rD)),

and we let

Γrθ =df exp(−rD)Γθ exp(rD);

Noting that exp(−rD) normalizes Bθ, we have that the sum (3.3′′) equals

(3.4)
∑

β∈Γr
θ
/Γr

θ
∩Bθ

Φν(mgγβ),

which is an Eisenstein series for the pair (Mθ,Γ
r
θ).

On the one hand, the absolute convergence of (3.4) follows from that of (3.2).
On the other hand, our assumption that ν in (3.1) satisfies Godement’s criterion
(ν(hi) < −2, i = 1, ...., l + 1) in fact implies that (3.4) is absolutely convergent,
thanks to Godement’s criterion for finite-dimensional groups.

It is useful to give an alternate description of the sum (3.4). Let

h(θ) ⊆ ĥR,

be the (real) linear span of the hi, (si ∈ θ); then h(θ) may be regarded as the
Cartan subalgebra of lθ, the Lie algebra of Lθ. We let

H(θ) ⊆ Lθ
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denote the group generated by the elements

hαi
(s), αi ∈ θ, s ∈ R×,

so that h(θ) is the Lie algebra of H(θ).
We let

L′
θ =Mθ/Z(Mθ), Z(Mθ) =center of Mθ.

We then have that
Φν |Lθ

is the lift of a function Φ′
ν on L′

θ. If we let

ω̃ :Mθ → L′
θ

denote the projection, if we let H(θ)′ = ω̃(H(θ)) and A(θ)′ denote the identity

component of H(θ)′, K ′
θ = ω̃(Kθ) and U

′
θ = ω̃(Û ∩Mθ), then we have the Iwasawa

decomposition
L′
θ = K ′

θA(θ)
′U ′
θ,

and
Φ′
ν(k

′a′u′) = (a′)ν , k′ ∈ K ′
θ, a

′ ∈ A(θ)′, u′ ∈ U ′
θ,

(where we may identify A(θ)′ with a subgroup of Lθ, in order to define (a′)ν); then
we have for m ∈ Lθ,

∑

β∈Γr
θ
/Γr

θ
∩Bθ

Φν(mβ)

(3.5) =
∑

β∈(Γr
θ
)′/(Γr

θ
)′∩ω̃(Bθ)

Φ′
ν(ω̃(m)β),

which is a convergent Eisenstein series on L′
θ (with respect to (Γrθ)

′ =df ω̃(Γ
r
θ) and

the Borel subgroups ω̃(Bθ) ⊆ L′
θ.) Let

Eθ(m) = Ẽθ(ω̃(m))

denote the convergent sum (3.5) (which as noted, is an Eisenstein series).
On the other hand, we consider

Fθ(m) =df
∑

β∈Γr
θ
/Γr

θ
∩Bθ

Φν(mβ);

then
FθE

−1
θ (·)

is entirely determined by its restriction to Z(Mθ), and indeed

Z(Mθ) ⊆ Ĥ,

and
FθE

−1
θ (z) = zν, z ∈ Z(Mθ).

Some explanation is required here, since, strictly speaking, the quasicharacter ν is
only defined on the identity component Â ⊆ Ĥ, and hence only on the identity
component A(Mθ) of Z(Mθ). However, one has a homomorphism

Ĥ
σ
→ Â

given by absolute value (each h ∈ Ĥ is represented by a diagonal matrix, and σ(h)

is just the corresponding matrix of absolute values, and ν on Ĥ is just taken to be
ν ◦ σ.
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We set

ξν(·) = FθE
−1
θ (·);

then of course,

Fθ = Eθξν

(where ξν |Lθ
≡ 1).

But then, since (3.3) equals (3.4), we have

(3.6)
∑

β∈Γ̂∩P̂ /Γ̂∩B̂

Φν(g exp(−rD)γβ) = Eθ(mgγ)ξν(mgγ),

and so (see (3.2))

(3.7)
∑

γ∈Γ̂/Γ̂∩B̂

Φν(g exp(−rD)γ) =
∑

γ∈Γ̂/Γ̂∩P̂

Eθ(mgγ)ξν(mgγ).

Now Eθ(·) is by definition the lift of an Eisenstein series on L′
θ, and hence is

bounded below by some κ > 0. It follows that

(3.8)
∑

γ∈Γ̂/Γ̂∩P̂

ξν(mgγ) <∞

since the series on either side of (3.7) is (absolutely) convergent. (this method
of deriving convergence for general parabolics from convergence for minimal ones,
comes from [GMRV]).

It is instructive to analyze the element mgγ ∈ Mθ. Recall (before (3.3′)) the
equation

g exp(−rD)γ = kgγmgγ exp(−rD)ugγ .

Mθ is then a direct product

Mθ = L̃θA(Mθ),

where recall that A(Mθ) is the identity component of Z(Mθ), and where L̃θ is a

subgroup or Ĝλ containing Lθ with L̃θ/Lθ finite. Of course m ∈ Mθ then has a

corresponding expression m = la, l ∈ L̃θ, a ∈ A(Mθ), and in particular, this is the
case for mgγ . Moreover

ξν(la) = aν , l ∈ L̃θ, a ∈ A(Mθ).

Given g ∈ Ĝλ, and the decomposition

Ĝλ = K̂P̂

= K̂L̃θA(Mθ)Ûθ,

we have that g ∈ Ĝλ has a corresponding decomposition

g = kglgagug,

kg ∈ K̂, lg ∈ L̃θ, ag ∈ A(Mθ), ug ∈ Ûθ.

One has:

Lemma 3.1. ag is uniquely determined by g.
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We briefly sketch the proof, which is a straightforward application of representa-
tion theory. Let µ be the sum of those fundamental weights λi such that αi is not
in θ. Then the group Ĝλ acts on V mµ for some positive multiple mµ of µ.(see [LG],
Prop. 20.2). We have a positive-definite, Hermitian inner product {, }, on V mµ, as
in §1, and we let vmµ be a highest weight vector of norm one, with respect to || · ||,
the norm corresponding to {, }. Then ||g · vmµ|| = amµg , and the lemma follows.

We now specialize to the case when

θ = θi0 = Ξ− {αi0},

for a single, simple root αi0 . We have a relation

l
∑

i=1

niα
ν
i + hl+1 = c,

(c defined as in §2) where if α0 is the highest root of g(A),then

αν0 =
l

∑

i=1

niα
ν
i ,

with αν0 , α
ν
i denoting the coroots corresponding to α0, αi, respectively.

Now if

(3.9) ν(ανi ) < −2, i = 1, ...., l + 1,

then of course

ν(c) < −2(1 +
l

∑

i=1

ni);

we set

g = 1+
l

∑

i=1

ni

(which we will call the dual Coxeter number). Then

(3.10) ν(c) < −2g.

On the other hand, if
ν̃ : Rc→ R

satisfies (3.10), then ν̃ is the restriction of some

ν : ĥR → R

satisfying (3.9).

If g ∈ Ĝλ,then

g exp(−rD)γ = kgγ lgγagγ exp(−rD)ugγ , kgγ ∈ K̂, lgγ ∈ L̃θ, agγ ∈ A(Mθ), ugγ ∈ Ûθ,

and we set
ξν(gγ) = aνgγ ;

then our above argument shows

Theorem 3.2. For θ = θi0 , as above and for

ν : ĥR → R

a real, linear function such that

ν(c) < −2g,
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we have
∑

γ∈Γ̂/Γ̂∩P̂

aνgγ <∞.

Corollary 1. If ϕ̃ is a cusp form on L′
θi0

which is rapidly decreasing (e.g., an

eigenfunction for the center of the universal enveloping algebra of L′
θi0

), if ϕ = ϕ̃◦ω̃,

and if

ν : ĥR → C

is a real linear function, such that

(3.11) Re(ν)(c) < −2g,

then

(3.12)
∑

γ∈Γ̂/Γ̂∩P̂

ϕ(mgγ)ξν(agγ), g ∈ Ĝ,

converges absolutely.

Proof. ϕ is of course bounded. If ν satisfies (3.11), we can dominate the series
(3.12) by

∑

γ∈Γ̂/Γ̂∩P̂

ξRe ν(agγ),

which converges by Theorem 3.2. �

4. Shahidi’s Argument

Thanks to the Corollary to Theorem 3.2, we have Eisenstein series on loop
groups which are associated to certain cusp forms on finite-dimensional, semi-simple
groups. For example, consider the affine Dynkin diagram associated with E6, with
the vertices numbered as in [Bourb] (assign the number 7 to the vertex correspond-
ing to the negative of the highest root). Consider (with this numbering)

θ4 = {α1, α2, α3, α5, α6, α7},

and the subgroups

Mθ4 , Lθ4

of Ĝλ. Now take

λ = λ4,

the fundamental weight corresponding to node 4 (in the numbering of [Bourb]).
Then Lθ4 locally isomorphic to

SL3(R)× SL3(R)× SL3(R).

Hence, starting with a cusp form ϕ on L′
θ4
, one obtains an Eisenstein series on Ĝλ4

(denote this group by Ê6).
But then, motivated by [L], one can ask to find the constant term for such an

Eisenstein series, and then hope to obtain (for suitable ϕ) an expression involving
L-functions associated with ϕ, and certain representations of the Langlands dual
ÊL6 .

However, at first, this strategy seemed doomed to fail: the constant terms with
respect to parabolics P̂θ, as above, do not yield L-functions as in [L]. The problem
is thatMθ4 is not self-associate, this being an instance of Shahidi’s lemma (see [S]):
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Lemma 4.1. Let θ = θi, i = 1, ...., l + 1; then Mθ is not self-associate.

As the proof in [S] is not terribly long, we include it here for the convenience of
the reader: We have set h(θ) equal to the real linear span of the hj, j 6= i (θ = θi),
and so h(θ) is the Lie algebra of H(θ) ⊆ Lθ, the subgroup generated by the hαj

(s),

j 6= i, s ∈ R×. We let Ŵθ denote the subgroup of the Weyl group generated by the
sj , j 6= i, and we set

wθ0 = longest element in Ŵθ.

Assume then, that there is an element w0 ∈ Ŵ such that

w0(θ) = θ, w0(αi) < 0

(this being the definition of Mθ being self-associate). Then

w0w
θ
0(θ) = −θ,

while

w0w
θ
0(αi) < 0.

To see this last assertion, we note that wθ0(αi) has an expression

wθ0(αi) = αi +
∑

j 6=i

kjαj ,

and then

(4.1) w0w
θ
0(αi) = w0(αi) +

∑

j 6=i

k′jαj ,

(since w0(θ) = θ). But, by assumption, w0(αi) is negative, and

w0(αi) =

l+1
∑

j=1

bjαj , with bi 6= 0

(otherwise w0(αj) ∈ [θ], the roots which are linear combinations of the elements of
θ, for all j, and this is not possible). Hence

w0w
θ
0(αi) < 0, by (4.1).

Hence w0w
θ
0(∆+) = ∆−, and in particular, w0w

θ
0 maps positive imaginary roots to

negative roots. This is not possible, and so we obtain Lemma 4.1.
Now Lemma 4.1 seems to have an unfortunate consequence: At least for certain

maximal parabolic subgroups, one can not obtain non-trivial constant terms from
Eisenstein series associated with cusp forms of the reductive part.

But as Shahidi noted, there is also good news here: the theory of Eisenstein series
associated to cusp forms for the reductive part of a maximal parabolic subgroup of a
loop group does not depend on the knowledge of any new L-functions, and so might
be more accesible than otherwise. In fact, the constant term of such Eisenstein series
can be extremely simple. In the notation of the Corollary to Theorem 3.2 , if Eϕ(ν)

denotes the convergent sum (3.12), and if we consider the case of Ê6 and θ4 (as

described above) then P̂θ4 is not associate to any other parabolic and is not self
associate by Lemma 4.1. We then have as a consequence of Lemma 4.1:
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Lemma 4.2. The constant term

Eϕ(ν)Ûθi

(g) =df

∫

Ûθi
/Ûθi

∩Γ̂

Eϕ(ν)(g exp(−rD)u)du

is equal to ϕ(mg)ξν(ag).

In our example of (Ê6, θ4) then, this is the only non-zero contribution to the con-
stant term. In [MS2], we extended Arthur’s definition of truncation to loop groups
([MS2], Definition 3.2). In the notation of that paper, we have as a consequence of

the simplicity of the constant terms we have just discussed, that for (Ê6, θ4) :

∧H0Eϕ(ν)(gη(s)) (s = exp(−r), η(s) = exp(−rD), as in [MS 2])

=
∑

γ∈Γ̂/Γ̂∩P̂θ4

(1− T̂θ4,H0
(gη(s)γ))ϕ(mgγ)ξν(agγ),

where mgγ , agγ are recall, defined by

gη(s)γ = kgγ lgγagγη(s)ugγ , mgγ = lgγagγ ,

as in §3, just before Theorem 3.2.
Now let ν′ : Rc → C be a second, real linear map satisfying (3.11) and let ψ̃ be

a second cusp form on L′
θ (and set ψ = ψ̃ ◦ ω̃); then

{∧H0Eϕ(ν),∧
H0Eψ(ν

′)}

=df

∫

K̂\Ĝλ/Γ̂

∧H0Eϕ(ν)(gη(s))∧H0Eψ(ν′)(gη(s))dg,

and one obtains that this last expression equals

= −{ϕ, ψ}L′

θ4

exp((σ + σ̄′)(H0))

(σ + σ̄′)(c)
.

The notation here is as follows:

σ = ν + ρ, σ′ = ν′ + ρ,

{, }L′

θ4
denotes the inner product induced from a suitable Haar measure on L′

θ4
/(Γrθ4)

′,

and da is a suitable Haar measure on A(Mθ4). To obtain this result, one uses the
methods of [MS3], [MS4]. As in [MS3], one first replaces the Eisenstein series Eϕ(ν)
(and similarly, Eψ(ν

′)) by a pseudo-Eisenstein series: let Φ = Φ(a) on A(Mθ4) be
a C∞ function with compact support, and let

Eϕ(Φ)(gη(s)) =
∑

γ∈Γ̂/Γ̂∩P̂θ4

ϕ(mgγ)Φ(agγ);

then Eϕ(Φ) is called a pseudo-Eisenstein series. One lets

Φ̂(µ) =

∫

A(Mθ4
)

Φ(a) exp(−(µ− ρ)(log a))dµI ,

where the notation is as follows: µ : Rc = hθ4 → C is real linear, and µI denotes
the imaginary part of µ. One can then define the truncation ∧H0Eϕ(Φ), just as we
defined ∧H0Eϕ(ν), and then for Ψ a second C∞ function with compact support on
A(Mθ4),we have for µ0, µ

′
0 : Rc→ R with

µ0(c) < −g, µ′
0(c) < −g,
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that, similarly to [MS3],

{∧H0Eϕ(Φ), ∧H0 Eψ(Ψ)}

= −

∫

Reµ=µ0

∫

Re µ′=µ′

0

Φ̂(µ)Ψ̂(µ′)Ξ(µ, µ̄′)dµIdµ
′
I ,

where

Ξ(µ, µ̄′) = {ϕ, ψ}L′

θ4

exp(µ+ µ̄′)(H0)

(µ+ µ̄′)(H0)
.

The argument in the present setting is in fact simpler than that in [MS3]: one does
not have to contend with the infinite sums over the affine Weyl group that appear
in [MS3], and one does not need to use the functional equation for c-functions, in
order to show that certain poles cancel, and so, as a result, that one can move the
contours of certain integrals past these (non-existent) poles. In the present setting,
there are no poles from the c-functions, since non-trivial c-functions don’t even
occur in the formula for Ξ(µ, µ̄′)!

Finally, we can pass from the inner product for truncated pseudo-Eisenstein
series to that for truncated Eisenstein series, as in [MS4]. In particular, we obtain
that the truncated Eisenstein series ∧H0Eϕ(ν) is square summable.

Now the above computation is valid for

Reσ(c) < −g,

Reσ′(c) < −g,

or equivalently

(4.2) Re ν(c) < −2g,

Re ν′(c) < −2g.

But clearly (in ν, ν′) the right side of the equality (Maass-Selberg relation)

(4.3) {∧H0Eϕ(ν),∧
H0Eψ(ν

′)}

= {ϕ, ψ}L′

θ

exp((σ + σ̄′)(H0))

(σ + σ̄′)(c)

is holomorphic in the region (4.2), and in fact, has a holomorphic extension to the
region

(4.4) Re ν(c) < −g,

Re ν′(c) < −g;

i.e.,

(4.4′) Reσ(c) < 0, Reσ′(c) < 0.

From this one can deduce that the Eisenstein series has a holomorphic continuation
(in ν), as a locally integrable function, to the region

Re ν(c) < −ρ(c) = −g.

We emphasize again: this is a holomorphic continuation! - not just a meromorphic
one.

We note that the validity of (4.3) only depends on our assumption that P̂θ is not

associate to any P̂θ′ , θ
′ 6= θ, by virtue of lθ, lθ′ not being isomorphic to one another

(lθ, lθ′ being the Lie algebras of Lθ, Lθ′, respectively). There are of course many
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instances other than the case of (Ê6, θ4) considered earlier, where this assumption
holds; e.g.,

(Ê7, θ), θ = Ξ− {α4},

Ξ = set of simple roots, α4 as in [Bourb].

5. Local Issues: A Summary of where Things Stand.

The question remains: Are there applications of (4.3) and the holomorphic con-
tinuation of loop Eisenstein series to the theory of L-functions, as in the finite-
dimensional case treated in [L]? The seeming paradox here is that the argument
for (4.3) (which is based on Shahidi’s lemma 4.1) also seems to preclude obtain-

ing new results on L-functions: For (Ê6, θ4) for example, Lemma 4.2 implies that
L-functions do not even occur in the constant term.

It was Braverman and Kazhdan who pointed to a possible way out of this
dilemma: they argued that though the constant terms with respect to the ”up-
per triangular” P̂θ are trivial, one could consider the constant terms with respect
to ”lower triangular” parabolics. By a ”lower triangular” parabolic one means a
proper subgroup of Ĝλk , k a field, containing the group of elements in Ĝλk which are
lower triangular with respect to the coherently ordered basis B (a ”lower triangu-
lar” Borel subgroup). An upper ”upper triangular” parabolic is simply a prabolic
subgroup as defined in §2.

One expects that any computation of such constant terms would depend on local
computations, and in particular, would depend on suitable Gindikin-Karpelevich
formulae. These formulae would have to be established for the following three
cases: (i). k = R or C, (ii) k = F ((t)), F a finite field, and (iii) k = a finite
algebraic extension K of a p-adic completion of the rational numbers. We note
that the results of §§1-4, above, can all be developed equally well for function fields
over finite fields.Concerning cases (ii) and (iii), a Gindikin-Karpelevich formula was
conjectured in [BFK]. This formula was derived by assuming that a certain result
in [BFG] for F((t)), F a field of characteristic 0, was also valid for F a finite field.
Recently, A. Braverman informed me that this was in fact the case. The resulting
formula for case (ii) then also suggested the formula for case (iii). In [BGKP],
we prove this conjecture (with a small modification) for both cases (ii) and (iii).
The proof in [BGKP] is based on a formula of A. Braverman, D. Kazhdan, and
M. Patnaik, for spherical functions on p-adic loop groups and on loop groups over
F ((t)), F a finite field.
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