On one Laurent series ring over an extension of \mathbb{Q}

Trinh Thanh Deo*, Mai Hoang Bien ${ }^{\dagger}$ and Bui Xuan Hai ${ }^{\ddagger}$

September 24, 2010

Abstract

In this paper, using the general Mal'cev-Neumann construction of Laurent series rings, we construct a ring with a base ring which is an extension of the field \mathbb{Q} of rational numbers. Further, we establish some useful properties of such a ring and as direct consequences, we obtain the negative answers to five problems arising from the work [3].

Key words: Laurent series ring.
Mathematics Subject Classification 2010: 16K20

[^0]In this short note, we are interesting in the construction of some special division ring D which is not algebraic over its center F. However, D contains some maximal subfield K, algebraic over F. Such a division ring can be taken as a counterexample for some questions, arising from the work [3].

1 The construction of a ring $K((G, \Phi))$

In this section, following the general Mal'cev-Neumann construction of Laurent series rings, we construct a ring with a base ring which is an extension of the field \mathbb{Q} of rational numbers. Thus, let us denote by $G=\mathbb{Z}^{\infty}$ the set of all infinite sequences of integers of the form $\left(n_{1}, n_{2}, n_{3}, \ldots\right)$ with only finitely many non-zeros n_{i}. Clearly G is an abelian group with the addition defined by the obvious way. For any positive integer i, denote by $x_{i}=(0, \ldots, 0,1,0, \ldots)$ the element of G with 1 in the i-th position and 0 elsewhere. Then G is a free abelian group generated by all x_{i} and every element $x \in G$ is written uniquely in the form

$$
\begin{equation*}
x=\sum_{i \in I} n_{i} x_{i}, \tag{1}
\end{equation*}
$$

with $n_{i} \in \mathbb{Z}$ and some finite set I.
Now, we define an order in G as the following:
For elements $x=\left(n_{1}, n_{2}, n_{3}, \ldots\right)$ and $y=\left(m_{1}, m_{2}, m_{3}, \ldots\right)$ in G, define $x<y$ if either $n_{1}<m_{1}$ or there exists $k \in \mathbb{N}$ such that $n_{1}=m_{1}, \ldots, n_{k}=m_{k}$ and $n_{k+1}<m_{k+1}$. Clearly, with this order G is a totally ordered set.

Suppose that $p_{1}<p_{2}<\ldots<p_{n}<\ldots$ is a sequence of prime numbers and $K=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots\right)$ is the subfield of the field \mathbb{R} of real numbers generated by \mathbb{Q} and $\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots$, where \mathbb{Q} is the field of rational numbers. For any $i \in \mathbb{N}$, suppose that $f_{i}: K \longrightarrow K$ is \mathbb{Q}-isomorphism satisfying the following condition:

$$
f_{i}\left(\sqrt{p_{j}}\right)=\left\{\begin{aligned}
\sqrt{p_{j}}, & \text { if } j \neq i ; \\
-\sqrt{p_{i}}, & \text { if } j=i .
\end{aligned}\right.
$$

It is easy to verify that $f_{i} f_{j}=f_{j} f_{i}, \forall i, j \in \mathbb{N}$. Moreover, we have the following lemma:
Lemma 1.1 Suppose that $x \in K$. Then, $f_{i}(x)=x, \forall i \in \mathbb{N}$ if and only if $x \in \mathbb{Q}$.
Proof. The converse is obvious. Now, suppose that $x \in K$ such that $f_{i}(x)=x, \forall i \in \mathbb{N}$. If $x \notin \mathbb{Q}$, then there exists $i \in \mathbb{N}$ such that x can be written in the form

$$
x=a+b \sqrt{p_{i}},
$$

where $a, b \in K, b \neq 0$ and $\sqrt{p_{i}}$ does not appear in the formal expressions of a and b. Therefore $0=x-f_{i}(x)=2 b \sqrt{p_{i}}$ that is a contradiction. Hence $x \in \mathbb{Q}$.

For an element $x=\left(n_{1}, n_{2}, \ldots\right)=\sum_{i \in I} n_{i} x_{i} \in G$, define $\Phi_{x}:=\prod_{i \in I} f_{i}^{n_{i}}$. Clearly $\Phi_{x} \in$ $\operatorname{Gal}(K / \mathbb{Q})$ and the map

$$
\Phi: G \longrightarrow \operatorname{Gal}(K / \mathbb{Q})
$$

defined by $\Phi(x)=\Phi_{x}$ is a group homomorphism. It is easy to prove the following proposition:

Proposition 1.1 i) $\Phi\left(x_{i}\right)=f_{i}, \forall i \in \mathbb{N}$.
ii) If $x=\left(n_{1}, n_{2}, \ldots\right) \in G$, then $\Phi_{x}\left(\sqrt{p_{i}}\right)=(-1)^{n_{i}} \sqrt{p_{i}}$.

For the convenience, from now on we write the operation in G multiplicatively. For G and K as above, consider formal sums of the form

$$
\alpha=\sum_{x \in G} a_{x} x, a_{x} \in K
$$

For such an α, define the support of α by $\operatorname{supp}(\alpha)=\left\{x \in G: a_{x} \neq 1\right\}$. Put

$$
D=K((G, \Phi))=\left\{\alpha=\sum_{x \in G} a_{x} x, a_{x} \in K \mid \operatorname{supp}(\alpha) \text { is well-ordered }\right\}
$$

For $\alpha=\sum_{x \in G} a_{x} x$ and $\beta=\sum_{x \in G} b_{x} x$ from D, define

$$
\begin{aligned}
\alpha+\beta & =\sum_{x \in G}\left(a_{x}+b_{x}\right) x \\
\alpha \cdot \beta & =\sum_{z \in G}\left(\sum_{x y=z} a_{x} \Phi_{x}\left(b_{y}\right)\right) z .
\end{aligned}
$$

In [2 , p.243], it is proved that these operations are well-defined. Moreover, the following theorem holds:

Theorem 1.1 ([[2], Th.(14.21), p.244]) $D=K((G, \Phi))$ with the operations, defined as above is a division ring.

Remarks. i) For any $x \in G, a \in K$, we have $x a=\Phi_{x}(a) x$.
ii) For any $i \neq j$, we have $x_{i} \sqrt{p_{i}}=-\sqrt{p_{i}} x_{i}$ and $x_{j} \sqrt{p_{i}}=\sqrt{p_{i}} x_{j}$.
iii) Generally, $\forall i \neq j$ and $\forall n \in \mathbb{N}$, we have $x_{i}^{n} \sqrt{p_{i}}=(-1)^{n} \sqrt{p_{i}} x_{i}^{n}$ and $x_{j}^{n} \sqrt{p_{i}}=\sqrt{p_{i}} x_{j}^{n}$. Put $H=\left\{x^{2}: x \in G\right\}$ and

$$
\mathbb{Q}((H))=\left\{\alpha=\sum_{x \in H} a_{x} x, a_{x} \in \mathbb{Q}, \operatorname{supp}(\alpha) \text { is well-ordered }\right\} .
$$

It is easy to check that H is a subgroup of G and for every $x \in H, \Phi_{x}=I d_{K}$.

Theorem $1.2 \mathbb{Q}((H))$ is the center of D.
Proof. Denote by F the center of D. Suppose that $\alpha=\sum_{x \in H} a_{x} x \in \mathbb{Q}((H))$. Then, for every $\beta=\sum_{y \in G} b_{y} y \in D$, we have $\Phi_{x}\left(b_{y}\right)=b_{y}$ and $\Phi_{y}\left(a_{x}\right)=a_{x}$. Hence

$$
\begin{aligned}
& \alpha \cdot \beta=\sum_{z \in G}\left(\sum_{x y=z} a_{x} \Phi_{x}\left(b_{y}\right)\right) z=\sum_{z \in G}\left(\sum_{x y=z} a_{x} b_{y}\right) z, \\
& \beta \cdot \alpha=\sum_{z \in G}\left(\sum_{x y=z} b_{y} \Phi_{y}\left(a_{x}\right)\right) z=\sum_{z \in G}\left(\sum_{x y=z} a_{x} b_{y}\right) z .
\end{aligned}
$$

Thus, $\alpha \beta=\beta \alpha, \forall \beta \in D$. Therefore $\alpha \in F$.
Conversely, suppose that $\alpha=\sum_{x \in G} a_{x} x \in F$. Denote by S the set of all elements x appeared in the expression of α. Then, it suffices to prove that $x \in H$ and $a_{x} \in \mathbb{Q}, \forall x \in S$. In fact, since $\alpha \in F, \forall i \geq 1$, we have

$$
\left\{\begin{aligned}
\sqrt{p_{i}} \alpha & =\alpha \sqrt{p_{i}} \\
\alpha x_{i} & =x_{i} \alpha ;
\end{aligned}\right.
$$

i.e.

$$
\left\{\begin{array}{l}
\sum_{x \in S} \sqrt{p_{i}} a_{x} x=\sum_{x \in S} \Phi_{x}\left(\sqrt{p_{i}}\right) a_{x} x, \\
\sum_{x \in S} a_{x}\left(x x_{i}\right)=\sum_{x \in S} \Phi_{x_{i}}\left(a_{x}\right)\left(x_{i} x\right) .
\end{array}\right.
$$

Therefore, $\forall x=\left(n_{1}, n_{2}, \ldots\right) \in S$, we have

$$
\left\{\begin{aligned}
\sqrt{p_{i}} a_{x} & =\Phi_{x}\left(\sqrt{p_{i}}\right) a_{x}=(-1)^{n_{i}} \sqrt{p_{i}} a_{x} \text { (by Proposition 1.1) }, \\
a_{x} & =\Phi_{x_{i}}\left(a_{x}\right)=f_{i}\left(a_{x}\right) .
\end{aligned}\right.
$$

From the first equality it follows that n_{i} is even for any $i \geq 1$. Therefore $x \in H$. From the second equality it follows that $a_{x}=f_{i}\left(a_{x}\right)$ for any $i \geq 1$. So by Lemma 1.1, we have $a_{x} \in \mathbb{Q}$. Therefore $\alpha \in \mathbb{Q}((H))$.

2 Some properties of $K((G, \Phi))$

In the precedent section we have constructed the division ring $D=K((G, \Phi))$ with the center $F=\mathbb{Q}((H))$. In this section we investigate the properties of $D=K((G, \Phi))$. Further, using these properties we give the negative answers for five problems arising from the work [3].

Theorem 2.1 The division ring D is not algebraic over its center F.

Proof. Suppose that $\alpha=x_{1}^{-1}+x_{2}^{-1}+\ldots$ is an infinite sum. Since $x_{1}^{-1}<x_{2}^{-1}<$ $\ldots, \operatorname{supp}(\alpha)$ is well-ordered. Hence $\alpha \in D$. Consider the equality

$$
\begin{equation*}
a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{n} \alpha^{n}=0, \quad a_{i} \in F . \tag{2}
\end{equation*}
$$

Note that $X=x_{1}^{-1} x_{2}^{-1} \ldots x_{n}^{-1}$ does not appear in the expressions of $\alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ and the coefficient of X in the expression of α^{n} is $n!$. Therefore, the coefficient of X in the expression on left side of the equality (2) is $a_{n} . n!$. It follows that $a_{n}=0$. By induction, it is easy to see that $a_{0}=a_{1}=\ldots=a_{n}=0$. Hence, for any $n \in \mathbb{N}$, the set $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$ is independent over F. Consequently, α is not algebraic over F.

Denote by $K_{\infty}=F\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots\right)$ the subfield of D generated by $\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots$ over F and for any $n \geq 1$ denote by $L_{n}:=F\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}, x_{1}, \ldots, x_{n}\right)$. Then, $L_{n} \subseteq L_{n+1}$ and $L_{\infty}:=\bigcup_{n=1}^{\infty} L_{n}$ is the division subring generated by all $\sqrt{p_{i}}$ and all x_{i} over F.

The following theorem gives the negative answers for problems 30, 31 and 32 in [3].
Theorem 2.2 K_{∞} is a maximal subfield of D, algebraic, separable over F and it is not a simple extension of F.

Proof. In view of [[2], Prop. (15.7),p.254], we have to only prove that $C_{D}\left(K_{\infty}\right)=K_{\infty}$. Thus, suppose that $\alpha \in C_{D}\left(K_{\infty}\right) \backslash K_{\infty}$. Then, there exists some i such that x_{i} appears in the expression of α as a formal sum. Since $x_{i}^{2} \in F, \alpha$ can be expressed in the form $\alpha=\beta x_{i}+\gamma$, where $\beta \neq 0$ and x_{i} does not appear in the formal expressions of β and γ. Therefore, $\sqrt{p_{i}} \alpha-\alpha \sqrt{p_{i}}=2 \beta \sqrt{p_{i}} x_{i} \neq 0$. It follows that α does not commute with $\sqrt{p_{i}} \in K_{\infty}$ that is a contradiction. Hence, K_{∞} is a maximal subfield of D.

Now, for any $n \geq 1$, put $K_{n}=F\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n}}\right)$. Clearly, K_{n} is a field and $\left[K_{n+1}: K_{n}\right]=2$. Therefore, $\left[K_{n}: F\right]=2^{n}$ and $\left[K_{\infty}: F\right]=\infty$. Moreover, $K_{\infty}=$ $F\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots\right)=\bigcup_{n=1}^{\infty} K_{n}$. Hence, for any $c \in K_{\infty}$, there exists some $n \in \mathbb{N}$ such that $c \in K_{n}$. Consequently

$$
[F(c): F] \leq\left[K_{n}: F\right]=2^{n}
$$

It follows that $K_{\infty} \neq F(c)$ and K_{∞} is an algebraic extension of F. Since $\mathbb{Q} \subseteq F, K_{\infty}$ is separable over F.

Lemma $2.1 \quad$ i) $\left[L_{n}: F\right]=2^{2 n}$.
ii) For any $\alpha \in L_{n}$, we have $\alpha x_{n+1}=x_{n+1} \alpha$.
iii) $x_{n+1} \notin L_{n}$.

Proof. i) Put $S_{n}=\left\{\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}, x_{1}, \ldots, x_{n}\right\}$. Since for any $i \neq j$,

$$
x_{i}^{2},\left(\sqrt{p_{i}}\right)^{2} \in F, x_{i} x_{j}=x_{j} x_{i}, \sqrt{p_{i}} \sqrt{p_{j}}=\sqrt{p_{j}} \sqrt{p_{i}}, x_{i} \sqrt{p_{j}}=\sqrt{p_{j}} x_{i}, x_{i} \sqrt{p_{i}}=-\sqrt{p_{i}} x_{i},
$$ every element from $F\left[S_{n}\right]$ can be expressed in the form

$$
\begin{equation*}
\alpha=\sum_{0 \leq \varepsilon_{i}, \mu_{i} \leq 1} a_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \mu_{1}, \ldots, \mu_{n}\right)}\left(\sqrt{p_{1}}\right)^{\varepsilon_{1}} \ldots\left(\sqrt{p_{n}}\right)^{\varepsilon_{n}} x_{1}^{\mu_{1}} \ldots x_{n}^{\mu_{n}}, \quad a_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \mu_{1}, \ldots, \mu_{n}\right)} \in F \tag{3}
\end{equation*}
$$

Moreover, the set \mathcal{B}_{n} consits of products $\left(\sqrt{p_{1}}\right)^{\varepsilon_{1}} \ldots\left(\sqrt{p_{n}}\right)^{\varepsilon_{n}} x_{1}^{\mu_{1}} \ldots x_{n}^{\mu_{n}}, 0 \leq \varepsilon_{i}, \mu_{i} \leq 1$ is finite of $2^{2 n}$ elements. Hence, $F\left[S_{n}\right]$ is a finite dimensional vector space over F. So, by [1], Lemma 2.3], we have $F\left[S_{n}\right]=F\left(S_{n}\right)=L_{n}$. Therefore, every element from L_{n} can be expressed in the form (3). Moreover, it is easy to prove by induction that the set \mathcal{B}_{n} is linearly independent. Therefore, \mathcal{B}_{n} is a basis of L_{n} over F and $\left[L_{n}: F\right]=2^{2 n}$.
ii) Since x_{n+1} commutes with every element of the form (3), x_{n+1} commutes with every element $\alpha \in L_{n}$.
iii) If $x_{n+1} \in L_{n}$, then in view of ii) we have $x_{n+1} \in Z\left(L_{n}\right)=F$, that is impossible. Therefore, $x_{n+1} \notin L_{n}$.

Theorem 2.3 For any $n \geq 1$, we have $Z\left(L_{n}\right)=Z\left(L_{\infty}\right)=F$.
Proof. In the first, we show that $Z\left(L_{1}\right)=F$. Thus, suppose that $\alpha \in Z\left(L_{1}\right)$. Since $x_{1}^{2},\left(\sqrt{p_{1}}\right)^{2}=p_{1} \in F$ and $x_{1} \sqrt{p_{1}}=-\sqrt{p_{1}} x_{1}$, every element $\alpha \in L_{1}=F\left(\sqrt{p_{1}}, x_{1}\right)$ can be expressed in the following form:

$$
\alpha=a+b \sqrt{p_{1}}+c x_{1}+d \sqrt{p_{1}} x_{1}, \quad a, b, c, d \in F .
$$

Since α commutes with x_{1} and $\sqrt{p_{1}}$, we have

$$
a x_{1}+b \sqrt{p_{1}} x_{1}+c x_{1}^{2}+d \sqrt{p_{1}} x_{1}^{2}=a x_{1}-b \sqrt{p_{1}} x_{1}+c x_{1}^{2}-d \sqrt{p_{1}} x_{1}^{2}
$$

and

$$
a \sqrt{p_{1}}-c \sqrt{p_{1}} x_{1}=a \sqrt{p_{1}}+c \sqrt{p_{1}} x_{1} .
$$

From the first equality it follows that $b=d=0$, while from the second equality we obtain $c=0$. Hence, $\alpha=a \in F$ and consequently, $Z\left(L_{1}\right)=F$.

Suppose that $n \geq 1$ and $\alpha \in Z\left(L_{n}\right)$. By (3), α can be expressed in the form

$$
\alpha=a_{1}+a_{2} \sqrt{p_{n}}+a_{3} x_{n}+a_{4} \sqrt{p_{n}} x_{n}, \text { with } a_{1}, a_{2}, a_{3}, a_{4} \in L_{n-1} .
$$

From the equality $\alpha x_{n}=x_{n} \alpha$, it follows that

$$
a_{1} x_{n}+a_{2} \sqrt{p_{n}} x_{n}+a_{3} x_{n}^{2}+a_{4} \sqrt{p_{n}} x_{n}^{2}=a_{1} x_{n}-a_{2} \sqrt{p_{n}} x_{n}+a_{3} x_{n}^{2}-a_{4} \sqrt{p_{n}} x_{n}^{2} .
$$

Therefore, $a_{2}+a_{4} x_{n}=0$ and consequently we have $a_{2}=a_{4}=0$. Now, from the equality $\alpha \sqrt{p_{n}}=\sqrt{p_{n}} \alpha$, we have $a_{1} \sqrt{p_{n}}-a_{3} \sqrt{p_{n}} x_{n}=a_{1} \sqrt{p_{n}}+a_{3} \sqrt{p_{n}} x_{n}$ and it follows that $a_{3}=0$. Therefore, $\alpha=a_{1} \in L_{n-1}$ and this means that $\alpha \in Z\left(L_{n-1}\right)$. Thus, we have proved that $Z\left(L_{n}\right) \subseteq Z\left(L_{n-1}\right)$. By induction we can conclude that $Z\left(L_{n}\right) \subseteq Z\left(L_{1}\right), \forall n \geq 1$. Since $F \subseteq Z\left(L_{n}\right) \subseteq Z\left(L_{1}\right)=F$, it follows that $Z\left(L_{n}\right)=F, \forall n \geq 1$.

Now, suppose that $\alpha \in Z\left(L_{\infty}\right)$. Then, there exists some n such that $\alpha \in L_{n}$ and clearly $\alpha \in Z\left(L_{n}\right)=F$. Hence $Z\left(L_{\infty}\right)=F$.

The following theorem gives the negative answers to the problems 28 and 29 in 3]:
Theorem 2.4 The division ring L_{∞} contains no maximal subfields that are simple extensions over its center.

Proof. As we have proved above, $Z\left(L_{\infty}\right)=F$. Now, suppose that there exists some element $c \in L_{\infty}$ such that $F(c)$ is a maximal subfield of L_{∞}. Since $L_{\infty}=\bigcup_{n=1}^{\infty} L_{n}$, there exists some n such that $c \in L_{n}$. Therefore, $F(c) \subseteq L_{n}$. By (3), $x_{n+1} \notin L_{n}$ and since c commutes with $x_{n+1}, F\left(c, x_{n+1}\right)$ is a subfield of L_{∞} that strictly contains $F(c)$. This contradiction completes the proof of the theorem.
Remark. Since $K_{\infty} \subseteq L_{\infty}, K_{\infty}$ is a maximal subfield of L_{∞}. Moreover, it is easy to see that L_{∞} is a locally finite over F. In particular, L_{∞} is algebraic over F and consequently K_{∞} is algebraic over F (we have proved this fact in Theorem 2.2 above). Recall that the center of L_{∞} is F, so L_{∞} is a locally centrally finite division ring.

References

[1] Bui Xuan Hai and Nguyen Van Thin, On locally nilpotent subgroups of $G L_{1}(D)$, Communitations in Algebra 37 (2009), no. 2, 712-718.
[2] T.Y. Lam, A First course in non-commutative rings, GTM 131 (1991), SpringerVerlag.
[3] Mahdavi-Hezavehi M., Commutators in division rings revisited, Bull. of the Iranian Math. Soc., 26 (2), 7-88 (2000).

[^0]: *Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, HCM-City, Vietnam, e-mail: ttdeo@hcmus.edu.vn
 ${ }^{\dagger}$ Department of Basic Sciences, University of Architecture, 196 Pasteur Str., Dist. 1, HCM-City, Vietnam, e-mail: maihoangbien012@yahoo.com
 ${ }^{\ddagger}$ Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, HCM-City, Vietnam, e-mail: bxhai@hcmus.edu.vn

