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Abstract

In this paper, using the general Mal’cev-Neumann construction of Laurent series

rings, we construct a ring with a base ring which is an extension of the field Q of

rational numbers. Further, we establish some useful properties of such a ring and as

direct consequences, we obtain the negative answers to five problems arising from

the work [3].
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In this short note, we are interesting in the construction of some special division ring

D which is not algebraic over its center F . However, D contains some maximal subfield

K, algebraic over F . Such a division ring can be taken as a counterexample for some

questions, arising from the work [3].

1 The construction of a ring K((G,Φ))

In this section, following the general Mal’cev-Neumann construction of Laurent series

rings, we construct a ring with a base ring which is an extension of the field Q of rational

numbers. Thus, let us denote by G = Z∞ the set of all infinite sequences of integers of

the form (n1, n2, n3, . . .) with only finitely many non-zeros ni. Clearly G is an abelian

group with the addition defined by the obvious way. For any positive integer i, denote

by xi = (0, . . . , 0, 1, 0, . . .) the element of G with 1 in the i-th position and 0 elsewhere.

Then G is a free abelian group generated by all xi and every element x ∈ G is written

uniquely in the form

x =
∑

i∈I

nixi, (1)

with ni ∈ Z and some finite set I.

Now, we define an order in G as the following:

For elements x = (n1, n2, n3, . . .) and y = (m1, m2, m3, . . .) in G, define x < y if either

n1 < m1 or there exists k ∈ N such that n1 = m1, . . . , nk = mk and nk+1 < mk+1. Clearly,

with this order G is a totally ordered set.

Suppose that p1 < p2 < . . . < pn < . . . is a sequence of prime numbers and

K = Q(
√
p1,

√
p2, . . .) is the subfield of the field R of real numbers generated by Q

and
√
p1,

√
p2, . . ., where Q is the field of rational numbers. For any i ∈ N, suppose that

fi : K −→ K is Q-isomorphism satisfying the following condition:

fi(
√
pj) =

{ √
pj , if j 6= i;

−√
pi, if j = i.

It is easy to verify that fifj = fjfi, ∀i, j ∈ N. Moreover, we have the following lemma:

Lemma 1.1 Suppose that x ∈ K. Then, fi(x) = x, ∀i ∈ N if and only if x ∈ Q.

Proof. The converse is obvious. Now, suppose that x ∈ K such that fi(x) = x, ∀i ∈ N.

If x 6∈ Q, then there exists i ∈ N such that x can be written in the form

x = a + b
√
pi,

where a, b ∈ K, b 6= 0 and
√
pi does not appear in the formal expressions of a and b.

Therefore 0 = x− fi(x) = 2b
√
pi that is a contradiction. Hence x ∈ Q.
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For an element x = (n1, n2, ...) =
∑

i∈I

nixi ∈ G, define Φx :=
∏

i∈I

fni

i . Clearly Φx ∈
Gal(K/Q) and the map

Φ : G −→ Gal(K/Q),

defined by Φ(x) = Φx is a group homomorphism. It is easy to prove the following

proposition:

Proposition 1.1 i) Φ(xi) = fi, ∀i ∈ N.

ii) If x = (n1, n2, . . .) ∈ G, then Φx(
√
pi) = (−1)ni

√
pi.

For the convenience, from now on we write the operation in G multiplicatively. For G

and K as above, consider formal sums of the form

α =
∑

x∈G

axx, ax ∈ K.

For such an α, define the support of α by supp(α) = {x ∈ G : ax 6= 1}. Put

D = K((G,Φ)) =
{

α =
∑

x∈G

axx, ax ∈ K | supp(α) is well-ordered
}

.

For α =
∑

x∈G

axx and β =
∑

x∈G

bxx from D, define

α+ β =
∑

x∈G

(ax + bx)x;

α.β =
∑

z∈G

(

∑

xy=z

axΦx(by)
)

z.

In [[2], p.243], it is proved that these operations are well-defined. Moreover, the

following theorem holds:

Theorem 1.1 ([[2], Th.(14.21), p.244]) D = K((G,Φ)) with the operations, defined as

above is a division ring.

Remarks. i) For any x ∈ G, a ∈ K, we have xa = Φx(a)x.

ii) For any i 6= j, we have xi

√
pi = −√

pixi and xj

√
pi =

√
pixj .

iii) Generally, ∀i 6= j and ∀n ∈ N, we have xn
i

√
pi = (−1)n

√
pix

n
i and xn

j

√
pi =

√
pix

n
j .

Put H = {x2 : x ∈ G} and

Q((H)) =
{

α =
∑

x∈H

axx, ax ∈ Q, supp(α) is well-ordered
}

.

It is easy to check that H is a subgroup of G and for every x ∈ H , Φx = IdK.
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Theorem 1.2 Q((H)) is the center of D.

Proof. Denote by F the center of D. Suppose that α =
∑

x∈H

axx ∈ Q((H)). Then, for

every β =
∑

y∈G

byy ∈ D, we have Φx(by) = by and Φy(ax) = ax. Hence

α.β =
∑

z∈G

(

∑

xy=z

axΦx(by)
)

z =
∑

z∈G

(

∑

xy=z

axby

)

z,

β.α =
∑

z∈G

(

∑

xy=z

byΦy(ax)
)

z =
∑

z∈G

(

∑

xy=z

axby

)

z.

Thus, αβ = βα, ∀β ∈ D. Therefore α ∈ F .

Conversely, suppose that α =
∑

x∈G

axx ∈ F. Denote by S the set of all elements x

appeared in the expression of α. Then, it suffices to prove that x ∈ H and ax ∈ Q, ∀x ∈ S.

In fact, since α ∈ F, ∀i ≥ 1, we have

{ √
piα = α

√
pi,

αxi = xiα;

i.e.






∑

x∈S

√
piaxx =

∑

x∈S

Φx(
√
pi)axx,

∑

x∈S

ax(xxi) =
∑

x∈S

Φxi
(ax)(xix).

Therefore, ∀x = (n1, n2, . . .) ∈ S, we have

{ √
piax = Φx(

√
pi)ax = (−1)ni

√
piax (by Proposition 1.1),

ax = Φxi
(ax) = fi(ax).

From the first equality it follows that ni is even for any i ≥ 1. Therefore x ∈ H . From

the second equality it follows that ax = fi(ax) for any i ≥ 1. So by Lemma 1.1, we have

ax ∈ Q. Therefore α ∈ Q((H)).

2 Some properties of K((G,Φ))

In the precedent section we have constructed the division ring D = K((G,Φ)) with

the center F = Q((H)). In this section we investigate the properties of D = K((G,Φ)).

Further, using these properties we give the negative answers for five problems arising from

the work [3].

Theorem 2.1 The division ring D is not algebraic over its center F .
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Proof. Suppose that α = x−1
1 + x−1

2 + . . . is an infinite sum. Since x−1
1 < x−1

2 <

. . . , supp(α) is well-ordered. Hence α ∈ D. Consider the equality

a0 + a1α + a2α
2 + . . .+ anα

n = 0, ai ∈ F. (2)

Note that X = x−1
1 x−1

2 ...x−1
n does not appear in the expressions of α, α2, ..., αn−1 and

the coefficient of X in the expression of αn is n!. Therefore, the coefficient of X in the

expression on left side of the equality (2) is an.n!. It follows that an = 0. By induction, it

is easy to see that a0 = a1 = . . . = an = 0. Hence, for any n ∈ N, the set {1, α, α2, . . . , αn}
is independent over F . Consequently, α is not algebraic over F .

Denote by K∞ = F (
√
p1,

√
p2, . . .) the subfield of D generated by

√
p1,

√
p2, . . . over

F and for any n ≥ 1 denote by Ln := F (
√
p1, . . . ,

√
pn, x1, . . . , xn). Then, Ln ⊆ Ln+1 and

L∞ :=
∞
⋃

n=1

Ln is the division subring generated by all
√
pi and all xi over F .

The following theorem gives the negative answers for problems 30, 31 and 32 in [3].

Theorem 2.2 K∞ is a maximal subfield of D, algebraic, separable over F and it is not

a simple extension of F .

Proof. In view of [[2], Prop. (15.7),p.254], we have to only prove that CD(K∞) = K∞.

Thus, suppose that α ∈ CD(K∞) \K∞. Then, there exists some i such that xi appears

in the expression of α as a formal sum. Since x2
i ∈ F , α can be expressed in the form

α = βxi + γ, where β 6= 0 and xi does not appear in the formal expressions of β and

γ. Therefore,
√
piα − α

√
pi = 2β

√
pixi 6= 0. It follows that α does not commute with

√
pi ∈ K∞ that is a contradiction. Hence, K∞ is a maximal subfield of D.

Now, for any n ≥ 1, put Kn = F (
√
p1,

√
p2, . . . ,

√
pn). Clearly, Kn is a field and

[Kn+1 : Kn] = 2. Therefore, [Kn : F ] = 2n and [K∞ : F ] = ∞. Moreover, K∞ =

F (
√
p1,

√
p2, . . .) =

∞
⋃

n=1

Kn. Hence, for any c ∈ K∞, there exists some n ∈ N such that

c ∈ Kn. Consequently

[F (c) : F ] ≤ [Kn : F ] = 2n.

It follows that K∞ 6= F (c) and K∞ is an algebraic extension of F . Since Q ⊆ F,K∞ is

separable over F .

Lemma 2.1 i) [Ln : F ] = 22n.

ii) For any α ∈ Ln, we have αxn+1 = xn+1α.

iii) xn+1 6∈ Ln.
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Proof. i) Put Sn = {√p1, ...,
√
pn, x1, ..., xn}. Since for any i 6= j,

x2
i , (

√
pi)

2 ∈ F , xixj = xjxi,
√
pi
√
pj =

√
pj
√
pi, xi

√
pj =

√
pjxi, xi

√
pi = −√

pixi,

every element from F [Sn] can be expressed in the form

α =
∑

0≤εi,µi≤1

a(ε1,...,εn,µ1,...,µn)(
√
p1)

ε1 . . . (
√
pn)

εnxµ1

1 . . . xµn

n , a(ε1,...,εn,µ1,...,µn) ∈ F. (3)

Moreover, the set Bn consits of products (
√
p1)

ε1 . . . (
√
pn)

εnxµ1

1 . . . xµn

n , 0 ≤ εi, µi ≤ 1

is finite of 22n elements. Hence, F [Sn] is a finite dimensional vector space over F . So, by

[[1], Lemma 2.3], we have F [Sn] = F (Sn) = Ln. Therefore, every element from Ln can be

expressed in the form (3). Moreover, it is easy to prove by induction that the set Bn is

linearly independent. Therefore, Bn is a basis of Ln over F and [Ln : F ] = 22n.

ii) Since xn+1 commutes with every element of the form (3), xn+1 commutes with every

element α ∈ Ln.

iii) If xn+1 ∈ Ln, then in view of ii) we have xn+1 ∈ Z(Ln) = F , that is impossible.

Therefore, xn+1 6∈ Ln.

Theorem 2.3 For any n ≥ 1, we have Z(Ln) = Z(L∞) = F .

Proof. In the first, we show that Z(L1) = F . Thus, suppose that α ∈ Z(L1). Since

x2
1, (

√
p1)

2 = p1 ∈ F and x1
√
p1 = −√

p1x1, every element α ∈ L1 = F (
√
p1, x1) can be

expressed in the following form:

α = a + b
√
p1 + cx1 + d

√
p1x1, a, b, c, d ∈ F.

Since α commutes with x1 and
√
p1, we have

ax1 + b
√
p1x1 + cx2

1 + d
√
p1x

2
1 = ax1 − b

√
p1x1 + cx2

1 − d
√
p1x

2
1,

and

a
√
p1 − c

√
p1x1 = a

√
p1 + c

√
p1x1.

From the first equality it follows that b = d = 0, while from the second equality we

obtain c = 0. Hence, α = a ∈ F and consequently, Z(L1) = F .

Suppose that n ≥ 1 and α ∈ Z(Ln). By (3), α can be expressed in the form

α = a1 + a2
√
pn + a3xn + a4

√
pnxn, with a1, a2, a3, a4 ∈ Ln−1.

From the equality αxn = xnα, it follows that

a1xn + a2
√
pnxn + a3x

2
n + a4

√
pnx

2
n = a1xn − a2

√
pnxn + a3x

2
n − a4

√
pnx

2
n.
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Therefore, a2+a4xn = 0 and consequently we have a2 = a4 = 0. Now, from the equality

α
√
pn =

√
pnα, we have a1

√
pn−a3

√
pnxn = a1

√
pn+a3

√
pnxn and it follows that a3 = 0.

Therefore, α = a1 ∈ Ln−1 and this means that α ∈ Z(Ln−1). Thus, we have proved that

Z(Ln) ⊆ Z(Ln−1). By induction we can conclude that Z(Ln) ⊆ Z(L1), ∀n ≥ 1. Since

F ⊆ Z(Ln) ⊆ Z(L1) = F , it follows that Z(Ln) = F, ∀n ≥ 1.

Now, suppose that α ∈ Z(L∞). Then, there exists some n such that α ∈ Ln and

clearly α ∈ Z(Ln) = F . Hence Z(L∞) = F .

The following theorem gives the negative answers to the problems 28 and 29 in [3]:

Theorem 2.4 The division ring L∞ contains no maximal subfields that are simple ex-

tensions over its center.

Proof. As we have proved above, Z(L∞) = F . Now, suppose that there exists some

element c ∈ L∞ such that F (c) is a maximal subfield of L∞. Since L∞ =
∞
⋃

n=1

Ln, there

exists some n such that c ∈ Ln. Therefore, F (c) ⊆ Ln. By (3), xn+1 6∈ Ln and since

c commutes with xn+1, F (c, xn+1) is a subfield of L∞ that strictly contains F (c). This

contradiction completes the proof of the theorem.

Remark. Since K∞ ⊆ L∞, K∞ is a maximal subfield of L∞. Moreover, it is easy to see

that L∞ is a locally finite over F . In particular, L∞ is algebraic over F and consequently

K∞ is algebraic over F (we have proved this fact in Theorem 2.2 above). Recall that the

center of L∞ is F , so L∞ is a locally centrally finite division ring.
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