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Trinh Thanh Deo* Mai Hoang Bien! and Bui Xuan Hai?

September 24, 2010

Abstract

In this paper, using the general Mal’cev-Neumann construction of Laurent series
rings, we construct a ring with a base ring which is an extension of the field Q of
rational numbers. Further, we establish some useful properties of such a ring and as
direct consequences, we obtain the negative answers to five problems arising from

the work [3].
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In this short note, we are interesting in the construction of some special division ring
D which is not algebraic over its center F'. However, D contains some maximal subfield
K, algebraic over F. Such a division ring can be taken as a counterexample for some

questions, arising from the work [3].

1 The construction of a ring K((G,))

In this section, following the general Mal’cev-Neumann construction of Laurent series
rings, we construct a ring with a base ring which is an extension of the field Q of rational
numbers. Thus, let us denote by G = Z* the set of all infinite sequences of integers of
the form (ni,ng,ns,...) with only finitely many non-zeros n;. Clearly G is an abelian
group with the addition defined by the obvious way. For any positive integer ¢, denote
by z; = (0,...,0,1,0,...) the element of G with 1 in the i-th position and 0 elsewhere.

Then G is a free abelian group generated by all x; and every element x € G is written

el

uniquely in the form

with n; € Z and some finite set /.

Now, we define an order in G as the following:

For elements x = (ny, ng, ng,...) and y = (my, mg, ms,...) in G, define x < y if either
ny < my or there exists k € N such that ny = mq, ..., ny = my and ng 1 < my1. Clearly,
with this order G is a totally ordered set.

Suppose that p; < ps < ... < p, < ... 1is a sequence of prime numbers and
K = Q(y/p1,+/P2,--.) is the subfield of the field R of real numbers generated by Q
and /p1, /D2, - .., where Q is the field of rational numbers. For any ¢ € N, suppose that
fi + K — K is Q-isomorphism satisfying the following condition:

it j £
filv/p;) :{ —g: 1fjiz

It is easy to verify that f;f; = f;fi, Vi, 7 € N. Moreover, we have the following lemma:
Lemma 1.1 Suppose that x € K. Then, fi(x) = z,Vi € N if and only if x € Q.

Proof. The converse is obvious. Now, suppose that x € K such that f;(z) = z,Vi € N.
If z ¢ Q, then there exists i € N such that x can be written in the form

r = a+ by/p;,

where a,b € K,b # 0 and ,/p; does not appear in the formal expressions of a and b.
Therefore 0 = x — fj(x) = 2b,/p; that is a contradiction. Hence z € Q. |
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For an element x = (ny,ng,...) = Y. nx; € G, define @, := [] f/". Clearly ®, €

i€l icl
Gal(K/Q) and the map
¢: G — Gal(K/Q),

defined by ®(x) = &, is a group homomorphism. It is easy to prove the following

proposition:
Proposition 1.1 i) ®(z;) = f;,Vi € N,
ii) If v = (n1,n2,...) € G, then ®,(\/pi) = (=1)"\/p;.

For the convenience, from now on we write the operation in G multiplicatively. For G

and K as above, consider formal sums of the form

a:Zaxx,ax € K.

zelG

For such an «, define the support of a by supp(«a) = {x € G : a, # 1}. Put

D=K(G,®)) = {a = Z%x, a, € K | supp(a) is well-ordered }

zeG
For a = > a,x and = ) b,x from D, define
zeG zelG
atB =Y (ag+b)x:
zeG
af = Z ( Z amq)m(by)>z.
zeG zy==z

In [[2], p.243], it is proved that these operations are well-defined. Moreover, the

following theorem holds:

Theorem 1.1 ([[2], Th.(14.21), p.244]) D = K((G,®)) with the operations, defined as

above is a division ring.

Remarks. i) For any z € G,a € K, we have za = ®,(a)z.

ii) For any i # j, we have z;\/p; = —/piz; and x;.,/p; = \/Pi%;.
iii) Generally, Vi # j and ¥n € N, we have 27\/p; = (=1)"/pix} and 27 \/p; = \/Di7}.
Put H = {2? : x € G} and

Q((H)) = {a = Z a,,a, € Q, supp(a) is well-ordered }

zeH

It is easy to check that H is a subgroup of G and for every x € H, &, = ldk.
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Theorem 1.2 Q((H)) is the center of D.

Proof. Denote by F the center of D. Suppose that « = > a,z € Q((H)). Then, for
reH

every = Y b,y € D, we have ®,(b,) = b, and ®,(a,) = a,. Hence

a.f = Z < Z axq)x(by))z = Z ( Z axby)z,

z€G  zy=z 2€G  zy=z
f.a = Z ( Z by(I)y(aw))z = Z ( Z awby> z.
zeG  xy==z zeG xy==z

Thus, aff = fa, V5 € D. Therefore a € F.

Conversely, suppose that o = > a,x € F. Denote by S the set of all elements x
el
appeared in the expression of a. Then, it suffices to prove that x € H and a, € Q,Vx € S.

In fact, since o € F,Vi > 1, we have

{ o = ap,

ar; = I;Q;

ie. ze;g\/@axx — %@x(\/ﬁ)aw,
;s%(xxi) - ;Sq)xz(%)(xlx)

Therefore, Vo = (ny,ns,...) € S, we have

{ VDite = Pu(\/Pi)a, = (—1)"\/Dia, (by Proposition [L.),
a, = P(a;) = filas).
From the first equality it follows that n; is even for any ¢ > 1. Therefore x € H. From

the second equality it follows that a, = f;(a,) for any ¢ > 1. So by Lemma [[.T], we have
a, € Q. Therefore o € Q((H)). |

2 Some properties of K((G, D))

In the precedent section we have constructed the division ring D = K((G, ®)) with
the center F' = Q((H)). In this section we investigate the properties of D = K((G, ®)).
Further, using these properties we give the negative answers for five problems arising from
the work [3].

Theorem 2.1 The division ring D is not algebraic over its center F.



Proof. Suppose that o = ;' + 2, + ... is an infinite sum. Since z;' < z;' <

..., supp(a) is well-ordered. Hence o € D. Consider the equality
ap + aa+ad® + ... +a,a" =0, a;€F (2)

Note that X = x7'25'...2! does not appear in the expressions of a, a2, ...,a" ! and
the coefficient of X in the expression of o™ is n!. Therefore, the coefficient of X in the
expression on left side of the equality (2) is a,.n!. It follows that a,, = 0. By induction, it
is easy to see that ag = a; = ... = a,, = 0. Hence, for any n € N, the set {1,a,a?, ..., a"}
is independent over F'. Consequently, « is not algebraic over F'. |

Denote by Ko = F'(/p1,+/P2,---) the subfield of D generated by \/p1, /D2, ... over
F and for any n > 1 denote by L, := F(\/p1,...,1/Pn,T1,...,%yn). Then, L, C L, and

Lo := |J Ly is the division subring generated by all /p; and all x; over F'.
n=1
The following theorem gives the negative answers for problems 30, 31 and 32 in [3].
Theorem 2.2 K., is a mazimal subfield of D, algebraic, separable over F' and it is not

a simple extension of F.

Proof. In view of [[2], Prop. (15.7),p.254], we have to only prove that Cp(Ks) = K.
Thus, suppose that a € Cp(K) \ Ko. Then, there exists some i such that z; appears
in the expression of o as a formal sum. Since z7 € F, a can be expressed in the form
a = Bx; + v, where § # 0 and x; does not appear in the formal expressions of 5 and
7. Therefore, \/pia — a\/p; = 28/piz; # 0. It follows that o does not commute with
V/Pi € K that is a contradiction. Hence, K is a maximal subfield of D.

Now, for any n > 1, put K, = F(\/p1,+/P2,---,/Pn). Clearly, K, is a field and
(K1 @ K] = 2. Therefore, [K,, : F] = 2" and [Ky : F] = co. Moreover, K., =

F(\/p1,+/D2,---) = U K,. Hence, for any ¢ € K, there exists some n € N such that
n=1
c € K,,. Consequently

[F(c): F] < |K, : F] = 2".

It follows that K, # F(c) and K is an algebraic extension of F. Since Q C F, K, is
separable over F'. [

Lemma 2.1 i) [L,: F]=2%".
ii) For any a € L,, we have ax,11 = Tpii.

iii) Zp1 & Ly.



Proof. i) Put S, = {\/p1, ..., \/PnsT1, ..., Tn}. Since for any i # j,
27, (Vpi)? € F, wixy = 2525, \/Di\/Dj = /Di/Dis Tin/Dj = /DiTi, Tin/Di = —/Pilti,

every element from F[S,] can be expressed in the form

= Z a(517---75n7M17---7Mn)(\/1)_1)61 s (\/pn)enl‘lf1 - "'L‘lrinv Qe ,enptt yerpin) € F. (3)

0<ei,ui<1

Moreover, the set B,, consits of products (y/p1)™ ... (\/Pn) 2" .. 2k 0 < g5,y <1
is finite of 22" elements. Hence, F[S,] is a finite dimensional vector space over F. So, by
[1], Lemma 2.3], we have F'[S,| = F(S,) = L. Therefore, every element from L,, can be
expressed in the form (3). Moreover, it is easy to prove by induction that the set B, is
linearly independent. Therefore, B, is a basis of L, over F and [L,, : F| = 2%,

ii) Since x, 1 commutes with every element of the form (3), 2,41 commutes with every
element o € L,,.

iii) If 2,41 € Ly, then in view of ii) we have z,., € Z(L,) = F, that is impossible.
Therefore, x, 11 & Ly,. |

Theorem 2.3 For any n > 1, we have Z(L,) = Z(Ly) = F.

Proof. In the first, we show that Z(L;) = F. Thus, suppose that o € Z(L;). Since

21, (y/p1)? = p1 € F and 1\/p1 = —\/p121, every element a € Ly = F(\/p1,x1) can be
expressed in the following form:

a=a+by/p +cxy +dy/przi, a,bc,deF.
Since o commutes with z; and /p;, we have

axy + by/przy + c:p% + d\/p_lx% =ax; — by/prxr1 + cx% - d\/p_le,

and
a\/P1 — c\/p121 = a\/D1 + c\/pr11.

From the first equality it follows that b = d = 0, while from the second equality we
obtain ¢ = 0. Hence, a = a € F' and consequently, Z(L,) = F.
Suppose that n > 1 and a € Z(L,,). By (3), a can be expressed in the form

a = ay + ag\/Pp + a3Ty + A4/PpTyn, With ay,as, a3, a4 € Ly_y.
From the equality az, = z,q, it follows that

2 2 2 2
1Ty + G2/DPpTy + Q3T + Qa\/PnT, = 1Ty — Q2+/PpTy + 3T, — Qs\/PnT,,.



Therefore, as+ayx,, = 0 and consequently we have as = a4, = 0. Now, from the equality
Qr/Pn = \/Pnt, We have ai\/pn — a3/PnTn = a11/Dn + a3+/Pny and it follows that az = 0.
Therefore, « = a; € L, and this means that « € Z(L,_1). Thus, we have proved that
Z(L,) € Z(L,-1). By induction we can conclude that Z(L,) C Z(L;),Vn > 1. Since
F C Z(L,) C Z(Ly) = F, it follows that Z(L,) = F,Vn > 1.

Now, suppose that « € Z(Ly). Then, there exists some n such that a € L, and
clearly o € Z(L,) = F. Hence Z(Ly) = F. |

The following theorem gives the negative answers to the problems 28 and 29 in [3]:

Theorem 2.4 The division ring Lo, contains no maximal subfields that are simple ex-

tensions over its center.

Proof. As we have proved above, Z(L,) = F. Now, suppose that there exists some

element ¢ € Lo, such that F(c) is a maximal subfield of L. Since Lo, = |J Ly, there
n=1
exists some n such that ¢ € L,. Therefore, F(¢) C L,. By (3), zp41 € L, and since

¢ commutes with x,1, F(c,x,11) is a subfield of L., that strictly contains F'(c¢). This
contradiction completes the proof of the theorem. |
Remark. Since K, C L, K, is a maximal subfield of L.,. Moreover, it is easy to see
that L., is a locally finite over F'. In particular, L, is algebraic over F' and consequently
K is algebraic over F' (we have proved this fact in Theorem 2.2 above). Recall that the

center of Ly, is F', so L, is a locally centrally finite division ring.
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