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Abstract

We give (conjectural) analogs of Berenstein-Zelevinsky data for affine type A. More-

over, by using these affine analogs of Berenstein-Zelevinsky data, we realize the crystal

basis of the negative part of the quantized universal enveloping algebra of the (Lang-

lands dual) Lie algebra of affine type A.

1 Introduction.

This paper provides the first step in our attempt to construct and describe analogs of

Mirković-Vilonen (MV for short) polytopes for affine Lie algebras. In this paper, we concen-

trate on the case of affine type A, and construct (conjectural) affine analogs of Berenstein-

Zelevinsky (BZ for short) data. Furthermore, using these affine analogs of BZ data, we give

a realization of the crystal basis of the negative part of the quantized universal enveloping

algebra associated to (the Langlands dual Lie algebra of) the affine Lie algebra of affine type

A. Here we should mention that in the course of the much more sophisticated discussion

toward the (conjectural) geometric Satake correspondence for a Kac-Moody group of affine

type A, Nakajima [N] constructed affine analogs of MV cycles by using his quiver varieties;

see also [BF1], [BF2].

Let G be a semisimple algebraic group over C with (semisimple) Lie algebra g. Anderson

[A] introduced MV polytopes for g as moment polytopes of MV cycles in the affine Grass-
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mannian Gr associated to G, and, on the basis of the geometric Satake correspondence, used

them to count weight multiplicities and tensor product multiplicities for finite-dimensional

irreducible representations of the Langlands dual group G∨ of G.

Soon afterward, Kamnitzer [Kam1], [Kam2] gave a combinatorial characterization of MV

polytopes in terms of BZ data; a BZ datum is a collection of integers (indexed by the set of

chamber weights) satisfying the edge inequalities and tropical Plücker relations. To be more

precise, let WI be the Weyl group of g, and ̟I
i , i ∈ I, the fundamental weights, where I is

the index set of simple roots; the set ΓI of chamber weights is by definition ΓI :=
⋃

i∈I WI̟
I
i .

Then, for a BZ datum M = (Mγ)γ∈ΓI
with Mγ ∈ Z, the corresponding MV polytope P (M)

is given by:

P (M) =
{
h ∈ (hI)R | 〈h, γ〉 ≥ Mγ for all γ ∈ ΓI

}
,

where (hI)R is a real form of the Cartan subalgebra hI of g, and 〈· , ·〉 is the canonical pairing

between hI and h∗I . We denote by BZI the set of all BZ data M = (Mγ)γ∈ΓI
such that

MwI
0̟

I
i
= 0 for all i ∈ I, where wI

0 ∈ WI is the longest element.

Now, let ĝ denote the affine Lie algebra of type A
(1)
ℓ over C with Cartan subalgebra ĥ,

and Â = (âij)i, j∈Î its Cartan matrix with index set Î =
{
0, 1, . . . , ℓ

}
, where ℓ ∈ Z≥2 is a

fixed integer. Before constructing the set of (conjectural) analogs of BZ data for the affine

Lie algebra ĝ, we need to construct the set BZZ of BZ data of type A∞.

Let sl∞(C) denote the infinite rank Lie algebra over C of type A∞ with Cartan subalgebra

h, and AZ = (aij)i, j∈Z its Cartan matrix with index set Z. Let WZ = 〈si | i ∈ Z〉 ⊂ GL(h∗)

be the Weyl group of sl∞(C), and Λi ∈ h∗, i ∈ Z, the fundamental weights; the set ΓZ of

chamber weights for sl∞(C) is defined to be the set

ΓZ :=
⋃

i∈Z

(
−WZΛi

)
=

{
−wΛi | w ∈ WZ, i ∈ Z

}
,

not to be the set
⋃

i∈Z WZΛi. Then, for each finite interval I in Z, we can (and do) identify

the set ΓI of chamber weights for the finite-dimensional simple Lie algebra gI over C of type

A|I| with the subset
{
−wΛi | w ∈ WI , i ∈ I

}
, where |I| denotes the cardinality of I, and

WI = 〈si | i ∈ I〉 ⊂ WZ is the Weyl group of gI (see §3.1 for details). Here we note that the

family
{
BZI | I is a finite interval in Z

}
forms a projective system (cf. Lemma 2.4.1).

Using the projective system
{
BZI | I is a finite interval in Z

}
above, we define the set

BZZ of BZ data of type A∞ to be a kind of projective limit, with a certain stability constraint,

of the system
{
BZI | I is a finite interval in Z

}
; see Definition 3.2.1 for a precise statement.

Because of this stability constraint, we can endow the set BZZ a crystal structure for the Lie

algebra sl∞(C) of type A∞.

Finally, recall the fact that the Dynkin diagram of type A
(1)
ℓ can be obtained from that of

type A∞ by the operation of “folding” under the Dynkin diagram automorphism σ : Z → Z

in type A∞ given by: σ(i) = i + ℓ − 1 for i ∈ Z, where ℓ ∈ Z≥2. In view of this fact, we
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consider the fixed point subset BZσ
Z of BZZ under a natural action of the Dynkin diagram

automorphism σ : Z → Z. Then, we can endow a crystal structure (canonically induced

by that on BZZ) for the quantized universal enveloping algebra Uq(ĝ
∨) associated to the

(Langlands) dual Lie algebra ĝ∨ of ĝ.

However, the crystal BZσ
Z
for Uq(ĝ

∨) may be too big for our purpose. Therefore, we

restrict our attention to the connected component BZσ
Z(O) of the crystal BZσ

Z containing

the BZ datum O of type A∞ whose γ-component is equal to 0 for each γ ∈ ΓZ. Our

main result (Theorem 4.4.1) states that the crystal BZσ
Z(O) is isomorphic, as a crystal for

Uq(ĝ
∨), to the crystal basis B̂(∞) of the negative part U−

q (ĝ
∨) of Uq(ĝ

∨). Moreover, for

each dominant integral weight λ̂ ∈ ĥ for ĝ∨, the crystal basis B̂(λ̂) of the irreducible highest

weight Uq(ĝ
∨)-module of highest weight λ̂ can be realized as a certain explicit subset of

BZσ
Z
(O) (see Theorem 4.4.5). In fact, we first prove Theorem 4.4.5 by using Stembridge’s

result on a characterization of highest weight crystals for simply-laced Kac-Moody algebras;

then, Theorem 4.4.1 is obtained as a corollary.

Unfortunately, we have not yet found an explicit characterization of the connected com-

ponent BZσ
Z
(O) ⊂ BZσ

Z
in terms of the “edge inequalities” and “tropical Plücker relations” in

type A
(1)
ℓ in a way analogous to the finite-dimensional case; we hope to mention such a descrip-

tion of the connected component BZσ
Z
(O) ⊂ BZσ

Z
in our forthcoming paper [NSS]. However,

from our results in this paper, it seems reasonable to think of an element M = (Mγ)γ∈ΓZ
of

the crystal BZσ
Z
(O) as a (conjectural) analog of a BZ datum in affine type A.

This paper is organized as follows. In Section 2, following Kamnitzer, we review some

standard facts about BZ data for the simple Lie algebra gI of type A|I|, where I ⊂ Z is the

index set of simple roots with cardinality m, and then show that the system of sets BZI of

BZ data for gI , where I runs over all the finite intervals in Z, forms a projective system. In

Section 3, we introduce the notion of BZ data of type A∞, and define Kashiwara operators on

the set BZZ of BZ data of type A∞. Also, we show a technical lemma about some properties

of Kashiwara operators on BZZ. In Section 4, we first study the action of the Dynkin diagram

automorphism σ in type A∞ on the set BZZ. Next, we define the set of BZ data of type A
(1)
ℓ

to be the fixed point subset BZσ
Z
of BZZ under σ, and endow a canonical crystal structure on

it. Finally, in Subsections 4.4 and 4.5, we state and prove our main results (Theorems 4.4.1

and 4.4.5), which give a realization of the crystal basis B̂(∞) for the (Langlands dual) Lie

algebra ĝ∨ of type A
(1)
ℓ . In the Appendix, we restate Stembridge’s result on a characterization

of simply-laced crystals in a form that will be used in the proofs of the theorems above.

2 Berenstein-Zelevinsky data of type Am.

In this section, following [Kam1] and [Kam2], we briefly review some basic facts about

Berenstein-Zelevinsky (BZ for short) data for the complex finite-dimensional simple Lie al-

gebra of type Am.
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2.1 Basic notation in type Am. Let I be a fixed (finite) interval in Z whose cardinality

is equal to m ∈ Z≥1; that is, I ⊂ Z is a finite subset of the form:

I =
{
n+ 1, n + 2, . . . , n +m

}
for some n ∈ Z. (2.1.1)

Let AI = (aij)i,j∈I denote the Cartan matrix of type Am with index set I; the entries aij are

given by:

aij =





2 if i = j,

−1 if |i− j| = 1,

0 otherwise,

(2.1.2)

for i, j ∈ I. Let gI be the complex finite-dimensional simple Lie algebra with Cartan matrix

AI , Cartan subalgebra hI , simple coroots hi ∈ hI , i ∈ I, and simple roots αi ∈ h∗I :=

HomC(hI , C), i ∈ I; note that hI =
⊕

i∈I Chi, and that 〈hi, αj〉 = aij for i, j ∈ I, where

〈· , ·〉 is the canonical pairing between hI and h∗I . Denote by ̟I
i ∈ h∗I , i ∈ I, the fundamental

weights for gI , and by WI := 〈si | i ∈ I〉 (⊂ GL(h∗I)) the Weyl group of gI , where si is

the simple reflection for i ∈ I, with e and wI
0 the identity element and the longest element

of the Weyl group WI , respectively. Also, we denote by ≤ the (strong) Bruhat order on

WI . The (Dynkin) diagram automorphism for gI is a bijection ωI : I → I defined by:

ωI(n + i) = n +m − i + 1 for 1 ≤ i ≤ m (see (2.1.1) and (2.1.2)). It is easy to see that for

i ∈ I,

wI
0(αi) = −αωI (i), wI

0(̟
I
i ) = −̟I

ωI (i)
, wI

0sωI(i) = siw
I
0. (2.1.3)

Let g∨I denote the (Langlands) dual Lie algebra of gI ; that is, g∨I is the complex finite-

dimensional simple Lie algebra of type Am associated to the transpose tAI (= AI) of AI , with

Cartan subalgebra h∗I , simple coroots αi ∈ h∗I , i ∈ I, and simple roots hi ∈ hI , i ∈ I. Let

Uq(g
∨
I ) be the quantized universal enveloping algebra over the field C(q) of rational functions

in q associated to the Lie algebra g∨I , U
−
q (g

∨
I ) the negative part of Uq(g

∨
I ), and BI(∞) the

crystal basis of U−
q (g

∨
I ). Also, for a dominant integral weight λ ∈ hI for g∨I , BI(λ) denotes

the crystal basis of the finite-dimensional irreducible highest weight Uq(g
∨
I )-module of highest

weight λ.

2.2 BZ data of type Am. We set

ΓI :=
{
w̟I

i | w ∈ WI , i ∈ I
}
; (2.2.1)

note that by the second equation in (2.1.3), the set ΓI (of chamber weights) coincides with

the set −ΓI =
{
−w̟I

i | w ∈ WI , i ∈ I
}
. Let M = (Mγ)γ∈ΓI

be a collection of integers

indexed by ΓI . For each γ ∈ ΓI , we call Mγ the γ-component of the collection M, and denote

it by (M)γ.
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Definition 2.2.1. A collection M = (Mγ)γ∈ΓI
of integers is called a Berenstein-Zelevinsky

(BZ for short) datum for gI if it satisfies the following conditions (1) and (2):

(1) (edge inequalities) for all w ∈ WI and i ∈ I,

Mw̟I
i
+Mwsi̟

I
i
+

∑

j∈I\{i}

ajiMw̟I
j
≤ 0; (2.2.2)

(2) (tropical Plücker relations) for all w ∈ WI and i, j ∈ I with aij = aji = −1 such that

wsi > w, wsj > w,

Mwsi̟
I
i
+Mwsj̟

I
j
= min

(
Mw̟I

i
+Mwsisj̟

I
j
, Mw̟I

j
+Mwsjsi̟

I
i

)
. (2.2.3)

2.3 Crystal structure on the set of BZ data of type Am. Let M = (Mγ)γ∈ΓI
be a

BZ datum for gI . Following [Kam1, §2.3], we define

P (M) :=
{
h ∈ (hI)R | 〈h, γ〉 ≥ Mγ for all γ ∈ ΓI

}
,

where (hI)R :=
⊕

i∈I Rhi is a real form of the Cartan subalgebra hI . We know from [Kam1,

Proposition 2.2] that P (M) is a convex polytope in (hI)R whose set of vertices is given by:

{
µw(M) :=

∑

i∈I

Mw̟I
i
whi

∣∣∣∣∣ w ∈ W

}
⊂ (hI)R. (2.3.1)

The polytope P (M) is called a Mirković-Vilonen (MV) polytope associated to the BZ datum

M = (Mγ)γ∈ΓI
.

We denote by BZI the set of all BZ data M = (Mγ)γ∈ΓI
for gI satisfying the condition

that MwI
0̟

I
i
= 0 for all i ∈ I, or equivalently, M−̟I

i
= 0 for all i ∈ I (by the second equation

in (2.1.3)). By [Kam2, §3.3], the set MVI :=
{
P (M) | M ∈ BZI

}
can be endowed with a

crystal structure for Uq(g
∨
I ), and the resulting crystal MVI is isomorphic to the crystal basis

BI(∞) of the negative part U−
q (g

∨
I ) of Uq(g

∨
I ). Because the map BZI → MVI defined by

M 7→ P (M) is bijective, we can also endow the set BZI with a crystal structure for Uq(g
∨
I )

in such a way that the bijection BZI → MVI is an isomorphism of crystals for Uq(g
∨
I ).

Now we recall from [Kam2] the description of the crystal structure on BZI . For M =

(Mγ)γ∈ΓI
∈ BZI , define the weight wt(M) of M by:

wt(M) =
∑

i∈I

M̟I
i
hi. (2.3.2)

The raising Kashiwara operators ep, p ∈ I, on BZI are defined as follows (see [Kam2, Theo-

rem 3.5 (ii)]). Fix p ∈ I. For a BZ datum M = (Mγ)γ∈ΓI
for gI (not necessarily an element

of BZI), we set

εp(M) := −


M̟I

p
+Msp̟I

p
+

∑

q∈I\{p}

aqpM̟I
q


 , (2.3.3)
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which is nonnegative by condition (1) of Definition 2.2.1. Observe that µsp(M) − µe(M) =

εp(M)hp, and hence that µsp(M) = µe(M) if and only if εp(M) = 0. In view of this, we

set epM := 0 if εp(M) = 0 (cf. [Kam2, Theorem 3.5(ii)]), where 0 is an additional element,

which is not contained in BZI . We know the following fact from [Kam2, Theorem 3.5 (ii)]

(see also the comment after [Kam2, Theorem 3.5]).

Fact 2.3.1. Let M = (Mγ)γ∈ΓI
be a BZ datum for gI (not necessarily an element of BZI).

If εp(M) > 0, then there exists a unique BZ datum for gI , denoted by epM, such that

(epM)̟I
p
= M̟I

p
+ 1, and such that (epM)γ = Mγ for all γ ∈ ΓI with 〈hp, γ〉 ≤ 0.

It is easily verified that if M = (Mγ)γ∈ΓI
∈ BZI , then epM ∈ BZI ∪{0}. Indeed, suppose

that εp(M) > 0, or equivalently, epM 6= 0. Let i ∈ I. Since 〈hp, w
I
0̟

I
i 〉 ≤ 0 by the second

equation in (2.1.3), it follows from the definition of epM that (epM)wI
0̟

I
i
is equal to MwI

0̟
I
i
,

and hence that (epM)wI
0̟

I
i
= MwI

0̟
I
i
= 0. Thus, we obtain a map ep from BZI to BZI ∪ {0}

sending M ∈ BZI to epM ∈ BZI ∪ {0}. By convention, we set ep0 := 0.

Similarly, the lowering Kashiwara operators fp, p ∈ I, on BZI are defined as follows. Fix

p ∈ I. Let us recall the following fact from [Kam2, Theorem 3.5 (i)], the comment after

[Kam2, Theorem 3.5], and [Kam2, Corollary 5.6].

Fact 2.3.2. Let M = (Mγ)γ∈ΓI
be a BZ datum for gI (not necessarily an element of BZI).

Then, there exists a unique BZ datum for gI , denoted by fpM, such that (fpM)̟I
p
= M̟I

p
−1,

and such that (fpM)γ = Mγ for all γ ∈ ΓI with 〈hp, γ〉 ≤ 0. Moreover, for each γ ∈ ΓI ,

(fpM)γ =

{
min

(
Mγ , Mspγ + cp(M)

)
if 〈hp, γ〉 > 0,

Mγ otherwise,
(2.3.4)

where cp(M) := M̟I
p
−Msp̟I

p
− 1.

Remark 2.3.3. Keep the notation and assumptions of Fact 2.3.2. By (2.3.4), we have

(fpM)γ ≤ Mγ for all γ ∈ ΓI .

In exactly the same way as the case of ep above, we see that if M ∈ BZI , then fpM ∈ BZI .

Thus, we obtain a map fp from BZI to itself sending M ∈ BZI to fpM ∈ BZI . By convention,

we set fp0 := 0.

Finally, we set ϕp(M) := 〈wt(M), αp〉+ εp(M) for M ∈ BZI and p ∈ I.

Theorem 2.3.4 ([Kam2]). The set BZI , equipped with the maps wt, ep, fp (p ∈ I), and

εp, ϕp (p ∈ I) above, is a crystal for Uq(g
∨
I ) isomorphic to the crystal basis BI(∞) of the

negative part U−
q (g

∨
I ) of Uq(g

∨
I ).

Remark 2.3.5. Let O be the collection of integers indexed by ΓI whose γ-component is equal

to 0 for all γ ∈ ΓI . It is obvious that O is an element of BZI whose weight is equal to 0.
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Hence it follows from Theorem 2.3.4 that for each M ∈ BZI , there exists p1, p2, . . . , pN ∈ I

such that M = fp1fp2 · · · fpNO. Therefore, using this fact and Remark 2.3.3, we deduce that

if M = (Mγ)γ∈ΓI
∈ BZI , then Mγ ∈ Z≤0 for all γ ∈ ΓI .

Let λ ∈ hI be a dominant integral weight for g∨I . We define MVI(λ) to be the set of those

MV polytopes P ∈ MVI such that λ+P is contained in the convex hull Conv(WIλ) in (hI)R

of the WI-orbit WIλ through λ. We see from [Kam2, §3.2] that for M = (Mγ)γ∈ΓI
∈ BZI ,

λ+ P (M) =
{
h ∈ hR | 〈h, γ〉 ≥ M ′

γ for all γ ∈ ΓI

}
,

where M ′
γ := Mγ + 〈λ, γ〉 for γ ∈ ΓI . We know from [Kam1, Theorem 8.5] and [Kam2, §6.2]

that λ + P (M) ⊂ Conv(WIλ) if and only if M ′
w0si̟

I
i

≥ 〈w0λ, ̟
I
i 〉 for all i ∈ I. A simple

computation shows the following lemma.

Lemma 2.3.6. Let M = (Mγ)γ∈ΓI
∈ BZI . Then, the MV polytope P (M) is contained in

MVI(λ) (i.e., λ+ P (M) ⊂ Conv(WIλ)) if and only if

M−si̟
I
i
≥ −〈λ, αi〉 for all i ∈ I. (2.3.5)

We denote by BZI(λ) the set of all BZ data M = (Mγ)γ∈ΓI
∈ BZI satisfying (2.3.5).

By the lemma above, the restriction of the bijection BZI → MVI , M 7→ P (M), to the

subset BZI(λ) ⊂ BZI gives rise to a bijection between BZI(λ) and MVI(λ). By [Kam2,

Theorem 6.4], the set MVI(λ) can be endowed with a crystal structure for Uq(g
∨
I ), and the

resulting crystal MVI(λ) is isomorphic to the crystal basis BI(λ) of the finite-dimensional

irreducible highest weight Uq(g
∨
I )-module of highest weight λ. Thus, we can also endow the set

BZI(λ) with a crystal structure for Uq(g
∨
I ) in such a way that the bijection BZI(λ) → MVI(λ)

above is an isomorphism of crystals for Uq(g
∨
I ).

Now we recall from [Kam2, §6.4] the description of the crystal structure on BZI(λ). For

M = (Mγ)γ∈ΓI
∈ BZI(λ), define the weight Wt(M) of M by:

Wt(M) = λ+ wt(M) = λ+
∑

i∈I

M̟I
i
hi. (2.3.6)

The raising Kashiwara operators ep, p ∈ I, and the maps εp, p ∈ I, on BZI(λ) are defined

by restricting those on BZI to the subset BZI(λ) ⊂ BZI . The lowering Kashiwara operators

Fp, p ∈ I, on BZI(λ) are defined as follows: for M ∈ BZI(λ) and p ∈ I,

FpM =

{
fpM if fpM is an element of BZI(λ),

0 otherwise.

Also, we set Φp(M) := 〈Wt(M), αp〉+ εp(M) for M ∈ BZI(λ) and p ∈ I. It is easily seen by

(2.3.3) and (2.3.6) that if M = (Mγ)γ∈ΓI
, then

Φp(M) = M̟I
p
−Msp̟I

p
+ 〈λ, αp〉. (2.3.7)
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Theorem 2.3.7 ([Kam2, Theorem 6.4]). Let λ ∈ hI be a dominant integral weight for g∨I .

Then, the set BZI(λ), equipped with the maps wt, ep, Fp (p ∈ I), and εp, Φp (p ∈ I) above, is

a crystal for Uq(g
∨
I ) isomorphic to the crystal basis BI(λ) of the finite-dimensional irreducible

highest weight Uq(g
∨
I )-module of highest weight λ.

2.4 Restriction to subintervals. LetK be a fixed (finite) interval in Z such thatK ⊂ I.

The Cartan matrix AK of the finite-dimensional simple Lie algebra gK equals the principal

submatrix of the Cartan matrix AI of gI corresponding to the subset K ⊂ I. Also, the Weyl

group WK of gK can be identified with the subgroup of the Weyl group WI of gI generated

by the subset
{
si | i ∈ K

}
of

{
si | i ∈ I

}
. Moreover, we can (and do) identify the set

ΓK (of chamber weights) for gK (defined by (2.2.1) with I replaced by K) with the subset{
−w̟I

i | w ∈ WK , i ∈ K
}
of the set ΓI (of chamber weights) through the following bijection

of sets:
ΓK

∼
→

{
−w̟I

i | w ∈ WK , i ∈ K
}
⊂ ΓI ,

−w̟K
i 7→ −w̟I

i for w ∈ WK and i ∈ K;
(2.4.1)

observe that the map above is well-defined. Indeed, suppose that w̟K
i = v̟K

j for some

w, v ∈ WK and i, j ∈ K. Since ̟K
i and ̟K

j are dominant, it follows immediately that i = j,

and hence w̟K
i = v̟K

j = v̟K
i . Since v

−1w̟K
i = ̟K

i (i.e., v−1w stabilizes ̟K
i ), we see that

v−1w is a product of sk’s for k ∈ K \ {i}. Therefore, we obtain v−1w̟I
i = ̟I

i , and hence

w̟I
i = v̟I

i = v̟I
j , as desired. Also, note that for each i ∈ K, the fundamental weight

̟K
i ∈ ΓK for gK corresponds to −wK

0 (̟I
ωK(i)) = wK

0 wI
0̟

I
ωIωK(i) ∈ ΓI under the bijection

(2.4.1), where ωK : K → K denotes the (Dynkin) diagram automorphism for gK . For a

collection M = (Mγ)γ∈ΓI
of integers indexed by ΓI , we set MK := (Mγ)γ∈ΓK

, regarding the

set ΓK as a subset of the set ΓI through the bijection (2.4.1).

Lemma 2.4.1. Keep the notation above. If M = (Mγ)γ∈ΓI
is an element of BZI , then

MK = (Mγ)γ∈ΓK
is a BZ datum for gK that is an element of BZK.

Proof. First we show that MK satisfies condition (1) of Definition 2.2.1 (with I replaced by

K), i.e., for w ∈ WK and i ∈ K,

Mw̟K
i
+Mwsi̟

K
i
+

∑

j∈K\{i}

ajiMw̟K
j
≤ 0. (2.4.2)

Observe that under the bijection (2.4.1), we have

w̟K
k 7→ wv0̟

I
τ(k) (k ∈ K),

wsi̟
K
i 7→ wsiv0̟

I
τ(i) = wv0sτ(i)̟

I
τ(i),

(2.4.3)

where we set v0 := wK
0 w

I
0 and τ := ωIωK for simplicity of notation. Since M is a BZ datum

for gI , it follows from condition (1) of Definition 2.2.1 for wv0 ∈ WI and τ(i) ∈ I that

Mwv0̟
I
τ(i)

+Mwv0sτ(i)̟
I
τ(i)

+
∑

j∈I\{τ(i)}

aj,τ(i)Mwv0̟
I
j
≤ 0. (2.4.4)
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Here, using the equality aωI (j),τ(i) = aj,ωK(i) for j ∈ I, we see that

∑

j∈I\{τ(i)}

aj,τ(i)Mwv0̟
I
j
=

∑

ωI (j)∈I\{τ(i)}

aωI(j),τ(i)Mwv0̟
I
ωI (j)

=
∑

j∈I\{ωK(i)}

aj,ωK(i)Mwv0̟
I
ωI (j)

.

Also, if j ∈ I \K, then

Mwv0̟
I
ωI (j)

= M−wwK
0 ̟I

j
= M−̟I

j
since wwK

0 ∈ WK

= 0 since M ∈ BZI .

Hence it follows that

∑

j∈I\{ωK(i)}

aj,ωK(i)Mwv0̟
I
ωI (j)

=
∑

j∈K\{ωK(i)}

aj,ωK(i)Mwv0̟
I
ωI (j)

.

Furthermore, using the equality aωK(j),ωK(i) = aji for j ∈ K, we get

∑

j∈K\{ωK(i)}

aj,ωK(i)Mwv0̟
I
ωI (j)

=
∑

ωK(j)∈K\{ωK(i)}

aωK(j),ωK(i)Mwv0̟
I
ωI(ωK (j))

=
∑

j∈K\{i}

ajiMwv0̟
I
τ(j)

.

Substituting this into (2.4.4), we obtain

Mwv0̟
I
τ(i)

+Mwv0sτ(i)̟
I
τ(i)

+
∑

j∈K\{i}

ajiMwv0̟
I
τ(j)

≤ 0.

The inequality (2.4.2) follows immediately from this inequality and the correspondence

(2.4.3).

Next we show that MK satisfies condition (2) of Definition 2.2.1 (with I replaced by K),

i.e., for w ∈ WK and i, j ∈ K with aij = aji = −1 such that wsi > w, wsj > w,

Mwsi̟
K
i
+Mwsj̟

K
j
= min

(
Mw̟K

i
+Mwsisj̟

K
j
, Mw̟K

j
+Mwsjsi̟

K
i

)
. (2.4.5)

Observe that under the bijection (2.4.1), we have

w̟K
k 7→ wv0̟

I
τ(k) (k ∈ K),

wsk̟
K
k 7→ wskv0̟

I
τ(k) = wv0sτ(k)̟

I
τ(k) (k ∈ K),

wslsk̟
K
k 7→ wslskv0̟

I
τ(k) = wv0sτ(l)sτ(k)̟

I
τ(k) (k, l ∈ K).

(2.4.6)

Since aτ(i),τ(j) = aτ(j),τ(i) = −1 and wv0sτ(k) = wskv0 > wv0 for k = i, j, and since M is a BZ

datum for gI , it follows from condition (2) of Definition 2.2.1 for wv0 ∈ WI and τ(i), τ(j) ∈ I

that

Mwv0sτ(i)̟
I
τ(i)

+Mwv0sτ(j)̟
I
τ(j)

= min
(
Mwv0̟

I
τ(i)

+Mwv0sτ(i)sτ(j)̟
I
τ(j)

, Mwv0̟
I
τ(j)

+Mwv0sτ(j)sτ(i)̟
I
τ(i)

)
.
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The equation (2.4.5) follows immediately from this equation and the correspondence (2.4.6).

Finally, it is obvious that MwK
0 ̟K

i
= M−̟I

ωK (i)
= 0 for all i ∈ K, since M ∈ BZI . This

proves the lemma.

Now, we set ΓK
I :=

{
w̟I

i | w ∈ WK , i ∈ K
}

⊂ ΓI . Then there exists the following

bijection of sets between ΓK and ΓK
I :

ΓK
∼
→ ΓK

I ,

w̟K
i 7→ w̟I

i for w ∈ WK and i ∈ K;
(2.4.7)

the argument above for the correspondence (2.4.1) shows that this map is well-defined. For a

collection M = (Mγ)γ∈ΓI
of integers indexed by ΓI , we define MK := (Mγ)γ∈ΓK

I
, and regard

it as a collection of integers indexed by ΓK through the bijection (2.4.7) between the index

sets.

Lemma 2.4.2. Keep the notation above. If M = (Mγ)γ∈ΓI
is an element of BZI , then MK

is a BZ datum for gK.

Proof. First we show that MK satisfies condition (1) of Definition 2.2.1 (with I replaced by

K), i.e., for w ∈ WK and i ∈ K,

Mw̟K
i
+Mwsi̟

K
i
+

∑

j∈K\{i}

ajiMw̟K
j
≤ 0. (2.4.8)

Since M is a BZ datum for gI , it follows from condition (1) of Definition 2.2.1 for w ∈ WI

and i ∈ I that

Mw̟I
i
+Mwsi̟

I
i
+

∑

j∈I\{i}

ajiMw̟I
j
≤ 0,

and hence

Mw̟I
i
+Mwsi̟

I
i
+

∑

j∈K\{i}

ajiMw̟I
j
+

∑

j∈I\K

ajiMw̟I
j
≤ 0. (2.4.9)

BecauseMγ ∈ Z≤0 for all γ ∈ ΓI by Remark 2.3.5, it follows that all terms ajiMw̟I
j
, j ∈ I\K,

of the second sum in (2.4.9) are nonnegative integers. Hence we obtain

Mw̟I
i
+Mwsi̟

I
i
+

∑

j∈K\{i}

ajiMw̟I
j
≤ 0.

The inequality (2.4.8) follows immediately from this equality and the correspondence (2.4.7).

Next we show that MK satisfies condition (2) of Definition 2.2.1 (with I replaced by K),

i.e., for w ∈ WK and i, j ∈ K with aij = aji = −1 such that wsi > w, wsj > w,

Mwsi̟
K
i
+Mwsj̟

K
j
= min

(
Mw̟K

i
+Mwsisj̟

K
j
, Mw̟K

j
+Mwsjsi̟

K
i

)
. (2.4.10)
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Since M is a BZ datum for gI , it follows from condition (2) of Definition 2.2.1 for w ∈ WI

and i, j ∈ I that

Mwsi̟
I
i
+Mwsj̟

I
j
= min

(
Mw̟I

i
+Mwsisj̟

I
j
, Mw̟I

j
+Mwsjsi̟

I
i

)
.

The equation (2.4.10) follows immediately from this equation and the correspondence (2.4.7).

This proves the lemma.

3 Berenstein-Zelevinsky data of type A∞.

3.1 Basic notation in type A∞. Let AZ = (aij)i,j∈Z denote the generalized Cartan

matrix of type A∞ with index set Z; the entries aij are given by:

aij =





2 if i = j,

−1 if |i− j| = 1,

0 otherwise,

(3.1.1)

for i, j ∈ Z. Let (
AZ, Π :=

{
αi

}
i∈Z

, Π∨ :=
{
hi

}
i∈Z

, h∗, h
)

be the root datum of type A∞. Namely, h is a complex infinite-dimensional vector space,

with Π∨ a basis of h, and Π is a linearly independent subset of the (full) dual space h∗ :=

HomC(h, C) of h such that 〈hi, αj〉 = aij for i, j ∈ Z, where 〈·, ·〉 is the canonical pairing

between h and h∗. For each i ∈ Z, define Λi ∈ h∗ by: 〈hj, Λi〉 = δij for j ∈ Z. Let

WZ := 〈si | i ∈ Z〉 (⊂ GL(h∗)) be the Weyl group of type A∞, where si is the simple

reflection for i ∈ Z. Also, we denote by ≤ the (strong) Bruhat order on WZ (cf. [BjB, §8.3]).

Set

ΓZ :=
{
−wΛi | w ∈ WZ, i ∈ Z

}
, and ΞZ := −ΓZ. (3.1.2)

We should note that ΓZ ∩ ΞZ = ∅. Indeed, suppose that γ ∈ ΓZ ∩ ΞZ. Since γ ∈ ΓZ (resp.,

γ ∈ ΞZ), it can be written as: γ = −wΛi (resp., γ = vΛj) for some w ∈ WZ and i ∈ Z (resp.,

v ∈ WZ and j ∈ Z). Then we have γ = −wΛi = vΛj, and hence −Λi = w−1vΛj. Since Λj is

a dominant integral weight, we see that w−1vΛj is of the form:

w−1vΛj = Λj − (m1αi1 +m2αi2 + · · ·+mpαip)

for some m1, m2, . . . , mp ∈ Z>0 and i1, i2, . . . , ip ∈ Z with i1 < i2 < · · · < ip. If we set

k := ip + 1, then we see that

〈hk, w
−1vΛj〉 = 〈hk, Λj〉 −mp〈hk, αip〉 = 〈hk, Λj〉+mp > 0.

However, we have

0 < 〈hk, w
−1vΛj〉 = 〈hk, −Λi〉 ≤ 0,
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which is a contradiction. Thus we have shown that ΓZ ∩ ΞZ = ∅.

Let M = (Mγ)γ∈ΓZ
(resp., M = (Mξ)ξ∈ΞZ

) be a collection of integers indexed by ΓZ (resp.,

ΞZ). For each γ ∈ ΓZ (resp., ξ ∈ ΞZ), we call Mγ (resp., Mξ) the γ-component (resp. the

ξ-component) of M, and denote it by (M)γ (resp., (M)ξ).

Let I be a (finite) interval in Z. Then the Cartan matrix AI of the finite-dimensional

simple Lie algebra gI (see §2.1) equals the principal submatrix of AZ corresponding to I ⊂ Z.

Also, the Weyl group WI of gI can be identified with the subgroup of the Weyl group WZ

generated by the subset
{
si | i ∈ I

}
of

{
si | i ∈ Z

}
. Moreover, we can (and do) identify the

set ΓI (of chamber weights) for gI , defined by (2.2.1), with the subset
{
−wΛi | w ∈ WI , i ∈ I

}

of the set ΓZ (of chamber weights) through the following bijection of sets:

ΓI
∼
→

{
−wΛi | w ∈ WI , i ∈ I

}
⊂ ΓZ,

−w̟I
i 7→ −wΛi for w ∈ WI and i ∈ I;

(3.1.3)

the same argument as for the correspondence (2.4.1) shows that this map is well-defined. Note

that for each i ∈ I, the fundamental weight ̟I
i ∈ ΓI for gI corresponds to −wI

0(ΛωI(i)) ∈ ΓZ

under the bijection (3.1.3), where ωI : I → I denotes the (Dynkin) diagram automorphism

for gI .

Remark 3.1.1. Let I be an interval in Z, and fix i ∈ I. The element ̟I
i = −wI

0(ΛωI(i)) ∈ ΓZ

satisfies the following property: for j ∈ Z,

〈hj , ̟
I
i 〉 =





δij if j ∈ I,

−1 if j = (min I)− 1 or j = (max I) + 1,

0 otherwise.

(3.1.4)

Indeed, it is easily seen that 〈hj, ̟
I
i 〉 = δij for j ∈ I. Also, if j < (min I)−1 or j > (max I)+1,

then (wI
0)

−1hj = hj since wI
0 ∈ WI = 〈si | i ∈ I〉. Hence

〈hj, ̟
I
i 〉 = 〈hj, −wI

0(ΛωI(i))〉 = −〈(wI
0)

−1hj, ΛωI(i)〉 = −〈hj , ΛωI(i)〉 = 0.

It remains to show that 〈hj, ̟
I
i 〉 = −1 if j = (min I)−1 or j = (max I)+1. For simplicity of

notation, suppose that I =
{
1, 2 . . . , m

}
and j = 0. Then, by using the reduced expression

wI
0 = (s1s2 · · · sm)(s1s2 · · · sm−1) · · · (s1s2)s1 of the longest element wI

0 ∈ WI , we deduce that

(wI
0)

−1h0 = h0 + h1 + · · ·+ hm. Therefore,

〈h0, ̟
I
i 〉 = 〈h0, −wI

0(ΛωI(i))〉 = −〈(wI
0)

−1h0, ΛωI(i)〉

= −〈h0 + h1 + · · ·+ hm, ΛωI(i)〉 = −1,

as desired.

For a collection M = (Mγ)γ∈ΓZ
of integers indexed by ΓZ, we set MI := (Mγ)γ∈ΓI

,

regarding the set ΓI as a subset of the set ΓZ through the bijection (3.1.3). Note that if K

is an interval in Z such that K ⊂ I, then (MI)K = MK (for the notation, see §2.4).
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3.2 BZ data of type A∞.

Definition 3.2.1. A collection M = (Mγ)γ∈ΓZ
of integers indexed by ΓZ is called a BZ datum

of type A∞ if it satisfies the following conditions:

(a) For each interval K in Z, MK = (Mγ)γ∈ΓK
is a BZ datum for gK , and is an element

of BZK (cf. Lemma 2.4.1).

(b) For each w ∈ WZ and i ∈ Z, there exists an interval I in Z such that i ∈ I, w ∈ WI ,

and Mw̟J
i
= Mw̟I

i
for all intervals J in Z containing I.

Example 3.2.2. Let O be a collection of integers indexed by ΓZ whose γ-component is equal

to 0 for each γ ∈ ΓZ. Then it is obvious that O is a BZ datum of type A∞ (cf. Remark 2.3.5).

Let BZZ denote the set of all BZ data of type A∞. For M = (Mγ)γ∈ΓZ
∈ BZZ, and for

each w ∈ W and i ∈ Z, we denote by Int(M;w, i) the set of all intervals I in Z satisfying

condition (b) of Definition 3.2.1 for the w and i.

Remark 3.2.3. (1) Let M be a BZ datum of type A∞, i.e., M ∈ BZZ, and let w ∈ WZ and

i ∈ Z. It is obvious that if I ∈ Int(M;w, i), then J ∈ Int(M;w, i) for every interval J in Z

containing I.

(2) Let Mb (1 ≤ b ≤ a) be BZ data of type A∞, and let wb ∈ WZ (1 ≤ b ≤ a) and

ib ∈ Z (1 ≤ b ≤ a). Then the intersection

Int(M1;w1, i1) ∩ Int(M2;w2, i2) ∩ · · · ∩ Int(Ma;wa, ia)

is nonempty. Indeed, we first take Ib ∈ Int(Mb;wb, ib) arbitrarily for each 1 ≤ b ≤ a, and

then take an interval J in Z such that J ⊃ Ib for all 1 ≤ b ≤ a (i.e., J ⊃ I1 ∪ I2 ∪ · · · ∪ Ia).

Then, it follows immediately from part (1) that J ∈ Int(Mb;wb, ib) for all 1 ≤ b ≤ a, and

hence that J ∈ Int(M1;w1, i1) ∩ Int(M2;w2, i2) ∩ · · · ∩ Int(Ma;wa, ia).

For each M = (Mγ)γ∈ΓZ
∈ BZZ, we define a collection Θ(M) = (Mξ)ξ∈ΞZ

of integers

indexed by ΞZ = −ΓZ as follows. Fix ξ ∈ ΞZ, and write it as ξ = wΛi for some w ∈ WZ

and i ∈ Z. Here we note that if I1, I2 ∈ Int(M;w, i), then M
w̟

I1
i

= M
w̟

I2
i

. Indeed,

take an interval J in Z such that J ⊃ I1 ∪ I2. Then we have M
w̟

I1
i

= Mw̟J
i
= M

w̟
I2
i

,

and hence M
w̟

I1
i

= M
w̟

I2
i

. We now define Mξ = MwΛi
:= Mw̟I

i
for I ∈ Int(M;w, i).

Let us check that this definition of Mξ does not depend on the choice of an expression

ξ = wΛi. Suppose that ξ = wΛi = vΛj for some w, v ∈ WZ and i, j ∈ Z; it is obvious

that i = j since Λi and Λj are dominant integral weights. Take an interval I in Z such that

I ∈ Int(M;w, i)∩ Int(M; v, j) (see Remark 3.2.3 (2)). Then, since w, v ∈ WI and wΛi = vΛj,

the same argument as for the correspondence (2.4.1) shows that w̟I
i = v̟I

j . Therefore, we

obtain MwΛi
= Mw̟I

i
= Mv̟I

j
= MvΛj

, as desired.
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3.3 Kashiwara operators on the set of BZ data of type A∞. Let M = (Mγ)γ∈ΓZ
∈

BZZ, and fix p ∈ Z. We define fpM = (M ′
γ)γ∈ΓZ

as follows. For each γ ∈ ΓZ, take an interval

I in Z such that

γ ∈ ΓI and I ∈ Int(M; e, p) ∩ Int(M; sp, p); (3.3.1)

since MI ∈ BZI by condition (a) of Definition 3.2.1, we can apply the lowering Kashiwara

operator fp on BZI to MI . We define (fpM)γ = M ′
γ to be (fpMI)γ . It follows from (2.3.4)

that

M ′
γ =

{
min

(
Mγ, Mspγ + cp(MI)

)
if 〈hp, γ〉 > 0,

Mγ otherwise,

where cp(MI) = M̟I
p
−Msp̟I

p
− 1. Since I ∈ Int(M; e, p) ∩ Int(M; sp, p), we have

cp(MI) = M̟I
p
−Msp̟I

p
− 1 = MΛp

−MspΛp
− 1 =: cp(M),

where MΛp
:= Θ(M)Λp

, and MspΛp
:= Θ(M)spΛp

. Thus,

M ′
γ =

{
min

(
Mγ , Mspγ + cp(M)

)
if 〈hp, γ〉 > 0,

Mγ otherwise.
(3.3.2)

From this description, we see that the definition of M ′
γ does not depend on the choice of an

interval I satisfying (3.3.1).

Remark 3.3.1. (1) Keep the notation and assumptions above. It follows from (3.3.2) that

M ′
γ = (fpM)γ ≤ Mγ for all γ ∈ ΓZ.

(2) For M ∈ BZZ and p ∈ I, there holds

(fpM)I = fpMI if I ∈ Int(M; e, p) ∩ Int(M; sp, p). (3.3.3)

Proposition 3.3.2. Let M ∈ BZZ, and p ∈ Z. Then, fpM is an element of BZZ.

By this proposition, for each p ∈ Z, we obtain a map fp from BZZ to itself sending

M ∈ BZZ to fpM ∈ BZZ, which we call the lowering Kashiwara operator on BZZ.

Proof of Proposition 3.3.2. First we show that fpM satisfies condition (a) of Definition 3.2.1.

Let K be an interval in Z. Take an interval I in Z such that K ⊂ I and I ∈ Int(M; e, p) ∩

Int(M; sp, p). Then, by (3.3.3), we have (fpM)I = fpMI ∈ BZI . Also, it follows from

Lemma 2.4.1 that
(
(fpM)I

)
K
= (fpMI)K ∈ BZK . Since

(
(fpM)I

)
K
= (fpM)K , we conclude

that (fpM)K ∈ BZK , as desired.

Next we show that fpM satisfies condition (b) of Definition 3.2.1. Write M ∈ BZZ and

fpM as: M = (Mγ)γ∈ΓZ
and fpM = (M ′

γ)γ∈ΓZ
. Fix w ∈ WZ and i ∈ Z, and take an interval

I in Z such that

I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M;w, i) ∩ Int(M; spw, i). (3.3.4)
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Then, by (3.3.2), we have

M ′
w̟I

i
=

{
min

(
Mw̟I

i
, Mspw̟I

i
+ cp(M)

)
if 〈hp, w̟

I
i 〉 > 0,

Mw̟I
i

otherwise.

Now, let J be an interval in Z containing I. Then, J is also an element of the intersection in

(3.3.4) (see Remark 3.2.3 (1)). Therefore, again by (3.3.2),

M ′
w̟J

i
=

{
min

(
Mw̟J

i
, Mspw̟J

i
+ cp(M)

)
if 〈hp, w̟

J
i 〉 > 0,

Mw̟J
i

otherwise.

Since I ∈ Int(M;w, i) (resp., I ∈ Int(M; spw, i)) and J ⊃ I, it follows from the definition

that Mw̟J
i
= Mw̟I

i
(resp., Mspw̟J

i
= Mspw̟I

i
). Also, since w ∈ WI and p ∈ I, we see that

w−1hp ∈
⊕

j∈I Zhj ⊂
⊕

j∈J Zhj . Hence it follows from (3.1.4) that

〈hp, w̟
I
i 〉 = 〈w−1hp, ̟

I
i 〉 = 〈w−1hp, ̟

J
i 〉 = 〈hp, w̟

J
i 〉.

In particular, 〈hp, w̟
I
i 〉 > 0 if and only if 〈hp, w̟

J
i 〉 > 0. Consequently, we obtain M ′

w̟J
i

=

M ′
w̟I

i

, which shows that fpM = (M ′
γ)γ∈ΓZ

satisfies condition (b) of Definition 3.2.1, as desired.

Thus, we have proved that fpM ∈ BZZ, thereby completing the proof of the proposition.

Remark 3.3.3. Let M ∈ BZZ, and fix p ∈ Z. Also, let w ∈ WZ and i ∈ Z. The proof of

Proposition 3.3.2 shows that if an interval I in Z is an element of the intersection

Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M;w, i) ∩ Int(M; spw, i),

then I is an element of Int(fpM;w, i).

For intervals I,K in Z such that I ⊃ K, let BZZ(I, K) denote the subset of BZZ consisting

of all elements M ∈ BZZ such that I ∈ Int(M; v, k) for every v ∈ WK and k ∈ K; note that

BZZ(I, K) is nonempty since O ∈ BZZ(I, K) (for the definition of O, see Example 3.2.2).

Lemma 3.3.4. Keep the notation above.

(1) The set BZZ(I, K) is stable under the lowering Kashiwara operators fp for p ∈ K.

(2) Let M ∈ BZZ(I, K), and p1, p2, . . . , pa ∈ K. Then,

(fpafpa−1 · · ·fp1M)I = fpafpa−1 · · · fp1MI . (3.3.5)

Proof. (1) Let M ∈ BZZ(I, K), and p ∈ K. We show that I ∈ Int(fpM; v, k) for all v ∈ WK

and k ∈ K. Fix v ∈ WK and k ∈ K. Since the interval I is an element of the intersection

Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; v, k) ∩ Int(M; spv, k),

it follows from Remark 3.3.3 that I ∈ Int(fpM; v, k). This proves part (1).
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(2) We show formula (3.3.5) by induction on a. Assume first that a = 1. Since I ∈

Int(M; e, p) ∩ Int(M; sp, p) for all p ∈ K, it follows from (3.3.3) that (fp1M)I = fp1MI .

Assume next that a > 1. We set M′ := fpa−1 · · · fp1M. Because M′ ∈ BZZ(I, K) by part (1),

we see by the same argument as above that (fpafpa−1 · · ·fp1M)I = (fpaM
′)I = fpaM

′
I . Also,

by the induction hypothesis, M′
I = (fpa−1 · · · fp1M)I = fpa−1 · · · fp1MI . Combining these, we

obtain (fpafpa−1 · · · fp1M)I = fpafpa−1 · · · fp1MI , as desired. This proves part (2).

For M = (Mγ)γ∈ΓZ
∈ BZZ and p ∈ Z, we set

εp(M) := −


MΛp

+MspΛp
+

∑

q∈Z\{p}

aqpMΛq


 , (3.3.6)

where MΛi
:= Θ(M)Λi

for i ∈ Z, and MspΛp
:= Θ(M)spΛp

. Note that εp(M) is a nonnegative

integer. Indeed, let I be an interval in Z such that

I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, p+ 1) ∩ Int(M; e, p− 1).

Then, we have

εp(M) = −
(
MΛp

+MspΛp
−MΛp−1 −MΛp+1

)

= −
(
M̟I

p
+Msp̟I

p
−M̟I

p−1
−M̟I

p+1

)

= −


M̟I

p
+Msp̟I

p
+

∑

q∈I\{p}

aqpM̟I
q


 = εp(MI). (3.3.7)

Hence it follows from condition (a) of Definition 3.2.1 and the comment following (2.3.3) that

εp(M) = εp(MI) is a nonnegative integer.

Now, for M = (Mγ)γ∈ΓZ
∈ BZZ and p ∈ Z, we define epM as follows. If εp(M) = 0,

then we set epM := 0, where 0 is an additional element, which is not contained in BZZ. If

εp(M) > 0, then we define epM = (M ′
γ)γ∈ΓZ

as follows. For each γ ∈ ΓZ, take an interval I

in Z such that

γ ∈ ΓI and

I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, p− 1) ∩ Int(M; e, p+ 1);
(3.3.8)

note that min I < p < max I, since p− 1, p + 1 ∈ I. Consider MI ∈ BZI (see condition (a)

of Definition 3.2.1); since εp(M) = εp(MI) by (3.3.7), we have εp(MI) > 0, which implies

that epMI 6= 0. We define (epM)γ = M ′
γ to be (epMI)γ. By virtue of the following lemma,

this definition of M ′
γ does not depend on the choice of an interval I satisfying (3.3.8).

Lemma 3.3.5. Keep the notation and assumptions above. Assume that an interval J in Z

satisfies the condition (3.3.8) with I replaced by J . Then, we have (epMJ)γ = (epMI)γ.
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Proof. We may assume from the beginning that J ⊃ I. Indeed, let K be an interval in Z

containing both of the intervals J and I. Then we see from Remark 3.2.3 (1) that K satisfies

the condition (3.3.8) with I replaced by K. If the assertion is true for K, then we have

(epMK)γ = (epMI)γ and (epMK)γ = (epMJ)γ , and hence (epMJ)γ = (epMI)γ.

We may further assume that J = I ∪
{
max I + 1

}
or J = I ∪

{
min I − 1

}
; for simplicity

of notation, suppose that I =
{
1, 2, . . . , m

}
and J =

{
1, 2, . . . , m, m + 1

}
. Note that

1 = min I < p < max I = m (see the comment preceding this proposition).

We write epMI ∈ BZI and epMJ ∈ BZJ as: epMI = (M ′
γ)γ∈ΓI

and epMJ = (M ′′
γ )γ∈ΓJ

,

respectively; we need to show that M ′′
γ = M ′

γ for all γ ∈ ΓI . Recall that epMI = (M ′
γ)γ∈ΓI

is defined to be the unique BZ datum for gI such that M ′
̟I

p
= M̟I

p
+ 1, and such that

M ′
γ = Mγ for all γ ∈ ΓI with 〈hp, γ〉 ≤ 0 (see Fact 2.3.1). It follows from Lemma 2.4.1 that

(epMJ )I = (M ′′
γ )γ∈ΓI

is a BZ datum for gI . Also, we see from the definition of epMJ that

M ′′
γ = Mγ for all γ ∈ ΓI ⊂ ΓJ with 〈hp, γ〉 ≤ 0. Therefore, if we can show the equality

M ′′
̟I

p
= M̟I

p
+ 1, then it follows from the uniqueness that (epMJ)I = (M ′′

γ )γ∈ΓI
is equal

to epMI = (M ′
γ)γ∈ΓI

, and hence M ′′
γ = M ′

γ for all γ ∈ ΓI , as desired. We will show that

M ′′
̟I

p
= M̟I

p
+ 1.

First, let us verify the following formula:

̟I
k = sm+1 · · · sk+2sk+1(̟

J
k+1) for 1 ≤ k ≤ m. (3.3.9)

Indeed, we have

̟I
k = −wI

0(ΛωI(k)) = −wI
0(Λm−k+1)

= −wI
0w

J
0w

J
0 (Λm−k+1) = wI

0w
J
0 (̟

J
ωJ(m−k+1)) = wI

0w
J
0 (̟

J
k+1).

Consequently, by using the reduced expressions

wJ
0 = s1(s2s1)(s3s2s1) · · · (sm · · · s2s1)(sm+1 · · · s2s1),

wI
0 = (sm · · · s2s1) · · · (s1s2s3)(s1s2)s1,

we see that ̟I
k = sm+1 · · · s2s1(̟

J
k+1) = sm+1 · · · sk+2sk+1(̟

J
k+1), as desired.

Now, let us show that M ′′
̟I

p
= M̟I

p
+ 1. We set w := sm+1 · · · sp+3sp+2 ∈ WJ . Then,

ap,p+1 = ap+1,p = −1 and wsp+1 > w, wsp > w. Therefore, since epMJ = (M ′′
γ )γ∈ΓJ

∈ BZJ ,

it follows from condition (2) of Definition 2.2.1 that

M ′′
wsp+1̟

J
p+1

+M ′′
wsp̟J

p
= min

(
M ′′

w̟J
p+1

+M ′′
wsp+1sp̟J

p
, M ′′

w̟J
p
+M ′′

wspsp+1̟
J
p+1

)
. (3.3.10)

Also, by using (3.3.9) and the facts that sq̟
J
p = ̟J

p , sq̟
J
p+1 = ̟J

p+1 for p + 2 ≤ q ≤ m+ 1
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and that sqsp = spsq for p+ 2 ≤ q ≤ m+ 1, we get

wsp+1̟
J
p+1 = sm+1 · · · sp+2sp+1̟

J
p+1 = ̟I

p,

wsp̟
J
p = sm+1 · · · sp+2sp̟

J
p = spsm+1 · · · sp+2̟

J
p = sp̟

J
p ,

w̟J
p+1 = sm+1 · · · sp+2̟

J
p+1 = ̟J

p+1,

wsp+1sp̟
J
p = sm+1 · · · sp+2sp+1sp̟

J
p = ̟I

p−1,

w̟J
p = sm+1 · · · sp+2̟

J
p = ̟J

p ,

wspsp+1̟
J
p+1 = sm+1 · · · sp+2spsp+1̟

J
p+1 = spsm+1 · · · sp+2sp+1̟

J
p+1 = sp̟

I
p.

Hence the equation (3.3.10) can be rewritten as:

M ′′
̟I

p
+M ′′

sp̟J
p
= min

(
M ′′

̟J
p+1

+M ′′
̟I

p−1
, M ′′

̟J
p
+M ′′

sp̟I
p

)
. (3.3.11)

Since 〈hp, sp̟
J
p 〉 = −1 < 0, it follows from the definition of epMJ that M ′′

sp̟J
p
= Msp̟J

p
.

Similarly, M ′′
̟J

p+1
= M̟J

p+1
, M ′′

̟J
p−1

= M̟J
p−1

, and M ′′
sp̟I

p
= Msp̟I

p
. In addition, it follows

from the definition of epMJ that M ′′
̟J

p
= M̟J

p
+ 1. Substituting these into (3.3.11), we

obtain

M ′′
̟I

p
+Msp̟J

p
= min

(
M̟J

p+1
+M̟I

p−1
, M̟J

p
+ 1 +Msp̟I

p

)
. (3.3.12)

Here, observe that M̟I
p−1

= M̟J
p−1

(resp., Msp̟I
p
= Msp̟J

p
) since I ∈ Int(M; e, p− 1) (resp.,

I ∈ Int(M; sp, p)) and J ⊃ I. As a result, we get

M ′′
̟I

p
+Msp̟J

p
= min

(
M̟J

p+1
+M̟J

p−1
, M̟J

p
+ 1 +Msp̟J

p

)
. (3.3.13)

Moreover, since εp(M) > 0 by assumption, we see from (3.3.7) with I replaced by J that

M̟J
p
+Msp̟J

p
< M̟J

p+1
+M̟J

p−1
, which implies that

min
(
M̟J

p+1
+M̟J

p−1
, M̟J

p
+ 1 +Msp̟J

p

)
= M̟J

p
+ 1 +Msp̟J

p
.

Combining this and (3.3.13), we obtain M ′′
̟I

p
= M̟J

p
+ 1. Noting that M̟J

p
= M̟I

p
since

I ∈ Int(M; e, p) and J ⊃ I, we conclude that M ′′
̟I

p
= M̟I

p
+ 1, as desired. This completes

the proof of the lemma.

Remark 3.3.6. (1) Let M = (Mγ)γ∈ΓZ
∈ BZZ and p ∈ Z be such that epM 6= 0. Then,

(epM)γ = Mγ for all γ ∈ ΓZ with 〈hp, γ〉 ≤ 0. (3.3.14)

Indeed, let γ ∈ ΓZ be such that 〈hp, γ〉 ≤ 0. Take an interval I in Z satisfying the condition

(3.3.8). Then, by the definition, (epM)γ = (epMI)γ. Also, we see from the definition of ep on

BZI (see Fact 2.3.1) that (epMI)γ = Mγ . Hence we get (epM)γ = (epMI)γ = Mγ , as desired.

(2) For M ∈ BZZ and p ∈ Z, there holds

(epM)I = epMI

if I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, p− 1) ∩ Int(M; e, p+ 1).
(3.3.15)
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Proposition 3.3.7. Let M ∈ BZZ, and p ∈ Z. Then, epM is an element of BZZ ∪ {0}.

By this proposition, for each p ∈ Z, we obtain a map ep from BZZ to BZZ ∪ {0} sending

M ∈ BZZ to epM ∈ BZZ ∪ {0}, which we call the raising Kashiwara operator on BZZ. By

convention, we set ep0 := 0 for all p ∈ Z, and fp0 := 0 for all p ∈ Z.

Proof of Proposition 3.3.7. Assume that epM 6= 0. Using (3.3.15) instead of (3.3.3), we

can show by an argument (for fpM) in the proof of Proposition 3.3.2 that epM satisfies

condition (a) of Definition 3.2.1. We will, therefore, show that epM satisfies condition (b) of

Definition 3.2.1. We write M and epM as: M = (Mγ)γ∈ΓZ
and epM = (M ′

γ)γ∈ΓZ
, respectively.

Fix w ∈ W and i ∈ Z, and then fix an intervalK in Z such that w ∈ WK and i, p−1, p, p+1 ∈

K. Now, take an interval I in Z such that I ∈ Int(M; v, k) for all v ∈ WK and k ∈ K (see

Remark 3.2.3 (2)); note that I is an element of the intersection

Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, p− 1) ∩ Int(M; e, p + 1), (3.3.16)

since p − 1, p, p + 1 ∈ K. We need to show that M ′
w̟J

i

= M ′
w̟I

i

for all intervals J in Z

containing I.

Before we proceed further, we make some remarks: Through the bijections (2.4.7) and

(3.1.3), we can (and do) identify the set ΓK (of chamber weights) for gK with the subset

ΓK
I =

{
v̟I

k | v ∈ WK , k ∈ K
}
⊂ ΓI ⊂ ΓZ; note that v̟K

k ∈ ΓK corresponds to v̟I
k ∈ ΓK

I

for v ∈ WK and k ∈ K. Let J be an interval in Z containing I. As above, we can (and do)

identify the set ΓK (of chamber weights) for gK with the subset ΓK
J =

{
v̟J

k | v ∈ WK , k ∈

K
}
⊂ ΓJ ⊂ ΓZ; note that v̟K

k ∈ ΓK corresponds to v̟J
k ∈ ΓK

J for v ∈ WK and k ∈ K.

Thus, the three sets ΓK
J (⊂ ΓJ ⊂ ΓZ), Γ

K
I (⊂ ΓI ⊂ ΓZ), and ΓK can be identified as follows:

ΓK
∼
→ ΓK

J

∼
→ ΓK

I ,

v̟K
k 7→ v̟J

k 7→ v̟I
k for v ∈ WK and k ∈ K.

(3.3.17)

Also, it follows from the definition of BZZ that MI = (Mγ)γ∈ΓI
∈ BZI and MJ = (Mγ)γ∈ΓJ

∈

BZJ . Therefore, by Lemma 2.4.2, (MI)
K = (Mγ)γ∈ΓK

I
and (MJ )

K = (Mγ)γ∈ΓK
J
are BZ data

for gK if we identify the sets ΓK
I and ΓK

J with the set ΓK through the bijection (3.3.17). Since

Mv̟J
k
= Mv̟I

k
for all v ∈ WK and k ∈ K by our assumption, we deduce that (MJ)

K = (MI)
K

if we identify the three sets ΓK
J , Γ

K
I , and ΓK as in (3.3.17).

Now we are ready to show that M ′
w̟J

i

= M ′
w̟I

i

. By our assumption that epM 6= 0 and

(3.3.16), it follows that epMI 6= 0, and hence epMI is an element of BZI ; we see from (3.3.15)

that epMI = (epM)I = (M ′
γ)γ∈ΓI

. Hence, by Lemma 2.4.2, (epMI)
K = (M ′

γ)γ∈ΓK
I

is a BZ

datum for gK if we identify the set ΓK
I with the set ΓK through the bijection (3.3.17). Also,

by the definition of epMI , we see that M ′
̟I

p
= M̟I

p
+ 1, and M ′

v̟I
k

= Mv̟I
k
for all v ∈ WK

and k ∈ K with 〈hp, v̟
I
k〉 ≤ 0. Here we observe that for v ∈ WK and k ∈ K, the inequality

〈hp, v̟
I
k〉 ≤ 0 holds if and only if the inequality 〈hp, v̟

K
k 〉 ≤ 0 holds. Indeed, let v ∈ WK ,
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and k ∈ K. Note that v−1hp ∈
⊕

j∈K Zhj ⊂
⊕

j∈I Zhj since p ∈ K by our assumption.

Hence it follows from (3.1.4) that

〈hp, v̟
I
k〉 = 〈v−1hp, ̟

I
k〉 = 〈v−1hp, ̟

K
k 〉 = 〈hp, v̟

K
k 〉,

which implies that 〈hp, v̟
I
k〉 ≤ 0 if and only if 〈hp, v̟

K
k 〉 ≤ 0. Therefore, we deduce from

Fact 2.3.1 that (epMI)
K = (M ′

γ)γ∈ΓK
I

is equal to ep
(
(MI)

K
)
if we identify ΓK

I and ΓK by

(3.3.17). Furthermore, we see from Remark 3.2.3 (1) that the interval J ⊃ I is also an

element of Int(M; v, k) for all v ∈ WK and k ∈ K. In exactly the same way as above (with I

replaced by J), we can show that (epMJ)
K = (M ′

γ)γ∈ΓK
J
is a BZ datum for gK , and is equal

to ep
(
(MJ)

K
)
if we identify ΓK

J and ΓK by (3.3.17). Since (MI)
K = (MJ)

K as seen above,

we obtain ep
(
(MI)

K
)
= ep

(
(MJ)

K
)
. Consequently, we infer that (epMJ )

K = (M ′
γ)γ∈ΓK

J
is

equal to (epMI)
K = (M ′

γ)γ∈ΓK
I

if we identify ΓK
J and ΓK

I by (3.3.17). Because w̟J
i ∈ ΓK

J

corresponds to w̟I
i ∈ ΓK

I through the bijection (3.3.17), we finally obtain M ′
w̟J

i

= M ′
w̟I

i

,

as desired. This completes the proof of the proposition.

Remark 3.3.8. Let M ∈ BZZ and p ∈ Z be such that epM 6= 0. Let K be an interval in Z

such that p− 1, p, p + 1 ∈ K. The proof of Proposition 3.3.7 shows that if an interval I in

Z is an element of Int(M; v, k) for all v ∈ WK and k ∈ K, then I ∈ Int(epM; v, k) for all

v ∈ WK and k ∈ K.

Lemma 3.3.9. Let I and K be intervals in Z such that I ⊃ K and #K ≥ 3.

(1) The set BZZ(I, K)∪{0} is stable under the raising Kashiwara operators ep for p ∈ K

with minK < p < maxK.

(2) Let M ∈ BZZ(I, K), and let p1, p2, . . . , pa ∈ K be such that minK < p1, p2, . . . , pa <

maxK. Then, epaepa−1 · · · ep1M 6= 0 if and only if epaepa−1 · · · ep1MI 6= 0. Moreover, if

epaepa−1 · · · ep1M 6= 0 (or equivalently, epaepa−1 · · · ep1MI 6= 0), then

(epaepa−1 · · · ep1M)I = epaepa−1 · · · ep1MI . (3.3.18)

Proof. Part (1) follows immediately from Remark 3.3.8. We will show part (2) by induction

on a. Assume first that a = 1. Since M ∈ BZZ(I, K), it follows immediately that

I ∈ Int(M; e, p1) ∩ Int(M; sp1, p1) ∩ Int(M; e, p1 + 1) ∩ Int(M; e, p1 − 1).

Therefore, we have εp1(M) = εp1(MI) by (3.3.7), which implies that ep1M 6= 0 if and only if

ep1MI 6= 0. Also, it follows from (3.3.15) that if ep1M 6= 0, then (ep1M)I = ep1MI .

Assume next that a > 1. For simplicity of notation, we set

M′ := epa−1 · · · ep1M and M′′ := epa−1 · · · ep1MI .

Let us show that epaM
′ 6= 0 if and only if epaM

′′ 6= 0. By the induction hypothesis, we may

assume that M′ 6= 0, M′′ 6= 0, and M′
I = M′′. It follows from part (1) that M′ ∈ BZZ(I, K).
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Hence, by the same argument as above (the case a = 1), we deduce that epaM
′ 6= 0 if and

only if epaM
′
I 6= 0, which implies that epaM

′ 6= 0 if and only if epaM
′′ 6= 0. Furthermore, it

follows from (3.3.15) that if epaM
′ 6= 0, then (epaM

′)I = epaM
′
I = epaM

′′. This proves the

lemma.

3.4 Some properties of Kashiwara operators on BZZ.

Lemma 3.4.1. (1) Let M ∈ BZZ, and p ∈ Z. Then, epfpM = M. Also, if epM 6= 0, then

fpepM = M.

(2) Let M ∈ BZZ, and let p, q ∈ Z be such that |p− q| ≥ 2. Then, εp(fpM) = εp(M) + 1

and εq(fpM) = εq(M). Also, if epM 6= 0, then εp(epM) = εp(M)− 1 and εq(epM) = εq(M).

(3) Let p, q ∈ Z be such that |p− q| ≥ 2. Then, fpfq = fqfp, epeq = eqep, and epfq = fqep

on BZZ ∪ {0}.

Proof. (1) We prove that epfpM = M; by a similar argument, we can prove that fpepM = M

if epM 6= 0. We need to show that epfpM 6= 0, and that the γ-component of epfpM is equal

to that of M for each γ ∈ ΓZ. We fix γ ∈ ΓZ. Set K :=
{
p − 1, p, p + 1

}
, and take

an interval I in Z such that γ ∈ ΓI , and such that I ∈ Int(M; v, k) for all v ∈ WK and

k ∈ K. Then, we have M ∈ BZZ(I, K), and hence we see from Lemma 3.3.4 that fpM ∈

BZZ(I, K) and (fpM)I = fpMI . Because ep(fpM)I = ep(fpMI) = MI 6= 0 by condition (a)

of Definition 3.2.1 and Theorem 2.3.4, it follows from Lemma 3.3.9 (2) that epfpM 6= 0. Also,

we deduce from Lemmas 3.3.4 (2) and 3.3.9 (2) that (epfpM)I = epfpMI = MI . Since γ ∈ ΓI

by our assumption on I, we infer that the γ-component of epfpM is equal to that of M. This

proves part (1).

(2) We give a proof only for the equalities εp(fpM) = εp(M) + 1 and εq(fpM) = εq(M);

by a similar argument, we can prove that εp(epM) = εp(M) − 1 and εq(epM) = εq(M) if

epM 6= 0. Write M ∈ BZZ and fpM ∈ BZZ as: M = (Mγ)γ∈ΓZ
and fpM = (M ′

γ)γ∈ΓZ
,

respectively. Also, write Θ(M) and Θ(fpM) as: Θ(M) = (Mξ)ξ∈ΞZ
and Θ(fpM) = (M ′

ξ)ξ∈ΞZ
,

respectively. First we show that for i ∈ Z,

M ′
Λi

=

{
MΛp

− 1 if i = p,

MΛi
otherwise.

(3.4.1)

Fix i ∈ Z, and take an interval I in Z such that

I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, i) ∩ Int(M; sp, i).

We see from Remark 3.3.3 that I ∈ Int(fpM; e, i), and hence that M ′
Λi

= M ′
̟I

i

by the

definition. Assume now that i 6= p. Since 〈hp, ̟
I
i 〉 ≤ 0 by (3.1.4), it follows from (3.3.2) that

M ′
̟I

i

= (fpM)̟I
i
= M̟I

i
. Also, since I ∈ Int(M; e, i), we have M̟I

i
= MΛi

by the definition.

Therefore, we obtain

M ′
Λi

= M ′
̟I

i
= M̟I

i
= MΛi

if i 6= p.
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Assume then that i = p. Since 〈hp, ̟
I
p〉 = 1, it follows from (3.3.2) that

M ′
̟I

p
= (fpM)̟I

p
= min

(
M̟I

p
, Msp̟I

p
+ cp(M)

)
, (3.4.2)

where cp(M) = MΛp
− MspΛp

− 1. Note that M̟I
p
= MΛp

(resp., Msp̟I
p
= MspΛp

) since

I ∈ Int(M; e, p) (resp., I ∈ Int(M; sp, p)). Substituting these into (3.4.2), we conclude that

M ′
Λp

= M ′
̟I

p
= MΛp

− 1, as desired.

Next we show that

M ′
siΛi

= MsiΛi
for i ∈ Z with i 6= p− 1, p+ 1. (3.4.3)

Take an interval I in Z such that

I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; si, i) ∩ Int(M; spsi, i).

We see from Remark 3.3.3 that I ∈ Int(fpM; si, i), and hence that M ′
siΛi

= M ′
si̟

I
i

by the

definition. Since i 6= p − 1, p + 1, we deduce from (3.1.4) that 〈hp, si̟
I
i 〉 ≤ 0. Hence it

follows from (3.3.2) that M ′
si̟

I
i

= (fpM)si̟I
i
= Msi̟

I
i
. Also, since I ∈ Int(M; si, i), we have

Msi̟
I
i
= MsiΛi

. Thus we obtain M ′
siΛi

= M ′
si̟

I
i

= Msi̟
I
i
= MsiΛi

, as desired.

Now, recall from (3.3.6) that

εp(fpM) = −


M ′

Λp
+M ′

spΛp
+

∑

r∈Z\{p}

arpM
′
Λr


 .

Here, by (3.4.1) and (3.4.3), we have M ′
Λp

= MΛp
− 1, M ′

spΛp
= MspΛp

, and

∑

r∈Z\{p}

arpM
′
Λr

=
∑

r∈Z\{p}

arpMΛr
.

Therefore, by (3.3.6), we conclude that

εp(fpM) = −


(MΛp

− 1) +MspΛp
+

∑

r∈Z\{p}

arpMΛr


 = εp(M) + 1.

Arguing in the same manner, we can prove that εq(fpM) = εq(M). This proves part (2).

(3) We prove that epfq = fqep; the proofs of the other equalities are similar. LetM ∈ BZZ.

Assume first that epM = 0, or equivalently, εp(M) = 0. Then we have fqepM = 0. Also, it

follows from part (2) that εp(fqM) = εp(M) = 0, which implies that ep(fqM) = 0. Thus we

get epfqM = fqepM = 0.

Assume next that epM 6= 0, or equivalently, εp(M) > 0. Then we have fqepM 6= 0. Also,

it follows from part (2) that εp(fqM) = εp(M) > 0, which implies that ep(fqM) 6= 0. We

need to show that (epfqM)γ = (fqepM)γ for all γ ∈ ΓZ. Fix γ ∈ ΓZ, and take an interval I

in Z satisfying the following conditions:
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(i) γ ∈ ΓI ;

(ii) I ∈ Int(fqM; e, p) ∩ Int(fqM; sp, p) ∩ Int(fqM; e, p− 1) ∩ Int(fqM; e, p+ 1);

(iii) I ∈ Int(M; e, q) ∩ Int(M; sq, q);

(iv) I ∈ Int(epM; e, q) ∩ Int(epM; sq, q);

(v) I ∈ Int(M; e, p) ∩ Int(M; sp, p) ∩ Int(M; e, p− 1) ∩ Int(M; e, p+ 1).

Then, we have

(epfqM)I = ep(fqM)I by (3.3.15) and condition (ii)

= ep(fqMI) by (3.3.3) and condition (iii)

= epfqMI ,

and

(fqepM)I = fq(epM)I by (3.3.3) and condition (iv)

= fq(epMI) by (3.3.15) and condition (v)

= fqepMI .

Hence we see from condition (a) of Definition 3.2.1 and Theorem 2.3.4 that epfqMI = fqepMI ,

and hence (epfqM)I = (fqepM)I . Therefore, we obtain (epfqM)γ = (fqepM)γ since γ ∈ ΓI

by condition (i). This proves part (3), thereby completing the proof of the lemma.

Remark 3.4.2. Let M ∈ BZZ, and p ∈ I. From the definition, it follows that εp(M) = 0

if and only if epM = 0, and that εp(M) ∈ Z≥0. In addition, εp(epM) = εp(M) − 1 by

Lemma 3.4.1 (2). Consequently, we deduce that εp(M) = max
{
N ≥ 0 | eNp M 6= 0

}
.

4 Berenstein-Zelevinsky data of type A
(1)
ℓ
.

Throughout this section, we take and fix ℓ ∈ Z≥2 arbitrarily.

4.1 Basic notation in type A
(1)
ℓ . Let ĝ be the affine Lie algebra of type A

(1)
ℓ over C. Let

Â = (âij)i,j∈Î denote the Cartan matrix of ĝ with index set Î :=
{
0, 1, . . . , ℓ

}
; the entries

âij are given by:

âij =





2 if i = j,

−1 if |i− j| = 1 or ℓ,

0 otherwise,

(4.1.1)

for i, j ∈ Î. Denote by ĥ the Cartan subalgebra of ĝ, by ĥi ∈ ĥ, i ∈ Î, the simple coroots of

ĝ, and by α̂i ∈ ĥ∗ := HomC(ĥ, C), i ∈ Î, the simple roots of ĝ; note that 〈ĥi, α̂j〉 = âij for

i, j ∈ Î, where 〈· , ·〉 is the canonical pairing between ĥ and ĥ∗.

Also, let ĝ∨ denote the (Langlands) dual Lie algebra of ĝ; that is, ĝ∨ is the affine Lie

algebra of type A
(1)
ℓ over C associated to the transpose tÂ (= Â) of Â, with Cartan subalgebra
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ĥ∗, simple coroots α̂i ∈ ĥ∗, i ∈ Î, and simple roots ĥi ∈ ĥ, i ∈ Î. Let Uq(ĝ
∨) be the quantized

universal enveloping algebra over C(q) associated to the Lie algebra ĝ∨, U−
q (ĝ

∨) the negative

part of Uq(ĝ
∨), and B̂(∞) the crystal basis of U−

q (ĝ
∨). For a dominant integral weight λ̂ ∈ ĥ

for ĝ∨, B̂(λ̂) denotes the crystal basis of the irreducible highest weight Uq(ĝ
∨)-module of

highest weight λ̂.

4.2 Dynkin diagram automorphism in type A∞ and its action on BZZ. For the

fixed ℓ ∈ Z≥2, the (Dynkin) diagram automorphism in type A∞ is a bijection σ : Z → Z

given by: σ(i) = i + ℓ + 1 for i ∈ Z. This induces a C-linear automorphism σ : h
∼
→ h of

h =
⊕

i∈Z Chi by: σ(hi) = hσ(i) for i ∈ Z, and also a C-linear automorphism σ : h∗res
∼
→ h∗res

of the restricted dual space h∗res :=
⊕

i∈Z CΛi of h =
⊕

i∈Z Chi by: σ(Λi) = Λσ(i) for i ∈ Z.

Observe that 〈σ(h), σ(Λ)〉 = 〈h, Λ〉 for all h ∈ h and Λ ∈ h∗res, and σ(αi) = ασ(i) for

i ∈ Z; note also that αi ∈ h∗res for all i ∈ Z, since αi = 2Λi − Λi−1 − Λi+1. Moreover, this

σ : Z → Z naturally induces a group automorphism σ : WZ

∼
→ WZ of the Weyl group WZ by:

σ(si) = sσ(i) for i ∈ Z.

It is easily seen that −wΛi ∈ h∗res for all w ∈ WZ and i ∈ Z, and hence the set ΓZ (of

chamber weights) is a subset of h∗res. In addition,

σ(−wΛi) = −σ(w)Λσ(i) for w ∈ WZ and i ∈ Z. (4.2.1)

Therefore, the restriction of σ : h∗res
∼
→ h∗res to the subset ΓZ gives rise to a bijection σ : ΓZ

∼
→

ΓZ.

Remark 4.2.1. Let I be an interval in Z, and i ∈ I; note that σ(i) is contained in σ(I).

Because ̟I
i ∈ ΓZ can be written as: ̟I

i = Λi−Λ(min I)−1−Λ(max I)+1 (see (3.1.4)), we deduce

that σ(̟I
i ) = ̟

σ(I)
σ(i) .

Let M = (Mγ)γ∈ΓZ
be a collection of integers indexed by ΓZ. We define collections σ(M)

and σ−1(M) of integers indexed by ΓZ by: σ(M)γ = Mσ−1(γ) and σ−1(M)γ = Mσ(γ) for each

γ ∈ ΓZ, respectively.

Lemma 4.2.2. If M ∈ BZZ, then σ(M) ∈ BZZ and σ−1(M) ∈ BZZ.

Proof. We prove that σ(M) ∈ BZZ; we can prove that σ−1(M) ∈ BZZ similarly. Write

M ∈ BZZ and σ(M) as: M = (Mγ)γ∈ΓZ
and σ(M) = (M ′

γ)γ∈ΓZ
, respectively. First we prove

that σ(M) = (M ′
γ)γ∈ΓZ

satisfies condition (a) of Definition 3.2.1. Let K be an interval in Z.

We need to show that σ(M)K = (M ′
γ)γ∈ΓK

satisfies condition (1) of Definition 2.2.1 (with I

replaced by K). Fix w ∈ WK , and i ∈ K. For simplicity of notation, we set w1 := σ−1(w),

i1 := σ−1(i), and K1 := σ−1(K); note that w1 ∈ WK1, and i1 ∈ K1. Since M = (Mγ)γ∈ΓZ
∈

BZZ, it follows from condition (a) of Definition 3.2.1 that MK1 = (Mγ)γ∈ΓK1
∈ BZK1. Hence

we see from condition (1) of Definition 2.2.1 that

M
w1̟

K1
i1

+M
w1si1̟

K1
i1

+
∑

j∈K1\{i1}

aj,i1Mw1̟
K1
j

≤ 0.
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Here, by the equality aσ−1(j),i1 = aj,σ(i1),

∑

j∈K1\{i1}

aj,i1Mw1̟
K1
j

=
∑

j∈K\{i}

aσ−1(j),i1Mw1̟
K1
σ−1(j)

=
∑

j∈K\{i}

ajiMw1̟
K1
σ−1(j)

.

Also, we see from (4.2.1) and Remark 4.2.1 that

M ′
w̟K

i
= Mσ−1(w̟K

i ) = M
w1̟

K1
i1

,

M ′
wsi̟

K
i
= Mσ−1(wsi̟

K
i ) = M

w1si1̟
K1
i1

,

M ′
w̟K

j
= Mσ−1(w̟K

j ) = M
w1̟

K1
σ−1(j)

for j ∈ K \ {i}.

Combining these, we obtain

M ′
w̟K

i
+M ′

wsi̟
K
i
+

∑

j∈K\{i}

ajiM
′
w̟K

j
≤ 0,

as desired. Similarly, we can show that σ(M)K = (M ′
γ)γ∈ΓK

satisfies condition (2) of Defini-

tion 2.2.1 (with I replaced by K); use the fact that if i, j ∈ K and w ∈ WK are such that

aij = aji = −1, and wsi > w, wsj > w, then ai1,j1 = aj1,i1 = −1, and w1si1 > w1, w1sj1 > w1,

where i1 := σ−1(i), j1 := σ−1(j) ∈ K1 = σ−1(K), and w1 := σ−1(w) ∈ WK1. It remains to

show that M ′
wK

0 ̟K
i

= 0 for all i ∈ K. Let i ∈ K, and set i1 := σ−1(i) ∈ K1 = σ−1(K). Then,

by (4.2.1) and Remark 4.2.1, we have

M ′
wK

0 ̟K
i
= Mσ−1(wK

0 ̟K
i ) = M

w
K1
0 ̟

K1
i1

,

which is equal to zero since MK1 ∈ BZK1. This proves that σ(M)K ∈ BZK , as desired.

Next we prove that σ(M) = (M ′
γ)γ∈ΓZ

satisfies condition (b) of Definition 3.2.1. Fix

w ∈ WZ, and i ∈ Z. Take an interval I in Z such that I1 := σ−1(I) is an element of

Int(M;w1, i1), where w1 := σ−1(w) and i1 := σ−1(i). Let J be an arbitrary interval in Z

containing I, and set J1 := σ−1(J); note that J1 ⊃ I1. Then, we have

M ′
w̟J

i
= Mσ−1(w̟J

i )
= M

w1̟
J1
i1

by (4.2.1) and Remark 4.2.1

= M
w1̟

I1
i1

since I1 ∈ Int(M;w1, i1) and J1 ⊃ I1

= Mσ−1(w̟I
i )

by (4.2.1) and Remark 4.2.1

= M ′
w̟I

i
.

This proves that σ(M) = (M ′
γ)γ∈ΓZ

satisfies condition (b) of Definition 3.2.1, thereby com-

pleting the proof of the lemma.

Remark 4.2.3. Let M = (Mγ)γ∈ΓZ
∈ BZZ, and write σ(M) ∈ BZZ as: σ(M) = (M ′

γ)γ∈ΓZ
.

Fix w ∈ WZ, and i ∈ Z. Set w1 := σ−1(w), and i1 := σ−1(i). We see from the proof of
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Lemma 4.2.2 that if we take an interval I in Z such that I1 := σ−1(I) is an element of

Int(M;w1, i1), then the interval I is an element of Int(σ(M);w, i). Moreover, since M ′
w̟I

i

=

M
w1̟

I1
i1

, we have

M ′
wΛi

= M ′
w̟I

i
= M

w1̟
I1
i1

= Mw1Λi1
= Mσ−1(wΛi),

where M ′
wΛi

:= Θ(σ(M))wΛi
, and Mw1Λi1

:= Θ(M)w1Λi1
.

By Lemma 4.2.2, we obtain maps σ : BZZ → BZZ, M 7→ σ(M), and σ−1 : BZZ → BZZ,

M 7→ σ−1(M); since both of the composite maps σσ−1 and σ−1σ are the identity map on

BZZ, it follows that σ : BZZ → BZZ and σ−1 : BZZ → BZZ are bijective.

Lemma 4.2.4. (1) Let M ∈ BZZ, and p ∈ Z. Then, εp(σ(M)) = εσ−1(p)(M).

(2) There hold σ ◦ ep = eσ(p) ◦ σ and σ ◦ fp = fσ(p) ◦ σ on BZZ ∪ {0} for all p ∈ Z. Here

it is understood that σ(0) := 0.

Proof. Part (1) follows immediately from (3.3.6) by using Remark 4.2.3. We will prove

part (2). Let M ∈ BZZ, and p ∈ Z. First we show that σ(fpM) = fσ(p)(σ(M)), i.e.,(
σ(fpM)

)
γ
=

(
fσ(p)(σ(M))

)
γ
for all γ ∈ ΓZ. We write M and σ(M) as: M = (Mγ)γ∈ΓZ

and

σ(M) = (M ′
γ)γ∈ΓZ

, respectively. It follows from (3.3.2) that

(
σ(fpM)

)
γ
= (fpM)σ−1(γ)

=

{
min

(
Mσ−1(γ), Mspσ−1(γ) + cp(M)

)
if 〈hp, σ

−1(γ)〉 > 0,

Mσ−1(γ) otherwise,
(4.2.2)

where cp(M) = MΛp
− MspΛp

− 1 with MΛp
:= Θ(M)Λp

and MspΛp
:= Θ(M)spΛp

. Also, it

follows from (3.3.2) that

(
fσ(p)(σ(M))

)
γ
=

{
min

(
M ′

γ , M ′
sσ(p)γ

+ cσ(p)(σ(M))
)

if 〈hσ(p), γ〉 > 0,

M ′
γ otherwise,

(4.2.3)

where cσ(p)(σ(M)) = M ′
Λσ(p)

−M ′
sσ(p)Λσ(p)

− 1 with M ′
Λσ(p)

:= Θ(σ(M))Λσ(p)
and M ′

sσ(p)Λσ(p)
:=

Θ(σ(M))sσ(p)Λσ(p)
. Here we see from Remark 4.2.3 that

M ′
Λσ(p)

= Mσ−1(Λσ(p)) = MΛp
and M ′

sσ(p)Λσ(p)
= Mσ−1(sσ(p)Λσ(p)) = MspΛp

,

and hence that cσ(p)(σ(M)) = cp(M). In addition,

M ′
γ = Mσ−1(γ) and M ′

sσ(p)γ
= Mσ−1(sσ(p)γ) = Mspσ−1(γ)

by the definitions. Observe that 〈hσ(p), γ〉 = 〈σ(hp), γ〉 = 〈hp, σ
−1(γ)〉, and hence that

〈hσ(p), γ〉 > 0 if and only if 〈hp, σ
−1(γ)〉 > 0. Substituting these into (4.2.3), we obtain

(
fσ(p)(σ(M))

)
γ
=

{
min

(
Mσ−1(γ), Mspσ−1(γ) + cp(M)

)
if 〈hp, σ

−1(γ)〉 > 0,

Mσ−1(γ) otherwise,

=
(
σ(fpM)

)
γ
,
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as desired.

Next we show that σ(epM) = eσ(p)(σ(M)). If epM = 0, or equivalently, εp(M) = 0, then

it follows from part (1) that εσ(p)(σ(M)) = εp(M) = 0, and hence eσ(p)(σ(M)) = 0, which

implies that σ(epM) = eσ(p)(σ(M)) = 0. Assume, therefore, that epM 6= 0, or equivalently,

εp(M) > 0. Then, it follows from part (1) that εσ(p)(σ(M)) = εp(M) > 0, and hence

eσ(p)(σ(M)) 6= 0. Consequently, we see from Lemma 3.4.1 (1) that fσ(p)eσ(p)(σ(M)) = σ(M).

Also,

fσ(p)(σ(epM)) = σ(fpepM) since fσ(p) ◦ σ = σ ◦ fp

= σ(M) by Lemma 3.4.1 (1).

Thus, we have fσ(p)eσ(p)(σ(M)) = σ(M) = fσ(p)(σ(epM)). Applying eσ(p) to both sides of this

equation, we obtain eσ(p)(σ(M)) = σ(epM) by Lemma 3.4.1 (1), as desired. This completes

the proof of the lemma.

4.3 BZ data of type A
(1)
ℓ and a crystal structure on them.

Definition 4.3.1. A BZ datum of type A
(1)
ℓ is a BZ datum M = (Mγ)γ∈ΓZ

∈ BZZ of type

A∞ such that σ(M) = M, or equivalently, Mσ−1(γ) = Mγ for all γ ∈ ΓZ.

Remark 4.3.2. Keep the notation of Remark 4.2.3. In addition, we assume that σ(M) = M.

Because I ∈ Int(σ(M);w, i) = Int(M;w, i) and M ′
w̟I

i

= Mw̟I
i
by the assumption that

σ(M) = M, it follows that M ′
wΛi

= M ′
w̟I

i

= Mw̟I
i
= MwΛi

. Since M ′
wΛi

= Mσ−1(wΛi) as

shown in Remark 4.2.3, we obtain Mσ−1(wΛi) = MwΛi
.

Denote by BZσ
Z
the set of all BZ data of type A

(1)
ℓ ; that is,

BZσ
Z
:=

{
M ∈ BZZ | σ(M) = M

}
. (4.3.1)

Let us define a crystal structure for Uq(ĝ
∨) on the set BZσ

Z (see Proposition 4.3.8 below).

For M ∈ BZσ
Z
, we set

wt(M) :=
∑

i∈Î

MΛi
ĥi, (4.3.2)

where MΛi
:= Θ(M)Λi

for i ∈ Z.

In what follows, we need the following notation. Let L be a finite subset of Z such

that |q − q′| ≥ 2 for all q, q′ ∈ L with q 6= q′. Then, it follows from Lemma 3.4.1 (3) that

fqfq′ = fq′fq and eqeq′ = eq′eq for all q, q′ ∈ L. Hence we can define the following operator

on BZZ ∪ {0}:

fL :=
∏

q∈L

fq and eL :=
∏

q∈L

eq.

For M ∈ BZσ
Z
and p ∈ Z, we define f̂pM = (M ′

γ)γ∈ΓZ
by

(f̂pM)γ = M ′
γ := (fL(γ,p)M)γ for γ ∈ ΓZ, (4.3.3)
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where we set

L(γ, p) :=
{
q ∈ p+ (ℓ+ 1)Z | 〈hq, γ〉 > 0

}

for γ ∈ ΓZ and p ∈ Î; note that L(γ, p) is a finite subset of p+ (ℓ+ 1)Z. It is obvious that if

p ∈ Z and q ∈ Z are congruent modulo ℓ+ 1, then

f̂pM = f̂qM for all M ∈ BZσ
Z
. (4.3.4)

Remark 4.3.3. Let M ∈ BZσ
Z
, and p ∈ Z. For each γ ∈ ΓZ, take an arbitrary finite subset L

of p+ (ℓ+ 1)Z containing L(γ, p). Then we have

(fLM)γ = (fL(γ,p)M)γ = (f̂pM)γ . (4.3.5)

Indeed, we have (fLM)γ = (fL(γ,p)fL\L(γ,p)M)γ . Since 〈hq, γ〉 ≤ 0 for all q ∈ L \ L(γ, p)

by the definition of L(γ, p), we deduce, using (3.3.2) repeatedly, that (fL(γ,p)fL\L(γ,p)M)γ =

(fL(γ,p)M)γ .

Proposition 4.3.4. Let M ∈ BZσ
Z
, and p ∈ Z. Then, f̂pM is an element of BZσ

Z
.

By this proposition, for each p ∈ Z, we obtain a map f̂p from BZσ
Z to itself sending

M ∈ BZZ to f̂pM ∈ BZZ, which we call the lowering Kashiwara operator on BZσ
Z
. By

convention, we set f̂p0 := 0 for all p ∈ Z.

Proof of Proposition 4.3.4. First we show that f̂pM satisfies condition (a) of Definition 3.2.1.

Let K be an interval in Z. Take a finite subset L of p+(ℓ+1)Z such that L ⊃ L(γ, p) for all

γ ∈ ΓK . Then, we see from Remark 4.3.3 that (f̂pM)γ = (fLM)γ for all γ ∈ ΓK , and hence

that (f̂pM)K = (fLM)K . Since fLM ∈ BZZ by Proposition 3.3.2, it follows from condition

(a) of Definition 3.2.1 that (fLM)K ∈ BZK , and hence (f̂pM)K ∈ BZK .

Next we show that f̂pM satisfies condition (b) of Definition 3.2.1. Fix w ∈ WZ and i ∈ Z.

We set

L :=





{
q ∈ p+ (ℓ+ 1)Z | w−1hq 6= hq

}
if i /∈ p+ (ℓ+ 1)Z,

{
q ∈ p+ (ℓ+ 1)Z | w−1hq 6= hq

}
∪ {i} otherwise.

(4.3.6)

It is easily checked that L is a finite subset of p+ (ℓ+ 1)Z. Furthermore, we can verify that

L ⊃ L(w̟I
i , p) for all intervals I in Z such that w ∈ WI and i ∈ I. Indeed, suppose that

q ∈ p+ (ℓ+ 1)Z is not contained in L; note that q 6= i and w−1hq = hq. We see that

〈hq, w̟
I
i 〉 = 〈w−1hq, ̟

I
i 〉 = 〈hq, ̟

I
i 〉,

and that 〈hq, ̟
I
i 〉 ≤ 0 by (3.1.4) since q 6= i. This implies that q is not contained in L(w̟I

i , p).

Now, let us take I ∈ Int(fLM;w, i), and let J be an arbitrary interval in Z containing I.

We claim that (f̂pM)w̟J
i
= (f̂pM)w̟I

i
. Since I ∈ Int(fLM;w, i), it follows that (fLM)w̟J

i
=
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(fLM)w̟I
i
. Also, because L ⊃ L(w̟J

i , p) and L ⊃ L(w̟I
i , p) as seen above, we see from

Remark 4.3.3 that (f̂pM)w̟J
i
= (fLM)w̟J

i
and (f̂pM)w̟I

i
= (fLM)w̟I

i
. Combining these,

we obtain (f̂pM)w̟J
i
= (fLM)w̟J

i
= (fLM)w̟I

i
= (f̂pM)w̟I

i
, as desired. Thus, we have

shown that f̂pM satisfies condition (b) of Definition 3.2.1, and hence f̂pM ∈ BZZ.

Finally, we show that σ(f̂pM) = f̂pM, or equivalently, (f̂pM)σ−1(γ) = (f̂pM)γ for all

γ ∈ ΓZ. Fix γ ∈ ΓZ. Observe that σ(L(σ−1(γ), p)) = L(γ, p) since 〈hσ(q), γ〉 = 〈σ(hq), γ〉 =

〈hq, σ
−1(γ)〉. Therefore, we have

(f̂pM)σ−1(γ) = (fL(σ−1(γ),p)M)σ−1(γ) =
(
σ(fL(σ−1(γ),p)M)

)
γ

=
(
fσ(L(σ−1(γ),p))σ(M)

)
γ

by Lemma 4.2.4 (2)

=
(
fσ(L(σ−1(γ),p))M

)
γ

by the assumption that σ(M) = M

=
(
fL(γ,p)M

)
γ

since σ(L(σ−1(γ), p)) = L(γ, p)

= (f̂pM)γ ,

as desired. This completes the proof of the proposition.

Now, for M ∈ BZσ
Z
and p ∈ Z, we set

ε̂p(M) := −


MΛp

+MspΛp
+

∑

q∈Z\{p}

aqpMΛq


 = εp(M), (4.3.7)

where MΛi
:= Θ(M)Λi

for i ∈ Z, and MspΛp
:= Θ(M)spΛp

. It follows from (3.3.7) that

ε̂p(M) = εp(M) is a nonnegative integer. Also, using Lemma 4.2.4 (1) repeatedly, we can

easily verify that if p ∈ Z and q ∈ Z are congruent modulo ℓ+ 1, then

ε̂p(M) = εp(M) = εq(M) = ε̂q(M) for all M ∈ BZσ
Z. (4.3.8)

Lemma 4.3.5. Let M ∈ BZσ
Z, and p ∈ Z. Suppose that ε̂p(M) > 0. Then, eLM 6= 0 for

every finite subset L of p+ (ℓ+ 1)Z.

Proof. We show by induction on the cardinality |L| of L that eLM 6= 0, and εq(eLM) =

ε̂p(M) > 0 for all q ∈ p+ (ℓ+1)Z with q /∈ L. Assume first that |L| = 1. Then, L = {q′} for

some q′ ∈ p+ (ℓ+1)Z, and eL = eq′ . It follows from (4.3.8) that εq′(M) = ε̂p(M) > 0, which

implies that eq′M 6= 0. Also, for q ∈ p+(ℓ+1)Z with q 6= q′, it follows from Lemma 3.4.1 (2)

and (4.3.8) that εq(eq′M) = εq(M) = ε̂p(M).

Assume next that |L| > 1. Take an arbitrary q′ ∈ L, and set L′ := L \ {q′}. Then, by

the induction hypothesis, we have eL′M 6= 0, and εq′(eL′M) = ε̂p(M) > 0; note that q′ /∈ L′.

This implies that eLM = eq′(eL′M) 6= 0. Also, for q ∈ p + (ℓ + 1)Z with q /∈ L, we see from

Lemma 3.4.1 (2) and the induction hypothesis that εq(eLM) = εq(eq′eL′M) = εq(eL′M) =

ε̂p(M). This proves the lemma.
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For M ∈ BZσ
Z and p ∈ Z, we define êpM as follows. If ε̂p(M) = 0, then we set êpM := 0.

If ε̂p(M) > 0, then we define êpM = (M ′
γ)γ∈ΓZ

by

(êpM)γ = M ′
γ := (eL(γ,p)M)γ for each γ ∈ ΓZ; (4.3.9)

note that eL(γ,p)M 6= 0 by Lemma 4.3.5. It is easily seen by (4.3.8) that if p ∈ Z and q ∈ Z

are congruent modulo ℓ+ 1, then

êpM = êqM for all M ∈ BZσ
Z. (4.3.10)

Remark 4.3.6. Let M ∈ BZσ
Z, and p ∈ Z. Assume that ε̂p(M) > 0, or equivalently, êpM 6= 0.

For each γ ∈ ΓZ, take an arbitrary finite subset L of p + (ℓ + 1)Z containing L(γ, p). Then

we see by Lemma 4.3.5 that eLM 6= 0. Moreover, by the same argument as for (4.3.5) (using

(3.3.14) instead of (3.3.2)), we derive

(eLM)γ = (eL(γ,p)M)γ = (êpM)γ . (4.3.11)

Proposition 4.3.7. Let M ∈ BZσ
Z
, and p ∈ Z. Then, êpM is contained in BZσ

Z
∪ {0}.

Because the proof of this proposition is similar to that of Proposition 4.3.4, we omit it.

By this proposition, for each p ∈ Z, we obtain a map êp from BZσ
Z
to BZσ

Z
∪ {0} sending

M ∈ BZZ to êpM ∈ BZZ ∪ {0}, which we call the raising Kashiwara operator on BZσ
Z. By

convention, we set êp0 := 0 for all p ∈ Z.

Finally, we set

ϕ̂p(M) := 〈wt(M), α̂p〉+ ε̂p(M) for M ∈ BZσ
Z and p ∈ Z, (4.3.12)

where p denotes a unique element in Î =
{
0, 1, . . . , ℓ

}
to which p ∈ Z is congruent modulo

ℓ+ 1.

Proposition 4.3.8. The set BZσ
Z
, equipped with the maps wt, êp, f̂p (p ∈ Î), and ε̂p, ϕ̂p (p ∈

Î) above, is a crystal for Uq(ĝ
∨).

Proof. It is obvious from (4.3.12) that ϕ̂p(M) = 〈wt(M), α̂p〉 + ε̂p(M) for M ∈ BZσ
Z
and

p ∈ Î (see condition (1) of [HK, Definition 4.5.1]).

We show that wt(f̂pM) = wt(M) − ĥp for M ∈ BZσ
Z
and p ∈ Î (see condition (3) of

[HK, Definition 4.5.1]). Write M, fpM, and f̂pM as: M = (Mγ)γ∈ΓZ
, fpM = (M ′

γ)γ∈ΓZ
, and

f̂pM = (M ′′
γ )γ∈ΓZ

, respectively; write Θ(M), Θ(fpM), and Θ(f̂pM) as: Θ(M) = (Mξ)ξ∈ΞZ
,

Θ(fpM) = (M ′
ξ)ξ∈ΞZ

, and Θ(f̂pM) = (M ′′
ξ )ξ∈ΞZ

, respectively. We claim that M ′′
Λi

= M ′
Λi

for

all i ∈ Z. Fix i ∈ Z, and take an interval I in Z such that I ∈ Int(f̂pM; e, i) ∩ Int(fpM; e, i).

Then, we have M ′′
Λi

= M ′′
̟I

i

= (f̂pM)̟I
i
, and M ′

Λi
= M ′

̟I
i

by the definitions. Also, since
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L(̟I
i , p) ⊂ {p} by (3.1.4), it follows from Remark 4.3.3 that (f̂pM)̟I

i
= (fpM)̟I

i
= M ′

̟I
i

.

Combining these, we infer that M ′′
Λi

= M ′
Λi
, as desired. Therefore, we see from (3.4.1) that

M ′′
Λi

= M ′
Λi

=

{
MΛp

− 1 if i = p,

MΛi
otherwise.

(4.3.13)

The equation wt(f̂pM) = wt(M) − ĥp follows immediately from (4.3.13) and the definition

(4.3.2) of the map wt.

Similarly, we can show that wt(êpM) = wt(M) + ĥp for M ∈ BZσ
Z
and p ∈ Î if êpM 6= 0

(see condition (2) of [HK, Definition 4.5.1]).

Let us show that ε̂p(f̂pM) = ε̂p(M) + 1 and ϕ̂p(f̂pM) = ϕ̂p(M) − 1 for M ∈ BZσ
Z
and

p ∈ Î (see condition (5) of [HK, Definition 4.5.1]). The second equation follows immediately

from the first one and the definition (4.3.12) of the map ϕ̂, since wt(f̂pM) = wt(M)− ĥp as

shown above. It, therefore, suffices to show the first equation; to do this, we use the notation

above. We claim that M ′′
spΛp

= M ′
spΛp

= MspΛp
. Indeed, let I be an interval in Z such that

I ∈ Int(f̂pM; sp, p) ∩ Int(fpM; sp, p). Then, in exactly the same way as above, we see that

M ′′
spΛp

= M ′′
sp̟I

p
= (f̂pM)sp̟I

p

= (fpM)sp̟I
p

by Remark 4.3.3 (note that L(sp̟
I
p, p) = ∅ by (3.1.4))

= M ′
sp̟I

p
= M ′

spΛp
.

In addition, the equality M ′
spΛp

= MspΛp
follows from (3.4.3). Hence we get M ′′

spΛp
= MspΛp

,

as desired. Using this and (4.3.13), we deduce from the definition (4.3.7) of the map ε̂p that

ε̂p(f̂pM) = ε̂p(M) + 1.

Similarly, we can show that ε̂p(êpM) = ε̂p(M)−1 and ϕ̂p(êpM) = ϕ̂p(M)+1 forM ∈ BZσ
Z

and p ∈ Î if êpM 6= 0 (see condition (4) of [HK, Definition 4.5.1]).

Finally, we show that êpf̂pM = M for M ∈ BZσ
Z
and p ∈ Î, and that f̂pêpM = M for

M ∈ BZσ
Z
and p ∈ Î if êpM 6= 0 (see condition (6) of [HK, Definition 4.5.1]). We give a proof

only for the first equation, since the proof of the second one is similar. Write M ∈ BZσ
Z
as:

M = (Mγ)γ∈ΓZ
. Note that êpf̂pM 6= 0, since ε̂p(f̂pM) = ε̂p(M) + 1 > 0. We need to show

that (êpf̂pM)γ = Mγ for all γ ∈ ΓZ. Fix γ ∈ ΓZ. We deduce from Lemma 4.3.11 below that

(êpf̂pM)γ = (eL(γ,p)fL(γ,p)M)γ.

Therefore, it follows from Lemma 3.4.1 (1) and (3) that eL(γ,p)fL(γ,p)M = M. Hence we obtain

(êpf̂pM)γ = Mγ . Thus, we have shown that êpf̂pM = M, thereby completing the proof of

the proposition.

Remark 4.3.9. Let M ∈ BZσ
Z
, and p ∈ Î. From the definition, it follows that ε̂p(M) = 0 if and

only if êpM = 0, and that ε̂p(M) ∈ Z≥0. In addition, ε̂p(êpM) = ε̂p(M) − 1. Consequently,

we deduce that ε̂p(M) = max
{
N ≥ 0 | êNp M 6= 0

}
. Moreover, by (4.3.8) and (4.3.10), the

same is true for all p ∈ Z.
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The following lemma will be needed in the proof of Lemma 4.3.11 below.

Lemma 4.3.10. Let K be an interval in Z, and let X be a product of Kashiwara operators

of the form: X = x1x2 · · ·xa, where xb ∈
{
fq, eq | minK < q < maxK

}
for each 1 ≤ b ≤ a.

If M ∈ BZσ
Z
and XŷpM 6= 0 for some p ∈ Z, where ŷp = êp or f̂p, then there exists a finite

subset L0 of p + (ℓ + 1)Z such that XyLM 6= 0 and (XŷpM)K = (XyLM)K for every finite

subset L of p+ (ℓ+ 1)Z containing L0, where yL = eL if ŷp = êp, and yL = fL if ŷp = f̂p.

Proof. Note that ŷpM 6= 0 since XŷpM 6= 0 by our assumption. Let I be an interval in

Z containing K such that I ∈ Int(ŷpM; v, k) for all v ∈ WK and k ∈ K, and such that

min I < minK ≤ maxK < max I. Then, we have ŷpM ∈ BZZ(I,K) (for the definition

of BZZ(I,K), see the paragraph following Remark 3.3.3). Because X is a product of those

Kashiwara operators which are taken from the set
{
fq, eq | minK < q < maxK

}
, it follows

from Lemmas 3.3.4 (2) and 3.3.9 (2) that

X(ŷpM)I 6= 0 and (XŷpM)I = X(ŷpM)I . (4.3.14)

Now, we set L0 :=
⋃

ζ∈ΓI
L(ζ, p), and take an arbitrary finite subset L of p + (ℓ + 1)Z

containing L0. Then, we see from Remark 4.3.3 (if ŷp = f̂p) or Remark 4.3.6 (if ŷp = êp) that

(ŷpM)ζ = (yLM)ζ for all ζ ∈ ΓI , (4.3.15)

which implies that (ŷpM)I = (yLM)I . Combining this and (4.3.14), we obtain

X(yLM)I 6= 0 and (XŷpM)I = X(yLM)I . (4.3.16)

We show that I ∈ Int(yLM; v, k) for all v ∈ WK and k ∈ K. To do this, we need the following

claim.

Claim. Keep the notation above. If J is an interval in Z containing I, then L(v̟J
k , p) =

L(v̟I
k, p) for all v ∈ WK and k ∈ K.

Proof of Claim. Fix v ∈ WK and k ∈ K. First, let us show that if q ∈ p + (ℓ + 1)Z

is not contained in I, then q is contained neither in L(v̟J
k , p) nor in L(v̟I

k, p). Because

min I < minK and max I > maxK, we have q < (minK)− 1 or q > (maxK) + 1. Hence it

follows that v−1hq = hq since v ∈ WK . Also, note that q 6= k since k ∈ K ⊂ I. Therefore, we

see that 〈hq, v̟
J
k 〉 = 〈hq, ̟

J
k 〉 ≤ 0 and 〈hq, v̟

I
k〉 = 〈hq, ̟

I
k〉 ≤ 0 by (3.1.4), which implies

that q /∈ L(v̟J
k , p) and q /∈ L(v̟I

k, p).

Next, let us consider the case that q ∈ p + (ℓ + 1)Z is contained in I. In this case, we

have v−1hq ∈
⊕

i∈I Zhi ⊂
⊕

i∈J Zhi, and hence 〈hq, v̟
J
k 〉 = 〈v−1hq, ̟

J
k 〉 = 〈v−1hq, ̟

I
k〉 =

〈hq, v̟
I
k〉 by (3.1.4). In particular, 〈hq, v̟

J
k 〉 > 0 if and only if 〈hq, v̟

I
k〉 > 0. Therefore,

q ∈ L(v̟J
k , p) if and only if q ∈ L(v̟I

k, p). This proves the claim.
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Fix v ∈ WK and k ∈ K, and let J be an arbitrary interval in Z containing I. We

verify that (yLM)v̟J
k
= (yLM)v̟I

k
. Since I ∈ Int(ŷpM; v, k) by assumption, it follows that

(ŷpM)v̟J
k
= (ŷpM)v̟I

k
. Note that (ŷpM)v̟I

k
= (yLM)v̟I

k
by (4.3.15) since v̟I

k ∈ ΓI . Also,

it follows from the claim above that L(v̟J
k , p) = L(v̟I

k, p) ⊂ L0 ⊂ L. Hence we see again

from Remark 4.3.3 (if ŷp = f̂p) or Remark 4.3.6 (if ŷp = êp) that (ŷpM)v̟J
k
= (yLM)v̟J

k
.

Combining these, we obtain (yLM)v̟J
k
= (ŷpM)v̟J

k
= (ŷpM)v̟I

k
= (yLM)v̟I

k
, as desired.

Thus we have shown that I ∈ Int(yLM; v, k) for all v ∈ WK and k ∈ K, which implies that

yLM ∈ BZZ(I,K).

Here we recall that X is a product of those Kashiwara operators which are taken from

the set
{
fq, eq | minK < q < maxK

}
by assumption, and that X(yLM)I 6= 0 by (4.3.16).

Therefore, we deduce again from Lemmas 3.3.4 (2) and 3.3.9 (2) that XyLM 6= 0, and

X(yLM)I = (XyLM)I . Combining this and (4.3.16), we obtain (XŷpM)I = (XyLM)I .

Since K ⊂ I (recall the correspondences (2.4.1) and (3.1.3)), it follows that

(XŷpM)K =
(
(XŷpM)I

)
K
=

(
(XyLM)I

)
K
= (XyLM)K .

This completes the proof of the lemma.

We used the following lemma in the proof of Proposition 4.3.8 above; we will also use this

lemma in the proof of Theorem 4.4.5 below.

Lemma 4.3.11. Let p, q ∈ Z be such that 0 < |p−q| < ℓ, and let X̂ be a product of Kashiwara

operators of the form : X̂ = x̂1x̂2 · · · x̂a, where x̂b ∈
{
êp, f̂p, êq, f̂q

}
for each 1 ≤ b ≤ a. If

M ∈ BZσ
Z and X̂M 6= 0, then XM 6= 0, and (X̂M)γ = (XM)γ for each γ ∈ ΓZ, where X is

a product of Kashiwara operators of the form X := x1x2 · · ·xa, with

xb =





eLp
if x̂b = êp,

fLp
if x̂b = f̂p,

eLq
if x̂b = êq,

fLq
if x̂b = f̂q,

(4.3.17)

for each 1 ≤ b ≤ a. Here, Lp is an arbitrary finite subset of p+(ℓ+1)Z such that Lp ⊃ L(γ, p)

and such that Lq :=
{
t+ (q − p) | t ∈ Lp

}
⊃ L(γ, q).

Remark 4.3.12. Keep the notation and assumptions of Lemma 4.3.11. If r ∈ p + (ℓ + 1)Z is

not contained in Lp, then |r − t| ≥ 2 for all t ∈ Lp ∪ Lq. Indeed, if t ∈ Lp, then it is obvious

that |r − t| ≥ ℓ+ 1 > 2. If t ∈ Lq, then

|r − t| =
∣∣r − {t+ (p− q)}+ (p− q)

∣∣ ≥
∣∣r − {t+ (p− q)}

∣∣− |p− q|.

Here note that
∣∣r − {t + (p − q)}

∣∣ ≥ ℓ + 1 since t + (p − q) ∈ Lp, and that |p − q| < ℓ by

assumption. Therefore, we get |r − t| ≥ 2. Similarly, we can show that if r ∈ q + (ℓ+ 1)Z is

not contained in Lq, then |r − t| ≥ 2 for all t ∈ Lp ∪ Lq.
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Proof of Lemma 4.3.11. For each 1 ≤ b ≤ a, we set X̂b := x̂b+1x̂b+2 · · · x̂a and Xb :=

x1x2 · · ·xb. We prove by induction on b the claim that XbX̂bM 6= 0 and (X̂M)γ = (XbX̂bM)γ

for all 1 ≤ b ≤ a; the assertion of the lemma follows from the case b = a. We see easily from

Remark 4.3.3 (if x̂1 = f̂p or f̂q) or Remark 4.3.6 (if x̂1 = êp or êq) that the claim above holds

if b = 1. Assume, therefore, that b > 1. By the induction hypothesis, we have

Xb−1X̂b−1M = Xb−1x̂bX̂bM 6= 0 and (X̂M)γ = (Xb−1x̂bX̂bM)γ. (4.3.18)

Take an interval K in Z such that γ ∈ ΓK , and such that minK < t < maxK for all

t ∈ Lp ∪Lq. Define r ∈ {p, q} by: r = p if x̂b = êp or f̂p, and r = q if x̂b = êq or f̂q. Then we

deduce from Lemma 4.3.10 that there exists a finite subset L of r + (ℓ+ 1)Z such that

Xb−1x
′
bX̂bM 6= 0 and (Xb−1x̂bX̂bM)K = (Xb−1x

′
bX̂bM)K ,

where x′
b is defined by the formula (4.3.17), with Lp and Lq replaced by L ∪ Lp and L ∪ Lq,

respectively. Also, it follows from Remark 4.3.12 and Lemma 3.4.1 (3) that

(0 6= ) Xb−1x
′
bX̂bM = Xb−1x

′′
bxbX̂bM = x′′

bXb−1xbX̂bM = x′′
bXbX̂bM,

where x′′
b is defined by the formula (4.3.17), with Lp and Lq replaced by L \ Lp and L \ Lq,

respectively. In particular, we obtain XbX̂bM 6= 0. Moreover, since γ ∈ ΓK , we have

(Xb−1x̂bX̂bM)γ = (Xb−1x
′
bX̂bM)γ = (x′′

bXbX̂bM)γ .

Since Lr ⊃ L(γ, r), the intersection of L \ Lr and L(γ, r) is empty, and hence 〈ht, γ〉 ≤ 0

for all t ∈ L \ Lr. Therefore, we see from (3.3.2) (if x̂1 = f̂p or f̂q) or (3.3.14) (if x̂1 = êp

or êq) that (x′′
bXbX̂bM)γ = (XbX̂bM)γ. Combining these with (4.3.18), we conclude that

(X̂M)γ = (XbX̂bM)γ, as desired. This proves the lemma.

4.4 Main results. Recall the BZ datum O of type A∞ whose γ-component is equal to 0

for each γ ∈ ΓZ (see Example 3.2.2). It is obvious that σ(O) = O, and hence O ∈ BZσ
Z
. Also,

ε̂p(O) = 0 for all p ∈ Î, which implies that êpO = 0 for all p ∈ Î. Let BZσ
Z(O) denote the

connected component of (the crystal graph of) the crystal BZσ
Z
containing O. The following

theorem is the first main result of this paper; the proof will be given in the next section.

Theorem 4.4.1. The crystal BZσ
Z
(O) is isomorphic, as a crystal for Uq(ĝ

∨), to the crystal

basis B̂(∞) of the negative part U−
q (ĝ

∨) of Uq(ĝ
∨).

For each dominant integral weight λ̂ ∈ ĥ for ĝ∨, let BZσ
Z(O; λ̂) denote the subset of

BZσ
Z
(O) consisting of all elements M = (Mγ)γ∈ΓZ

∈ BZσ
Z
(O) satisfying the condition (cf.

(2.3.5)) that

M−siΛi
≥ −〈λ̂, α̂i〉 for all i ∈ Z; (4.4.1)
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recall that i denotes a unique element in Î =
{
0, 1, . . . , ℓ

}
to which i ∈ Z is congruent modulo

ℓ+1. Let us define a crystal structure for Uq(ĝ
∨) on the set BZσ

Z
(O; λ̂) (see Proposition 4.4.4

below).

Lemma 4.4.2. The set BZσ
Z
(O; λ̂) ∪ {0} is stable under the raising Kashiwara operators êp

on BZσ
Z
for p ∈ Z.

Proof. Let M = (Mγ)γ∈ΓZ
∈ BZσ

Z(O; λ̂), and p ∈ Z. Suppose that M′ := êpM 6= 0, and write

it as: M′ = êpM = (M ′
γ)γ∈ΓZ

. In order to prove that êpM ∈ BZσ
Z
(O; λ̂), it suffices to show

that Mγ ≤ M ′
γ for all γ ∈ ΓZ. Fix γ ∈ ΓZ. We know from Proposition 4.3.8 that f̂pM

′ =

f̂pêpM = M. Also, it follows from the definition of f̂p that Mγ = (f̂pM
′)γ = (fL(γ,p)M

′)γ .

Therefore, we deduce from Remark 3.3.1 (1) that (fL(γ,p)M
′)γ ≤ M ′

γ , and hence Mγ ≤ M ′
γ .

This proves the lemma.

Remark 4.4.3. In contrast to the situation in Lemma 4.4.2, the set BZσ
Z
(O; λ̂) is not stable

under the lowering Kashiwara operators f̂p on BZσ
Z for p ∈ Z.

For each p ∈ Z, we define a map F̂p : BZ
σ
Z(O; λ̂) → BZσ

Z(O; λ̂) ∪ {0} by:

F̂pM =

{
f̂pM if f̂pM is contained in BZσ

Z(O; λ̂),

0 otherwise,
(4.4.2)

for M ∈ BZσ
Z
(O; λ̂); by convention, we set F̂p0 := 0 for all p ∈ Z. We define the weight

Wt(M) of M ∈ BZσ
Z
(O; λ̂) by:

Wt(M) = λ̂+ wt(M) = λ̂+
∑

i∈Î

MΛi
ĥi, (4.4.3)

where MΛi
:= Θ(M)Λi

for i ∈ Î. Also, we set

Φ̂p(M) := 〈Wt(M), α̂p〉+ ε̂p(M) for M ∈ BZσ
Z(O; λ̂) and p ∈ Z. (4.4.4)

Then, it is easily seen from the definition (4.3.7) of the map ε̂p and Remark 4.3.2 that

Φ̂p(M) = MΛp
−MspΛp

+ 〈λ̂, α̂p〉, (4.4.5)

where MΛp
:= Θ(M)Λp

and MspΛp
:= Θ(M)spΛp

(cf. (2.3.7)).

Proposition 4.4.4. (1) The set BZσ
Z(O; λ̂), equipped with the maps Wt, êp, F̂p (p ∈ Î), and

ε̂p, Φ̂p (p ∈ Î) above, is a crystal for Uq(ĝ
∨).

(2) For M ∈ BZσ
Z
(O; λ̂) and p ∈ Î, there hold

ε̂p(M) = max
{
N ≥ 0 | êNp M 6= 0

}
, Φ̂p(M) = max

{
N ≥ 0 | F̂N

p M 6= 0
}
.
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Proof. (1) This follows easily from Proposition 4.3.8. As examples, we show that

Wt(F̂pM) = Wt(M)− ĥp, (4.4.6)

ε̂p(F̂pM) = ε̂p(M) + 1 and Φ̂p(F̂pM) = Φ̂p(M)− 1, (4.4.7)

for M ∈ BZσ
Z(O; λ̂) and p ∈ Î if F̂pM 6= 0. Note that in this case, F̂pM = f̂pM by the

definition of F̂p. First we show (4.4.6). It follows from the definition of Wt that

Wt(F̂pM) = Wt(f̂pM) = λ̂+ wt(f̂pM).

Since wt(f̂pM) = wt(M)− ĥp by Proposition 4.3.8, we have

Wt(F̂pM) = λ̂+ wt(f̂pM) = λ̂+ wt(M)− ĥp = Wt(M)− ĥp,

as desired. Next we show (4.4.7). It follows from (the proof of) Proposition 4.3.8 that

ε̂p(F̂pM) = ε̂p(f̂pM) = ε̂p(M) + 1. Also, we compute:

Φ̂p(F̂pM) = Φ̂p(f̂pM) = 〈Wt(f̂pM), α̂p〉+ ε̂p(f̂pM) by the definition of Φ̂p

= 〈Wt(M)− ĥp, α̂p〉+ ε̂p(M) + 1 by (4.4.6) and Proposition 4.3.8

= 〈Wt(M), α̂p〉+ ε̂p(M)− 1 = Φ̂p(M)− 1 by the definition of Φ̂p,

as desired.

(2) The first equation follows immediately from Remark 4.3.9 together with Lemma 4.4.2.

We will prove the second equation. Fix p ∈ Î. We first show that

Φ̂p(M) ≥ 0 for all M ∈ BZσ
Z
(O; λ̂). (4.4.8)

Fix M ∈ BZσ
Z
(O; λ̂), and take an interval I in Z such that I ∈ Int(M; e, p) ∩ Int(M; sp, p).

Then we see from (4.4.5) that

Φ̂p(M) = MΛp
−MspΛp

+ 〈λ̂, α̂p〉 = M̟I
p
−Msp̟I

p
+ 〈λ̂, α̂p〉. (4.4.9)

Now we define a dominant integral weight λ ∈ hI for g∨I by: 〈λ, αi〉 = 〈λ̂, α̂i〉 for i ∈ I.

Then, we deduce from (2.3.5), (4.4.1), and (3.1.3) that MI ∈ BZI is contained in BZI(λ) ⊂

BZI . Because BZI(λ) is isomorphic, as a crystal for Uq(g
∨
I ), to the crystal basis BI(λ) (see

Theorem 2.3.7), it follows that Φp(MI) ≥ 0. Also, we see from (2.3.7) that

Φp(MI) = M̟I
p
−Msp̟I

p
+ 〈λ, αp〉. (4.4.10)

Since 〈λ, αp〉 = 〈λ̂, α̂p〉 by the definition of λ ∈ hI , we conclude from (4.4.9) and (4.4.10)

that Φ̂p(M) = Φp(MI) ≥ 0, as desired.

Next we show that for M ∈ BZσ
Z
(O; λ̂),

F̂pM = 0 if and only if Φ̂p(M) = 0. (4.4.11)
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Fix M ∈ BZσ
Z(O; λ̂). Suppose that Φ̂p(M) = 0, and F̂pM 6= 0. Then, since Φ̂p(F̂pM) =

Φ̂p(M)−1 by (4.4.7), we have Φ̂p(F̂pM) = −1, which contradicts (4.4.8). Hence, if Φ̂p(M) =

0, then F̂pM = 0. To show the converse, assume that F̂pM = 0, or equivalently, f̂pM /∈

BZσ
Z
(O; λ̂). Let us write M ∈ BZσ

Z
(O; λ̂) and f̂pM ∈ BZσ

Z
(O) as: M = (Mγ)γ∈ΓZ

and

f̂pM = (M ′
γ)γ∈ΓZ

, respectively. From the assumption that f̂pM /∈ BZσ
Z
(O; λ̂), it follows that

M ′
−sqΛq

< −〈λ̂, α̂q〉 for some q ∈ Z. Note that since M ′
γ = M ′

σ−1(γ) for all γ ∈ ΓZ, we may

assume q ∈ Î. Then, we infer that this q is equal to p. Indeed, for each i ∈ Î \ {p}, we have

L(−siΛi, p) = ∅, since 〈hi, siΛi〉 = −1 and 〈hj, siΛi〉 ≥ 0 for all j ∈ Z with j 6= i. Therefore,

by the definition of f̂p,

M ′
−siΛi

= (f̂pM)−siΛi
= (f∅M)−siΛi

= M−siΛi
.

Hence it follows that M ′
−siΛi

= M−siΛi
≥ −〈λ̂, α̂i〉 since M ∈ BZσ

Z
(O; λ̂). Consequently,

q ∈ Î is not equal to any i ∈ Î \ {p}, that is, q = p.

Now, as in the proof of (4.4.8) above, take an interval I in Z such that I ∈ Int(M; e, p)∩

Int(M; sp, p), and then define a dominant integral weight λ ∈ hI for g∨I by: 〈λ, αi〉 = 〈λ̂, α̂i〉

for i ∈ I; we know from the argument above that MI ∈ BZI(λ), and Φ̂p(M) = Φp(MI).

Therefore, in order to show that Φ̂p(M) = 0, it suffices to show that Φp(MI) = 0, which is

equivalent to FpMI = 0 by Theorem 2.3.7. Recall from the above that M ′
−spΛp

< −〈λ̂, α̂p〉 =

−〈λ, αp〉. Also, it follows from the definition of f̂p on BZσ
Z
and the definition of fp on BZZ

that

M ′
−spΛp

= (f̂pM)−spΛp
= (fpM)−spΛp

since L(−spΛp, p) =
{
p
}

= (fpMI)−spΛp
.

Combining these, we obtain (fpMI)−spΛp
< −〈λ, αp〉, which implies that fpMI /∈ BZI(λ),

and hence FpMI = 0 by the definition. Thus we have shown (4.4.11).

From (4.4.8), (4.4.11), and the second equation of (4.4.7), we deduce that Φ̂p(M) =

max
{
N ≥ 0 | F̂N

p M 6= 0
}
for M ∈ BZσ

Z(O; λ̂) and p ∈ Î, as desired. This completes the

proof of the proposition.

The following theorem is the second main result of this paper; the proof will be given in

the next section.

Theorem 4.4.5. Let λ̂ ∈ h be a dominant integral weight for ĝ∨. The crystal BZσ
Z
(O; λ̂) is

isomorphic, as a crystal for Uq(ĝ
∨), to the crystal basis B̂(λ̂) of the irreducible highest weight

Uq(ĝ
∨)-module of highest weight λ̂.

4.5 Proofs of Theorems 4.4.1 and 4.4.5. We first prove Theorem 4.4.5; Theorem 4.4.1

is obtained as a corollary of Theorem 4.4.5.
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Proof of Theorem 4.4.5. By Proposition 4.4.4 and Theorem A.1.1 in the Appendix, it suffices

to prove that the crystal BZσ
Z
(O; λ̂) satisfies conditions (C1)–(C6) of Theorem A.1.1. First

we prove that the crystal BZσ
Z(O; λ̂) satisfies condition (C6). Note that O ∈ BZσ

Z(O; λ̂). It

follows from the definition of the raising Kashiwara operators êp, p ∈ Î, on BZσ
Z
(O; λ̂) (see

also the beginning of §4.4) that êpO = 0 for all p ∈ Î. Also, Θ(O)Λp
and Θ(O)spΛp

are equal

to 0 by the definitions. Therefore, it follows from (4.4.3) and (4.4.5) that Wt(O) = λ̂ and

Φ̂p(O) = 〈λ̂, α̂p〉 for all p ∈ Î, as desired.

We also need to prove that the crystal BZσ
Z(O; λ̂) satisfies conditions (C1)–(C5) of The-

orem A.1.1. We will prove that BZσ
Z
(O; λ̂) satisfies condition (C5); the proofs for the other

conditions are similar. Namely, we will prove the following assertion: Let M ∈ BZσ
Z(O; λ̂),

and p, q ∈ Î. Assume that F̂pM 6= 0 and F̂qM 6= 0, and that Φ̂q(F̂pM) = Φ̂q(M) + 1 and

Φ̂p(F̂qM) = Φ̂p(M) + 1. Then,

F̂pF̂
2
q F̂pM 6= 0 and F̂qF̂

2
p F̂qM 6= 0, (4.5.1)

F̂pF̂
2
q F̂pM = F̂qF̂

2
p F̂qM, (4.5.2)

ε̂q(F̂pM) = ε̂q(F̂
2
p F̂qM) and ε̂p(F̂qM) = ε̂p(F̂

2
q F̂pM). (4.5.3)

Here we note that p 6= q. Indeed, if p = q, then it follows from the second equation of (4.4.7)

that Φ̂p(F̂pM) = Φ̂q(M)− 1, which contradicts the assumption that Φ̂p(F̂pM) = Φ̂p(M) + 1.

A key to the proof of (4.5.1)–(4.5.3) is Claim 1 below. For an interval I in Z, we define

a dominant integral weight λI ∈ hI for g∨I by:

〈λI , αi〉 = 〈λ̂, α̂i〉 for i ∈ I. (4.5.4)

As mentioned in the proof of Proposition 4.4.4 (2), MI ∈ BZI is contained in BZI(λI) ⊂ BZI ;

recall from Theorem 2.3.7 that BZI(λI) is isomorphic, as a crystal for Uq(g
∨
I ), to the crystal

basis BI(λI).

Claim 1. Let r, t ∈ Z be such that r = p, t = q, and 0 < |r− t| < ℓ. Assume that an interval

I in Z satisfies the following conditions :

(a1) I ∈ Int(M; e, r) ∩ Int(M; sr, r);

(a2) I ∈ Int(M; e, t) ∩ Int(M; st, t);

(a3) I ∈ Int(F̂pM; e, t) ∩ Int(F̂pM; st, t);

(a4) I ∈ Int(F̂qM; e, r) ∩ Int(F̂qM; sr, r).

(i) We have Φr(MI) = Φ̂p(M) > 0 and Φt(MI) = Φ̂q(M) > 0, and hence FrMI 6= 0 and

FtMI 6= 0. Also, we have Φt(FrMI) = Φt(MI) + 1 and Φr(FtMI) = Φr(MI) + 1.

(ii) We have

FrF
2
t FrMI 6= 0 and FtF

2
r FtMI 6= 0,

FrF
2
t FrMI = FtF

2
r FtMI ,

εt(FrMI) = εt(F
2
r FtMI) and εr(FtMI) = εr(F

2
t FrMI).

38



Proof of Claim 1. (i) We write M ∈ BZσ
Z(O; λ̂) and Θ(M) as: M = (Mγ)γ∈ΓZ

and Θ(M) =

(Mξ)ξ∈ΞZ
, respectively. Then, we compute:

Φr(MI) = M̟I
r
−Msr̟I

r
+ 〈λI , αr〉 by (2.3.7)

= MΛr
−MsrΛr

+ 〈λI , αr〉 by condition (a1).

Since r is congruent to p modulo ℓ + 1 by assumption, we have r = σn(p) for some n ∈ Z.

Hence, by Remark 4.3.2,

MΛr
= MΛσn(p)

= Mσn(Λp) = MΛp
,

MsrΛr
= Msσn(p)Λσn(p)

= Mσn(spΛp) = MspΛp
.

Also, by the definition of λI , we have 〈λI , αr〉 = 〈λ̂, α̂p〉. Substituting these into the above,

we obtain

Φr(MI) = MΛp
−MspΛp

+ 〈λ̂, α̂p〉 = Φ̂p(M) by (4.4.5).

Since Φ̂p(M) > 0 by the assumption that F̂pM 6= 0, we get Φr(MI) = Φ̂p(MI) > 0, as

desired. Similarly, we can show that Φt(MI) = Φ̂q(M) > 0.

Now, we write F̂pM ∈ BZσ
Z
(O; λ̂) and Θ(F̂pM) as: F̂pM = (M ′

γ)γ∈ΓZ
and Θ(F̂pM) =

(M ′
ξ)ξ∈ΞZ

, respectively. Since L(̟I
t , p) = ∅ ⊂ {r} (recall that 0 < |r − t| < ℓ), we have

M ′
Λt

= M ′
̟I

t
by condition (a3)

= (F̂pM)̟I
t
= (FrM)̟I

t
by Remark 4.3.3

= (FrMI)̟I
t

by conditions (a1), (a2), and the definition of FrM.

Also, it follows from (3.1.4) that
{
i ∈ Z | 〈hi, st̟

I
t 〉 > 0

}
⊂

{
t−1, t+1

}
. Since 0 < |r−t| < ℓ,

it is easily seen that r + (ℓ+ 1)n > t + 1 and r − (ℓ+ 1)n < t− 1 for every n ∈ Z>0. Hence

we deduce that L(st̟
I
t , p) ⊂ {r}. Using this fact, we can show in exactly the same way as

above that M ′
stΛt

= (FrMI)st̟I
t
. Therefore,

Φt(FrMI) = (FrMI)̟I
t
− (FrMI)st̟I

t
+ 〈λI , αt〉 by (2.3.7)

= M ′
Λt

−M ′
stΛt

+ 〈λI , αt〉

= M ′
Λq

−M ′
sqΛq

+ 〈λ̂, α̂q〉 by Remark 4.3.2 and the definition of λI

= Φ̂q(F̂pM) by (4.4.5).

Because Φ̂q(F̂pM) = Φ̂q(M) + 1 by our assumption, and Φ̂q(M) = Φt(MI) as shown above,

we obtain Φt(FrMI) = Φ̂q(F̂pM) = Φ̂q(M) + 1 = Φt(MI) + 1, as desired. The equation

Φr(FtMI) = Φr(MI) + 1 can be shown similarly.

(ii) Because BZI(λI) is isomorphic, as a crystal for Uq(g
∨
I ), to the crystal basis BI(λI) by

Theorem 2.3.7, this crystal satisfies condition (C5) of Theorem A.1.1. Hence the equations

in part (ii) follow immediately from part (i). This proves Claim 1.
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First we show (4.5.1); we only prove that F̂pF̂
2
q F̂pM 6= 0, since we can prove that

F̂qF̂
2
p F̂qM 6= 0 similarly. Recall that F̂pM 6= 0 by our assumption. Also, since F̂qM 6= 0

by our assumption, it follows from Proposition 4.4.4 (2) that Φ̂q(M) > 0. Therefore, we

have Φ̂q(F̂pM) = Φ̂q(M) + 1 ≥ 2 by our assumption, which implies that F̂ 2
q F̂pM 6= 0 by

Proposition 4.4.4 (2). We set M′′ := F̂ 2
q F̂pM ∈ BZσ

Z
(O; λ̂), and write M′′ and Θ(M′′) as:

M′′ = (M ′′
γ )γ∈ΓZ

and Θ(M′′) = (M ′′
ξ )ξ∈ΞZ

, respectively. In order to show that F̂pF̂
2
q F̂pM =

F̂pM
′′ 6= 0, it suffices to show that

Φ̂p(M
′′) = M ′′

Λp
−M ′′

spΛp
+ 〈λ̂, α̂p〉 > 0

by Proposition 4.4.4 (2) along with equation (4.4.5). We define r, t ∈ Z by:

(r, t) =





(p, q) if |p− q| < ℓ,

(ℓ, ℓ+ 1) if p = ℓ and q = 0,

(ℓ+ 1, ℓ) if p = 0 and q = ℓ.

(4.5.5)

Let K be an interval in Z such that r, t ∈ K, and take an interval I in Z satisfying conditions

(a1)–(a4) in Claim 1 and the following:

(b1) I ∈ Int(M′′; e, r) ∩ Int(M′′; sr, r);

(b2) I ∈ Int(M; v, k) for all v ∈ WK and k ∈ K.

It follows from Remark 4.3.2 and condition (b1) that M ′′
Λp

= M ′′
Λr

= M ′′
̟I

r
. Also,

M ′′
̟I

r
= (F̂ 2

q F̂pM)̟I
r
= (f̂ 2

q f̂pM)̟I
r

by the definitions of F̂q and F̂p

= (f̂ 2
t f̂rM)̟I

r
by (4.3.4).

Here we note that L(̟I
r , r) = {r} and L(̟I

r , t) = ∅ since 0 < |r − t| < ℓ. Therefore, we

deduce from Lemma 4.3.11 (with p = r, q = t, X̂ = f̂ 2
t f̂r, γ = ̟I

r , and Lr = {r}) that

f 2
t frM 6= 0 and (f̂ 2

t f̂rM)̟I
r
= (f 2

t frM)̟I
r
. Since M ∈ BZZ(I,K) by condition (b2), we see

from Lemma 3.3.4 (2) that (f 2
t frM)I = f 2

t frMI , and hence that (f 2
t frM)̟I

r
= (f 2

t frMI)̟I
r
.

Also, because r, t ∈ Z satisfies the conditions that r = p, t = q, and 0 < |r − t| < ℓ, and

because the interval I satisfies conditions (a1)–(a4) of Claim 1, it follows from Claim 1 (ii)

that F 2
t FrMI 6= 0, and hence f 2

t frMI = F 2
t FrMI . Putting the above together, we obtain

M ′′
Λp

= (F 2
t FrMI)̟I

r
. Similarly, we can show that M ′′

spΛp
= (F 2

t FrMI)sr̟I
r
. Consequently, we

see that

Φ̂p(M
′′) = M ′′

Λp
−M ′′

spΛp
+ 〈λ̂, α̂p〉

= (F 2
t FrMI)̟I

r
− (F 2

t FrMI)sr̟I
r
+ 〈λI , αr〉

= Φr(F
2
t FrMI) by (2.3.7) together with Theorem 2.3.7

> 0 by Claim 1 (ii).

Thus we have shown (4.5.1).
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Next we show equation (4.5.2). Define r, t ∈ Z as in (4.5.5). Since F̂pF̂
2
q F̂pM 6= 0 and

F̂qF̂
2
p F̂qM 6= 0 by (4.5.1), it follows from the definitions of F̂p and F̂q along with (4.3.4) that

F̂pF̂
2
q F̂pM = f̂pf̂

2
q f̂pM = f̂rf̂

2
t f̂rM,

F̂qF̂
2
p F̂qM = f̂qf̂

2
p f̂qM = f̂tf̂

2
r f̂tM.

Therefore, it suffices to show that

(f̂rf̂
2
t f̂rM)γ = (f̂tf̂

2
r f̂tM)γ for all γ ∈ ΓZ.

Fix γ ∈ ΓZ, and take a finite subset Lr of r + (ℓ+ 1)Z such that Lr ⊃ L(γ, r) and such that

Lt :=
{
u+ (t− r) | u ∈ Lr

}
⊃ L(γ, t). We infer from Lemma 4.3.11 that

(f̂rf̂
2
t f̂rM)γ = (fLr

f 2
Lt
fLr

M)γ and (f̂tf̂
2
r f̂tM)γ = (fLt

f 2
Lr
fLt

M)γ .

Let us write Lr and Lt as: Lr =
{
r1, r2, . . . , ra

}
and Lt =

{
t1, t2, . . . , ta

}
, respectively,

where tb = rb+(t− r) for each 1 ≤ b ≤ a; note that 0 < |rb− tb| < ℓ for all 1 ≤ b ≤ a. Let K

be an interval in Z containing Lr ∪ Lt, and take an interval I in Z satisfying the following:

(a1)’ I ∈ Int(M; e, rb) ∩ Int(M; srb, rb) for all 1 ≤ b ≤ a;

(a2)’ I ∈ Int(M; e, tb) ∩ Int(M; stb , tb) for all 1 ≤ b ≤ a;

(a3)’ I ∈ Int(F̂pM; e, tb) ∩ Int(F̂pM; stb , tb) for all 1 ≤ b ≤ a;

(a4)’ I ∈ Int(F̂qM; e, rb) ∩ Int(F̂qM; srb, rb) for all 1 ≤ b ≤ a;

(c1) γ ∈ ΓI ;

(c2) I ∈ Int(M; v, k) for all v ∈ WK and k ∈ K.

Then, since M ∈ BZZ(I,K) by condition (c2), we see from Lemma 3.3.4 (3) that

(fLr
f 2
Lt
fLr

M)I = fLr
f 2
Lt
fLr

MI and (fLt
f 2
Lr
fLt

M)I = fLt
f 2
Lr
fLt

MI ,

and hence, by condition (c1), that

(fLr
f 2
Lt
fLr

M)γ = (fLr
f 2
Lt
fLr

MI)γ and (fLt
f 2
Lr
fLt

M)γ = (fLt
f 2
Lr
fLt

MI)γ.

Thus, in order to show that (f̂rf̂
2
t f̂rM)γ = (f̂tf̂

2
r f̂tM)γ , it suffices to show that

fLr
f 2
Lt
fLr

MI = fLt
f 2
Lr
fLt

MI . (4.5.6)

We now define

Xb := (FrbF
2
tb
Frb) · · · (Fr2F

2
t2
Fr2)(Fr1F

2
t1
Fr1),

Yb := (FtbF
2
rb
Ftb) · · · (Ft2F

2
r2
Ft2)(Ft1F

2
r1
Ft1),

for 0 ≤ b ≤ a; X0 and Y0 are understood to be the identity map on BZI(λI). We will show

by induction on b that XbMI 6= 0, YbMI 6= 0, and XbMI = YbMI for all 0 ≤ b ≤ a. If b = 0,
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then there is nothing to prove. Assume, therefore, that b > 0. Note that MI ∈ BZI(λI)

(see the comment preceding Claim 1). Hence, Xb−1MI ∈ BZI(λI) since Xb−1MI 6= 0 by the

induction hypothesis. Because BZI(λI) ∼= BI(λI) as crystals for Uq(g
∨
I ) by Theorem 2.3.7,

we have

Φrb(Xb−1MI) = max
{
N ≥ 0 | FN

rb
Xb−1MI 6= 0

}
.

Here, observe that FrbXb−1 = Xb−1Frb by the definition of Xb−1 since for 1 ≤ c ≤ b− 1,

|rb − rc| ≥ ℓ+ 1, and |rb − tc| ≥ |rb − rc|︸ ︷︷ ︸
≥ℓ+1

− |rc − tc|︸ ︷︷ ︸
<ℓ

> (ℓ+ 1)− ℓ = 1. (4.5.7)

As a result, we have

max
{
N ≥ 0 | FN

rb
Xb−1MI 6= 0

}
= max

{
N ≥ 0 | FN

rb
MI 6= 0

}
= Φrb(MI),

and hence Φrb(Xb−1MI) = Φrb(MI). Recall that for each 1 ≤ b ≤ a, the integers rb and tb

are such that rb = p, tb = q, and 0 < |rb − tb| < ℓ, and that the interval I satisfies conditions

(a1)’–(a4)’, which are just conditions (a1)–(a4) of Claim 1, with r and t replaced by rb and

tb, respectively. Consequently, it follows from Claim 1 (i) that Φrb(MI) = Φ̂p(M) > 0, and

hence Φrb(Xb−1MI) = Φrb(MI) = Φ̂p(M) > 0. Similarly, we can show that Φtb(Xb−1MI) =

Φtb(MI) = Φ̂q(M) > 0. Moreover, since FtbXb−1 = Xb−1Ftb and FrbXb−1 = Xb−1Frb, we have

Φrb(FtbXb−1MI) = max
{
N ≥ 0 | FN

rb
FtbXb−1MI 6= 0

}

= max
{
N ≥ 0 | FN

rb
FtbMI 6= 0

}

= Φrb(FtbMI).

Also, it follows from Claim 1 (i) that Φrb(FtbMI) = Φrb(MI) + 1; note that Φrb(MI) =

Φrb(Xb−1MI) as shown above. Combining these, we get Φrb(FtbXb−1MI) = Φrb(Xb−1MI)+1.

Similarly, we have Φtb(FrbXb−1MI) = Φtb(Xb−1MI) + 1. Here we remark that the crystal

BZI(λI) ∼= BI(λI) satisfies condition (C5) of Theorem A.1.1. Therefore, we obtain

XbMI = FrbF
2
tb
FrbXb−1MI 6= 0 and FtbF

2
rb
FtbXb−1MI 6= 0,

and

0 6= XbMI = FrbF
2
tb
FrbXb−1MI = FtbF

2
rb
FtbXb−1MI .

Also, since Xb−1MI = Yb−1MI by the induction hypothesis, we obtain

YbMI = FtbF
2
rb
FtbYb−1MI = FtbF

2
rb
FtbXb−1MI 6= 0,

and

XbMI = FtbF
2
rb
FtbXb−1MI = FtbF

2
rb
FtbYb−1MI = YbMI .

Thus, we have shown that XbMI 6= 0, YbMI 6= 0, and XbMI = YbMI for all 0 ≤ b ≤ a, as

desired.
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Since XaMI 6= 0, we have

XaMI = (FraF
2
ta
Fra) · · · (Fr2F

2
t2
Fr2)(Fr1F

2
t1
Fr1)MI

= (fraf
2
ta
fra) · · · (fr2f

2
t2
fr2)(fr1f

2
t1
fr1)MI

= fLr
f 2
Lt
fLr

MI by Theorem 2.3.4;

on the crystal BZI
∼= BI(∞), we have frbfrc = frcfrb and ftbftc = ftcftb for all 1 ≤ b, c ≤ a,

and frbftc = ftcfrb for all 1 ≤ b, c ≤ a with b 6= c (see (4.5.7)). Similarly, we can show that

YaMI = fLt
f 2
Lr
fLt

MI . Since XaMI = YaMI as shown above, we obtain (4.5.6), and hence

(4.5.2).

Finally, we show (4.5.3); we give a proof only for the first equation, since the proof of

the second one is similar. Define r, t ∈ Z as in (4.5.5); note that âpq = art and âqp = atr by

the definitions. Let K be an interval in Z such that r, t ∈ K, and take an interval I in Z

satisfying conditions (a1)–(a4) in Claim 1, conditions (b1), (b2) in the proof of (4.5.1) with

M′′ = F̂ 2
q F̂pM and r replaced by F̂ 2

p F̂qM and t, respectively, and the following:

(d) I ∈ Int(M; e, t− 1) ∩ Int(M; e, t) ∩ Int(M; e, t+ 1).

Then, we see from the proof of Claim 1 (i) that Φ̂q(F̂pM) = Φt(FrMI). Therefore,

ε̂q(F̂pM) = Φ̂q(F̂pM)− 〈Wt(F̂pM), α̂q〉

= Φt(FrMI)− 〈Wt(M)− ĥp, α̂q〉

= Φt(FrMI)− 〈λ̂+ wt(M)− ĥp, α̂q〉. (4.5.8)

Let us compute the value 〈wt(M), α̂q〉. We deduce from the definition (4.3.2) of wt(M) along

with Remark 4.3.2 that 〈wt(M), α̂q〉 = −MΛq−1 + 2MΛq
−MΛq+1 . Also,

−MΛq−1 + 2MΛq
−MΛq+1 = −MΛt−1 + 2MΛt

−MΛt+1 by Remark 4.3.2

= −M̟I
t−1

+ 2M̟I
t
−M̟I

t+1
= 〈wt(MI), αt〉 by condition (d).

Hence we obtain 〈wt(M), α̂q〉 = 〈wt(MI), αt〉. In addition, note that 〈λ̂, α̂q〉 = 〈λI , αt〉 by

the definition (4.5.4) of λI ∈ hI , and that 〈ĥp, α̂q〉 = âpq = art = 〈hr, αt〉. Substituting these

equations into (4.5.8), we see that

ε̂q(F̂pM) = Φt(FrMI)− 〈λI + wt(MI)− hr, αt〉

= Φt(FrMI)− 〈Wt(MI)− hr, αt〉

= Φt(FrMI)− 〈Wt(FrMI), αt〉 = εt(FrMI).

Now, the same argument as in the proof of (4.5.1) yields Φ̂q(F̂
2
p F̂qM) = Φt(F

2
r FtMI). Using

this, we can show in exactly the same way as above that ε̂q(F̂
2
p F̂qM) = εt(F

2
r FtMI). Since

we know from Claim 1 (ii) that εt(FrMI) = εt(F
2
r FtMI), we conclude that ε̂q(F̂pM) =

ε̂q(F̂
2
p F̂qM), as desired. Thus we have shown (4.5.3). This completes the proof of the theorem.
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Proof of Theorem 4.4.1. Recall from [Kas, §8.1] that the crystal basis B̂(∞) can be regarded

as the “direct limit” of B̂(λ̂)’s as λ̂ ∈ ĥ tends to infinity, i.e., as 〈λ̂, α̂i〉 → +∞ for all i ∈ Î.

Also, by using (4.4.1), we can verify that the direct limit of BZσ
Z(O; λ̂)’s (as λ̂ ∈ ĥ tends

to infinity) is nothing but BZσ
Z
(O). Consequently, the crystal BZσ

Z
(O) is isomorphic to the

crystal basis B̂(∞). This proves Theorem 4.4.1.

A Appendix.

A.1 Characterization of some crystal bases in the simply-laced case. In this

appendix, let A = (aij)i, j∈I be a generalized Cartan matrix indexed by a finite set I such

that aij ∈
{
0, −1

}
for all i, j ∈ I with i 6= j. Let g be the (simply-laced) Kac-Moody

algebra over C associated to this generalized Cartan matrix A, with Cartan subalgebra h,

and simple coroots hi, i ∈ I. Let Uq(g) be the quantized universal enveloping algebra over

C(q) associated to g. For a dominant integral weight λ ∈ h∗ := HomC(h,C) for g, let B(λ)

denote the crystal basis of the irreducible highest weight Uq(g)-module of highest weight λ.

Let B be a crystal for Uq(g), equipped with the maps wt, ep, fp (p ∈ I), and εp, ϕp (p ∈ I).

We assume that B is semiregular in the sense of [HK, p.86]; namely, for x ∈ B and p ∈ I,

εp(x) = max
{
N ≥ 0 | eNp x 6= 0

}
∈ Z≥0,

ϕp(x) = max
{
N ≥ 0 | fN

p x 6= 0
}
∈ Z≥0,

where 0 is an additional element, which is not contained in B. Let X denote the crystal graph

of the crystal B. We further assume that the crystal graph X is connected. The following

theorem is a restatement of results in [S].

Theorem A.1.1. Keep the setting above. Let λ ∈ h∗ be a dominant integral weight for g.

The crystal B is isomorphic, as a crystal for Uq(g), to the crystal basis B(λ) if and only if B

satisfies the following conditions (C1)–(C6):

(C1) If x ∈ B and p, q ∈ I are such that p 6= q and epx 6= 0, then εq(x) ≤ εq(epx) and

ϕq(epx) ≤ ϕq(x).

(C2) Let x ∈ B, and p, q ∈ I. Assume that epx 6= 0 and eqx 6= 0, and that εq(epx) = εq(x).

Then, epeqx 6= 0, eqepx 6= 0, and epeqx = eqepx.

(C3) Let x ∈ B, and p, q ∈ I. Assume that epx 6= 0 and eqx 6= 0, and that εq(epx) =

εq(x) + 1 and εp(eqx) = εp(x) + 1. Then, epe
2
qepx 6= 0, eqe

2
peqx 6= 0, and epe

2
qepx = eqe

2
peqx.

Moreover, ϕq(epx) = ϕq(e
2
peqx) and ϕp(eqx) = ϕp(e

2
qepx).

(C4) Let x ∈ B, and p, q ∈ I. Assume that fpx 6= 0 and fqx 6= 0, and that εq(fpx) = εq(x).

Then, fpfqx 6= 0, fqfpx 6= 0, and fpfqx = fqfpx.

(C5) Let x ∈ B, and p, q ∈ I. Assume that fpx 6= 0 and fqx 6= 0, and that ϕq(fpx) =

ϕq(x)+1 and ϕp(fqx) = ϕp(x)+1. Then, fpf
2
q fpx 6= 0, fqf

2
p fqx 6= 0, and fpf

2
q fpx = fqf

2
p fqx.

Moreover, εq(fpx) = εq(f
2
p fqx) and εp(fqx) = εp(f

2
q fpx).
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(C6) There exists an element x0 ∈ B of weight λ such that epx0 = 0 and ϕp(x0) = 〈hp, λ〉

for all p ∈ I.

(Sketch of) Proof. First we prove the “if” part. Recall that the crystal graph X of the

crystal B is an I-colored directed graph. We will show that X is A-regular in the sense of

[S, Definition 1.1]. It is obvious that X satisfies condition (P1) on page 4809 of [S] since B is

assumed to be semiregular. Also, it follows immediately from the axioms of a crystal that X

satisfies condition (P2) on page 4809 of [S]. Now we note that for x ∈ B and p ∈ I, ε(x, p)

(resp., δ(x, p)) in the notation of [S] agrees with ϕp(x) (resp., −εp(x)) in our notation. Hence,

for x ∈ B and p, q ∈ I with epx 6= 0, ∆pδ(x, q) (resp., ∆pε(x, q)) in the notation of [S] agrees

with −εq(epx)+εq(x) (resp., ϕq(epx)−ϕq(x)) in our notation. Hence, in our notation, we can

rewrite condition (P3) on page 4809 of [S] as:
{
−εq(epx) + εq(x)

}
+
{
ϕq(epx)−ϕq(x)

}
= apq

for x ∈ B and p, q ∈ I such that p 6= q and epx 6= 0. From the axioms of a crystal, we have

ϕq(epx)− εq(epx) = 〈hq, wt(epx)〉 = 〈hq, αp〉+ 〈hq, wt x〉

= aqp + 〈hq, wt x〉,

ϕq(x)− εq(x) = 〈hq, wt x〉.

Thus, condition (P3) on page 4809 of [S] holds for the crystal graph X . Similarly, in our

notation, we can rewrite condition (P4) on page 4809 of [S] as: −εq(epx) + εq(x) ≤ 0 and

ϕq(epx)−ϕq(x) ≤ 0 for x ∈ B and p, q ∈ I such that p 6= q and epx 6= 0, which is equivalent to

condition (C1). In addition, note that for x ∈ B and p, q ∈ I with fpx 6= 0, ∇pδ(x, q) (resp.,

∇pε(x, q)) in the notation of [S] agrees with −εq(x) + εq(fpx) (resp., ϕq(x)− ϕq(fpx)) in our

notation. In is easy to check that conditions (P5) and (P6) on page 4809 of [S] are equivalent

to conditions (C2) and (C3), respectively. Similarly, it is easily seen that conditions (P5’)

and (P6’) on page 4809 of [S] are equivalent to conditions (C4) and (C5), respectively. Thus,

we have shown that the crystal graph X is A-regular.

We know from [S, §3] that the crystal graph of the crystal basis B(λ) is A-regular. Also,

it is obvious that the highest weight element uλ of B(λ) satisfies the condition that epuλ = 0

and ϕp(uλ) = 〈hp, λ〉 for all p ∈ I (cf. condition (C6)). Therefore, we conclude from [S,

Proposition 1.4] that the crystal graph X of the crystal B is isomorphic, as an I-colored

directed graph, to the crystal graph of the crystal basis B(λ); note that x0 ∈ B corresponds

to uλ ∈ B(λ) under this isomorphism. Since the crystal graphs of B and B(λ) are both

connected, and since x0 ∈ B and uλ ∈ B(λ) are both of weight λ, it follows that the crystal

B is isomorphic to the crystal basis B(λ). This proves the “if” part.

The “only if” part is now clear from the argument above. Thus we have proved the

theorem.
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