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Abstract

We give (conjectural) analogs of Berenstein-Zelevinsky data for affine type A. More-
over, by using these affine analogs of Berenstein-Zelevinsky data, we realize the crystal
basis of the negative part of the quantized universal enveloping algebra of the (Lang-

lands dual) Lie algebra of affine type A.

1 Introduction.

This paper provides the first step in our attempt to construct and describe analogs of
Mirkovié-Vilonen (MV for short) polytopes for affine Lie algebras. In this paper, we concen-
trate on the case of affine type A, and construct (conjectural) affine analogs of Berenstein-
Zelevinsky (BZ for short) data. Furthermore, using these affine analogs of BZ data, we give
a realization of the crystal basis of the negative part of the quantized universal enveloping
algebra associated to (the Langlands dual Lie algebra of) the affine Lie algebra of affine type
A. Here we should mention that in the course of the much more sophisticated discussion
toward the (conjectural) geometric Satake correspondence for a Kac-Moody group of affine
type A, Nakajima [N] constructed affine analogs of MV cycles by using his quiver varieties;
see also [BF1], [BF2].

Let G be a semisimple algebraic group over C with (semisimple) Lie algebra g. Anderson

[A] introduced MV polytopes for g as moment polytopes of MV cycles in the affine Grass-
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mannian Gr associated to GG, and, on the basis of the geometric Satake correspondence, used
them to count weight multiplicities and tensor product multiplicities for finite-dimensional
irreducible representations of the Langlands dual group GV of G.

Soon afterward, Kamnitzer [Kaml], [Kam2] gave a combinatorial characterization of MV
polytopes in terms of BZ data; a BZ datum is a collection of integers (indexed by the set of
chamber weights) satisfying the edge inequalities and tropical Pliicker relations. To be more
precise, let T, be the Weyl group of g, and @/, i € I, the fundamental weights, where I is
the index set of simple roots; the set I'; of chamber weights is by definition I'y := | J,.; Wrw.
Then, for a BZ datum M = (M, ),er, with M, € Z, the corresponding MV polytope P(M)
is given by:

PM) ={he ()| (h,v) > M, forall y € I';},

where (h;)r is a real form of the Cartan subalgebra b of g, and (-, -) is the canonical pairing
between h; and hj. We denote by BZ; the set of all BZ data M = (M, ).er, such that
M1 =0 for all 7 € I, where wd € Wy is the longest element.

Now, let g denote the affine Lie algebra of type Agl) over C with Cartan subalgebra H,
and A = (aij)i,jef its Cartan matrix with index set [ = {O, 1, ..., f}, where ( € Z>s is a
fixed integer. Before constructing the set of (conjectural) analogs of BZ data for the affine
Lie algebra g, we need to construct the set BZy of BZ data of type A.

Let sl (C) denote the infinite rank Lie algebra over C of type A, with Cartan subalgebra
h, and Az = (a;));, jez its Cartan matrix with index set Z. Let Wy = (s; | i € Z) C GL(h*)
be the Weyl group of sl.(C), and A; € b*, i € Z, the fundamental weights; the set I'; of
chamber weights for sl,,(C) is defined to be the set

Tz = J(-Wzhi) = {~wh; | w € Wy, i € Z},
1€Z

not to be the set J;., WzA;. Then, for each finite interval I in Z, we can (and do) identify
the set I'; of chamber weights for the finite-dimensional simple Lie algebra g; over C of type
Ajp) with the subset {—wA; | w € Wy, i € I}, where |I| denotes the cardinality of I, and
Wy = (s;|i¢elI)C Wy isthe Weyl group of g; (see §3.1] for details). Here we note that the
family {BZ ;| I is a finite interval in Z} forms a projective system (cf. Lemma 2.4.T]).

Using the projective system {BZ ;| I is a finite interval in Z} above, we define the set
BZ; of BZ data of type A, to be a kind of projective limit, with a certain stability constraint,
of the system {BZ ;| I is a finite interval in Z}; see Definition B.2.1] for a precise statement.
Because of this stability constraint, we can endow the set BZ7 a crystal structure for the Lie
algebra sl (C) of type A.

Finally, recall the fact that the Dynkin diagram of type Agl) can be obtained from that of
type A by the operation of “folding” under the Dynkin diagram automorphism o : Z — Z
in type Ao given by: o(i) =i+ ¢ — 1 for i € Z, where { € Z>,. In view of this fact, we



consider the fixed point subset BZ7 of BZ; under a natural action of the Dynkin diagram
automorphism ¢ : Z — Z. Then, we can endow a crystal structure (canonically induced
by that on BZy) for the quantized universal enveloping algebra U,(g¥) associated to the
(Langlands) dual Lie algebra g" of @.

However, the crystal BZ7 for U,(g¥) may be too big for our purpose. Therefore, we
restrict our attention to the connected component BZ7(O) of the crystal BZ7 containing
the BZ datum O of type A, whose y-component is equal to 0 for each v € I';. Our
main result (Theorem EAT]) states that the crystal BZ7(O) is isomorphic, as a crystal for
U,(g"), to the crystal basis B(co) of the negative part U, (8") of Uy(g"). Moreover, for
each dominant integral weight A € h for g¥, the crystal basis B()) of the irreducible highest
weight U,(g")-module of highest weight X can be realized as a certain explicit subset of
BZ5(0) (see Theorem A.4H). In fact, we first prove Theorem by using Stembridge’s
result on a characterization of highest weight crystals for simply-laced Kac-Moody algebras;
then, Theorem [4.4.1] is obtained as a corollary.

Unfortunately, we have not yet found an explicit characterization of the connected com-
ponent BZ7(0) C BZ7 in terms of the “edge inequalities” and “tropical Pliicker relations” in
type Aél) in a way analogous to the finite-dimensional case; we hope to mention such a descrip-
tion of the connected component BZ7(0) C BZ7 in our forthcoming paper [NSS|. However,
from our results in this paper, it seems reasonable to think of an element M = (M, ),er, of
the crystal BZ7(0O) as a (conjectural) analog of a BZ datum in affine type A.

This paper is organized as follows. In Section 2], following Kamnitzer, we review some
standard facts about BZ data for the simple Lie algebra g; of type A, where I C Z is the
index set of simple roots with cardinality m, and then show that the system of sets BZ; of
BZ data for g;, where I runs over all the finite intervals in Z, forms a projective system. In
Section 3 we introduce the notion of BZ data of type A, and define Kashiwara operators on
the set BZ; of BZ data of type A. Also, we show a technical lemma about some properties
of Kashiwara operators on BZz. In Section [l we first study the action of the Dynkin diagram
automorphism o in type A, on the set BZ;. Next, we define the set of BZ data of type Aél)
to be the fixed point subset BZ7, of BZ; under o, and endow a canonical crystal structure on
it. Finally, in Subsections [4.4] and [4.5], we state and prove our main results (Theorems [£.4.7]
and A.4.5]), which give a realization of the crystal basis g(oo) for the (Langlands dual) Lie
algebra g of type Agl). In the Appendix, we restate Stembridge’s result on a characterization

of simply-laced crystals in a form that will be used in the proofs of the theorems above.

2 Berenstein-Zelevinsky data of type A,,.

In this section, following [Kaml] and [Kam2|, we briefly review some basic facts about
Berenstein-Zelevinsky (BZ for short) data for the complex finite-dimensional simple Lie al-

gebra of type A,,.



2.1 Basic notation in type A,,. Let I be a fixed (finite) interval in Z whose cardinality
is equal to m € Z>;; that is, I C Z is a finite subset of the form:

[:{n+1,n+2,...,n+m} for some n € Z. (2.1.1)

Let A; = (aij)i jer denote the Cartan matrix of type A,, with index set I; the entries a;; are
given by:

2 ifi=y,

a; =< —1 if |li—j| =1, (2.1.2)

0 otherwise,
for i, y € I. Let g; be the complex finite-dimensional simple Lie algebra with Cartan matrix
Aj, Cartan subalgebra b, simple coroots h; € by, i € I, and simple roots a; € b} =
Homc(b;, C), i € I; note that h; = €,.; Ch;, and that (h;, a;) = a;; for i, j € I, where
(-, -) is the canonical pairing between h; and h3. Denote by w! € b%, i € I, the fundamental
weights for g7, and by Wy := (s; | ¢ € I) (C GL(b})) the Weyl group of g;, where s; is
the simple reflection for ¢ € I, with e and w/ the identity element and the longest element
of the Weyl group Wi, respectively. Also, we denote by < the (strong) Bruhat order on
W;. The (Dynkin) diagram automorphism for g; is a bijection w; : I — [ defined by:
win+i)=n+m—i+1for 1 <i<m (see ZII) and (Z.I.2)). It is easy to see that for
1el,

I

wo(i) = —aw,),  wo(ww; Wo Sy (i) = SiWp- (2.1.3)

Let g} denote the (Langlands) dual Lie algebra of g;; that is, gy is the complex finite-
dimensional simple Lie algebra of type A,, associated to the transpose ‘A; (= A;) of A, with
Cartan subalgebra b}, simple coroots a; € by, i € I, and simple roots h; € by, ¢ € I. Let
U,(g}/) be the quantized universal enveloping algebra over the field C(g) of rational functions
in ¢ associated to the Lie algebra g, U, (g/) the negative part of U,(gy), and B;(oco) the
crystal basis of U; (gy). Also, for a dominant integral weight A € b; for gy, B;()\) denotes
the crystal basis of the finite-dimensional irreducible highest weight U, (g))-module of highest
weight .

2.2 BZ data of type A,,. We set
Ip:={ww |weW;,iell; (2.2.1)

note that by the second equation in (ZI3]), the set I'; (of chamber weights) coincides with
the set —I'; = {—ww! | w € W;,i € I'}. Let M = (M,),er, be a collection of integers
indexed by I';. For each v € I';, we call M, the y-component of the collection M, and denote
it by (M)s,.



Definition 2.2.1. A collection M = (M,).er, of integers is called a Berenstein-Zelevinsky
(BZ for short) datum for g if it satisfies the following conditions (1) and (2):
(1) (edge inequalities) for all w € W and i € I,

Myt + Mygr + > ajiM, =1 <0 (2.2.2)

Jel\{i}
(2) (tropical Pliicker relations) for all w € W; and 4, j € I with a;; = aj;; = —1 such that

ws; > w, ws; > w,

M 1—|—M z—mln(M 1—|—M

wsw wssw7

M I—I—M

wssw)

(2.2.3)

2.3 Crystal structure on the set of BZ data of type A,,. Let M = (M,),er, be a
BZ datum for g;. Following [Kamll, §2.3], we define

PM) :={h € (by)r | (h, v) > M, for all v € T/},

where (h7)r := @,c; Rh; is a real form of the Cartan subalgebra b;. We know from [Kam1l,
Proposition 2.2] that P(M) is a convex polytope in (h;)r whose set of vertices is given by:

w € W} C (bI)R- (231)

The polytope P(M) is called a Mirkovi¢-Vilonen (MV) polytope associated to the BZ datum
M= (Mv)'yefl-

We denote by BZ; the set of all BZ data M = (M,,),er, for g; satisfying the condition
that My 1=0 for all i € I, or equivalently, M__: = 0 for all i € I (by the second equation
in (213)). By [Kam2| §3.3], the set MV, := {P ) | M € BZ;} can be endowed with a
crystal structure for U,(g) ), and the resulting crystal MV is isomorphic to the crystal basis
B(oo) of the negative part U, (g;) of U,(gy). Because the map BZ; — MV, defined by
M — P(M) is bijective, we can also endow the set BZ; with a crystal structure for U,(gy)
in such a way that the bijection BZ; — MV; is an isomorphism of crystals for U,(g}).

Now we recall from [Kam2| the description of the crystal structure on BZ;. For M =

(M)~ er, € BZ;, define the weight wt(M) of M by:

Z M1 h;. (2.3.2)

The raising Kashiwara operators e,, p € I, on BZ are defined as follows (see [Kam2, Theo-
rem 3.5 (ii)]). Fix p € I. For a BZ datum M = (M, ),er, for g; (not necessarily an element
of BZp), we set

€p(M) = Mw{, + Mspw{, + Z aquwé ) (233)

qeI\{p}



which is nonnegative by condition (1) of Definition 22,1l Observe that p,, (M) — p.(M) =
ep(M)h,,, and hence that p,, (M) = p.(M) if and only if €,(M) = 0. In view of this, we
set e,M := 0 if £,(M) = 0 (cf. [Kam2, Theorem 3.5(ii)]), where 0 is an additional element,
which is not contained in BZ;. We know the following fact from [Kam2, Theorem 3.5 (ii)]

(see also the comment after [Kam2, Theorem 3.5]).

Fact 2.3.1. Let M = (M,,) er, be a BZ datum for g; (not necessarily an element of BZ;).
If e,(M) > 0, then there exists a unique BZ datum for g, denoted by e,M, such that
(epM)or = Mg + 1, and such that (e,M), = M, for all v € T'r with (hy, v) < 0.

It is easily verified that if M = (M) er, € BZ, then e,M € BZ;U{0}. Indeed, suppose
that €,(M) > 0, or equivalently, e,M # 0. Let i € I. Since (h,, wiw!) < 0 by the second
equation in (Z.1.3), it follows from the definition of e,M that (e,M),1: is equal to M1,
and hence that (€,M), 11 = M1 = 0. Thus, we obtain a map e, from BZ; to BZ; U {0}
sending M € BZ; to e,M € BZ; U {0}. By convention, we set e,0 := 0.

Similarly, the lowering Kashiwara operators f,, p € I, on BZ are defined as follows. Fix
p € I. Let us recall the following fact from [Kam2, Theorem 3.5 (i)], the comment after
[Kam2, Theorem 3.5, and [Kam2, Corollary 5.6].

Fact 2.3.2. Let M = (M,,) er, be a BZ datum for g; (not necessarily an element of BZ;).
Then, there exists a unique BZ datum for gr, denoted by f,M, such that (pr)wé = Mg —1,
and such that (f,M), = M., for all v € I'y with (h,, v) < 0. Moreover, for each v € Iy,

min(M,, M, +c,(M)) if (h,, ) > 0,

(M), = (2.3.4)
e M, otherwise,
where ¢,(M) := Mg — M, — 1.

Remark 2.3.3. Keep the notation and assumptions of Fact 2321 By (234), we have
(fpM), < M, for all v € T';.

In exactly the same way as the case of e, above, we see that if M € BZ;, then f,M € BZ;.
Thus, we obtain a map f, from BZ; to itself sending M € BZ; to f,M € BZ;. By convention,
we set f,0:= 0.

Finally, we set ¢,(M) := (wt(M), «,) +¢,(M) for M € BZ; and p € I.

Theorem 2.3.4 ([Kam2]). The set BZ;, equipped with the maps wt, e,, f, (p € I), and
£ps 0p (p € I) above, is a crystal for U,(g)) isomorphic to the crystal basis Br(co) of the
negative part Uz (gy) of Uy(g})-

Remark 2.3.5. Let O be the collection of integers indexed by I'; whose y-component is equal

to 0 for all v € T';. It is obvious that O is an element of BZ; whose weight is equal to 0.



Hence it follows from Theorem 2.3.4] that for each M € BZ;, there exists py, pa, ..., py € [
such that M = f,, fp, - - - fox O. Therefore, using this fact and Remark 2.3.3] we deduce that
if M = (M) er, € BZ;, then M, € Z<, for all vy € I';.

Let A € h; be a dominant integral weight for gy. We define MV () to be the set of those
MYV polytopes P € MV such that A+ P is contained in the convex hull Conv(WA) in (h;)r
of the Wi-orbit WA through A. We see from [Kam?2| §3.2] that for M = (M, ),er, € BZ/,

A+ PM)={hebr|(h ~)>M foralyel;},

where M := M, + (), 7) for v € I';. We know from [Kam1l, Theorem 8.5] and [Kam2, §6.2]
that A + P(M) C Conv(W;A) if and only if M), > (woA, w!) for all i € I. A simple

computation shows the following lemma.

Lemma 2.3.6. Let M = (M,) er, € BZ;. Then, the MV polytope P(M) is contained in
MV(A) (i.e., A+ P(M) C Conv(WA)) if and only if

M_, 1>—(\ ;) foralliel. (2.3.5)

—8iw;

We denote by BZ;()) the set of all BZ data M = (M,),er, € BZ; satisfying (2Z3.3).
By the lemma above, the restriction of the bijection BZ; — MV, M — P(M), to the
subset BZ;(\) C BZ; gives rise to a bijection between BZ;(A) and MV;(\). By [Kam2,
Theorem 6.4], the set MV(\) can be endowed with a crystal structure for U,(gy), and the
resulting crystal MV ;()) is isomorphic to the crystal basis B;(A) of the finite-dimensional
irreducible highest weight U, (g} )-module of highest weight A. Thus, we can also endow the set
BZ(\) with a crystal structure for U,(g)) in such a way that the bijection BZ;(\) — MV ()
above is an isomorphism of crystals for U,(g}).

Now we recall from [Kam2, §6.4] the description of the crystal structure on BZ(\). For
M = (M) er, € BZ(\), define the weight Wt(M) of M by:

Wt(M) = A+ wt(M) = A+ > M_sh;. (2.3.6)
iel
The raising Kashiwara operators e,, p € I, and the maps €,, p € I, on BZ(\) are defined

by restricting those on BZ; to the subset BZ;(\) C BZ;. The lowering Kashiwara operators
F,, p €I, on BZ()\) are defined as follows: for M € BZ;(\) and p € I,

0 otherwise.

M if f,M is an element of BZ;(\),
FpM: {fp fp I( )

Also, we set ®,(M) := (Wt(M), a,) +¢,(M) for M € BZ;(\) and p € I. It is easily seen by
[233) and ([2.3.6) that if M = (M, )er,, then

(I)p<M> = Mw{, - Mspw{, + <)\7 Oép>. (237>



Theorem 2.3.7 ([Kam2, Theorem 6.4]). Let A € by be a dominant integral weight for gy .
Then, the set BZ(X), equipped with the maps wt, e,, F, (p € I), and ¢, , (p € I) above, is
a crystal for U,(g)) isomorphic to the crystal basis Br(\) of the finite-dimensional irreducible
highest weight U,(g{)-module of highest weight X.

2.4 Restriction to subintervals. Let K be a fixed (finite) interval in Z such that K C I.
The Cartan matrix Agx of the finite-dimensional simple Lie algebra gx equals the principal
submatrix of the Cartan matrix A; of gy corresponding to the subset K C I. Also, the Weyl
group Wg of gx can be identified with the subgroup of the Weyl group W of g; generated
by the subset {s; | i € K} of {s; | i € I}. Moreover, we can (and do) identify the set
'k (of chamber weights) for gx (defined by (221 with I replaced by K) with the subset
{—ww! | w e Wk, i € K} of the set I'; (of chamber weights) through the following bijection

of sets: N
Iy = {~ww!|weWg, ic K} CTy,
(2.4.1)

—wwl = —ww! forwe Wk andi€ K;
K

observe that the map above is well-defined. Indeed, suppose that ww;* = ijK for some

w, v € Wi and i, j € K. Since w’ and ij are dominant, it follows immediately that i = 7,

and hence ww]* = vwl* = vw/<. Since v 'ww* = w/* (i.e., v™'w stabilizes /"), we see that
I

v™lw is a product of sp’s for k € K \ {i}. Therefore, we obtain v"'ww! = w!, and hence

ww! = vw! = ijl» , as desired. Also, note that for each i € K, the fundamental weight

wk € 'k for gx corresponds to —wé((wiK(i)) = wé(wéwilw((i)

41), where wg : K — K denotes the (Dynkin) diagram automorphism for gx. For a

€ I'; under the bijection

collection M = (M,,),er, of integers indexed by I';, we set Mg := (M,) er), regarding the
set 'k as a subset of the set I'; through the bijection (2.4.T]).

Lemma 2.4.1. Keep the notation above. If M = (M, ) er, is an element of BZ;, then
Mg = (M) ery is a BZ datum for gi that is an element of BZ .

Proof. First we show that M satisfies condition (1) of Definition 2.2.1] (with I replaced by
K), ie., forw € Wk and i € K,

Mwwf( + MwsiwiK + Z ajiMwij <0. (242>
JER\E}
Observe that under the bijection (2.4.1]), we have
K

ww wvowi(k) (k € K), (243)

K

ws;wl = wswewl

ri) = WS T (i);

where we set vy := wlw} and 7 := wywg for simplicity of notation. Since M is a BZ datum
for gy, it follows from condition (1) of Definition 2Z.21] for wvy € Wy and 7(i) € I that

vaowi(i) + vaosT(i)wi(i) + Z a’j,T(i)vaowJI. S O (244)
Je\{r(i)}
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Here, using the equality ay, (j),7() = @jwe @) for 7 € I, we see that
Yo G Myt =Y oy (5),7) Mot = > Gjore (i) Moot -
JEN{T(1)} wr(H)eN{r(9)} JEN{wk (4)}
Also, if j € I'\ K, then

— _ - K
vaowi,u) = M_ww§w§ = M—wjl- since ww, € Wk

=0 since M € BZ;.

Hence it follows that

> G Mt = D Gex Ml

)
jeN{wk (i)} T jer\fox()

Furthermore, using the equality a,,,(j)wx@) = aji for j € K, we get

Z Qo5 (7) vaowil(j) = Z Qg (5),wi (3) vaowil(wK(j))
JeEK\{wk (1)} wi (e \{wk (4)}
e Z ajivaow,,I_(j)'
Jjer\{i}

Substituting this into ([2.4.4]), we obtain
vaowi(i) + vaosT(i)wi(i) + Z ajivaowi(j) S 0.
JeK\{i}

The inequality (24.2) follows immediately from this inequality and the correspondence

2.4.3).

Next we show that Mg satisfies condition (2) of Definition 2Z2.] (with I replaced by K),

i.e., for w € Wk and ¢, j € K with a;; = a;; = —1 such that ws;, > w, ws; > w,
Mwsiwi}( + Mwsj'w]K = mln(Mwle + Mwsisj'w]K’ MwaK + Mwsj'siwiK)' (245)

Observe that under the bijection (2.4.1]), we have

wwy = wwwly (k€ K),
wspwl wskvowi(k) :wvosT(k)wi(k) (k € K), (2.4.6)

wsspwl = wslskvowi(k) = wvosT(Z)sT(k)wi(k) (k,l € K).

Since ar)r(j) = Ar(j),r(i) = —1 and wvps-x) = wskvy > wvp for k =1, j, and since M is a BZ
datum for gy, it follows from condition (2) of Definition Z.2.1] for wvy € Wy and 7(7), 7(j) €
that

M
“”’057(1‘)w£(i)+ wvoST(j)wi(j)

:min(M 1)—|—M M 1 +M

WY w,; wvosT(i)sT(j)wf_(j)u WOy wvosT(j)sT(i)wf_(i)) :



The equation (2.4.5]) follows immediately from this equation and the correspondence (2.4.6)).
Finally, it is obvious that Mx x = M__1 o = 0 for all 7 € K, since M € BZ;. This
7 wpe (2
proves the lemma. O
Now, we set I'K = {ww{ | w e Wg,ie€ K} C I';. Then there exists the following
bijection of sets between ['g and I'F:
Iy = I,

(2.4.7)

wwl — ww! forw e Wk and i € K;

the argument above for the correspondence (2.4.1]) shows that this map is well-defined. For a
collection M = (M, ) er, of integers indexed by I';, we define M := (M,),crx, and regard
it as a collection of integers indexed by ' through the bijection (2.4.7) between the index

sets.

Lemma 2.4.2. Keep the notation above. If M = (M.,)cr, is an element of BZ;, then M*
1s a BZ datum for gk .

Proof. First we show that M¥ satisfies condition (1) of Definition 2221 (with I replaced by
K), ie., forw € Wk and i € K,

My + My + Y @jiMy e <0. (2.4.8)
JER\{i}

Since M is a BZ datum for g;, it follows from condition (1) of Definition 2Z21] for w € W;
and ¢ € [ that

M I+Mw8w1+ Z aﬂ S
JeN{i}
and hence
Myt + Myt + Y @iMyr + > aiMr <0 (2.4.9)
JeK\{i} JEN\K

Because M, € Z< for all v € I'; by Remark 2.3.5] it follows that all terms ajiMww ,j € I\K,

of the second sum in (2:4.9) are nonnegative integers. Hence we obtain

M I+Mw8w1+ Z aﬂ SO
JER\{i}

The inequality (2.4.8) follows immediately from this equality and the correspondence (2.4.7).
Next we show that M¥ satisfies condition (2) of Definition Z22.1] (with I replaced by K),

i.e., for w € Wk and 4, j € K with a;; = a;; = —1 such that ws;, > w, ws; > w,
]\JwS =k -+ M K = mm(M K —+ Mws s wK, M K -+ Mwsjs,w ) (2.4.10)

10



Since M is a BZ datum for g;, it follows from condition (2) of Definition 2.2.1] for w € W;
and 7, 7 € I that

M 1+ Mijwl = min(Mwwg + M .M 1+ M

WS WSS} wwj WS ;8

The equation (2.410) follows immediately from this equation and the correspondence (ZZ4.7]).

This proves the lemma. O

3 Berenstein-Zelevinsky data of type A..

3.1 Basic notation in type A.. Let Az = (a;)ijez denote the generalized Cartan

matrix of type A, with index set Z; the entries a;; are given by:

2 ifi=j
a; =4 —1 if [i—j| =1, (3.1.1)

0 otherwise,

for i, j € Z. Let
(AZ7 II:= {ai}iGZ’ H\/ = {hi}iEZ’ h*7 b)

be the root datum of type A,,. Namely, b is a complex infinite-dimensional vector space,
with TIV a basis of b, and II is a linearly independent subset of the (full) dual space h* :=
Home(h, C) of b such that (h;, ;) = a;; for i, j € Z, where (-, -) is the canonical pairing
between h and h*. For each i € Z, define A; € b* by: (h;, A;) = 0;; for j € Z. Let
Wy = (s; | i € Z) (C GL(h*)) be the Weyl group of type Ay, where s; is the simple
reflection for ¢ € Z. Also, we denote by < the (strong) Bruhat order on Wy (cf. [BjB| §8.3]).
Set
Iy = {—wAi |we Wy, ie Z}, and =z := —I'7z. (3.1.2)

We should note that I'z N Zz = (. Indeed, suppose that v € I'z N Zz. Since v € I'z (resp.,
v € Ez), it can be written as: v = —wA; (resp., v = vA;) for some w € W7 and i € Z (resp.,
v € Wz and j € Z). Then we have v = —wA; = vA;, and hence —A; = w™vA;. Since A; is

a dominant integral weight, we see that w'vA; is of the form:
woA; = Aj — (mia, + maay, + -+ + myoy,)

for some my, mo, ..., my, € Zso and 1y, ia, ..., i, € Z with 9 < iy < .-+ < 4, If we set

k=1, + 1, then we see that
<hk, w_lvAj) = <hk, A]> — mp(hk, Oél'p> = <hk, A]> + my > 0.

However, we have

0< <hk, w’lvAj) = <hk, _Az> <0,

11



which is a contradiction. Thus we have shown that I'; N =z = 0.

Let M = (M,)er, (resp., M = (M)eez,) be a collection of integers indexed by I'z (resp.,
Zz). For each v € I'y (resp., £ € Zz), we call M, (resp., M) the y-component (resp. the
¢-component) of M, and denote it by (M), (resp., (M)g).

Let I be a (finite) interval in Z. Then the Cartan matrix A; of the finite-dimensional
simple Lie algebra g; (see §2.1]) equals the principal submatrix of Az corresponding to I C Z.
Also, the Weyl group W; of g; can be identified with the subgroup of the Weyl group W
generated by the subset {s; | i € I} of {s; | i € Z}. Moreover, we can (and do) identify the
set 'y (of chamber weights) for g, defined by ([Z2.1), with the subset {—wA; | w € Wy, i € I'}
of the set I'z (of chamber weights) through the following bijection of sets:

Iy 5 {~wA |weW,, iel}Cly, 5.13)
—ww! = —wA; forw e W;andi€ I; -
the same argument as for the correspondence ([2.4.1]) shows that this map is well-defined. Note
that for each i € I, the fundamental weight w] € I'; for g; corresponds to —w{(Ay, 1)) € I'z
under the bijection (B.1.3]), where w; : I — I denotes the (Dynkin) diagram automorphism
for g;.

Remark 3.1.1. Let I be an interval in Z, and fix ¢ € I. The element @w; = —w{(Ay, ) € 'z
satisfies the following property: for j € Z,
0;; ifjel,
(hj, @) =<{ =1 if j=(minl)—1orj= (max)+1, (3.1.4)
0  otherwise.
Indeed, it is easily seen that (h;, w!) = &;; for j € I. Also, if j < (minl)—1orj > (maxI)+1,
then (wl)~*h; = h; since wl € Wy = (s; | i € I). Hence

<hj7 w{) = <h'j7 _wé(Awl(i)>> = _<(wé)_1hj7 Awl(i)> = _<h'j7 Awl(i)> =0.

It remains to show that (h;, @!) = —1if j = (minI)—1 or j = (max I)+ 1. For simplicity of
notation, suppose that I = {1, 2., m} and 7 = 0. Then, by using the reduced expression
wl = (5182 8m) (51827 Sm_1) - - (s182)s1 of the longest element wl € W;, we deduce that
(w)™tho = ho + hy + -+ - + hy,. Therefore,

(ho, @]} = (ho, —w§(Awy)) = — (W) o, Auyi)
= —(ho +ha+ -+ huny Ayyi)) = —1,

as desired.

For a collection M = (M, ) er, of integers indexed by I'z, we set M; := (M,)er,,
regarding the set I'; as a subset of the set I'; through the bijection (B1.3). Note that if K
is an interval in Z such that K C I, then (M;)x = Mg (for the notation, see §2.4]).
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3.2 BZ data of type A..

Definition 3.2.1. A collection M = (M, ),er, of integers indexed by I'z is called a BZ datum
of type A if it satisfies the following conditions:

(a) For each interval K in Z, Mg = (M, ) er, is a BZ datum for g, and is an element
of BZ (cf. Lemma [2Z4.7T]).

(b) For each w € Wy and ¢ € Z, there exists an interval [ in Z such that i € I, w € Wy,

and M, s = M, for all intervals J in Z containing I.

Example 3.2.2. Let O be a collection of integers indexed by I'; whose y-component is equal
to 0 for each v € I'z. Then it is obvious that O is a BZ datum of type A, (cf. Remark 23.5]).

Let BZ7 denote the set of all BZ data of type Ao,. For M = (M, ) er, € BZ7, and for
each w € W and i € Z, we denote by Int(M;w, i) the set of all intervals I in Z satisfying
condition (b) of Definition B.2.1] for the w and 1.

Remark 3.2.3. (1) Let M be a BZ datum of type Ay, i.e., M € BZ, and let w € Wy and
i € Z. 1t is obvious that if I € Int(M;w, 1), then J € Int(M;w, 1) for every interval J in Z
containing [.

(2) Let M, (1 < b < a) be BZ data of type Ay, and let w, € Wy (1 < b < a) and
iy € Z (1 <b < a). Then the intersection

Int(My; wq,41) N Int(Ma; we, ia) N - - N Int(Mg; wq, i4)

is nonempty. Indeed, we first take I, € Int(My; wy, 4p) arbitrarily for each 1 < b < a, and
then take an interval J in Z such that J D I, for all 1 < b <a (ie, J DL ULU---Ul,).
Then, it follows immediately from part (1) that J € Int(My; wy,dp) for all 1 < b < a, and
hence that J € Int(My; wyq, 1) N Int(Ma; we, i9) N -+ - N Int(My; wy, i4)-

For each M = (M) er, € BZz, we define a collection ©(M) = (M¢)¢ez, of integers
indexed by = = —I'z as follows. Fix £ € =7, and write it as & = wA; for some w € Wy,
and i € Z. Here we note that if I), I, € Int(M;w,i), then M 1, = M __1,. Indeed,
take an interval J in Z such that J D I; U I,. Then we have Mwwzgl = Mww; = Mwwgg,
and hence M 1, = M__r,. We now define Mg = My, = Mww{l for I € Int(M;w,%).
Let us check that this definition of M¢ does not depend on the choice of an expression
§ = wA;. Suppose that { = wA; = vA; for some w, v € Wz and 4, j € Z; it is obvious
that ¢ = j since A; and A, are dominant integral weights. Take an interval I in Z such that
I € Int(M; w, i) NInt(M; v, j) (see Remark 3.2.31(2)). Then, since w, v € W; and wA; = vA,,
the same argument as for the correspondence (ZZ1]) shows that ww! = ijf- . Therefore, we
obtain My, = M, M, My, as desired.

I = I =
w; w5
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3.3 Kashiwara operators on the set of BZ data of type A.. Let M = (M,) er, €
BZz, and fix p € Z. We define f,M = (M ),er, as follows. For each v € I'z, take an interval
I in Z such that

vyel'y and e Int(M;e,p)NInt(M;s,,p); (3.3.1)

since M; € BZ; by condition (a) of Definition B2l we can apply the lowering Kashiwara
operator f, on BZ; to M;. We define (f,M), = M to be (f,M;),. It follows from (2.3.4])
that
e {mm(Mv, M, + ¢p(My)) if (hy, 7) >0,
M, otherwise,

where ¢,(M;) = M1 — Mg, 1 — 1. Since I € Int(M; e, p) N Int(M; s,, p), we have

’
cp(My) = Moy — M, or — 1= My, — My,n, — 1 =: ¢,(M),

where My, := ©O(M),,, and M, », := ©O(M),,,. Thus,

r_
M, =

{min(M»y, My, + (M) i (R, 7) >0, (3.3.2)

M, otherwise.

From this description, we see that the definition of M does not depend on the choice of an
interval I satisfying (3.3.1).

Remark 3.3.1. (1) Keep the notation and assumptions above. It follows from (3.3.2) that
M = (fM), < M, for all v € I'z.
(2) For M € BZ7 and p € I, there holds

(fpM); = f,M; if I € Int(M;e,p) N Int(M;s,, p). (3.3.3)
Proposition 3.3.2. Let M € BZy, and p € Z. Then, f,M is an element of BZy.

By this proposition, for each p € Z, we obtain a map f, from BZ7 to itself sending
M € BZy to f,M € BZy, which we call the lowering Kashiwara operator on BZj,.

Proof of Proposition[3.3.2. First we show that f,M satisfies condition (a) of Definition [3.2.1]
Let K be an interval in Z. Take an interval I in Z such that K C I and I € Int(M;e,p) N
Int(M; s,,p). Then, by (3.3.3), we have (f,M); = f,M; € BZ,;. Also, it follows from
Lemma ZZAT that ((f,M)r), = (fyMs)x € BZk. Since ((f,M);) . = (f,M)x, we conclude
that (f,M)x € BZk, as desired.

Next we show that f,M satisfies condition (b) of Definition B.2.1l Write M € BZy and
fpM as: M = (M,) er, and f,M = (M) er,. Fix w € Wz and i € Z, and take an interval
I in Z such that

I € Int(M; e, p) N Int(M; s, p) N Int(M; w, i) N Int(M; s,w, ). (3.3.4)
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Then, by ([B.3.2)), we have

M/ {min(Mww{7 Mspwwil + CP(M>) 1f <h’p7 ww{) > 07
ww! =

Myt otherwise.

Now, let J be an interval in Z containing I. Then, J is also an element of the intersection in

B34) (see Remark 3.2.3/(1)). Therefore, again by (3.3.2),

M, o ww;] + CP(M)) lf <hp> wwy) > 07
ww! T

i

{min(M g, M

wwy Sp
M, _, otherwise.

UJ’W,L

Since I € Int(M;w,i) (resp., I € Int(M;syw,i)) and J D I, it follows from the definition
that M, s = M, (vesp., M .00 = M, ). Also, since w € Wy and p € I, we see that

wow; SpwWw;

w™thy, € @, Zhj C D, Zh;. Hence it follows from (B.1.4) that

I

<h'p7 ww{) = <w71hp7 wz> = <w71h’p7 wzJ> = <hp7 waJ>

In particular, (h,, wew/) > 0 if and only if (h,, ww) > 0. Consequently, we obtain M/ _, =
M! _,, which shows that f,M = (M), cr, satisfies condition (b) of Definition B.2.T] as desired.
Thus, we have proved that f,M € BZz, thereby completing the proof of the proposition. [

Remark 3.3.3. Let M € BZ7, and fix p € Z. Also, let w € Wz and i € Z. The proof of
Proposition shows that if an interval I in Z is an element of the intersection

Int(M; e, p) N Int(M; s,, p) N Int(M; w, i) N Int(M; s,w, 7),

then I is an element of Int(f,M;w, 7).

For intervals I, K in Z such that I D K, let BZz(I, K) denote the subset of BZ7 consisting
of all elements M € BZ7 such that I € Int(M; v, k) for every v € Wi and k € K; note that
BZ4(1, K) is nonempty since O € BZ3(I, K) (for the definition of O, see Example B.2.2]).

Lemma 3.3.4. Keep the notation above.
(1) The set BZ4(I, K) is stable under the lowering Kashiwara operators f, for p € K.
(2) Let M € BZ4(I, K), and p1, p2, --., pa € K. Then,

(fpafpa—1 e 'fle)I = fpafpa—l T fp1MI- (3-3-5)

Proof. (1) Let M € BZ4(I, K), and p € K. We show that I € Int(f,M;v,k) for all v € Wi

and k € K. Fix v € Wi and k € K. Since the interval I is an element of the intersection
Int(M; e, p) N Int(M; s,, p) N Int(M; v, k) N Int(M; s,v, k),
it follows from Remark that I € Int(f,M;v, k). This proves part (1).
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(2) We show formula (3.3.5]) by induction on a. Assume first that @ = 1. Since I €
Int(M;e,p) N Int(M; s, p) for all p € K, it follows from (B.33) that (f,,M); = f,, M.
Assume next that a > 1. Weset M’ := f, | --- f,, M. Because M’ € BZ;(I, K) by part (1),
we see by the same argument as above that (f,, fpu 1 - fou M) = (fp.M')1 = fp. M. Also,
by the induction hypothesis, M} = (f,, , -+ fpM)1 = fp, 1 - - [p; M. Combining these, we
obtain (fp, fre 1 foM)1 = fpufpas -+ [p M1, as desired. This proves part (2). O

For M = (M,)er, € BZ7 and p € Z, we set

ep(M) = — | My, + Mo, + Y agMy, |, (3.3.6)

q€Z\{p}

where My, := O(M)y, for i € Z, and M, », := ©(M),,4,. Note that £,(M) is a nonnegative

integer. Indeed, let I be an interval in Z such that
I € Int(M; e, p) N Int(M; s,, p) N Int(M;e,p+ 1) N Int(M;e,p — 1).
Then, we have

8P<M> = = (MAp + MSPAP - MAp—l - MAP-H)

_ <Mw{7 + My — Moi  — waﬂ)
= — | Moy + Mymr+ > agpMyy | = p(My). (3.3.7)
q€\{p}

Hence it follows from condition (a) of Definition B.2.11and the comment following (2.3.3]) that
ep(M) = ,(My) is a nonnegative integer.

Now, for M = (M, )er, € BZz and p € Z, we define e,M as follows. If ¢,(M) = 0,
then we set e,M := 0, where 0 is an additional element, which is not contained in BZz. If
ep(M) > 0, then we define e,M = (M ),er, as follows. For each v € T'z, take an interval [
in Z such that

vel; and
(3.3.8)
I € Int(M;e,p) NInt(M; s, p) NInt(M;e,p — 1) NInt(M; e, p + 1);
note that min/ < p < max/, since p— 1, p+ 1 € I. Consider M; € BZ; (see condition (a)
of Definition B.2T)); since €,(M) = ¢,(M;) by (3.37), we have £,(IM;) > 0, which implies
that e,Mj # 0. We define (¢,M), = M to be (e,M;),. By virtue of the following lemma,
this definition of M does not depend on the choice of an interval I satisfying (8.3.5).

Lemma 3.3.5. Keep the notation and assumptions above. Assume that an interval J in Z
satisfies the condition (3.3.8)) with I replaced by J. Then, we have (e,Mj), = (€,My),.
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Proof. We may assume from the beginning that J D I. Indeed, let K be an interval in Z
containing both of the intervals J and /. Then we see from Remark B.2.3/(1) that K satisfies
the condition ([B.3.8) with I replaced by K. If the assertion is true for K, then we have
(e;Mk ), = (e,My), and (e,Mk), = (e,M,),, and hence (e,M,), = (e,My),.

We may further assume that J = I'U {max] + 1} or J=1U {min] — 1}; for simplicity
of notation, suppose that I = {1, 2, .y m} and J = {1, 2, ..., m,m+ 1}. Note that
1 =min/ < p < max] = m (see the comment preceding this proposition).

We write e,M; € BZ; and ¢,M; € BZ; as: e,M; = (M) er, and e,M; = (M) er,,
respectively; we need to show that M = M for all v € I';. Recall that e,M; = (M).er,
is defined to be the unique BZ datum for g; such that M/, = Mgr + 1, and such that
M, = M, for all v € I'y with (h,, 7) <0 (see Fact R3.T)). Tt follows from Lemma [2.4.1] that
(epMy)r = (M])qer, is a BZ datum for gr. Also, we see from the definition of e,M that
MY = M, for all v € I't C I';j with (h,, v) < 0. Therefore, if we can show the equality
M;I,? = Mg + 1, then it follows from the uniqueness that (e,M,); = (M) er, is equal
to e,M; = (M) er,, and hence M = M for all v € I';, as desired. We will show that
M, = sz{ + 1.

P
First, let us verify the following formula:

WE = Syl ~3k+25k+1(w,‘§+1) for 1 <k <m. (3.3.9)
Indeed, we have

@y, = —w(Auy ) = =05 (Ap—rs1)

= —wéw(‘{wb’(Am,kH) = w(IJIUé](wiJ(mka)) = wéwg{(w,ﬁfﬂ).

Consequently, by using the reduced expressions

wi = s1(5251)(535251) =+ (S * + - 5281) (Spg1 - -+ 5251),

wé — (Sm R 5251) ce (818283)(3152)517

we see that @] = syt $251 (W4 1) = Sma1 - Skr25k+1(jy1), as desired.

Now, let us show that Mgé = Mgr + 1. We set w := Sy Spyaspr2 € Wy Then,
Uppr1 = Apr1p = —1 and wsy1 > w, ws, > w. Therefore, since e,M; = (M) er, € BZ,,

it follows from condition (2) of Definition 2-2.T] that
M, My, =min(M!_, + M) g My, + M! ;). (3.3.10)

J
wsp_pr_H wspwp p+1 WSp+1SpT0. wspsp_pr_H

Also, by using (8:3.9) and the facts that s, = @/, s,w;),, = @), forp+2<¢g<m+1
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and that s;s, = s,s, for p+2 < g <m+1, we get

J o _ J oo I
WSp+1Wyy 1 = Sm+l " Sp+2Sp+1Wy1 1 = Wy,

J _ J _ J _ J
w8pwp = Sm+1 Sp+28pwp = SpSm+41 8p+2wp = Spwp7

J J _ __J
WWp1 = Sm41 " Sp+2Wpy1 = Wpy1s

J _ J_ I
WSp4185pWy = Sm41 "~ Sp42Sp+15pW, = Wy_q,

J _ J _ J
wwp = Sm+1° Sp+2wp = wp7

J _ J _ J _ 1
WSpSp+1Wpy1 = Sm1 " Sp+25pSp+1 Wy 1 = SpSmt1 " Sp4+25p+1 Wy = SpWp.

Hence the equation (3.3.10) can be rewritten as:

M+ M, =min(M!, +M'; ML, +M!_). (3.3.11)
P P@p Whi1 Wp_1 @p Sp@p
Since (h,, spw;) = —1 < 0, it follows from the definition of e,M; that MY = Mo
p
Similarly, M", = M_, , M", = M_, ,and M" _, = M, ;. In addition, it follows
Wht1 “p+1 W1 @p—1 SpWp P@p

from the definition of e,M, that M;'i = Mgy + 1. Substituting these into (B3.I1)), we
obtain
M+ My, s =min(M_s + Mg, Mgy +1+ M, o). (3.3.12)
“@p P p+1 p—1 D P@p
Here, observe that M_r = M_s (resp., M, or = M, ;) since I € Int(M;e,p— 1) (resp.,
p—1 p—1 p*p P¥p
I € Int(M;s,,p)) and J D I. As a result, we get
M+ M, s =min(M_s +Mgs , Mys+1+ M, 7). (3.3.13)
“p P p+1 p—1 P P@p

Moreover, since £,(IM) > 0 by assumption, we see from (B.3.7) with [ replaced by J that
Mwll -+ MS ol < ij —+ Mwll , which implies that
p pP*p p+1 p—1

min(MwJ +M_s , Mo, + 1+ M, wJ) =My +14+ M, ..
p+1 p—1 p P*p P pWp

Combining this and (3.3.13), we obtain M”, = Mgy + 1. Noting that M, = M since
P
I € Int(M;e,p) and J D I, we conclude that M, = Mw{? + 1, as desired. This completes
P
the proof of the lemma. O

Remark 3.3.6. (1) Let M = (M,,)+er, € BZ7 and p € Z be such that e,M # 0. Then,
(e,M)., = M, for all v € I'z with (h,, v) <O0. (3.3.14)

Indeed, let v € I'; be such that (h,, v) < 0. Take an interval [ in Z satisfying the condition
(B38). Then, by the definition, (e,M), = (e,M;),. Also, we see from the definition of e, on
BZ (see Fact 23] that (e,M;), = M.,. Hence we get (e,M), = (e,M), = M,, as desired.
(2) For M € BZ7 and p € Z, there holds
(e,M); = ¢,M;

(3.3.15)
if I € Int(M;e,p) NInt(M;s,,p) NInt(M;e,p— 1) NInt(M;e,p + 1).
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Proposition 3.3.7. Let M € BZy, and p € Z. Then, e,M is an element of BZz U {0}.

By this proposition, for each p € Z, we obtain a map e, from BZz to BZ; U {0} sending
M € BZy to e,M € BZ7 U {0}, which we call the raising Kashiwara operator on BZz. By
convention, we set e,0 := 0 for all p € Z, and f,0 := 0 for all p € Z.

Proof of Proposition[3.3.7. Assume that e,M # 0. Using (3.3.15]) instead of (3.3.3), we
can show by an argument (for f,M) in the proof of Proposition that e,M satisfies

condition (a) of Definition B2l We will, therefore, show that e,M satisfies condition (b) of
Definition B.2.11 We write M and e,M as: M = (M, ),cr, and ¢,M = (M ),er,, respectively.
Fixw € W and i € Z, and then fix an interval K in Z such that w € Wg and ¢, p—1, p, p+1 €
K. Now, take an interval [ in Z such that I € Int(M; v, k) for all v € Wg and k € K (see
Remark 3.2.3](2)); note that I is an element of the intersection

Int(M;e, p) NInt(M; s, p) NInt(M;e, p— 1) N Int(M;e, p + 1), (3.3.16)

since p—1,p,p+1 € K. We need to show that M/ _, = M! , for all intervals J in Z
containing . Z Z

Before we proceed further, we make some remarks: Through the bijections (2.4.7)) and
BI3), we can (and do) identify the set I'x (of chamber weights) for gx with the subset
I'f = {vwl | ve Wk, ke K} CI'; CTy; note that vwf € T'x corresponds to vewf € T'F
for v € Wi and k € K. Let J be an interval in Z containing /. As above, we can (and do)
identify the set I'x (of chamber weights) for gx with the subset I'Y = {vw] | v e Wk, k €
K} C Iy C T'z; note that vewf € T'x corresponds to vewj € I'f for v € Wi and k € K.
Thus, the three sets T'f (CT; C I'z), I'F (CT; CTyz), and 'k can be identified as follows:

'y — I 5 Tk
(3.3.17)

K J

vl = vw! — vwl forve Wgand k € K.

Also, it follows from the definition of BZ7 that M; = (M,)er, € BZ; and My = (M) er, €
BZ ;. Therefore, by Lemma 242, (M;)X = (My)yerx and (M)E = (M, )yers are BZ data
for gx if we identify the sets T'X and T with the set T'x through the bijection (33.17T). Since
M,y = My for allv € Wy and k € K by our assumption, we deduce that (M,)" = (M)*
if we identify the three sets T, 'K and 'y as in (3.3.17).

Now we are ready to show that M/ , = M/ ,. By our assumption that ¢,M # 0 and
3310, it follows that e,M; # 0, and hence e,M Ilis an element of BZ; we see from (B.3.15))
that e,M; = (¢,M); = (M), er,. Hence, by Lemma 242 (e,M[)* = (M), crx is a BZ
datum for gx if we identify the set ' with the set I'x through the bijection (3.3.17). Also,
by the definition of e,M;, we see that M:z{, = Mg + 1, and Mz’}wl€ = M1 for all v € Wi
and k € K with (h,, v@]) < 0. Here we observe that for v € Wy and k € K, the inequality
(hy,, vwwi) < 0 holds if and only if the inequality (h,, v’ ) < 0 holds. Indeed, let v € W,

19



and k € K. Note that v™'h, € @, 2Zh; C D
Hence it follows from (B.1.4]) that

el Zhj since p € K by our assumption.

<hpv le@ = <U71hpa w1> = <U71hpv w1€(> = <hpa lef%

which implies that (h,, vewi) < 0 if and only if (h,, vwwf) < 0. Therefore, we deduce from
Fact 231 that (e,M)" = (M), crx is equal to e,((M;)") if we identify T/ and T'x by
B3117). Furthermore, we see from Remark B.2.3](1) that the interval J D I is also an
element of Int(M; v, k) for all v € Wi and k € K. In exactly the same way as above (with 1
replaced by J), we can show that (e,M ;)% = (M) erx is a BZ datum for gx, and is equal
to e, ((M,)®) if we identify I'lf and T'x by [B3I7). Since (M;)* = (M,)¥ as seen above,
we obtain e, ((M;)¥) = e,((M,)X). Consequently, we infer that (e,M;)* = (M) ers is
equal to (e,M)¥ = (M) erx if we identify 'S and 'Y by B.3I7). Because ww! € TK
corresponds to ww] € T'} through the bijection (B:317), we finally obtain M’ , = M’/
as desired. This completes the proof of the proposition. Z 0

Remark 3.3.8. Let M € BZ7 and p € Z be such that e,M # 0. Let K be an interval in Z
such that p — 1, p, p+ 1 € K. The proof of Proposition [3.3.7 shows that if an interval I in
Z is an element of Int(M;v, k) for all v € Wi and k € K, then I € Int(e,M;v, k) for all
veE Wi and k € K.

Lemma 3.3.9. Let [ and K be intervals in Z such that I D K and #K > 3.

(1) The set BZ4(1, K)U{0} is stable under the raising Kashiwara operators e, forp € K
with min K < p < max K.

(2) Let M € BZ4(I, K), and let p1, pa, ..., pa € K be such that min K < py, pa, ..., pa <
max K. Then, ey,e,, - €, M # 0 if and only if ey.e,, ,---e,, My # 0. Moreover, if
€paCpar - M # 0 (or equivalently, e, ey, | ---e, My #0), then

(epaepa—l e '€p1M>I = €p,Cp,_y " Epy M. (3.3.18)

Proof. Part (1) follows immediately from Remark B:3.8. We will show part (2) by induction
on a. Assume first that a = 1. Since M € BZ(I, K), it follows immediately that

I € Int(M; e, py) N Int(M; sp,, p1) NInt(M; e, p; + 1) N Int(M; e, p; — 1).

Therefore, we have ¢,, (M) = ¢,,(M;) by (3.3.1), which implies that e,, M # 0 if and only if
e, M # 0. Also, it follows from (B.3.15) that if e,, M # 0, then (e,,M); = e, M.

Assume next that @ > 1. For simplicity of notation, we set
M :=e, e, M and M":=¢,, , - €, M.

Let us show that e,, M’ # 0 if and only if e,,M" # 0. By the induction hypothesis, we may
assume that M’ # 0, M” # 0, and M, = M". It follows from part (1) that M’ € BZ4(I, K).
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Hence, by the same argument as above (the case a = 1), we deduce that e,, M’ # 0 if and
only if e, M/ # 0, which implies that e,, M’ # 0 if and only if e, M” # 0. Furthermore, it
follows from (B.3.15)) that if e,, M’ # 0, then (e, M'); = e,, M} = e,, M". This proves the

lemma. ]

3.4 Some properties of Kashiwara operators on BZ7.

Lemma 3.4.1. (1) Let M € BZy4, and p € Z. Then, e,f,M = M. Also, if e,M # 0, then
fpepM = M.
(2) Let M € BZy, and let p, g € Z be such that |p — q| > 2. Then, €,(f,M) = ¢,(M) + 1
and £,(f,M) = ¢,(M). Also, if e,M # 0, then g,(e,M) = ¢,(M) — 1 and ,(e,M) = ,(M).
(3) Let p, q € Z be such that |p—q| > 2. Then, fofy = fofps €p€q = €4€p, and e, fy = foep
on BZ7 U {0}.

Proof. (1) We prove that e, f,M = M; by a similar argument, we can prove that f,e,M =M
if e,M # 0. We need to show that e, f,M # 0, and that the -component of e, f,M is equal
to that of M for each v € T'z. We fix v € I'z. Set K := {p —1,p,p+ 1}, and take
an interval I in Z such that v € I';, and such that I € Int(M;wv, k) for all v € Wg and
k € K. Then, we have M € BZ;(I, K), and hence we see from Lemma [3.3.4] that f,M €
BZ;(I, K) and (f,M); = f,M;. Because e,(f,M); = e,(f,M;) = M; # 0 by condition (a)
of Definition B2 and Theorem 2:3.7], it follows from Lemma [3.:3.91(2) that e, f,M # 0. Also,
we deduce from Lemmas B.3.4](2) and B.3.91(2) that (e, f,M); = e, f,M; = M. Since v € I';
by our assumption on I, we infer that the y-component of e, f,M is equal to that of M. This
proves part (1).

(2) We give a proof only for the equalities ,(f,M) = ¢,(M) + 1 and ¢,(f,M) = ¢,(M);
by a similar argument, we can prove that ¢,(e,M) = ¢,(M) — 1 and ¢,(e,M) = ¢,(M) if
epM # 0. Write M € BZ7 and f,M € BZz as: M = (M, )er, and f,M = (M!).er,,
respectively. Also, write ©(M) and O(f,M) as: O(M) = (M¢)ecz, and O(f,M) = (M)¢cz,,
respectively. First we show that for ¢ € Z,

My, —1 ifi=p,
Mgi:{ A (3.4.1)

My, otherwise.

Fix ¢ € Z, and take an interval [ in Z such that
I € Int(M; e, p) N Int(M; s, p) N Int(M; e, i) N Int(M; s,,, 7).

We see from Remark B.3.3 that I € Int(f,M;e, i), and hence that M, = M, by the
definition. Assume now that ¢ # p. Since (h,, w!) < 0 by (B4, it follows from @fﬂ) that
M, = (fM)gr = M. Also, since I € Int(M; e, i), we have M_r = My, by the definition.
Thérefore, we obtain

My, = M, = M =My, ifi#p.

w
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Assume then that ¢ = p. Since (h,, w]) = 1, it follows from ([B:32) that
MLy = (fuM)gr = min(Mgr, My, o1+ c,(M)), (3.4.2)

spA,) since
I € Int(M;e,p) (resp., I € Int(M;s,,p)). Substituting these into (8.4.2), we conclude that
Mj\p = M ; = My, — 1, as desired.

P

Next we show that

where ¢,(M) = Ma, — M;,a, — 1. Note that Mgr = My, (resp., M o1 = M

M\, = My, fori€Zwithi#p—1,p+1. (3.4.3)
Take an interval I in Z such that
I € Int(M; e, p) N Int(M; s, p) N Int(M; s;,4) N Int(M; s,55, ).

We see from Remark that I € Int(f,M;s;, i), and hence that M, , = M _, by the
definition. Since i # p — 1, p + 1, we deduce from BILZ) that (h,, s;w!) < 0. Hence it
follows from [B.3.2) that M| _, = (f,M), o1 = M, 1. Also, since I € Int(M;s;,4), we have
M, 1 = M,y,. Thus we obtain My, =M, ;= M, o1 = M,,, as desired.

T
SiW; 5;T0;

Now, recall from (B.3.6]) that

ep(fpM) = — M//\p + M;pAp + Z arp My,
reZ\{p}

Here, by (B.41)) and (B.43), we have My = My, — 1, M{ , = M;,x,, and

Z arp My = Z arp My, .

r€Z\{p} reZ\{p}

Therefore, by (3.3.6]), we conclude that

ep(fyM) = = | (Ma, = 1)+ Myn, + D anpMy, | =, (M) + 1.
reZ\{p}

Arguing in the same manner, we can prove that ¢,(f,M) = ¢,(M). This proves part (2).

(3) We prove that e, f;, = f,e,; the proofs of the other equalities are similar. Let M € BZj.
Assume first that e,M = 0, or equivalently, £,(M) = 0. Then we have f,e,M = 0. Also, it
follows from part (2) that ,(f,M) = ¢,(M) = 0, which implies that e,(f,M) = 0. Thus we
get e, fM = f,e,M = 0.

Assume next that e,M # 0, or equivalently, £,(M) > 0. Then we have f,e,M # 0. Also,
it follows from part (2) that ,(f,M) = €,(M) > 0, which implies that e,(f,M) # 0. We
need to show that (e,f,M), = (f,e,M), for all v € I';. Fix v € I', and take an interval [

in Z satisfying the following conditions:
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)yeln

ii) I € Int(f,M;e,p) NInt(f,M;s,,p) NInt(f,M;e,p— 1) NInt(f,M;e,p+ 1);
iii) 1 € Int(M;e, ¢) N Int(M; s, q);

iv) I € Int(e,M;e, q) NInt(e,M; sy, q);

(v) I € Int(M;e,p) NInt(M; sy, p) N Int(M;e,p— 1) N Int(M;e,p+ 1).

Then, we have

(
(
(
(

(epfeM) = e,(f,M); by [B3I5) and condition (ii)
=e,(f,M;) by [B33) and condition (iii)
- epquI7

and

(feepM); = fy(e,M); by (B.33) and condition (iv)
= fy(e,M;) by (B.3.15) and condition (v)
= fqepM[.

Hence we see from condition (a) of Definition B.2.Tland Theorem 23 4lthat e, f,M; = f,e,M,
and hence (e,f,M); = (f,e,M);. Therefore, we obtain (e,f,M), = (f,e,M), since v € I';
by condition (i). This proves part (3), thereby completing the proof of the lemma. O

Remark 3.4.2. Let M € BZz, and p € I. From the definition, it follows that ¢,(M) = 0
if and only if e,M = 0, and that £,(M) € Zso. In addition, ¢,(e,M) = ¢,(M) — 1 by
Lemma BAT](2). Consequently, we deduce that £,(M) = max{N >0 | e)’'M # 0}.

4 Berenstein-Zelevinsky data of type Aél).

Throughout this section, we take and fix ¢ € Z>, arbitrarily.

4.1 Basic notation in type Aél) . Let g be the affine Lie algebra of type A@l) over C. Let

A= (aij)i,jef denote the Cartan matrix of g with index set 1= {0, 1, ..., f}; the entries
a;; are given by:
2 ifi=j,
Gy =4 -1 ifli—j|=1ord, (4.1.1)

0 otherwise,

fori, j € 1. Denote by 6 the Cartan subalgebra of g, by E € H, 1€ f, the simple coroots of
9, and by @; € h* := Homc(g, C), i€ T, the simple roots of §; note that @Z, a;) = a;; for
1, J € f, where (-, -) is the canonical pairing between /6 and /6*

Also, let g¥ denote the (Langlands) dual Lie algebra of g; that is, g" is the affine Lie
algebra of type Aél) over C associated to the transpose ‘A (= 121\) of A, with Cartan subalgebra
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H*, simple coroots @; € B*, i€ f, and simple roots hi € 6, icT. Let U,(g") be the quantized
universal enveloping /z\ﬂgebra over C(q) associated to the Lie algebra g*, U, (g") the negjxtivs
part of U,(g"), and B(oo) the crystal basis of U, (g"). For a dominant integral weight A € b

for g¥, B(\) denotes the crystal basis of the irreducible highest weight U,(g")-module of
highest weight .

4.2 Dynkin diagram automorphism in type A, and its action on BZ;. For the
fixed ¢ € Zs>s, the (Dynkin) diagram automorphism in type A is a bijection o : Z — Z
given by: o(i) =i+ £+ 1 for i € Z. This induces a C-linear automorphism o : h = b of
h = @,c; Chi by: o(hi) = ho) for i € Z, and also a C-linear automorphism o : b, = bl

of the restricted dual space b}, := @,., CA; of h = @,., Ch; by: o(A;) = Ay for i € Z.

res

Observe that (o(h), o(A)) = (h, A) for all h € h and A € b,
i € Z; note also that «; € b for all i € Z, since a; = 2A; — A;_1 — A; 1. Moreover, this

res

and o(q;) = ag() for

o : Z — Z naturally induces a group automorphism o : Wy = Wy, of the Weyl group Wy, by:
0(8;) = Sq(:) for i € Z.

It is easily seen that —wA; € b, for all w € Wy and ¢ € Z, and hence the set I'z (of

*
res

chamber weights) is a subset of bf.. In addition,

o(—wh;) = —o(w)Asu) for w e Wz and i € Z. (4.2.1)

Therefore, the restriction of o : h* = b7, to the subset I'; gives rise to a bijection o : I';

res res
I'z.

Remark 4.2.1. Let I be an interval in Z, and ¢ € I; note that o(i) is contained in o ().
Because w! € I'z can be written as: w! = A; — Amin -1 — Amax1)+1 (see (B.1.4)), we deduce
that o(w!) = wg((il)).

Let M = (M, )+er, be a collection of integers indexed by I';. We define collections o(M)
and 0~!'(M) of integers indexed by I'z by: 0(M), = My-1(,) and ¢~ '(M), = M, for each

v € I'z, respectively.
Lemma 4.2.2. If M € BZz, then (M) € B2z and c~'(M) € BZ.

Proof. We prove that (M) € BZz; we can prove that o~ '(M) € BZz similarly. Write
M € BZz and 0(M) as: M = (M,)er, and o(M) = (M), cr,, respectively. First we prove
that o(M) = (M), er, satisfies condition (a) of Definition B.2Z1l Let K be an interval in Z.
We need to show that o(M)g = (M]),er, satisfies condition (1) of Definition 2.2 (with I
replaced by K). Fix w € W, and i € K. For simplicity of notation, we set w; := o~ (w),
i1 := 0 (i), and K; := o !(K); note that w; € Wg,, and i; € K. Since M = (M,) er, €
BZz, it follows from condition (a) of Definition B.2.Tthat Mg, = (M, ) er,, € BZk,. Hence
we see from condition (1) of Definition Z21] that
M, si+M, s+ Y ag M, _m <0

w184y W
Jeri\{ir}
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Here, by the equality Ao=1(j),i1 = Qj.o(ir),

§ : aj7i1Mw1wJI_<1 = § : a’U_l(j)’ilelel ) = :: ajiMuqul
o

. . . . o=1(j) ) .
JeK \{i1} JeR\{i} JER\{i}

Also, we see from (£2.1]) and Remark A.2.T] that

MZuw.K = Mo_l(ww.K) = Mwlelv
i @ i1
M/ K — M -1 =Ky — M Kq
w8 o~ Hws;w*) w184 Wy )
lequ == MO'fl(wij) =M Kq fOI'j - K \ {Z}

i w1y

)

Combining these, we obtain

M o+ M e+ ai; M, _x <0,
as desired. Similarly, we can show that o(M)x = (M), cr, satisfies condition (2) of Defini-
tion Z.2.1] (with I replaced by K); use the fact that if i, j € K and w € W are such that
a;j = aj; = —1, and ws; > w, ws; > w, then a;, j, = a;,;, = —1, and wys;, > wy, w155, > wy,
where i1 := 07(i), j1 := 07 (j) € K1 = 0 Y(K), and w; := o' (w) € Wg,. It remains to
show that M/ ., =0foralli € K. Let i € K, and set iy := 0~ '(i) € K; = 0~ '(K). Then,
by (@21 andORémark A.2T], we have
Mg = Momiwieiy = Mg 5,

e Wy "W,

which is equal to zero since Mg, € BZg,. This proves that o(M)x € BZ g, as desired.
Next we prove that o(M) = (M),cr, satisfies condition (b) of Definition B2 Fix

w € Wz, and i € Z. Take an interval I in Z such that I, := o~ '(I) is an element of

Int(M; wy,4;), where wy := o~ '(w) and i; := ¢7(i). Let J be an arbitrary interval in Z

containing I, and set J; := o~ !(J); note that J; D I;. Then, we have

My, s =M, 1(yery =M, _»n by E2I) and Remark Z2.]

w1T;

= Mwlwz1 since I; € Int(M; wy,41) and J; D [

i1

= M,-1(ywry by 2.]) and Remark 4.2.]

i

. !
= M.

This proves that o(M) = (M), cr, satisfies condition (b) of Definition B.2.1], thereby com-
pleting the proof of the lemma. O
Remark 4.2.3. Let M = (M, ) cr, € BZz, and write 0(M) € B2z as: o(M) = (M) er,.

Fix w € Wz, and i € Z. Set w; := o }(w), and i; := o71(i). We see from the proof of
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Lemma that if we take an interval I in Z such that I; := o~ !(I) is an element of
Int(M; wy, 71), then the interval I is an element of Int(o(M);w, ). Moreover, since M , =
Mwlwfll’ we have 1
M;UA,' = M:L,wiz = ]\411)1 n = My pi, = Mo-1(wp,)5
where M, . = O(0(M))yn,, and My, a, = O(M)uy,a,, -
By Lemma [£.2.2] we obtain maps o : BZ7 — BZz, M+ (M), and 07! : BZ; — BZz,

1

M — o~ }(M); since both of the composite maps oo~! and o~'o are the identity map on

BZ, it follows that o : B2, — BZy and o~ : BZ;, — BZ are bijective.

Lemma 4.2.4. (1) Let M € BZz, and p € Z. Then, e,(c(M)) = £,-1(,)(M).
(2) There hold oo ey, = expy 00 and oo f, = fo@y 00 on BZ; U {0} for all p € Z. Here
it is understood that o(0) := 0.

Proof. Part (1) follows immediately from (3.3.6) by using Remark B.233 We will prove
part (2). Let M € BZz, and p € Z. First we show that o(f,M) = fo;)(c(M)), ie.,
(U(pr))v = (ﬁ,(p)(cr(M)))v for all v € I'z. We write M and o(M) as: M = (M,,)er, and
o(M) = (M!)er,, respectively. It follows from (3.3.2]) that

(e(fM)), = (fpM)o-1(5)

min(Mo-1(y), Myo-10) + 6(M)) i (b, 071(7)) > 0, (4.2.2)
Mg-1() otherwise,

where ¢,(M) = My, — M,

P Sp

follows from (B:3.2]) that

Ap — 1 with MAP = @(M>AP and MSPAP = @(M>SPAP' AISO7 it

min (M/’ M; + CU(p) (O(M))) lf <h0(p)7 ’Y> > 07
(fom(e)) =q 7 ‘ (4.2.3)
M, otherwise,
where cop)(0(M)) = M}, ) = M, n,, =1 with My, = O(0(M))a,, and My ) =
O((M))s, Ay - Here we see from Remark that
M/,\U(p) = MJ?I(AU(p)) = MAp and M‘;U(p)Ao(p) = Mo—il(so(g))Ao’(p)) = MSPAP’

and hence that c,()(0(M)) = ¢,(M). In addition,

M:/ = Mgfl(,y) and M/

Son)V
by the definitions. Observe that (h,q), v) = (o(hy), 7) = (hy, 0~ *(7)), and hence that
(ho@y, v) > 0 if and only if (h,, 71(7)) > 0. Substituting these into (£2.3)), we obtain

M, M, 51

“Sam) T 7)

min(My-1(y), My o—1(4) + (M) if (hy, 07! 0,
(fow (e (M), = { (Moo o+ (M) i { () >

M1y otherwise,
= (U(pr)) ,ya
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as desired.

Next we show that o(e,M) = e, () (c(M)). If e,M = 0, or equivalently, €,(M) = 0, then
it follows from part (1) that e, (0(M)) = €,(M) = 0, and hence ey (0(M)) = 0, which
implies that o(e,M) = €,(;)(0(M)) = 0. Assume, therefore, that e,M # 0, or equivalently,
ep(M) > 0. Then, it follows from part (1) that e, (0(M)) = £,(M) > 0, and hence
eo(p)(0(M)) # 0. Consequently, we see from Lemma B.4TI(1) that f,p)esr) (0(M)) = o(M).
Also,

fow (0(e;M)) = o(fpe,M)  since fopy 0o =00 f,
=o(M) by Lemma B.4TI(1).

Thus, we have fyp €00 (0(M)) = 0(M) = fop)(0(e,M)). Applying e, () to both sides of this
equation, we obtain ey (0(M)) = o(e,M) by Lemma [3.4.11(1), as desired. This completes
the proof of the lemma. O

4.3 BZ data of type Aél) and a crystal structure on them.

Definition 4.3.1. A BZ datum of type AS) is a BZ datum M = (M, ),er, € BZz of type
Ay such that o(M) = M, or equivalently, M,-1(,, = M, for all v € I';.

Remark 4.3.2. Keep the notation of Remark [4.2.3] In addition, we assume that o(IM) = M.
Because I € Int(oc(M);w,i) = Int(M;w,q) and M/ , = M, by the assumption that

oc(M) = M, it follows that M\, = M| ; = Mg = Mya,. Since M,y = My-1(4,) as
shown in Remark £.2.3] we obtain M,-1(x,) = Mya,.
Denote by BZ7 the set of all BZ data of type Agl); that is,
Bzg .= {M € BZ; | o(M)=M}. (4.3.1)

Let us define a crystal structure for U,(g") on the set BZY (see Proposition 3.8 below).
For M € BZ7, we set
wt(M) ==Y My,hs, (4.3.2)
iel
where My, := ©(M),, for i € Z.
In what follows, we need the following notation. Let L be a finite subset of Z such
that |¢ — ¢/| > 2 for all ¢, ¢ € L with ¢ # ¢’. Then, it follows from Lemma [B.4.11(3) that

= fof, and e,e = ege, for all ¢, ¢ € L. Hence we can define the following operator
qJ9 qJq q~q q+-q

on BZ7 U {0}:
fr = qu and ep = Heq.

qeL qeL

For M € BZ7 and p € Z, we define j/;l\/[ = (M),er, by
(fM), = M := (fr(,,y)M), for v € Iz, (4.3.3)

27



where we set
L(y,p) :={qep+ ({+1)Z| (hg, 7) > 0}

forveT'z and p € ]'\, note that L(,p) is a finite subset of p + (¢ + 1)Z. It is obvious that if
p € Z and q € Z are congruent modulo ¢ + 1, then

M= f,M for all M € BZ3,. (4.3.4)

Remark 4.3.3. Let M € BZ7, and p € Z. For each v € I'y, take an arbitrary finite subset L
of p+ (¢ + 1)Z containing L(7, p). Then we have

(fLM)y = (frimM)y = (f,M),. (4.3.5)

Indeed, we have (fiM), = (fr(yp) fi\L(yp) M)y Since (hg, v) < 0 for all ¢ € L\ L(v,p)
by the definition of L(v,p), we deduce, using (3.3.2)) repeatedly, that (fr(yp fo\eepM)y =

(fL(%p)M)v-

Proposition 4.3.4. Let M € BZ7, and p € Z. Then, pr is an element of BZ7.

By this proposition, for each p € Z, we obtain a map ]/C;, from BZ7 to itself sending
M € BZy to ﬁ,M € BZy, which we call the lowering Kashiwara operator on BZ7. By

convention, we set J/‘;,O =0 for all p € Z.

Proof of Proposition[4.3.4 First we show that ﬁ,M satisfies condition (a) of Definition B.2.11
Let K be an interval in Z. Take a finite subset L of p+ (¢4 1)Z such that L D L(~, p) for all
v € I'. Then, we see from Remark that (]/‘;,M),Y = (ftM), for all v € ', and hence
that (]/‘;M)K = (ftM)g. Since fLM € BZ; by Proposition B.3.2] it follows from condition
(a) of Definition B.2.1] that (fLM)x € BZk, and hence (]/“;M)K € BZg.

Next we show that ]/“;M satisfies condition (b) of Definition B.2.1l Fix w € Wz and i € Z.
We set

{aep+ U+ 1)Z | w'hy # hy} ifi¢p+ (0+1)Z,

L= (4.3.6)
{gep+ (L+1)Z|why# hy} U{i} otherwise.

It is easily checked that L is a finite subset of p + (¢ + 1)Z. Furthermore, we can verify that
L D L(ww]!,p) for all intervals I in Z such that w € W; and ¢ € I. Indeed, suppose that
q € p+ (£ +1)Z is not contained in L; note that ¢ # i and w—'h, = h,. We see that

<hQ7 U)’WZI> = <w71h’CI7 wzl> = <hQ7 w1>7

i

and that (h,, @!) < 0 by (BI4) since q # i. This implies that q is not contained in L(ww], p).
Now, let us take I € Int(f,M;w,i), and let J be an arbitrary interval in Z containing 1.
We claim that (]/C;,M)wwq = (]/“;M)wwg. Since I € Int(fLM;w,1), it follows that (fLM), o7 =
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(ftM)ywr. Also, because L D L(ww{,p) and L O L(ww!,p) as seen above, we see from
Remark [4.3.3] that (};M)ww;’ = (ftM) v and (fp ) 1 = (f1M),gr. Combining these,
we obtain (]/C;,M)ww{] = ([iM)yey = (fLM)wwl = (fp Jwe!s as desu"ed Thus, we have
shown that J?pl\/[ satisfies condition (b) of Definition B2} and hence pr € BZ;.

Finally, we show that cr(ﬁ,M) = pr or equivalently, ( fp o1ty = ( fp ), for all
v € I'z. Fix v € T'z. Observe that o(L(c71(7),p)) = L(7,p) since (ho(q), 7) = (o(hy), 7) =
(hg, 07(7)). Therefore, we have

~

( ) (fLo- L(v),p) ) - ( (fof L( p)M))

= (fowe1n) ><7(M))V by Lemma H.2.41(2)

= (fo(Lo-1(1)p M),Y by the assumption that o(M) = M
(f yM)_ since o(L(e™'(7),p)) = L(7,p)

= (f,

)

as desired. This completes the proof of the proposition. O

Now, for M € BZ7 and p € Z, we set

E(M) = — [ My, + Moa, + Y agMy, | =e,(M), (4.3.7)
q€Z\{p}
where My, := ©(M),, for ¢ € Z, and M, 5, = O(M),s,. It follows from (3.3.7) that
£,(M) = ¢,(M) is a nonnegative integer. Also, using Lemma 2.7(1) repeatedly, we can
easily verify that if p € Z and ¢ € Z are congruent modulo ¢ + 1, then

&,(M) = £,(M) = £,(M) = 5,(M) for all M € BZS. (4.3.8)

Lemma 4.3.5. Let M € BZ7, and p € Z. Suppose that €,(M) > 0. Then, egM # 0 for
every finite subset L of p+ ({ + 1)Z

Proof. We show by induction on the cardinality |L| of L that e,M # 0, and ¢,(e,M) =
Ep(M) >0 for all g € p+ (¢4 1)Z with g ¢ L. Assume first that |L| = 1. Then, L = {¢'} for
some ¢' € p+ ({+1)Z, and ef, = e,. It follows from ([A.3.8) that ¢, (M) = ,(M) > 0, which
implies that e, M # 0. Also, for ¢ € p+ ({+ 1)Z with ¢q # ¢/, it follows from Lemma B.4.11(2)
and (£3.8)) that e,(e, M) = £,(M) = £,(M).

Assume next that |L| > 1. Take an arbitrary ¢’ € L, and set L' := L\ {¢'}. Then, by
the induction hypothesis, we have e, M # 0, and ¢, (e, M) = £,(M) > 0; note that ¢’ ¢ L.
This implies that e, M = e, (e M) # 0. Also, for ¢ € p+ (¢ + 1)Z with ¢ ¢ L, we see from
Lemma [3.4.1](2) and the induction hypothesis that ¢,(e,M) = g,(eger M) = g,(ep M) =
€,(M). This proves the lemma. O
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For M € BZ7 and p € Z, we define ¢,M as follows. If £,(M) = 0, then we set e,M := 0.
If £,(M) > 0, then we define e,M = (M ),er, by

(M), = M := (e, yM), for each v € Ty; (4.3.9)

note that er, )M # 0 by Lemma B335 It is easily seen by (A3.8) that if p € Z and ¢ € Z

are congruent modulo ¢ + 1, then
e, M =¢e,M for all M € BZ7. (4.3.10)

Remark 4.3.6. Let M € BZ7, and p € Z. Assume that £,(M) > 0, or equivalently, €,M # 0.
For each v € 'y, take an arbitrary finite subset L of p 4+ (¢ + 1)Z containing L(~, p). Then
we see by Lemma .35 that e, M # 0. Moreover, by the same argument as for (£3.3]) (using

B3.14)) instead of ([B.32)), we derive
(eLM), = (er(y.pM)y = (M), (4.3.11)
Proposition 4.3.7. Let M € BZ7, and p € Z. Then, e,M is contained in BZ5 U {0}.

Because the proof of this proposition is similar to that of Proposition [£.3.4, we omit it.
By this proposition, for each p € Z, we obtain a map e, from BZ7 to BZ7 U {0} sending
M € BZy to e,M € BZ7 U {0}, which we call the raising Kashiwara operator on BZ7. By
convention, we set €,0 := 0 for all p € Z.

Finally, we set
0p(M) := (wt(M), ap) +&,(M) for M € BZ7 and p € Z, (4.3.12)

where p denotes a unique element in I = {0, 1, ...,/¢ } to which p € Z is congruent modulo
¢+ 1.

Proposition 4.3.8. The set BZ7, equipped with the maps wt, e,, ﬁ, (p € f), and ,, o, (p €
_/f) above, is a crystal for U,(g").

Proof. 1t is obvious from (£3.12) that @,(M) = (wt(M), @) + £,(M) for M € BZj and
p € T (see condition (1) of [HK| Definition 4.5.1)).

We show that Wt(pr) = wt(M) — ﬁp for M € BZ3 and p € I (see condition (3) of
[HK| Definition 4.5.1]). Write M, f,M, and ]’";,M as: M = (M,),er,, fpM = (M) yer,, and
ﬁ,M = (M), er,, respectively; write ©(M), O(f,M), and @(j/;l\/[) as: O(M) = (M¢)eez,,
O(fpM) = (M{)eez,, and O(f,M) = (M{)¢ez,, respectively. We claim that My = M} for
all i € Z. Fix i € Z, and take an interval [ in Z such that I € Int(f,M;e, i) NInt(f,M;e,q).
Then, we have M} = M;f = (ﬁM)w{, and M) = M, by the definitions. Also, since

i
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L(w!,p) C {p} by B.I4), it follows from Remark F3.3 that (ﬁ,M)wg = (fpM)r = M

!
I-
7 7 wi

Combining these, we infer that MJ = M} , as desired. Therefore, we see from (B.4.1)) that

MAP —1 ifi= P,
My =M, = (4.3.13)
My, otherwise.

The equation Wt(]/”;,M) = wt(M) — sz follows immediately from (£313) and the definition
(#32) of the map wt.

Similarly, we can show that wt(e,M) = wt(M) + /i;p for M € BZ7 and p € Tif e,M # 0
(see condition (2) of [HK], Definition 4.5.1]).

Let us show that £,(f,M) = &,(M) + 1 and 3,(f,M) = 3,(M) — 1 for M € BZg and
p € T (see condition (5) of [HK| Definition 4.5.1]). The second equation follows immediately
from the first one and the definition (£3.12)) of the map @, since Wt(ﬁ,M) =wt(M) — Ep as
shown above. It, therefore, suffices to show the first equation; to do this, we use the notation
above. We claim that M\ = M, \ = M;,,. Indeed, let I be an interval in Z such that
I e Int(j/’;M; Sp, p) N Int(f,M; s,,p). Then, in exactly the same way as above, we see that

M;;Ap = Mgpw{, = (]/c;M)spwg
= (fyM),,; by Remark L33 (note that L(spwll), p) =0 by B.I14))
=M M;

Spw spAp-

I
In addition, the equality M{ \ = M; A, follows from ([B.4.3). Hence we get M \ = M,
as desired. Using this and (£.3.13)), we deduce from the definition (£3.7) of the map &, that
B (M) = &,(M) + 1.

Similarly, we can show that £,(e,M) = £,(M)—1 and $,(€,M) = $,(M)+1 for M € BZ7
and p € T if €,M # 0 (see condition (4) of [HK| Definition 4.5.1]).

Finally, we show that &,f,M = M for M € BZ5 and p € I, and that f,6,M = M for
M € BZg and p € I if e,M # 0 (see condition (6) of [HK| Definition 4.5.1]). We give a proof
only for the first equation, since the proof of the second one is similar. Write M € BZ7 as:
M = (M, )~er,. Note that /e\pﬁ,l\/[ # 0, since é\p(ﬁ,M) =£,(M)+1 > 0. We need to show
that (’e\p]/‘;,M),y = M, for all v € I'z. Fix v € I';. We deduce from Lemma [A.3.11] below that

(@ fpM)y = (eLtvp) fL(rM)5-
Therefore, it follows from Lemma [3.4.T](1) and (3) that eryp) [y, M = M. Hence we obtain

e, F,M)., = M,. Thus, we have shown that e, FM = M, thereby completing the proof of
pJpV )y v pJp
the proposition. O

Remark 4.3.9. Let M € BZ7, and p € I. From the definition, it follows that £,(M) = 0if and
only if ¢,M = 0, and that £,(M) € Zs,. In addition, &,(e,M) = £,(M) — 1. Consequently,
we deduce that £,(M) = max{N > 0 | €M # 0}. Moreover, by [@38) and [@3I0), the

same is true for all p € Z.
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The following lemma will be needed in the proof of Lemma [£3.11] below.

Lemma 4.3.10. Let K be an interval in Z, and let X be a product of Kashiwara operators
of the form: X = xyxq---x,, where x, € {fq, e, |min K < ¢ < maXK} for each 1 <b < a.
If M € BZ7 and Xy,M # 0 for some p € Z, where Y, = €, or ﬁ,, then there exists a finite
subset Lo of p+ (¢ + 1)Z such that XyrM # 0 and (Xy,M)x = (Xy.M)g for every finite
subset L of p+ ({ + 1)Z containing Lo, where y, = ey, if y, = €,, and y;, = fr if Yp = ]/“;,.

Proof. Note that y,M # 0 since Xy,M # 0 by our assumption. Let I be an interval in
Z containing K such that I € Int(y,M;v,k) for all v € Wg and k € K, and such that
min/ < min X < max K < maxI. Then, we have y,M € BZ;(I, K) (for the definition
of BZ;(1, K), see the paragraph following Remark 3.3.3)). Because X is a product of those
Kashiwara operators which are taken from the set { for €q | min K < ¢ < max K }, it follows
from Lemmas B.3.4(2) and B.3.91(2) that

X(@GM);£0 and (X§,M); = X(5,M);. (4.3.14)

Now, we set Lo := Ugr, L(C,p), and take an arbitrary finite subset L of p + (£ + 1)Z
containing Ly. Then, we see from Remark (ifty, = j/;) or Remark (if y, = €,) that

@pM>C = (yLM)C for all C € F[, (4315)
which implies that (y,M); = (y.,M);. Combining this and (£.3.14]), we obtain

We show that I € Int(y,M; v, k) for all v € Wg and k € K. To do this, we need the following

claim.

Claim. Keep the notation above. If J is an interval in Z containing I, then L(vwi,p) =
L(vwl,p) for allv € Wg and k € K.

Proof of Claim. Fix v € Wi and k € K. First, let us show that if ¢ € p+ ({ + 1)Z
is not contained in I, then ¢ is contained neither in L(vew;j,p) nor in L(vwi,p). Because
min / < min K and max ] > max K, we have ¢ < (min K') — 1 or ¢ > (max K') + 1. Hence it
follows that v='h, = h, since v € W. Also, note that q # k since k € K C I. Therefore, we
see that (h,, vw]) = (h,, @{) < 0 and (h,, vwl) = (h,, @wi) < 0 by [BI14), which implies
that ¢ ¢ L(vw],p) and ¢ ¢ L(vw], p).

Next, let us consider the case that ¢ € p+ (¢ + 1)Z is contained in /. In this case, we
have v™'hy € @,c; Zh; C @,c; Zh;, and hence (hy, vw)) = (v hy, wj) = (v hy, wi) =
(hy, vewl) by BI4). In particular, (h,, veww;) > 0 if and only if (h,, vewi) > 0. Therefore,
q € L(vw{,p) if and only if ¢ € L(vwwi, p). This proves the claim. |
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Fix v € Wi and k € K, and let J be an arbitrary interval in Z containing /. We
verify that (y.M),gs = (yrM),er. Since I € Int(y,M;v, k) by assumption, it follows that
(UpM)ys = (YpM) 1. Note that (y,M),mr = (yrM),mr by ({3.15) since vw] € Ty, Also,
it follows from the claim above that L(vwy,p) = L(vwi,p) C Ly C L. Hence we see again
from Remark (it y, = j/;) or Remark (if yp =€) that (J,M),mr = (yrM),z7.
Combining these, we obtain (y.M),zs = (JM)ymy = (YpM)ymr = (yrM)ym1, as desired.
Thus we have shown that I € Int(y,M;wv, k) for all v € Wi and k € K, which implies that
yLM € BZ,(I, K).

Here we recall that X is a product of those Kashiwara operators which are taken from
the set {fq, e, | min K < ¢ < max K} by assumption, and that X (y,M); # 0 by (43.10).
Therefore, we deduce again from Lemmas B.341(2) and B39(2) that Xy, M # 0, and
X(yM); = (XyrM);. Combining this and (43.16]), we obtain (Xy,M); = (Xy,M);.
Since K C I (recall the correspondences (2.4.1]) and (B.1.3])), it follows that

(XpM)k = (X7,M);) . = (XyM);) . = (XyrM)k.
This completes the proof of the lemma. O

We used the following lemma in the proof of Proposition [£.3.§ above; we will also use this
lemma in the proof of Theorem [4.4.5] below.

Lemma 4.3.11. Let p, q € Z be such that 0 < |p—q| < ¢, and let X be a product of Kashiwara
operators of the form: X =017 - X4, where T, € {é\p, ﬁ,, €qs j/’;} for each 1 < b < a. If
M e BZ7 and XM #0, then XM # 0, and ()?M)y = (XM), for each v € I'y, where X is
a product of Kashiwara operators of the form X = xyxy- - - x4, with

4 f/\_/\
er, 1xy,=e,

f P if '/I\b = J/C\a

m=14"" g (4.3.17)
eLq if i‘\b = /G\q,

S, i3 = f,

foreach 1 <b<a. Here, L, is an arbitrary finite subset of p+({+1)Z such that L, D L(~, p)
and such that Ly := {t+ (¢ —p) | t € L,} D L(v,q).

Remark 4.3.12. Keep the notation and assumptions of Lemma A3 TIl If r e p+ ({ + 1)Z is
not contained in L,, then |r —t| > 2 for all t € L, U L,. Indeed, if t € L,, then it is obvious
that |[r —¢| > ¢+ 1> 2. If t € L,, then

r—tl=lr—{t+@-at+p-q|=r—{t+®-a} —Ip—4l

Here note that |r — {t + (p — ¢)}| > ¢+ 1 since ¢t + (p — q) € L,, and that [p — ¢| < ¢ by
assumption. Therefore, we get |r — t| > 2. Similarly, we can show that if r € ¢+ (¢ 4+ 1)Z is
not contained in L, then |r —¢| > 2 for all t € L, U L,.
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Proof of Lemma[4.3.11 For each 1 < b < a, we set )?b ‘= Tpp1Tpio- - Tq and X =
1T - - - xp. We prove by induction on b the claim that Xb)?bl\/[ # 0 and ()/51\/[)7 = (Xb)/\(bM)v
for all 1 < b < a; the assertion of the lemma follows from the case b = a. We see easily from
Remark (if 7, = ﬁ or J/”;) or Remark (if 7, =€, or e,) that the claim above holds
if b = 1. Assume, therefore, that b > 1. By the induction hypothesis, we have

Xp1 XooM = Xo 12 XM £ 0 and  (XM), = (X, 15 XsM),. (4.3.18)

Take an interval K in Z such that v € 'k, and such that min K < ¢t < max K for all
te L,UL,. Definer e {p, ¢} by: r=pifz, =€, or ﬁ,, and r = ¢ if 7, =€, or j/’;. Then we
deduce from Lemma 310 that there exists a finite subset L of r + (¢ 4+ 1)Z such that

Xb_ll‘;))?bM 7& 0 and (Xb—l/x\b)?bM)K = (Xb_lxg)?bM)K,

where z; is defined by the formula (4.3.17), with L, and L, replaced by L U L, and L U L,,
respectively. Also, it follows from Remark and Lemma B.4.11(3) that

(0 7&) Xb_lfL‘g)?bM = Xb_lffgl‘b)?bM = {L‘gXb_ll‘b)?bM = {EgXb)?bM,

where z is defined by the formula (L3.17), with L, and L, replaced by L\ L, and L\ L,,

respectively. In particular, we obtain Xb)?bM # 0. Moreover, since v € 'k, we have
(Xb_l/{L‘\b)/(\vbM)q/ = (Xb—lx;;)?bM)'y = (l‘gXb)?bM),y

Since L, D L(~,r), the intersection of L \ L, and L(vy,r) is empty, and hence (hy, v) < 0
for all t € L\ L,. Therefore, we see from (3.3.2) (if z; = ﬁ, or j/’;) or (3314) (if z; =€,
or ;) that (:16?7’)(1,)?,)M)v = (Xb)?bl\/[)y. Combining these with (A3.I8]), we conclude that
(X M), = (Xb)/(\'bl\/[)ﬁ,, as desired. This proves the lemma. O

4.4 Main results. Recall the BZ datum O of type A, whose y-component is equal to 0
for each v € I'z, (see Example B.22)). It is obvious that 0(O) = O, and hence O € BZ7. Also,
£,(0) =0 forall p € I, which implies that €,0 =0 for all p € 1. Let BZ%(0) denote the
connected component of (the crystal graph of) the crystal BZ? containing O. The following

theorem is the first main result of this paper; the proof will be given in the next section.

Theorem 4.4.1. The crystal BZ7(0O) is isomorphic, as a crystal for U,(g¥), to the crystal
basis B(co) of the negative part U, (8") of Uy(gY).

For each dominant integral weight N € H for gV, let BZ%(O;/)\\) denote the subset of
BZ5(0) consisting of all elements M = (M, ) er, € BZ7(0) satistying the condition (cf.

(23.5))) that
M_gn, > —(X, &) forallieZ (4.4.1)
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recall that 7 denotes a unique element in I= {0, 1, ...,/¢ } to which ¢ € Z is congruent modulo
0+ 1. Let us define a crystal structure for U,(g") on the set BZ7(O; /):) (see Proposition [4.4.4]
below).

Lemma 4.4.2. The set BZ(O; /)\\) U {0} is stable under the raising Kashiwara operators e,
on BZ7 for p € Z.

Proof. Let M = (M,)~er, € BZ7(O; /):), and p € Z. Suppose that M’ := €,M # 0, and write
it as: M’ = ¢,M = (M]),er,. In order to prove that e,M € BZ%(O;X), it suffices to show
that M, < M. for all v € I'z. Fix v € I'z. We know from Proposition 3.8 that f,M' =
JpepM = M. Also, it follows from the definition of f, that M, = (f,M'), = (fr(y,pM'),.
Therefore, we deduce from Remark B.3.1](1) that (fr,,)M'), < M., and hence M, < M.

This proves the lemma. 0

Remark 4.4.3. In contrast to the situation in Lemma [4.4.2] the set BZ%(O;X) is not stable

under the lowering Kashiwara operators ﬁ, on BZ7 for p € Z.

For each p € Z, we define a map F\p : BZ%(O;X) — BZ%(O;X) U {0} by:

EM =

P

~ £ M if f,M is contained in BZ O;X ,
{fp Jo 2(0; ) (44.2)

0 otherwise,

for M € BZ%(O;/)\\); by convention, we set ﬁpO := 0 for all p € Z. We define the weight
Wt(M) of M € BZ5(0;\) by:

Wt(M) = X+ wt(M) = A+ > My, by, (4.4.3)

i€l
where My, := ©(M),, for i € I. Also, we set
3,(M) := (Wt(M), &5) + &,(M) for M € BZ5(0; ) and p € Z. (4.4.4)
Then, it is easily seen from the definition ([£.3.7) of the map £, and Remark that

EI\)p<M) = My, — Mgz, + (3\\, ag), (4.4.5)

where My, = O(M),, and M, 5, == O(M),,a, (cf. (Z310)).

Proposition 4.4.4. (1) The set BZ%(O;/)\\), equipped with the maps Wt, e, ﬁp (p € f), and

~ ~

Ep, @, (p € I) above, is aAcrystal for U,(g").
(2) For M € BZ7(0O;\) and p € I, there hold

M) =max{N >0[e’M #£0},  &,(M)=max{N >0|EYM #0}.
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Proof. (1) This follows easily from Proposition 4.3.8 As examples, we show that
Wt(F,M) = Wt(M) — h,, (4.4.6)

&(F,M)=2,(M)+1 and ®,(F,M)=®,(M) — 1, (4.4.7)

for M € BZ3(0:A) and p € I if F,M # 0. Note that in this case, F,M = f,M by the
definition of Z:"\p. First we show (£.4.0). It follows from the definition of Wt that

WH(F,M) = Wt(f,M) = A + wt(f,M).
Since Wt(};M) =wt(M) — ﬁp by Proposition [£.3.8] we have
Wt(F,M) = X+ wt(f,M) = A + wt(M) — h, = Wt(M) — hy,

as desired. Next we show (LZAT). It follows from (the proof of) Proposition that
&,(F,M) = 2,(f,M) = &,(M) + 1. Also, we compute:

-~

O, (F,M) = O,(f,M) = (Wt(f,M), @,) + &,(f,M) by the definition of ®,

P
= (Wt(M) — /fzp, a,) +6,(M)+1 by (f46) and Proposition
= (Wt(M), a,) +,(M) —1 = C/I\Dp(l\/[) — 1 by the definition of a\)p,

as desired.
(2) The first equation follows immediately from Remark 3.9 together with Lemma [£.4.2
We will prove the second equation. Fix p € 1. We first show that

®,(M) >0 for all M € BZ3(0; \). (4.4.8)

Fix M € BZ%(O;X), and take an interval I in Z such that I € Int(M;e, p) N Int(M; s, p).
Then we see from ([£Z47) that

Bp(M) = My, — Mya, + (N, @) = Mos — M, o1 + (N, G). (4.4.9)

b
Now we define a dominant integral weight A € b for g] by: (A, ;) = (X, az) for i € 1.
Then, we deduce from ([233), (£41]), and (BI13]) that M; € BZ; is contained in BZ;(\) C

BZ;. Because BZ () is isomorphic, as a crystal for U,(g)), to the crystal basis Br(\) (see
Theorem 2.3.7), it follows that ®,(M;) > 0. Also, we see from (2.3.7) that

(M) = Mos — M, o + (A, o). (4.4.10)

Since (A, ap) = (/):, @,) by the definition of A € b;, we conclude from ([A.4.9) and (4.4.10)
that </15p(1\/[) = ®,(M;) > 0, as desired.
Next we show that for M € BZ%(O;X),

F,M =0 ifand only if ®,(M) = 0. (4.4.11)
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Fix M € BZ5(0:)). Suppose that @I,(M) = 0, and F\pM # 0. Then, since &\)p(ﬁpM) =
EI\Jp(M) —1 by ([£4.1), we have @,,(ﬁ,,M) = —1, which contradicts (£.4.8)). Hence, if @(M) =
0, then ﬁpM = 0. To show the converse, assume that ﬁpM =0, or equivalently, j/;M ¢
BZ(O; )). Let us write M € BZ3(0;\) and f,M € BZ3(0) as: M = (M,),cr, and
fp = (M ),\/er‘z, respectively. From the assumption that pr ¢ BZ"(O )\) it follows that
ML\, < <)\ ag) for some ¢ € Z. Note that since M, = M]_,_, for all v € I'z, we may
assume ¢ € 1. Then, we infer that this ¢ is equal to p. Indeed, for each iel \ {p}, we have
L(—s;\;, p) = 0, since (h;, s;\;) = —1 and (h;, s;A;) > 0 for all j € Z with j # i. Therefore,
by the definition of ﬁ,,

73 A (fp ) = (f@M)*siAi = M*Si/\z"

Hence it follows that M’ _, = M_,,, > —</)\\, az) since M € BZ%(O;/):). Consequently,
qe T is not equal to any 7 € f\ {p}, that is, ¢ = p.

Now, as in the proof of (48] above, take an interval [ in Z such that I € Int(M;e,p)N
Int(M; s,, p), and then define a dominant integral weight A € b, for gy by: (), o) = </>\\, az)
for i € I; we know from the argument above that M; € BZ;()\), and <1A>p(1v1) = ¢,(M;).
Therefore, in order to show that CTDP(M) = 0, it suffices to show that ®,(M;) = 0, which is
equivalent to F,M; = 0 by Theorem 23.7 Recall from the above that M’ , =< —<X, Q) =
—(A, a,). Also, it follows from the definition of ﬁ, on BZ7 and the definition of f, on BZ
that

M—SpAp (fp ) = (pr)*spAP since L SP py D {p}
= (prI)fs A

Combining these, we obtain (f,M)_s,a, < —(A\, ap), which implies that f,M; ¢ BZ(\),
and hence F,M; = 0 by the definition. Thus we have shown (L4.11]).

From (AZ4J)), (£411), and the second equation of (LZAT), we deduce that &%(M) =
maX{N >0 | F\IfVM + 0} for M € BZ%(O;X) and p € f, as desired. This completes the
proof of the proposition. O

The following theorem is the second main result of this paper; the proof will be given in

the next section.

Theorem 4.4.5. Let A € b be a dominant integral weight forg". The crystal BZ"(O'/):) 15
isomorphic, as a crystal for Uq(ﬁ ), to the crystal basis B( ) of the irreducible highest weight
U,(gY)-module of highest weight .

4.5 Proofs of Theorems[4.4.Jland [4.4.5l We first prove Theorem [£.4.5} Theorem [£.4.T]
is obtained as a corollary of Theorem
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Proof of Theorem[{.4.5. By Proposition.4.4land Theorem [A.T.T]in the Appendix, it suffices
to prove that the crystal BZ7(O; /):) satisfies conditions (C1)—(C6) of Theorem [A. 1.1l First
we prove that the crystal BZ%(O;/):) satisfies condition (C6). Note that O € BZ%(O;X). It
follows from the definition of the raising Kashiwara operators e,, p € ?, on BZ7(O; X) (see
also the beginning of §4.4]) that €,0 = 0 for all p € T. Also, ©(0),, and ©(0),,», are equal
to 0 by the definitions. Therefore, it follows from (4.4.3) and (4L45) that Wt(O) = X and
@1,(0) = (X, a,) for all p € T, as desired.

We also need to prove that the crystal BZ7(O; /):) satisfies conditions (C1)—(C5) of The-
orem [A. 1.1l We will prove that BZ7(O; /):) satisfies condition (C5); the proofs for the other
conditions are similar. Namely, we will prove the following assertion: Let M & BZ%(O;X),
and p, ¢ € I. Assume that ﬁpM # 0 and ﬁqM # 0, and that CT)q(ﬁpM) = <T>q(M) + 1 and
®,(F,M) = ®,(M) + 1. Then,

F,F2F,M #0 and F,F2F,M #0, (4.5.1)
F,F2F,M = F,F2F,M, (4.5.2)
E(EM) = E(F2F,M) and &,(F,M) = &,(F*F,M). (4.5.3)

Here we note that p # ¢. Indeed, if p = ¢, then it follows from the second equation of (A.Z.7)
that C/I\Dp(l/:’\pM) = C/I\Dq(M) — 1, which contradicts the assumption that &)p(ﬁpl\/[) = Cfp(M) + 1.

A key to the proof of (L5.1)-(453) is Claim [ below. For an interval [ in Z, we define
a dominant integral weight A\; € b for gy by:

Or, a) = O\, @) foriel. (4.5.4)

As mentioned in the proof of Proposition [£.4.41(2), M; € BZ; is contained in BZ;(\;) C BZ;
recall from Theorem [Z3.7 that BZ;(A;) is isomorphic, as a crystal for U,(gy), to the crystal
basis Br(Ar).

Claim 1. Letr, t € Z be such thatT =p, t = q, and 0 < |r —t| < £. Assume that an interval
I in Z satisfies the following conditions:

(al) I € Int(M;e,r) N Int(M; s, 7);

(a2) I € Int(M;e,t) N Int(M; sy, t);

(a3) I € Int(F,M: e, t) N Int(F,M; s, 1);

(ad) I € Int(l/?’\ql\/[; e,r)N Int(l/?’\ql\/[; SpyT).

(i) We have ®,.(M;) = (TJP(M) >0 and &, (M;) = (TDQ(M) > 0, and hence F,M; # 0 and
FM; # 0. Also, we have ®,(F,M;) = ®,(M;) + 1 and ®,.(F;M;) = &,(M;) + 1.

(ii) We have

F.F!F,M; #0 and F,F’F,M; # 0,
F.F?F,M, = F,F’FM;,

e(FrMy) = et(FthMI) and ¢e,.(F,M;) = er(FfFrMI).
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Proof of Claim[l. (i) We write M € BZ5(O; A) and O(M) as: M = (My)er, and ©(M) =
(M¢)eez,, respectively. Then, we compute:

(I)T(MI> = Mw{ - Msrw{ + <)\17 ar) by m
= My, — M A, + (A, ) Dby condition (al).

Since 7 is congruent to p modulo ¢ + 1 by assumption, we have r = ¢"(p) for some n € Z.
Hence, by Remark [4.3.2]

Ma, = M, =
M A, = M,

T

MU"(SPAP) = MSPAP'

on(p)Non(p) —

Also, by the definition of A;, we have (A;, a,.) = </>\\, Q). Substituting these into the above,

we obtain
(M) = My, = Moy, + (3, @) = (M) by @ZLE).
Since <1A>p(1v1) > 0 by the assumption that E,M # 0, we get ®,.(M;) = (/I;p(M[) > 0, as
desired. Similarly, we can show that ®,(M;) = aq(M) > 0.
Now, we write F\pM € BZ%(O;X) and @(ﬁpM) as: ﬁpM = (M) er, and @(ﬁpM) =
(M{)¢ez,, respectively. Since L(w{,p) =0 C {r} (recall that 0 < |r —t| < {), we have

My, = lez;g by condition (a3)
= (F,M),; = (F,M)_; by Remark
= (F-My),s by conditions (al), (a2), and the definition of F;. M.

Also, it follows from (B1.4) that {i € Z | (h;, s,wi) > 0} C {t—1, t+1}. Since 0 < [r—t| < ¢,
it is easily seen that r + ({+ 1)n >t+ 1 and r — ({ + 1)n <t — 1 for every n € Z~,. Hence
we deduce that L(s;ww!,p) C {r}. Using this fact, we can show in exactly the same way as

above that M; ,, = (F,M),,.r. Therefore,

St

Oy(FMy) = (F:My) g = (FMy) o + (A, ar) - by (2.3.7)
= M}, — M, + (A1, o)
=My, — M, + \, a,) by Remark and the definition of \;
= ®,(F,M) by [@4I).
Because &)q(ﬁpl\/[) = EISq(M) + 1 by our assumption, and <T>q(M) = ®,(M;) as shown above,
we obtain ®,(F,M;) = &)q(ﬁpM) = qu(l\/[) +1 = &,(M;) + 1, as desired. The equation
O, (FM;) = ¢,.(M;) + 1 can be shown similarly.
(ii) Because BZ;(A) is isomorphic, as a crystal for U,(g)), to the crystal basis Br(Ar) by

Theorem [23.7] this crystal satisfies condition (C5) of Theorem [A.T.Tl Hence the equations
in part (ii) follow immediately from part (i). This proves Claim [ 1
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First we show (4.5.1]); we only prove that ﬁpﬁjﬁpM # 0, since we can prove that
FqFPQFqM # 0 similarly. Recall that F,M # 0 by our assumption. Also, since F,M # 0
by our assumption, it follows from Proposition £.4.4](2) that ®,(M) > 0. Therefore, we
have ZI\Dq(Z:"\pM) = EI\)q(M) + 1 > 2 by our assumption, which implies that ﬁjﬁpM # 0 by
Proposition EEZ41(2). We set M” := F F,M € BZ7(0;\), and write M” and ©(M”") as:
M” = (M})+er, and O(M") = (M{)¢cz,, respectively. In order to show that F,F;F,M =
F,M" # 0, it suffices to show that

~

©,(M") = M — M

spAp

+(\a,) >0
by Proposition [.4.4](2) along with equation (£.4.35]). We define r, t € Z by:

(r,t)=< ((,+1) ifp=~and q=0, (4.5.5)
(l+1,¢) ifp=0andq=".
Let K be an interval in Z such that r, ¢t € K, and take an interval I in Z satisfying conditions
(al)-(a4) in Claim [ and the following:
(bl) I € Int(M";e,7) NInt(M"; s, 7);
(b2) I € Int(M; v, k) for all v € Wi and k € K.
It follows from Remark and condition (bl) that My = M{ = M/,. Also,

;i = (ﬁqzﬁpM)wg = (]/fﬁ,M)wg by the definitions of F\q and ﬁp

= (fE M)z by @3T).
Here we note that L(w!,r) = {r} and L(w!,t) = 0 since 0 < |r — t| < £. Therefore, we
deduce from Lemma 311l (with p = r, ¢ = t, X = j?ﬁ, v = wl, and L, = {r}) that
f2f-M # 0 and (ﬁzﬁM)wg = (f2fiM)1. Since M € BZ3(I, K) by condition (h2), we see
from Lemma B.3.41(2) that (f2f,M); = fZ f,M;, and hence that (f?f,M)gr = (ffrM)z1.
Also, because r, t € 7Z satisfies the conditions that T = p, ¢ = ¢, and 0 < |r — t| < ¢, and

because the interval I satisfies conditions (al)—(a4) of Claim [ it follows from Claim [I(ii)
that F?F,M; # 0, and hence f?f,M; = F?F,M;. Putting the above together, we obtain
M} = (FZF.Mj)g:. Similarly, we can show that M \ = (F?F,Mj),, 1. Consequently, we

see that

(M) = My, = My, + (A, @)
= (F/F,M)) o1 — (F/F.My)g o + (A1, o)
= ®,(F?F,M;) by ([237) together with Theorem 2.3.7]
>0 by Claim [I(ii).

Thus we have shown (£.5.T]).
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Next we show equation ([A5.2). Define r, ¢ € Z as in ([£5.5]). Since ﬁpﬁjﬁpM # 0 and
ﬁqﬁgﬁqM # 0 by (£51), it follows from the definitions of ﬁp and ﬁq along with (£3.4) that

BEEM = LP2EM = F.]2fM
F\ﬁ2ﬁM qu qu:ftfrft

Therefore, it suffices to show that

(ﬁf?ﬁM)w = (ﬁ]/”?ﬁl\/[)ﬁ, for all v € T'z.

Fix v € I'z, and take a finite subset L, of r + (¢ 4+ 1)Z such that L, D L(~,r) and such that
Ly:={u+(t—7)|u€ L} D L(y,t). We infer from Lemma E3TT that

(FrfREM), = (fr, f2 fo. M), and  (ff?fiM), = (fr.f2 fr.M),.

Let us write L, and L; as: L, = {7’1, ro, ..., ra} and L; = {tl, to, ..., ta}, respectively,

where t, = 1,4+ (t — 1) for each 1 < b < a; note that 0 < |r, —tp| < £ for all 1 <b < a. Let K

be an interval in Z containing L, U L;, and take an interval I in Z satisfying the following;:
(al)’ I € Int(M;e,ry) N Int(M;s,,,rp) for all 1 <b < q;

(a2)’ I € Int(M; e, t,) N Int(M; sy, , ) for all 1 < b < a;
(a3)’ I € Int(ﬁpl\/[; e, tp) N Int(ﬁpl\/[; sy, tp) for all 1 <b < gq;
(ad)' I € Int(]/?\ql\/[; e,1p) N Int(ﬁqM; Sy, 1) forall 1 < b < a;
(c1)

cl)vely;
(c2) I € Int(M;v,k) for all v € Wi and k € K.
Then, since M € BZ4(1, K) by condition (c2), we see from Lemma [3.3.41(3) that

(fr S, fr. M) = fr fi,fr.Mr and  (fr, ff, fr, M) = fi,f7, fL.Mr,
and hence, by condition (c1), that
(fr.f2, fe. M)y = (fr, /7, /2. Mp)y and  (fr, /7, fo M)y = (fr, f7 f..M1),.
Thus, in order to show that (ﬁffﬁl\/[)v = (ﬁﬁ?ﬁM)% it suffices to show that
fr 7, fu, My = fr f7, fr, M. (4.5.6)

We now define

Xb = (FertiFrb) T (FrthQQFm)(FmFthFrl)
Y, = (BbFT‘Qthb) o '(BQFQ Ft2)(Ft1F7"1B1)

for 0 < b < a; Xy and Yj are understood to be the identity map on BZ;(\;). We will show
by induction on b that X,M; # 0, Y,M; # 0, and X,M; = Y,M; forall 0 < b <a. If b =0,
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then there is nothing to prove. Assume, therefore, that b > 0. Note that M; € BZ;(\;)
(see the comment preceding Claim [I]). Hence, X, 1M, € BZ;(A;) since X, 1M; # 0 by the
induction hypothesis. Because BZ;(A;) = B;(Ar) as crystals for U,(g]) by Theorem 2.3.7,
we have

®,,(Xp-1 M) = max{N >0 | FN X, M # 0}.

Here, observe that F, X, ; = X;,_1F,, by the definition of X;_; since for 1 <c¢ <b—1,

|rp =71 > C0+1, and |rp—t| > |ry—71e| —|re—te > +1)—€=1. (4.5.7)
41 <t
>0+

As a result, we have
max{N > 0| £ X, 1M; # 0} =max{N >0 | F’'M; # 0} = &, (M,),

and hence ®,,(X,—1M;) = @, (M;). Recall that for each 1 < b < qa, the integers r, and ¢,
are such that 7, = p, &, = ¢, and 0 < |r, — t| < ¢, and that the interval I satisfies conditions
(al)’—(ad)’, which are just conditions (al)—(a4) of Claim [, with r and ¢ replaced by 7, and
ty, respectively. Consequently, it follows from Claim [I(i) that ®,,(M;) = CIA)p(M) > 0, and

hence @, (X,—1M;) = &, (M) = (TJP(M) > (. Similarly, we can show that @y, (X,—1M;) =

~

o, (M;) = ©,(M) > 0. Moreover, since Fy, Xy = Xp—1 F, and F,, Xy = X1 F},, we have
®,,(F, Xy-1M;) = max{N > 0| E)F, X,_ 1M, # 0}
=max{N >0 | F) F, M, # 0}
=&, (F,My).
Also, it follows from Claim [(i) that ®,,(F;,M;) = &,,(M;) + 1; note that &,,(M;) =
®,, (Xp—1My) as shown above. Combining these, we get ®,, (F;, Xp-1 M) = @, (Xp—1 M) +1.

Similarly, we have @, (F,, Xp—1M;) = &4, (X,—1M;) + 1. Here we remark that the crystal
BZ(\;) = Br()\;) satisfies condition (C5) of Theorem [A.T.Il Therefore, we obtain

XbM[ = FTthiFTbbelMI # 0 and FtbFiFthbflMI 7£ 0,

and
0 # XyM; = F,, [} F,, X, \M[ = F, F’ F, X, 1M

Also, since X, {M; =Y, 1M; by the induction hypothesis, we obtain
YoM, = F, F2F, Yy 1M, = F, F2F, Xy, M # 0,

and
X,M; = F, F2F,, X, 1M = F, F2F, Y, 1M, = ;M.
Thus, we have shown that X,M; # 0, Y,M; # 0, and X,M; = Y;M; for all 0 < b < a, as

desired.
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Since X,M; # 0, we have
XMy = (FraFtiFra) T (FrzﬂiFr2)<Fr1Ft21Fr1>Ml

= (fraftifra> e (fhftifrz)(frlfifrl)M[
= fr,f7,f.,M; by Theorem Z3.4

on the crystal BZ; = B;(c0), we have f,, f.. = fr. fr, and fi, fr. = fi fy, for all 1 <b, ¢ < a,
and f, fr. = fi.fr, for all 1 < b, ¢ < a with b # ¢ (see ([£5.7)). Similarly, we can show that
Y. M; = thffrthMI. Since X,M; = Y,M; as shown above, we obtain (4.5.0), and hence
E52).

Finally, we show (A53)); we give a proof only for the first equation, since the proof of
the second one is similar. Define r, t € Z as in ([£5.3); note that @,, = a,+ and a,, = as by
the definitions. Let K be an interval in Z such that r, ¢t € K, and take an interval [ in Z
satisfying conditions (al)—(a4) in Claim [Il conditions (b1l), (b2) in the proof of ([AL.5.1]) with
M = ﬁjﬁpM and r replaced by ﬁ;ﬁqM and ¢, respectively, and the following:

(d) I € Int(M;e,t —1)NInt(M;e, t) NInt(M;e, t + 1).

Then, we see from the proof of Claim [I(i) that (ﬁq(ﬁpl\/[) = &,(F,M;). Therefore,

é\q(ﬁpl\/l) = 6q(ﬁpl\/[) - <Wt(ﬁpM)> aq)
= O,(F,M;) — (Wt(M) — h,, a,)
— O, (F,M;) — (A + wt(M) — hy, d,). (4.5.8)

Let us compute the value (wt(M), @,). We deduce from the definition (4.3.2)) of wt(M) along
with Remark 3.2 that (wt(M), a,) = —My,_, +2My, — My,,,. Also,

— MA(Fl + 2MAq - MAq+1 = —MAFl + 2MAt - MAt+1 by Remark
= Mg +2Mgr — Mgr = (wt(M;), ay) by condition (d).
Hence we obtain (wt(M), a,) = (wt(M;), ;). In addition, note that </>\\, a,) = (A1, ay) by

the definition (4.5.4]) of A; € b, and that (/i;p, Q) = Gpg = ar¢ = (hy, ay). Substituting these
equations into (AA5.8)), we see that

2, (F,M) = Oy (F,M;) — (A + wt(My) — by, ay)
= Oy (F,M;) — (Wt(M;) — hy, a)
= O,(F,M;) — (Wt(F.My), o) = £,(F,My).

Now, the same argument as in the proof of ([L5.1)) yields &\Dq(ﬁgﬁql\/[) = ®&,(F?*F,M;). Using
this, we can show in exactly the same way as above that &,(F;F;M) = ,(F?FM;). Since
we know from Claim [(ii) that &;(F,M;) = &,(F?*F;M;), we conclude that Eq(ﬁpM) =
Eq(ﬁiﬁql\/[), as desired. Thus we have shown (£5.3). This completes the proof of the theorem.

U
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Proof of Theorem[].4.1. Recall from [Kas| §8.1] that the crystal basis g(oo) can be regarded
as the “direct limit” of g(/)\\)’s as A € b tends to infinity, i.e., as (/):, a;) — +oo for all i € 1.
Also, by using (4.4.7]), we can verify that the direct limit of BZ%(O;X)’S (as X € b tends
to infinity) is nothing but BZ7(0). Consequently, the crystal BZ7(0) is isomorphic to the

~

crystal basis B(oco). This proves Theorem .41 O

A Appendix.

A.1 Characterization of some crystal bases in the simply-laced case. In this
appendix, let A = (a;;); jer be a generalized Cartan matrix indexed by a finite set I such
that a;; € {0, —1} for all i, j € I with ¢ # j. Let g be the (simply-laced) Kac-Moody
algebra over C associated to this generalized Cartan matrix A, with Cartan subalgebra b,
and simple coroots h;, i € I. Let U,(g) be the quantized universal enveloping algebra over
C(q) associated to g. For a dominant integral weight A\ € h* := Homg¢(h, C) for g, let B(A)
denote the crystal basis of the irreducible highest weight U,(g)-module of highest weight A.
Let B be a crystal for U,(g), equipped with the maps wt, e, f, (p € I), and ¢, ¢, (p € I).
We assume that B is semiregular in the sense of [HK| p.86]; namely, for z € B and p € I,

ep(z) = max{N >0 | eévx # 0} € Zso,
¢p(z) =max{N > 0] fz #0} € Zs,,

where 0 is an additional element, which is not contained in B. Let X denote the crystal graph
of the crystal B. We further assume that the crystal graph X is connected. The following

theorem is a restatement of results in [J.

Theorem A.1.1. Keep the setting above. Let A € §* be a dominant integral weight for g.
The crystal B is isomorphic, as a crystal for U,(g), to the crystal basis B(X\) if and only if B
satisfies the following conditions (C1)—(C6):

(Cl) If x € B and p, g € I are such that p # q and e,z # 0, then ¢,(x) < g4(epx) and
Pqlept) < @q(T).

(C2) Letx € B, andp, g € I. Assume that e,z # 0 and e,x # 0, and that ,(e,x) = ,(x).
Then, eyeqx # 0, esepx # 0, and eye,x = eqepm.

(C3) Let x € B, and p, g € I. Assume that e,x # 0 and e,x # 0, and that ¢,(epx) =
gq(x) + 1 and gp(eqx) = g,(x) + 1. Then, epele,r # 0, egeteqr # 0, and epele, = eqete .
Moreover, pq(epx) = @q(eeqr) and @,(eqr) = @p(etept).

(C4) Letx € B, andp, q € 1. Assume that fyx # 0 and f,x # 0, and that e,( fyx) = £,(x).
Then, fofer #0, fofpx #0, and f,fox = fifox.

(C5) Let x € B, and p, ¢ € I. Assume that f,x # 0 and f,x # 0, and that p,(f,x) =
pq(2)+1 and py(for) = p(x)+1. Then, fpfsfpx # 0, qu,?quﬂ # 0, and fpfsfpx = qu;?qu-
Moreover, eq(fpr) = eq(f7 for) and e,(fox) = ep(f7 fp).
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(C6) There exists an element xg € B of weight X such that e,xo = 0 and @,(zo) = (hy, A)
forallp e I.

(Sketch of ) Proof. First we prove the “if” part. Recall that the crystal graph X of the
crystal B is an [-colored directed graph. We will show that X is A-regular in the sense of
[Sl Definition 1.1]. It is obvious that X satisfies condition (P1) on page 4809 of [S] since B is
assumed to be semiregular. Also, it follows immediately from the axioms of a crystal that X
satisfies condition (P2) on page 4809 of [S]. Now we note that for x € B and p € I, e(z,p)
(resp., 6(x,p)) in the notation of [S] agrees with ¢, () (resp., —¢,(x)) in our notation. Hence,
for x € B and p, g € I with e,z # 0, A,0(x, q) (resp., Aye(z, q)) in the notation of [S] agrees
with —g,(e,x)+¢,(x) (resp., 4(e,r) —@,(x)) in our notation. Hence, in our notation, we can
rewrite condition (P3) on page 4809 of [J] as: {—e,(e,x) +4(2) } + {@q(epz) — @g(2) } = ay
for z € B and p, ¢ € I such that p # ¢ and e,z # 0. From the axioms of a crystal, we have

pq(epr) — g4(epr) = (hy, Wt(epx)) = (hy, o) + (hg, Wt )
= agp + (hy, Wt ),
©q(x) — gq(w) = (hg, Wt ).

Thus, condition (P3) on page 4809 of [S] holds for the crystal graph X. Similarly, in our
notation, we can rewrite condition (P4) on page 4809 of [S] as: —e,(epz) + g4(x) < 0 and
wq(epr)—@q(x) < 0for x € Bandp, ¢ € I such that p # ¢ and e,z # 0, which is equivalent to
condition (C1). In addition, note that for = € B and p, ¢ € I with f,x # 0, V,0(z, q) (resp.,
V,e(x,q)) in the notation of [S] agrees with —e, () +¢,(f,x) (resp., ¢,(x) — ¢,(fpx)) in our
notation. In is easy to check that conditions (P5) and (P6) on page 4809 of [S] are equivalent
to conditions (C2) and (C3), respectively. Similarly, it is easily seen that conditions (P5’)
and (P6’) on page 4809 of [J] are equivalent to conditions (C4) and (C5), respectively. Thus,
we have shown that the crystal graph X is A-regular.

We know from [S, §3] that the crystal graph of the crystal basis B()) is A-regular. Also,
it is obvious that the highest weight element u, of B(\) satisfies the condition that e,uy = 0
and @,(uy) = (hy, A) for all p € I (cf. condition (C6)). Therefore, we conclude from [S,
Proposition 1.4] that the crystal graph X of the crystal B is isomorphic, as an I-colored
directed graph, to the crystal graph of the crystal basis B(\); note that zq € B corresponds
to uy € B(A) under this isomorphism. Since the crystal graphs of B and B()) are both
connected, and since zy € B and uy € B(\) are both of weight A, it follows that the crystal
B is isomorphic to the crystal basis B(A). This proves the “if” part.

The “only if” part is now clear from the argument above. Thus we have proved the

theorem. O
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