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Abstract

We examine the composition of the L∞ norm with weakly convergent sequences of gradient
fields associated with the homogenization of second order divergence form partial differential
equations with measurable coefficients. Here the sequences of coefficients are chosen to model
heterogeneous media and are piecewise constant and highly oscillatory. We identify local rep-
resentation formulas that in the fine phase limit provide upper bounds on the limit superior of
the L∞ norms of gradient fields. The local representation formulas are expressed in terms of the
weak limit of the gradient fields and local corrector problems. The upper bounds may diverge
according to the presence of rough interfaces. We also consider the fine phase limits for layered
microstructures and for sufficiently smooth periodic microsturctures. For these cases we are
able to provide explicit local formulas for the limit of the L∞ norms of the associated sequence
of gradient fields. Local representation formulas for lower bounds are obtained for fields cor-
responding to continuously graded periodic microstructures as well as for general sequences of
oscillatory coefficients. The representation formulas are applied to problems of optimal material
design.

Keywords: L∞ norms, Nonlinear composition, Weak limits, Material design, Homogenization.
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1 Introduction

Understanding the composition of nonlinear functionals with weakly convergent sequences is a central
issue in the direct methods of the calculus of variations, homogenization theory and nonlinear partial
differential equations. In this paper we discuss a composition motivated by problems of optimal
design. To fix ideas consider a domain Ω ⊂ Rd, d = 2, 3, partitioned into two measurable subsets ω
and Ω/ω. Define the piecewise constant coefficient of thermal conductivity taking the values αI for
x ∈ ω and βI for x ∈ Ω/ω by A(ω) = (αχω + β(1− χω))I. Here χω is the characteristic function of
ω with χω = 1 for points in ω and zero otherwise and I is the d×d identity matrix. Next consider a
sequence of sets {ωn}∞n=1 with indicator functions χωn and the H1(Ω) solutions un of the boundary
value problems un = g on ∂Ω with g ∈ H1/2(∂Ω) and

− div (A(ωn)∇un) = f (1.1)

for f ∈ H−1(Ω). The theory of homogenization [9], [38], [32] asserts that there is a subsequence of
sets, not relabeled, and a matrix valued coefficient AH(x) ∈ L∞(Ω,Rd×d) for which the sequence un
converges weakly in H1(Ω) to uH ∈ H1(Ω) with uH = g for x ∈ ∂Ω and

− div
(
AH∇uH

)
= f. (1.2)
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The compositions of interest are given by the L∞ norm taken over open subsets S ⊂ Ω and are of
the form

‖∇un‖L∞(S) = esssupx∈S |∇un(x)|, (1.3)

‖χωn∇un‖L∞(S) and ‖(1− χωn)∇un‖L∞(S), (1.4)

and we seek to understand the behavior of limits of the kind given by

lim inf
n→∞

‖χωn∇un‖L∞(S) and lim sup
n→∞

‖χωn∇un‖L∞(S). (1.5)

In this paper we provide examples and identify conditions for which it is possible to represent the
limits of these compositions by local formulas expressed in terms of the weak limit ∇uH . The
representation formulas provide a multi-scale description useful for studying the composition.

To illustrate the ideas we display local formulas in the context of periodic homogenization. The
unit period cell for the microstructure is Y and we partition it into two sets P and Y/P . To fix
ideas we assume the set P represents a single smooth particle, e.g. an ellipsoid. The union of all
particles taken over all periods is denoted by ω. The coefficient A(ω) is a periodic simple function
defined on Rd taking the value αI in ω and βI in Rd/ω. On rescaling by 1/n, n = 1, 2, . . . the
set given by the union of rescaled particles taken over all rescaled periods is denoted by ωn and
χωn(x) = χω(nx). We consider the sequence of coefficients A(ωn) restricted to Ω and the theory of
periodic homogenization [3], [37] delivers a constant matrix AH of effective properties given by the
formula

AHij =

∫
Y

Aik(y)Pkj(y)dy (1.6)

where Pkj = ∂xkφ
j(y) + δkj and φj are Y -periodic H1

loc(R
d) solutions of the unit cell problems

div(A(y)(∇φj(y) + ej)) = 0 in Y , (1.7)

where we have written A(y) = A(ω) = (αχω(y) + (1 − χω(y))β)I for y ∈ Y . It is well known that
the associated energies taken over sets S ⊂⊂ Ω converge [38], [32], i.e.,

lim
n→∞

∫
S

An∇un · ∇undx =

∫
S

AH∇uH · ∇uHdx

=

∫
S×Y

A(y)P (y)∇uH(x) · ∇uH(x) dydx. (1.8)

In this paper we show that the analogous formulas hold for L∞ norms and are given by the local
representation formulas

lim
n→∞

‖χωn(x)∇un‖L∞(S) = ‖χω(y)P (y)∇uH(x)‖L∞(S×Y ), and (1.9)

lim
n→∞

‖(1− χωn(x))∇un‖L∞(S) = ‖(1− χω(y))P (y)∇uH(x)‖L∞(S×Y ), (1.10)

these formulas follow from Theorem 4.2.
For general situations the question of finding local formulas is delicate as the solutions of (1.1)

with measurable coefficients are nominally in H1(Ω) with gradients in L2(Ω,Rd). For sufficiently
regular f , g, and Ω, and in the absence of any other hypothesis on the coefficients, the theorems
of Bojarski [4], for problems in R2, and Meyers [30], for problems in Rd, d ≥ 2, guarantee that
gradients belong to Lp(Ω,Rd) for 2 < p < p′ with p′ depending on the aspect ratio β/α. For the
general case one can not expect p to be too large. The recent work of Faraco [12] shows that for d = 2
and for β = K > 1 and α = 1/K that there exist coefficients associated with sequences of layered
configurations ωn made up of hierarchal laminations for which the sequence of gradients is bounded
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in Lploc(Ω,Rd) for p < p∗ = 2K/(K − 1) and is divergent in Lploc(Ω,Rd) for p ≥ p∗. This precise
value for p∗ was proposed earlier for sequences of laminated structures using physical arguments in
the work of Milton [31]. For measurable matrix valued coefficients A(x) ∈ R2×2 with eigenvalues in
the interval [1/K,K] the same critical exponent p∗ = 2K/(K − 1) holds, this result also motivated
by [31] is shown earlier in the work of Lionetti and Nesi [21].

With these general results in mind we display, in section 2, a set of upper bounds on the limit
superior of the compositions (1.4) that hold with a minimal set of hypothesis on the sequence
{ωn}∞n=1. Here we assume only that the sets ωn are Lebesgue measurable thus the upper bound may
diverge to ∞ for cases when these sets have corners or cusps. The upper bound is given by a local
representation formula expressed in terms of the weak limit ∇uH . It is given by the limit superior
of a sequence of L∞ norms of local corrector problems driven by ∇uH . For periodic microstructures
the local correctors reduce to the well known solutions of the periodic cell problems associated with
periodic homogenization [3], [37]. In section 3 we provide a general set of sufficient conditions for
which the limits (1.5) agree and are given by a local representation formula see, Theorem 3.2. As
before this formula is given in terms of a limit of a sequence of L∞ norms for solutions of local
corrector problems driven by ∇uH . From a physical perspective the local formula measures the
amplification or diminution of the gradient ∇uH by the local microstructure. Formulas of this type
have been developed earlier in the context of upper and lower bounds for the linear case [25], [26],
[27] and lower bounds for the nonlinear case [15].

On the other hand when the boundary of the sets ω are sufficiently regular one easily constructs
examples of coefficients A(ω) for which the gradients belong to L∞(Ω,Rd). More systematic treat-
ments developed in the work of Bonnitier and Vogelius [5], Li and Vogelius [19], and Li and Nirenberg
[20] describe generic classes of coefficients A(ω) for which gradients of solutions belong to L∞loc(Ω,Rd).
The earlier work of Chipot, Kinderlehrer and Vergara-Caffarelli [8] establish higher regularity for
coefficients A(ω) associated with laminated configurations. In section 4.1 we apply the uniform
convergence for simple laminates discovered in [8] to show that the sufficient conditions given by
Theorem 3.2 hold. We apply this observation to obtain an explicit local formula for the limits of
compositions of the L∞ norm with weakly convergent sequences of gradient fields associated with
layered microstructures. While in section 4.2 we use the higher regularity theory for smooth periodic
microstructures developed in [20] to recover an explicit representation formula for the upper bound
on the limit superior of compositions of the L∞ norm with weakly convergent sequences of gradient
fields associated with periodic microstructures. Lower bounds on the limit inferior are developed in
section 5 that agree with the upper bounds and we recover explicit local formulas for the limits of
compositions of the L∞ norm with weakly convergent sequences of gradient fields associated with
periodic microstructures.

The L∞ norm of the field gradient inside each component material (1.4) is of interest in ap-
plications where it is used to describe the strength of a composite structure. Here the strength of
a component material is described by a threshold value of the L∞ norm of the gradient. If the
L∞ norm exceeds the threshold inside ωn then failure is initiated in that material and nonlinear
phenomena such as plasticity and material degradation occur [18], [34]. The design of composite
structures to forestall eventual failure initiation is of central interest for aerospace applications [16].
For a given set of structural loads one seeks configurations ω that keep the local gradient field below
the failure threshold inside each component material over as much of the structure as possible. As
is usual in design problems of this sort the problem is most often ill-posed (see, e.g. [28]) and there
is no best configuration ω. Instead one looks to identify sequences of configurations {ωn}∞n=1 from
which a nearly optimal configuration can be chosen.

The work of Duysinx and Bendsoe [10] presents an insightful engineering approach to the problem
of optimal design subject to constraints on the sup norm of the local stress inside a laminated
material. The subsequent work of Lipton and Stuebner [22], [23], [24] develops the mathematical
theory and provides numerical schemes for the design of continuously graded multi-phase elastic
composites with constraints on the L∞ norm of the local stress or strain inside each material. More
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recent work by Carlos-Bellido, Donoso and Pedregal [11] provides the mathematical relaxation of
the L∞ gradient constrained design problem for two-phase heat conducting materials. The feature
common to all of these problems is that they involve weakly convergent sequences of gradients and
their composition with L∞ norms of the type given by (1.3) and (1.4). Motivated by the applications
we develop an explicit local representation formula for the lower bound on (1.5) for continuously
graded periodic microstructures introduced for optimal design problems in [25], [22], [23], see section
5. A similar set of lower bounds have appeared earlier within the context of two-scale homogenization
[27]. In section 6 we conclude the paper by outlining the connection between optimal design problems
with L∞ gradient constraints, local representation formulas, and the composition of the L∞ norm
with sequences of gradients. Last it is pointed out that the results presented here can be extended
without modification to the system of linear elasticity.

2 Mathematical background and upper bounds given by lo-
cal representation formulas

In this section we present upper bounds on the limit superior of sequences of L∞ norms of gradient
fields associated with G-convergent sequences of coefficient matrices. In what follows the coefficient
matrices given by simple functions A(x) taking the finite set of values A1, A2, . . . , AN in the space
of d× d positive definite symmetric matrices. Here no assumption on the sets ωi where A(x) = Ai
are made other than that they are Lebesgue measurable subsets of Ω.

We consider a sequence of coefficient matrices An(x) =
∑N
i=1 χ

i
nAi. Here An(x) = Ai on the

sets ωin and the corresponding indicator function χin takes the value χin = 1 on ωin and zero outside

for i = 1, 2, . . . , N , with
∑N
i=1 χ

i
n = 1 on Ω. We suppose that the sequence {An(x)}∞n=1 is G-

convergent with a G-limit given by the positive definite d× d coefficient matrix AH(x). The G-limit
is often referred to as the homogenized coefficient matrix. For completeness we recall the definition
of G-convergence as presented in [32]:

Definition 2.1. The sequence of matrices {An(x)}∞n=1 is said to G-converge to AH(x) iff for every
ω ⊂ Ω with closure also contained in Ω and for every f ∈ H−1(ω) the solutions ϕn ∈ H1

0 (ω) of

− div (An∇ϕn) = f (2.1)

converge weakly in H1
0 (ω) to the H1

0 (ω) solution ϕH of

− div
(
AH∇ϕH

)
= f. (2.2)

G-convergence is a form of convergence for solution operators and its relation to other notions
of operator convergence are provided in [38]. From a physical perspective each choice of right
hand side f in (2.1) can be thought of as an experiment with the physical response given by the
solution ϕn of (2.1). The physical response of heterogeneous materials with coefficients belonging
to a G-convergent sequence converge in H1

0 (ω) to that of the G-limit for every choice of sub-domain
ω. For sequences of oscillatory periodic and strictly stationary, ergodic random coefficients the G-
convergence is described by the more well known notions of homogenization theory [3], [17], [36],
[38], [32]. We point out that the G-convergence described in Definition 2.1 is a specialization of the
notion of H-convergence introduced in [32] which applies to sequences of non-symmetric coefficient
matrices subject to suitable coercivity and boundedness conditions.

It is known [32] that if {An}∞n=1 G-converges to AH , then for any g ∈ H1/2(∂Ω) and f ∈ H−1(Ω),
the H1(Ω) solutions un of

− div (An∇un) = f, un = g (2.3)

converge weakly in H1(Ω) to the H1(Ω) solution uH of

− div
(
AH∇uH

)
= f, uH = g. (2.4)
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Last we recall the sequential compactness property of G-convergence [38], [32] applied to the case
at hand.

Theorem 2.1. Given any sequence of simple matrix valued functions {An(x)}∞n=1 there exists a
subsequence {An′(x)}∞n′=1 and a positive definite d× d matrix valued function AH(x) such that the

sequence {An′(x)}∞n′=1 G-converges to AH(x).

For the remainder of the paper we will suppose that sequence of coefficients {An}∞n=1 G-converges
to AH and we will investigate the behavior of the gradient fields inside each of the sets ωin. To this
end we will consider the limits

lim inf
n→∞

‖χin∇un‖L∞(S) and lim sup
n→∞

‖χin∇un‖L∞(S), for i = 1, 2 . . . , N , (2.5)

where S ⊂ Ω is an open set of interest with closure contained inside Ω.
In order to proceed we introduce the local corrector functions associated with the sequence of

coefficients {An}∞n=1. Let Y ⊂ Rd be the unit cube centered at the origin. For r > 0 consider
Ωintr = {x ∈ Ω : dist(x, ∂Ω) > r} and for x ∈ Ωintr and z ∈ Y we introduce the Y periodic H1(Y )
solution wr,n(x, z) of

− divz (An(x+ rz)(∇zwr,ne (x, z) + e)) = 0, for z ∈ Y , (2.6)

where E is a constant vector in Rd with respect to the z variable. Here x appears as a parameter
and the differential operators with respect to the z variable are indicated by subscripts. For future
reference we note that wr,n depends linearly on e and we define the corrector matrix P r,n(x, z) to
be given by

P r,n(x, z)e = ∇zwr,ne (x, z) + e. (2.7)

We are interested in the L∞ norm associated with each phase and introduce the modulation functions
Mi(∇uH) defined for x ∈ Ω given by [25]

Mi(∇uH)(x) = lim sup
r→0

lim sup
n→∞

‖χin(x+ rz)(P r,n(x, z)∇uH(x))‖L∞(Y ). (2.8)

In what follows we will denote the measure of ω ⊂ Ω by |ω| and state the following upper bound
given by a local representation formula.

Theorem 2.2. Let An G-converge to AH and consider any open set S ⊂ Ω with closure contained
inside Ω. There exists a subsequence, not relabeled and a sequence of decreasing measurable sets
En ⊂ S, with |En| ↘ 0 such that

lim sup
n→∞

‖χin∇un‖L∞(S\En) ≤ ‖Mi(∇uH)‖L∞(S), i = 1, 2, . . . , N . (2.9)

To proceed we introduce the distribution functions associated with the following sets Sni,t, i =
1, 2, . . . , N , defined by

Sni,t = {x ∈ S : χin|∇un| > t} (2.10)

given by

λni (t) = |Sni,t|. (2.11)

We state a second upper bound that follows from the homogenization constraint [25].
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Theorem 2.3. Let An G-converge to AH and consider any open set S ⊂ Ω with closure contained
inside Ω. Suppose for i = 1, 2, . . . , N that lim supn→∞ ‖χin∇un‖L∞(S) = `i <∞ and for every δ > 0
sufficiently small there exist positive numbers θiδ > 0 such that

lim inf
n→∞

λni (`i − δ) > θiδ. (2.12)

There exists a subsequence, not relabeled, such that

lim sup
n→∞

‖χin∇un‖L∞(S) ≤ ‖Mi(∇uH)‖L∞(S). (2.13)

We provide a proof Theorem 2.2 noting that the proof of Theorem 2.3 is given in [25].

Proof. First note that the claim holds trivially if ‖Mi(∇uH)‖L∞(S) = ∞. Now suppose otherwise
and set ‖Mi(∇uH)‖L∞(S) = H <∞. For this case Corollary 3.3 of [25] shows directly that for any
δ > 0 that the measure of the sets

Sni,H+δ = {x ∈ S : χin(x)|∇un(x)| > H + δ}, (2.14)

tends to zero as n goes to ∞, i.e.,

lim sup
n→∞

λni (H + δ) = lim sup
n→∞

|Sni,H+δ| = 0. (2.15)

We choose a sequence of decreasing positive numbers {δ`}∞`=1, such that δ` ↘ 0 and from (2.15) we
can pick a subsequence of coefficients {Anj(δ1)}∞j=1 for which

|Snj(δ1)
i,H+δ1

| < 2−j , j = 1, 2, . . .. (2.16)

For δ2 we appeal again to (2.15) and pick out a subsequence of {Anj(δ1)}∞j=1 denoted by {Anj(δ2)}∞j=1

for which

|Snj(δ2)
i,H+δ2

| < 2−j , j = 1, 2, . . .. (2.17)

We repeat this process for each δ` to obtain a family of subsequences {Anj(δ`)}∞j=1, ` = 1, 2, . . . such

that {Anj(δ`+1)}∞j=1 ⊂ {Anj(δ`)}∞j=1. On choosing the diagonal sequence {Ank(δk)}∞k=1 we form the
sets

EK = ∪k≥KSnk(δk)
i,H+δk

= {x ∈ S : χink(δk)|∇unk(δk)| > H + δk, for some k ≥ K}, (2.18)

with EK+1 ⊂ EK . Noting that |Snk(δk)
i,H+δk

| < 2−k, we see that |EK | < 2−K+1. Since x 6∈ EK implies
that

χink(δk)|∇unk(δk)| < H + δk for all k ≥ K, (2.19)

we observe that

‖χink(δk)∇unk(δk)‖L∞(S\EK) < H + δk for all k ≥ K, (2.20)

and we conclude that

lim sup
K→∞

‖χinK(δK)∇unK(δk)‖L∞(S\EK) ≤ H, (2.21)

with |EK | ↘ 0 and the theorem is proved.
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3 Lower bounds and sufficient conditions for a local repre-
sentation formula

We suppose that sequence of coefficients {An)}∞n=1 G-converges to AH and investigate the behavior
of the gradient fields inside each of the sets ωin. Here we consider the limits

lim inf
n→∞

‖χin∇un‖L∞(S), for i = 1, 2 . . . , N . (3.1)

and identify a general sufficient condition for obtaining a lower bound on these quantities in terms
of Mi(∇uH).

Assume that un, P r,n and uH are defined as in the previous section and we consider an open
subset S ⊂ Ω with closure contained in Ω. We write τ = dist(∂S, ∂Ω) > 0 and set

Sτ = {x ∈ Ω : dist(x, S) < τ}.

For r < τ note that S ⊂ Sr ⊂ Sτ ⊂ Ω. We next recall for x ∈ S

Mi(∇uH)(x) = lim sup
r→0

lim sup
n→∞

‖|χin(x+ ry)P r,n(x, y)∇uH(x)|2‖L∞(Y ). (3.2)

For this case the sufficient condition is based on the distribution function for the sequence {χin(x+
ry)P r,n(x, y)∇uH(x)} and the lower bound is presented in the following theorem.

Theorem 3.1. Let An G-converge to AH and consider any open set S ⊂ Ω with closure contained
inside Ω. Suppose that

‖Mi(∇uH)‖L∞(S) = `i <∞.

Assume also that for all δ > 0 small, there exist βδ > 0 such that

lim
r→0

lim inf
n→∞

|{(x, y) ∈ S × Y : |χin(x+ ry)P r,n(x, y)∇uH(x)|2 > (`i)2 − δ}| ≥ βδ > 0. (3.3)

Then there exists a subsequence for which

lim
r→0

lim inf
n→∞

‖χin∇un‖L∞(Sr) ≥ ‖Mi(∇uH)‖L∞(S).

Proof. Our starting point is Lemma 5.5 of [7] which is described in the following lemma.

Lemma 3.1.

lim
r→0

lim sup
n→∞

∫
S

∫
Y

|P r,n(x, y)∇uH(x)−∇un(x+ ry)|2dydx = 0. (3.4)

On applying the lemma we observe that

χin(x+ ry)P r,n(x, y)∇uH(x) = χin(x+ ry)∇un(x+ ry) + zr,n(x, y) ∀(x, y) ∈ S × Y, (3.5)

where

lim
r→0

lim sup
n→∞

∫
S

∫
Y

|zr,n(x, y)|2dydx = 0. (3.6)

It follows that

|χin(x+ ry)P r,n(x, y)∇uH(x)|2 = |χin(x+ ry)∇un(x+ ry)|2 + F r,n(x, y) ∀(x, y) ∈ S × Y, (3.7)

where
F r,n(x, y) = |zr,n(x, y)|2 + (zr,n(x, y), χin(x+ ry)∇un(x+ ry)).
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We show that F r,n(x, y)→ 0 strongly in L1 in the sense that

lim
r→0

lim sup
n→∞

∫
S

∫
Y

|F r,n(x, y)|dydx = 0.

Indeed, from the definition and by Cauchy-Schwarz inequality we have∫
S

∫
Y

|F r,n(x, y)|dydx ≤
∫
Sr

∫
Y

|zr,n(x, y)|2dydx

+

(∫
S

∫
Y

|zr,n(x, y)|2dydx
)1/2(∫

S

∫
Y

|∇un(x+ ry))|2dydx
)1/2 (3.8)

Moreover from standard a-priori estimates we know there is a constant C > 0 independent of r and
n for which, ∫

S

∫
Y

|∇un(x+ ry))|2dydx ≤ C. (3.9)

The assertion follows on taking the limits in (3.8) and using estimate (3.9) and equation (3.6).
Now by Chebyshev’s inequality, for every δ > 0, we have the inequality

|{(x, y) ∈ S × Y : |F r,n(x, y)| > δ}| ≤ 1

δ

∫
S×Y

|F r,n(x, y)|dydx

and taking the limsup as n→∞ first and then as r → 0, we see that

lim
r→0

lim sup
n→∞

|{(x, y) ∈ S × Y : |F r,n(x, y)| > δ}| = 0 (3.10)

From (3.7) we see that

{(x, y) ∈ S × Y : |χin(x+ ry)P r,n(x, y)∇uH(x)|2 > (`i)2 − δ} ⊂
⊂ {(x, y) ∈ S × Y : |χin(x+ ry)∇un(x+ ry)|2 > (`i)2 − 2δ} ∪ {(x, y) ∈ S × Y : |F r,n(x, y)| > δ}.

Therefore, applying (3.10) we obtain

lim
r→0

lim inf
n→∞

|{(x, y) ∈ S × Y : |χin(x+ ry)P r,n(x, y)∇uH(x)|2 > (`i)2 − δ}| ≤

≤ lim
r→0

lim inf
n→∞

|{(x, y) ∈ S × Y : |χin(x+ ry)∇un(x+ ry)|2 > (`i)2 − 2δ}|.

It follows from the last inequality that

lim
r→0

lim inf
n→∞

|{(x, y) ∈ S × Y : |χin(x+ ry)∇un(x+ ry)|2 > (`i)2 − 2δ}| ≥ βδ > 0,

Here we have used our assumption ( 3.3). Therefore, there exist R = R(δ) and N = N(δ) such that

|{(x, y) ∈ S × Y : |χin(x+ ry)∇un(x+ ry)|2 > (`i)2 − 2δ}| > 0, ∀n ≥ N(δ), r ≤ R(δ).

From the definition of the L∞ norm it follows that,

‖|χin∇un|2‖L∞(Sr) ≥ (`i)2 − 2δ ∀n ≥ N(δ), r ≤ R(δ).

Taking the limit first in n and then in r, and using the arbitrariness of of δ, we get

lim
r→0

lim inf
n→∞

‖χin∇un‖2L∞(Sr) ≥ (`i)2,

and the theorem follows.
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Last if we combine the hypotheses of theorems 2.3 and 3.1 we obtain a sufficient condition for
a local representation formula for limits of compositions of the L∞ norm with weakly convergent
sequences of gradients associated with homogenization.

Theorem 3.2. Let An G-converge to AH and consider any open set S ⊂ Ω with closure contained
inside Ω. Suppose for sufficiently small r < τ , S ⊂ S2r ⊂ Sτ ⊂ Ω, for i = 1, 2, . . . , N that
lim supr→0 lim supn→∞ ‖χin∇un‖L∞(Sr) = `i < ∞ and for every δ > 0 sufficiently small there exist
positive numbers θiδ > 0 such that

lim sup
r→0

lim sup
n→∞

|{x ∈ Sr : χin|∇un| > `i − δ)}| ≥ θiδ > 0, (3.11)

in addition suppose that lim supr→0 ‖Mi(∇uH)‖L∞(Sr) = ˜̀i <∞ and for all δ > 0 small, there exist
βδ > 0 such that

lim
r→0

lim inf
n→∞

|{(x, y) ∈ Sr × Y : |χin(x+ ry)P r,n(x, y)∇uH(x)|2 > (˜̀i)2 − δ}| ≥ βδ > 0. (3.12)

There exists a subsequence, not relabeled, such that

lim
r→0

lim
n→∞

‖χin∇un‖L∞(Sr) = lim
r→0
‖Mi(∇uH)‖L∞(Sr). (3.13)

4 Local representation formula for layered and periodic mi-
crostructures

We now describe sequences of configurations for which one has equality in the spirit of (3.13). The
first class of configurations are given by sequences of finely layered media. The second class is given
by a sequence of progressively finer periodic microstructures comprised of inclusions with smooth
boundaries. In what follows the results of [8] provide the sufficient conditions (3.11) and (3.12) for
the case of finely layered media. While the higher regularity results of [19] and [20] allow for the
computation of an upper bound for the periodic case. This upper bound agrees with an explicit
lower bound developed in section 5. We note that the lower bound for the periodic case can also be
obtained using the earlier results given in [27].

In order to proceed let us recall the fundamental results from homogenization theory for periodic
media. We denote a d dimensional cube centered at x and of side length r by Y (x, r). For the
unit cube centered at the origin we abbreviate the notation and write Y . The coefficient A(y) is
a periodic simple function defined on the unit period cell Y taking the N values Ai, i = 1, . . . , N
in the space of positive symmetric d × d matrices. We denote the indicator functions of the sets
Yi where A(y) = Ai by χi and write A(y) =

∑N
i=1Aiχ

i(y). It is well known from the theory of
periodic homogenization [3] that the sequence of coefficients An(x) = A(nx) G− converge to the
homogenized constant matrix AH given by the formula

AHij =

∫
Y

Aik(y)Pkj(y)dy (4.1)

where Pkj = ∂xkφ
j(y) + δkj and φj are Y -periodic H1

loc(R
d) solutions of the cell problems

div(A(y)(∇φj(y) + ej)) = 0 in Rd, (4.2)

where this equation is understood in the weak sense, i.e.,∫
Y

(A(y)(∇φj(y) + ej),∇ψ)dy = 0, ∀ψ ∈ H1
per(Y ). (4.3)

For periodic microstructures we define the modulation function by

Mi(∇uH)(x) = ‖|χi(·)P (·)∇uH(x)|‖L∞(Y ) i = 1, · · · , N. (4.4)
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4.1 Laminated microstructure

The layered configurations as introduced in this section are a special class of periodic configurations.
To fix ideas we consider a two dimensional problem and partition the unit period square Y ⊂ R2 for
the layered material as follows:

Y1 = {(y1, y2) ∈ Y : −1

2
≤ y1 ≤ −

1

2
+ θ Y2 = {(y1, y2) ∈ Y : −1

2
+ θ ≤ y1 ≤

1

2
}

where θ is a specified value in the interval (0, 1). Let χ1 and χ2 denote the indicator functions of Y1

and Y2 respectively and consider the Y-periodic matrix function A(y) given by

A(y) = αIχ1(y) + βIχ2(y),

for positive constants α < β. I is the 2 × 2 identity matrix. Let Ω ⊂ R2 and un be the H1(Ω)
solution to

− div (A(nx)∇un) = f in Ω and un = 0 on ∂Ω. (4.5)

Then un converges weakly in H1(Ω) as n→∞ to the H1(Ω) solution uH of

− div
(
AH∇uH

)
= f, in Ω and uH = 0 on ∂Ω. (4.6)

where AH is determined using the formula (4.1). The gradient of solutions of the cell problem (4.2)
for layered materials are given by

∇φ1(y) =

(
(1− θ)(β − α)

θβ + (1− θ)α
χ1(y) +

θ(β − α)

θβ + (1− θ)α
χ2(y)

)
e1

and
∇φ2(y) = e2 for all y ∈ Y .

We define the constants

ah =
αβ

θβ + (1− θ)α
and am = θα+ (1− θ)β, (4.7)

and introduce the Y periodic scalar coefficient a(y) = αχ1(y) + βχ2(y). A simple calculation gives

P (y) =

[
p11(y) 0

0 1

]
where p11(y) =

ah
a(y)

The homogenized matrix AH is given by

AH =

[
ah 0
0 am

]
.

The modulation function for each phase is given by:

M1(∇uH)(x) =

√(
β

θβ + (1− θ)α
∂x1

uH
)2

+ (∂x2
uH)2

M2(∇uH)(x) =

√(
α

θβ + (1− θ)α
∂x1

uH
)2

+ (∂x2
uH)2

We now apply the regularity and convergence results associated with G-convergent coefficients for
sequences of layered materials [8]. For right hand sides f ∈ H1(Ω) there exists a p > 2 such that for
any subdomain Ω′ b Ω

un ∈ H1,∞(Ω′) and ∂x2un, a(nx)∂x1un ∈ H1,p(Ω′)
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with the estimate that for some C = C(α, β,Ω′,Ω),

‖∂x2un‖H1,p(Ω′) + ‖a(nx)∂x1un‖H1,p(Ω′) ≤ C‖f‖H1(Ω), (4.8)

see [8]. The Sobolev embedding theorem implies that {∂x2un}∞n=1 and {a(nx)∂x1un}∞n=1 are equicon-
tinuous families over Ω′ and uniformly bounded in C(Ω′). Then from (4.8) and the weak convergence
un ⇀ uH in H1(Ω) it follows that for a subsequence

∂x2
un → ∂x2

uH , a(nx)∂x1
un → ah∂x1

uH uniformly in Ω′. (4.9)

We observe that

α|∂x1un − p11(nx)∂x1u
H | ≤ a(nx)|∂x1un − p11(nx)∂x1u

H | = |a(nx)∂x1un − ah∂x1u
H |, (4.10)

and on applying (4.9) and noting that P (y) is constant inside each phase we see for i = 1, 2 that

|χi(nx)∇un| = |χi(nx)P (nx)∇uH |+mi
n(x) (4.11)

= Mi(∇uH)(x) +mi
n(x) (4.12)

where mi
n(x) → 0 uniformly in Ω′. Hence we arrive at the local representation formula for layered

microstuctures given by

Theorem 4.1.

lim
n→∞

‖χi(nx)∇un‖L∞(Ω′) = ‖Mi(∇uH)‖L∞(Ω′). (4.13)

It is easily seen that the uniform convergence implies that sequence of the gradients{∇un} satisfy
the non-concentrating conditions given by (3.11). Indeed, setting
Li = limn→∞ ‖χi(nx)∇un‖L∞(Ω′), and for any δ > 0 there exists sufficiently large n for which

|mi
n(x)| < δ

2 for x ∈ Ω′ and

|χi(nx)∇un(x)| > |Mi∇uH(x)| − δ

2

so

{x ∈ Ω′ :Mi(∇uH(x)) > Li − δ

2
} ⊂ {x ∈ Ω′ : |χi(nx)∇un| > Li − δ}.

Therefore we conclude that for Li > δ > 0

lim inf
n→∞

|{x ∈ Ω′ : |χi(nx)∇un| > Li − δ

2
}| ≥ |{x ∈ Ω′ :Mi(∇uH)(x) > Li − δ}| > 0.

Last the non-concentrating condition (3.12) follows immediately from the piecewise constant nature
of the corrector matrix P (y) for layered materials.

4.2 Periodic microstructure

We consider periodic microstructures associated with particle and fiber reinforced composites. As
before we divide Y into a union of N disjoint subdomains Y1 . . . YN . Instead of proceeding within the
general context developed in [20], [19] we fix ideas we suppose that the domains Y1, . . . , YN−1 denote
convex particles with smooth (i.e., C2) boundaries embedded inside a connected phase described by
the domain YN , see Figure 1. As before we denote the indicator function of Yi by χi and the Y
periodic coefficient is written A(y) =

∑N
i=1 χ

i(y)Ai with each Ai being a symmetric d× d matrix of
constants satisfying the coercivity and boundedness conditions given by

λ|ξ|2 ≤ (Aiξ, ξ) ≤ Λ|ξ|2 ∀ξ ∈ Rd, and i = 1, . . . , N.
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Figure 1: Particle reinforced geometry for two inclusions Y1 and Y2.

For any bounded domain Ω ⊂ Rd we consider the H1(Ω) solutions un of

div(A(nx)∇un) = 0 in Ω (4.14)

associated with prescribed Neumann or Dirichlet boundary conditions. From the theory of periodic
homogenization the solutions converge weakly in H1 to the homogenized solution uH . In this section
we establish the following local representation theorem.

Theorem 4.2. Let A(y) and the subdomains {Yi}Ni=1 be as described above. Suppose un solves (4.14)
and uH is the corresponding homogenized solution, then for any subdomain Ω′ compactly contained
inside Ω one has the local representation formula given by

lim
n→∞

‖χi(nx)∇un‖L∞(Ω′)) = ‖Mi(∇uH)‖L∞(Ω′). (4.15)

For the proof we will use the W 1,∞ estimate for weak solutions of linear equations with oscillatory
periodic coefficients obtained in [2] for smooth coefficients and later extended in [20] to include
discontinuous but locally Hölder coefficients. A W 1,p estimate for p < ∞ is given in [6]. We
point out that we have restricted the discussion to periodic homogenization for particle reinforced
configurations of the kind illustrated in Figure 1. However the regularity theory for oscillatory
periodic coefficients developed in [20] applies to more general types of domains Y1, . . . , YN with
C1,α boundaries. We note that the proof given here goes through verbatim for period cells with
coefficients satisfying the general hypotheses described in [20].

Theorem 1.9 of [20] and a suitable rescaling shows that for any r > 0 and Y (x0, r) ⊂ Ω that
there exists a positive constant C independent of r and n for which

‖∇un‖L∞(Y (x0,r/2)) ≤ Cr−1‖un‖L∞(Y (x0,r)). (4.16)

The local L∞ estimate for weak solutions of elliptic linear problems (Theorem 8.17, [14]) gives

‖un‖L∞(Y (x0,r)) ≤ Cr
−d/2‖un‖L2(Y (x0,2r)), (4.17)

where the constant C is independent of n and r. Combining the two estimates delivers the following
lemma.

Lemma 4.1. Let A(y) and the subdomains {Yi} be as described above. Choose r ∈ (0, 1) such that
Y (x0, 2r) ⊂ Ω. Then if un solves (4.14), then there exists C, independent of n and r such that

‖∇un‖L∞(Y (x0,r/2)) ≤ Cr
−(d+2)

2 ‖un‖L2(Y (x0,2r)). (4.18)
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Proof of Theorem 4.2. To prove the theorem we first show that there is a subsequence, nk, for which

lim
k→∞

‖∇unk(x)− P (nkx)∇uH(x)‖L∞(Ω′). (4.19)

To begin we choose x0 ∈ Ω and r > 0 such that rn is an integer and Y (x0, r) ⊂ Ω contains an integral
number of periods of diameter 1/n. Then from (4.2) we see that (1/n)φj(n) is a Y (x0, r)-periodic
H1
loc function satisfying

div(A(nx)(∇(
1

n
φj(nx)) + ej)) = 0 in Rd (4.20)

Combining equations (4.14) and (4.20) we note that

div(A(nx)[∇un − (∇wn(x, x0) +∇uH(x0))]) = 0 in Y (x0, r) (4.21)

where

wn(x, x0) =

d∑
j

1

n
φj(nx))∂xju

H(x0) + uH(x0).

Observe that for this choice of Y (x0, r)

∇wn(x, x0) +∇uH(x0) = P (nx)∇uH(x0)

Adding and subtracting P (nx)∇uH(x0) delivers

‖∇un(x)− P (nx)∇uH(x)‖L∞(Y (x0,r/2))) ≤ ‖∇un(x)− P (nx)∇uH(x0)‖L∞(Y (x0,r/2)))

+‖P (nx)∇uH(x)− P (nx)∇uH(x0)‖L2(Y (x0,r/2))). (4.22)

We apply Lemma 4.1 to find a constant C independent of n and r such that the following estimate
holds true:

‖∇un−P (nx)∇uH(x0)‖L∞(Y (x0,r/2)))

≤ C

r−(d+2)/2
‖un − (wn +∇uH(x0) · (x− x0))‖L2(Y (x0,r)))

Combining with (4.22) we obtain

‖∇un−P (nx)∇uH(x)‖L∞(Y (x0,r/2)))

≤ C

r−(d+2)/2
‖un − (wn +∇uH(x0) · (x− x0))‖L2(Y (x0,r)))

+ ‖P (nx)∇uH(x)− P (nx)∇uH(x0)‖L2(Y (x0,r))).

(4.23)

We bound the the first and second terms on the righthand side of (4.23). The first term in the right
hand side of (4.23) is bounded above by

‖un − (wn +∇uH(x0) · (x− x0))‖L2(Y (x0,r)))

≤ ‖uH(x)− (uH(x0) +∇uH(x0) · (x− x0))‖L2(Y (x0,r))

+ ‖un − uH‖L2(Y (x0,r)) + ‖
d∑
j

1

n
φj(nx)∂xju

H(x0)‖L2(Y (x0,r))

(4.24)

We apply Lemma 4.1 together with a priori elliptic estimates to find that

‖∇φj(n·)‖L∞(Rd) ≤ C, (4.25)

13



where C is independent of n. Moreover, as uH is a solution of a PDE in divergence form with
constant coefficients it satisfies

|uH(x)− (uH(x0) +∇uH(x0) · (x− x0))| ≤M |x− x0|2, x ∈ Ω′

|∇uH(x)−∇uH(x0)| ≤M |x− x0|, x ∈ Ω′
(4.26)

where M is the supremum of |D2uH(x)| over Ω′. Applying (4.25) and (4.26) gives

‖un − (wn +∇uH(x0) · (x− x0))‖L2(Y (x0,r)))

≤ C
(
r2+d/2M +

1√
n

+ ‖un − uH‖L2(Y (x0,r))

)
.

(4.27)

for some constant C independent of r and n. From periodicity it follows that

‖∇φj(nx)‖L∞(Y (x0,r)) = ‖∇φj(y)‖L∞(Y )

and applying Lemma 4.1 together with (4.26) delivers

‖P (nx)∇uH(x)− P (nx)∇uH(x0)‖L2(Y (x0,r)) ≤ Cr
(d+2)/2 (4.28)

From the theory of periodic homogenization see, [3], [17], one has the convergence rate given by

‖un − uH‖L2(Y (x0,r)) ≤ C
1√
n

and collecting results we have

‖∇un− P (nx)∇uH(x)‖L∞(Y (x0,r/2))) ≤ C
(
Mr + 1√

nrd+2

)
. (4.29)

We pass to a subsequence nk, and consider Y (x0, rk) such that, rk → 0, rknk is an integer, and

r
(d+2)/2
k n

1/2
k → ∞ as k → ∞. Then consider any subdomain Ω′ ⊂⊂ Ω, and cover it with cubes

{Y (xi, rk/2)}xi∈Ω′ . Using compactness we choose finitely many cubes so that

Ω′ ⊂ ∪Li=1Y (xi, rk/2),

Now since ‖∇unk−P (nkx)∇uH(x)‖L∞(Ω′)) is bounded above by the L∞ norms over a finite collection
of cubes, we see that

‖∇unk − P (nkx)∇uH(x)‖L∞(Ω′)) ≤ C

rk +
1√

nkr
d+2
k


for sufficiently large k to conclude

lim
k→∞

‖∇unk‖L∞(Ω′)) = lim
k→∞

‖P (nkx)∇uH(x)‖L∞(Ω′)), (4.30)

so

lim
k→∞

‖χi(nkx)∇unk‖L∞(Ω′)) = lim
k→∞

‖χi(nkx)P (nkx)∇uH(x)‖L∞(Ω′)). (4.31)

Now we bound (4.31) from above and below by ‖Mi(∇uH)‖L∞(Ω′). First note for each nk and
x ∈ Ω′ that

|χi(nkx)P (nkx)∇uH(x)| ≤ ‖χi(·)P (·)∇uH(x)‖L∞(Y ) (4.32)
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and we conclude that

lim
k→∞

‖χi(nkx)P (nkx)∇uH(x)‖L∞(Ω′) ≤ ‖Mi(∇uH)‖L∞(Ω′). (4.33)

The lower bound

‖Mi(∇uH)‖L∞(Ω′) ≤ lim
k→∞

‖χi(nkx)∇unk‖L∞(Ω′)) (4.34)

follows from a direct application of Corollary 5.1 proved the next section and we conclude that

lim
k→∞

‖χi(nkx)∇unk‖L∞(Ω′)) = ‖Mi(∇uH)‖L∞(Ω′). (4.35)

The theorem follows on noting that identical arguments can be applied to every subsequence of
{χi(nx)∇un}∞n=1 to conclude the existence of a further subsequence with limit given by (4.35).

5 Continuously graded microstructures

In this section we consider a class of coefficient matrices associated with continuously graded com-
posites made from N distinct materials. In order to express the continuous gradation of the mi-
crostructure we introduce the characteristic functions χi(x, y), i = 1, . . . , N belonging to L1(Ω× Y )
such that for each x the function χi(x, ·) is periodic and represents the characteristic function of the
ith material inside the unit period cell Y . The characteristic functions are taken to be continuous
in the x variable according to the following continuity condition given by

lim
h→0

∫
Y

|χi(x+ h, y)− χ(x, y)| dy = 0. (5.1)

The coefficient associated with each material is denoted by Ai and is a constant symmetric matrix
satisfying the ellipticity condition

λ ≤ Ai ≤ Λ

for fixed positive numbers λ < Λ. We define the coefficient matrix

A(x, y) =

N∑
i=1

Aiχ
i(x, y).

This type of coefficient matrix appears in prototypical problems where one seeks to design structural
components made from functionally graded materials [29] and [35]. Here the configuration of the
N materials is locally periodic but changes across the domain Ω. The composite is constructed by
dividing the domain Ω into subdomains Ωk,l, l = 1, . . . ,Mk of diameter less than or equal to 1/k,

k = 1, 2, . . . and Ω = ∪Mk

l=1Ωk,l. Each subdomain contains a periodic configuration of N materials.
The following lemma allows us to approximate the ideal continuously graded material by a piecewise
periodic functionally graded material that can be manufactured.

Lemma 5.1. For a given subdivision Ωk,1, . . .Ωk,Mk
of diameter less than 1/k and any i = 1, · · · , N ,

there exists a sequence {χik(x, y)}∞k=1 of approximations to χi(x, y) given by

χik(x, y) =
∑
l

χΩk,l(x)χik,l(y) (5.2)

with the property that

lim
k→∞

∫
Ω×Y

|χik(x, y)− χi(x, y)|dydx = 0. (5.3)
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In (5.2), χΩk,l(x) denotes the characteristic function of Ωk,l and χik,l(y) = χi(xk,l, y) is the char-

acteristic function associated with the configuration of the ith phase inside the subdomain Ωk,l at a
sample point xk,l ∈ Ωk,l.

Proof. The definition of the approximating function is given in (5.2). We verify that (5.3) is satisfied.
For each x ∈ Ω, define the sequence of functions

Γik(x) =

∫
Y

|χik(x, y)− χi(x, y)|dy.

Then Γik(x) → 0 for all x ∈ Ω. Indeed, for a fixed x ∈ Ω, there exists a sequence of subdomains
x ∈ Ωk,lk and points xk,lk ∈ Ωk,lk such that by definition,

Γik(x) =

∫
Y

|χi(xk,lk , y)− χi(x, y)|dy.

It is evident that |xk,lk − x| < 1/k since xk,lk and x both belong to Ωk,lk . Applying the continuity
condition (5.1), we see that Γik(x) → 0 as k → ∞ and (5.3) follows from the Lebesgue dominated
convergence theorem.

Let us define the coefficient matrix of the functionally graded material. Divide the domain
Ω into subdomains Ωk,l, l = 1, . . . ,Mk of diameter less than or equal to 1/k, k = 1, 2, . . . and

Ω = ∪Mk

l=1Ωk,l. Each subdomain contains a periodic configuration of N materials with period 1/n
such that 1/k > 1/n. The configuration of the ith phase inside a functionally graded composite
is described by χik(x, nx), where χik(x, y) is given by 5.2. The corresponding coefficient matrix is
denoted by Ak(x, nx) and is written as

Ak(x, nx) =

Mk∑
i

χik(x, nx)Ai. (5.4)

As seen from the proof of the lemma the continuity condition (5.1) insures that near by subdomains
Ωk,l and Ωk,l′ have configurations that are nearly the same when 1/k is sufficiently small. The fine-
scale limit of such composites is obtained by considering a family of partitions indexed by j = 1, 2, . . . ,

with subdomains Ω
kj
l of diameter less that or equal to 1/kj . The scale of the microstructure is given

by 1/nj . Both 1/kj and 1/nj approach zero as j goes to infinity and we require that limj→∞
1/nj
1/kj

= 0.

For future reference the associated indicator functions and coefficients are written

χikj (x, njx) and Akj (x, njx). (5.5)

Let

AH(x) =

∫
Y

A(x, y)P (x, y)dy (5.6)

where the matrix P (x, y) is defined by

P (x, y)i,j =
∂wj

∂yi
+ δij , (5.7)

and wi(x, ·) is a Y periodic function that solves the PDE

divy(A(x, y)(∇ywi(x, y) + ei)) = 0, (5.8)

where {ei}, i = 1, . . . is an orthonormal basis for Rd.
The Sobolev space of square integrable functions with square integrable derivatives periodic on

Y is denoted by H1
per(Y ). The functions wi(x, y) belong to C(Ω;H1

per(Y )) this follows from (5.1)
and is proved in the Appendix.

We present the homogenization theorem for the sequences Akj (x, njx) proved in [25].
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Lemma 5.2. One can construct sequences {χikj (x, xnj)}
∞
j=1 for which the coefficient matrices {Akj (x, njx)}∞j=1

G− converge to the effective tensor AH(x) defined by (5.6).

Let f ∈ H−1
0 (Ω) be given. Then by Lemma 5.2 the sequence of solutions{uj} of the equation:

−div[Akj (x, njx)∇uj(x)] = f, uj ∈ H1
0 (Ω)

converge to uH weakly in H1
0 , where uH solves the the equation

−div[AE(x))∇uH(x)] = f, uH ∈ H1
0 (Ω).

We now have the following result.

Theorem 5.1. Let V ⊂ L1(Y ) ∩ L∞(Y ) be a countable dense subset of L1(Y ). Assume that all
elements of V are periodically extended to Rd. Suppose that φ(x) ∈ C(Ω), η(x) ∈ V and uj, P and
uH be given as above. Then

lim
j→∞

∫
Ω

φ(x)η(njx)χikj (x, njx)|∇uj |2dx =

∫
Ω

∫
Y

φ(x)η(y)χi(x, y)|P (x, y)∇uH(x)|2dydx.

By taking the modulation functions for continuously graded composites (see, [25]) to be

Mi(∇uH)(x) = ‖χi(x, ·)P (x, ·)∇uH(x)‖L∞(Y ). (5.9)

we obtain the following corollary.

Corollary 5.1.

‖Mi(∇uH)‖L∞(Ω) ≤ lim sup
j→∞

‖χikj (x, njx)∇uj‖L∞(Ω). (5.10)

Under an additional asymptotic condition on the distribution functions for the sequence {∇uj}∞j=1,
equality can be achieved in the above corollary. Indeed, define

Sjt,i = {x : χikj (x, njx)|∇uj(x)|2 > t}, χjt,i(x) := χSjt,i
(5.11)

and the distribution functions are given by

|Sjt,i| =
∫

Ω

χjt,i dx. (5.12)

Passing to a subsequence, there exists density functions θt,i such that

χjt,i(x)
∗
⇀ θt,i(x) L∞weak *

and for any open subset S ⊂ Ω

lim
j→∞

|Sjt,i ∩ S| =
∫
S

θt,i dx. (5.13)

We present a sufficient condition on the distribution functions |Sjt,i| associated with {∇uj}∞j=1 for
which equality holds in (5.10).

Corollary 5.2. Suppose that l = lim supj→∞ ‖χikj (x, njx)|∇uj |2‖L∞(Ω) < ∞ and for each δ > 0
there exists a positive number βδ > 0 for which

|{x ∈ Ω : θl−δ,i > 0}| > βδ. (5.14)

Then
lim sup
j→∞

‖χikj (x, njx)∇uj‖L∞(Ω) = ‖Mi(∇uH)‖L∞(Ω)
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Proof. (Proof of Corollary 5.2) The homogenization constraint [25] states that for almost every
x ∈ Ω

θt,i(x)(Mi(∇uH(x))− t) ≥ 0 i = 1, . . . N.

It follows that on the set where θt,i > 0, we have Mi(∇uH(x)) ≥ t. Let

lj = ‖χikj (x, njx)|∇uj |2‖L∞(Ω).

For a subsequence lj → l. Then given δ > 0, there exists a natural number J such that

l − δ/2 < lj = ‖χikj (x, njx)|∇uj |2‖L∞(Ω) < l + δ/2 ∀j ≥ J.

The measure of the set Sjlj−δ/2,i is positive. Moreover Sjlj−δ/2,i ⊂ S
j
l−δ,i and

χjl−δ,i
∗
⇀ θl−δ,i(x) L∞ weak * as j →∞

From hypothesis the set where θl−δ,i > 0 is a set of positive measure for all δ > 0. Therefore,

Mi(∇uH(x)) ≥ l − δ,

on a set of positive measure that is ‖Mi(∇uH(x))‖∞ ≥ l− δ. The corollary is proved since δ > 0 is
arbitrary.

Proof. (Proof of corollary 5.1) From Theorem 5.1 it follows that for any φ ∈ C(Ω) and η ∈ V is Y−
periodic, ∫

Ω

∫
Y

χi(x, y)φ(x)η(y)|P (x, y)∇uH |2dydx

≤ lim
j→∞

∫
Ω

|φ(x)η(njx)|dx lim sup
j→∞

‖χikj (x, njx)|∇uj |2‖L∞(Ω)

By the Riemann-Lebesgue lemma,

lim
j→∞

∫
Ω

|φ(x)η(njx)|dx =

∫
Ω

φ(x)dx

∫
Y

|η(y)|dy.

Dividing both sides by the L1-norm of φ, we obtain that for every x ∈ Ω \ Z, where Z is a set of
measure zero,∫

Y

χi(x, y)η(y)|P (x, y)∇uH |2dy ≤
∫
Y

|η(y)|dy lim sup
j→∞

‖χikj (x, njx)|∇uj |2‖L∞(Ω)

The set Z depends on the choice of η. But since V is countable, the union of the sets Z corresponding
to elements of V will be of measure zero and the above inequality is true for any η ∈ V and for every
x outside this union. Now divide the last inequality by the L1 norm of η in Y . Taking the sup over
V and noting that V is dense in L1(Y ), proves the corollary.

Proof. (Proof of Theorem 5.1) For β > 0 , define

A1(x, y) = A(x, y) + βχi(x, y)φ(x)η(y)I. (5.15)

Now let vj solve

−div[A
kj
1 (x, njx)∇vj ] = f, vj ∈ H1

0 (Ω)
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Then for any ϕ ∈ H1
0 (Ω), we have∫

Ω

(A
kj
1 (x, njx)∇vj ,∇ϕ)dx =

∫
Ω

fϕdx and∫
Ω

(Akj (x, njx)∇uj ,∇ϕ)dx =

∫
Ω

fϕdx

(5.16)

Let δuj = vj − uj . Then subtracting the second equation above from the first, we obtain∫
Ω

(A
kj
1 (x, njx)∇δuj ,∇ϕ)dx+

∫
Ω

((A
kj
1 (x, njx)−Akj (x, njx))∇uj ,∇ϕ)dx = 0,

for all ϕ ∈ H1
0 (Ω). Simplifying the above equation we get∫
Ω

(Aj1(x, njx)∇δuj ,∇ϕ)dx+ β

∫
Ω

χikj (x, njx)φ(x)η(njx)(∇uj ,∇ϕ)dx = 0,

Plug in ϕ = uj in the above equation to get,∫
Ω

(A
kj
1 (x, njx)∇δuj ,∇uj)dx+ β

∫
Ω

χikj (x, njx)φ(x)η(njx)|∇uj |2dx = 0, (5.17)

Also plugging in ϕ = δuj in (5.16) yields∫
Ω

(Akj (x, njx)∇uj ,∇δuj)dx =

∫
Ω

fδujdx. (5.18)

Subtracting (5.18) from (5.17) and noting that the coefficient matrices are symmetric we get

β

∫
Ω

χikj (x, njx)φ(x)η(njx)|∇uj |2dx+ T j = −
∫

Ω

fδujdx

where

T j = β

∫
Ω

χ
kj
i (x, njx)φ(x)η(njx)(∇uj ,∇δuj)dx.

Let us estimate T j . To begin with, observe that∫
Ω

(A
kj
1 (x, njx)∇δuj ,∇δuj)dx+ β

∫
Ω

χikj (x, njx)φ(x)η(njx)(∇uj ,∇δuj)dx = 0,

Them from ellipticity, we get

α

∫
Ω

|∇δuj |2dx ≤
∫

Ω

(A
kj
1 (x, njx)∇δuj ,∇δuj)dx

≤ β
∫

Ω

χikj (x, njx)|φ(x)η(njx)||∇uj ||∇δuj |dx

≤ Cβ‖∇δuj‖L2‖∇uj‖L2 .

That is
‖∇δuj‖L2 ≤ Cβ,

since the sequence ∇uj is bounded in L2. From this and the definition on T j we obtain

|T j | ≤ Cβ2
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From Lemma 5.2 we know that uj ⇀ uH , and vj ⇀ vH , where uH and vH satisfy the following
equations, respectively: For any ϕ ∈ H1

0 (Ω)∫
Ω

AH1 (x)∇vH ,∇ϕ)dx =

∫
Ω

fϕdx∫
Ω

AH(x)∇uH ,∇ϕ)dx =

∫
Ω

fϕdx

(5.19)

where AH(x), is the effective matrix given by (5.6) and

AE1 (x) =

∫
Y

A1(x, y)P1(x, y)dy (5.20)

where the matrix P1(x, y) is defined by

P1(x, y)i,j =
∂wj1
∂yi

+ δij , (5.21)

and wi1(x, ·) is a Y periodic function that solves the PDE

divy(A1(x, y)(∇ywi1(x, y) + ei)) = 0, (5.22)

where {ei}, i = 1, . . . is an orthonormal basis for Rd.
Writing δuH = vH − uH and letting j →∞, we obtain

β lim
j→∞

∫
Ω

χikj (x, njx)φ(x)η(njx)|∇uj |2dx+ lim
j→∞

T j = − lim
j→∞

∫
Ω

fδujdx

= −
∫

Ω

fδuHdx.

(5.23)

One easily verifies that the variational formulations (5.19) can be written in terms of the two scale
variational principles [33], [1] given by∫

Ω

∫
Y

A1(x, y)(∇vH(x) +∇yv1(x, y)),∇ϕ(x) +∇yϕ1(x, y)dydx =

∫
Ω

fϕdx∫
Ω

∫
Y

A(x, y)(∇uH(x) +∇yu1(x, y)),∇ϕ(x) +∇yϕ1(x, y)dydx =

∫
Ω

fϕdx,

(5.24)

where the solutions (uH , u1), (vH , v1), and trial fields (ϕ,ϕ1) belong to the spaceH1
0 (Ω)×L2[Ω;W 1,2

per(Y )].

On writing δu1 = v1 − u1, δuH = vH − uH , A1(x, y) = A(x, y) + βχi(x, y)φ(x)η(y)I, substitution
into the first equation in (5.24) and applying the second equation in (5.24) gives∫

Ω

∫
Y

A1(x, y)(∇δuH(x) +∇yδu1(x, y)),∇ϕ(x) +∇yϕ1(x, y)dydx

+ β

∫
Ω

∫
Y

(χi(x, y)φ(x)η(y)(∇uH(x) +∇yu1(x, y)),∇ϕ(x) +∇yϕ1(x, y)dydx

= 0.

(5.25)

Next we substitute (ϕ,ϕ1) = (δuH , δu1) into the second equation of (5.24) to obtain the identity∫
Ω

∫
Y

A(x, y)(∇uH(x) +∇yu1(x, y)),∇δuH(x) +∇yδu1(x, y)dydx

=

∫
Ω

f(x)δuH(x)dx.

(5.26)
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On choosing (ϕ,ϕ1) = (uH , u1) in (5.25) and applying (5.26) we obtain

T + β

∫
Ω

∫
Y

(χi(x, y)φ(x)η(y)(∇uH(x) +∇yu1(x, y)),∇ϕ(x) +∇yϕ1(x, y))dydx

= −
∫

Ω

fδuHdx,

(5.27)

where

T = β

∫
Ω

∫
Y

(χi(x, y)φ(x)η(y)(∇uH(x) +∇yu1(x, y)),∇δuH(x) +∇yδu1(x, y))dydx. (5.28)

Next we set (ϕ,ϕ1) = (δuH , δu1) in (5.25) and applying ellipticity delivers the estimate

‖∇δuH +∇yδu1‖L2(Ω×Y ) ≤ Cβ, (5.29)

and we find that
|T | ≤ Cβ2. (5.30)

Since (5.23) and (5.27) have the same right hand sides we equate them and the theorem follows on
identifying like powers of β.

We conclude this section noting that lower bounds similar to those given here can be obtained
in the context of two-scale convergent coefficient matrices [27].

6 Local representation formulas and gradient constrained de-
sign for graded materials

In view of applications it is important to identify graded material properties that deliver a desired
level of structural performance while at the same time provide a hedge against failure initiation [16].
In many applications there is a separation of scales and the material configurations forming up the
microstructure exist on length scales significantly smaller than the characteristic length scale of the
loading. Under this hypothesis the structural properties are modeled using effective thermophysical
properties that depend upon features of the underlying micro-geometry, see [13], [29]. In this context
overall structural performance measured by resonance frequency and structural stiffness are recovered
from the solutions of homogenized equations given in terms of the effective coefficients (G-limits).
In order to go further and design against failure initiation we record the effects of L∞ constraints on
the local gradient field inside functionally graded materials. For this we use the local representation
formulas given by modulation functions (5.9).

The multi-scale formulation of the graded material design problem has three features [23], [24]:

1. It admits a convenient local parametrization of microstructural information expressed in terms
of a homogenized coefficient matrix (5.6) and local representation formulas given by the mod-
ulation functions (5.9).

2. Is well posed, i.e., an optimal design exists.

3. The optimal design is used to identify an explicit “functionally graded microstructure” that
delivers an acceptable level of structural performance while controlling the local gradient field
over a predetermined part of the structural domain.

In what follows we describe the multiscale material design problem and focus the discussion on the
control of the L∞ norm of the local gradient field.

21



The admissible set of continuously graded locally periodic microstructures is specified by a vector
β = (β1, . . . , βn) of local geometric parameters. For example one may consider a periodic array
of spheroids described by the orientation of their principle axis and aspect ratio. The periodic
microstructure is specified in a unit period cell Y centered at the origin. Points in the cell are
denoted by y. The characteristic function of the ith phase in the unit cell is denoted by χi(β, y),
i = 1, . . . , N . The vector β for the graded microgeometry can change across the structural domain
Ω and we write β = β(x) for x ∈ Ω. The x dependence of β corresponds to the gradation of material
properties through a gradation in microstructure. The design vector β(x) is a uniformly Hölder
continuous function of x in the closure of Ω. We write

χi(x, y) = χi(β(x), y) (6.1)

and since β(x) is continuous one sees that χi(x, y) is continuous in the sense of (5.1).
The multi-scale design problem is formulated as follows: The admissible set Ad of design vectors

β(x) is the set of uniformly Hölder continuous functions satisfying the two conditions:

• There is a fixed positive constant C such that:

sup
x,x′∈Ω

|β(x)− β(x′)|
|x− x′|

< C. (6.2)

• The design vector β(x) takes values inside the closed bounded set given by the constraints

bi ≤ βi(x) ≤ bi, i = 1, . . . , n. (6.3)

The local volume fraction of the ith phase in the composite is given by θi(x) =
∫
Y
χi(x, y) dy. A

resource constraint is placed on the amount of each phase appearing the design. It is given by∫
Ω

θi(x) dx ≤ γi, i = 1, . . . , N. (6.4)

The vector of constraints (γ1, . . . , γN ) is denoted by γ. The set of controls β(x) ∈ Ad that satisfy
the resource constraints (6.4) is denoted by Adγ .

As an example we assume homogeneous Dirichlet conditions on the boundary of the design
domain Ω. For a given right hand side f ∈ H−1(Ω) the overall structural performance of the graded
composite is modeled using the solution uH of the homogenized equilibrium equation given by the
H1

0 (Ω) solution of
− div

(
AH(x)∇uH

)
= f. (6.5)

Here AH is given by (5.6) with χi(x, y) given by (6.1).
In this example the overall work done against the load is used as the performance measure of the

graded material structure. This functional depends nonlinearly on the design β through the solution

uH and is given by

W (β) =

∫
Ω

fuH dx, (6.6)

We pick an open subset S ⊂ Ω of interest and the gradient constraint for the multi-scale problem
is written in terms of the modulation function. We set

Ci(β) = ‖Mi(∇uH)‖L∞(S), for i = 1, . . . , N (6.7)

and the multi-scale optimal design problem is given by

P = inf
β∈Adγ

{W (β) : Ci(β) ≤M, i = 1, . . . , N}. (6.8)

22



When the constraint M is chosen such that there exists a control β ∈ Adγ for which Ci(β) ≤ M

then an optimal design β∗ exists for the design problem (6.8), this is established in [28], [22].

The optimal design β∗ specifies characteristic functions χi
∗
(x, y) = χi(β∗(x), y) from which we

recover continuously graded microgeometries χi
∗

kj
(x, njx) and coefficient matrices

A∗,kj (x, njx) of the form (5.5). The coefficients A∗,kj (x, njx) G-converge to the effective coefficient
AH

∗
associated with the optimal design β∗, see Lemma 5.2. Here the effective coefficient is given by

(5.6) with χi(x, y) = χi
∗
(x, y). For each j = 1, . . . the H1

0 (Ω) solution uj of the equilibrium problem
inside the graded composite satisfies

− div
(
A∗,kj (x, njx)∇uj

)
= f (6.9)

and the work done against the load is given by W (uj) =
∫

Ω
fujdx. This functional is continuous

with respect to G-convergence hence limj→∞W (uj) = W (β∗).
We now apply Theorem 2.2 to discover that for any open set S ⊂ Ω with closure contained inside

Ω there exists a decreasing sequence of sets Ekj for which |Ekj | ↘ 0 and

lim sup
j→∞

‖χi
∗

kj (x, njx)∇uj(x)‖L∞(S\Ekj ) ≤M, i = 1, 2, . . . ,M . (6.10)

Therefore we can choose a graded material design specified by χi
∗

kj
(x, njx) with overall structural

properties W (uj) close to the optimal one W (β∗) and with

‖χi
∗

kj (x, njx)∇uj(x)‖L∞(S\Ekj ) ≤M

outside controllably small sets Ekj . This is the essence of the design scheme for continuously graded
composite structures developed in [22], [24].

We conclude this section with a conjecture. Numerical simulations [24] show that when the
microstructure corresponds to smooth inclusions embedded inside a matrix, such as shafts reinforced
with long prismatic fibers with circular cross section, then the design method implies full control of
the local gradient over the set S i.e.,

‖χi
∗

kj (x, njx)∇uj(x)‖L∞(S) ≤M, i = 1, 2, . . . ,M . (6.11)

With this in mind and in view of Theorem 4.2 we are motivated to propose the following conjecture.

Conjecture 6.1. For continuously graded composites containing inclusions with C1,α boundaries
for which Akj (x, nj) G-converges to AH(x) then

lim sup
j→∞

‖χikj (x, njx)∇uj‖L∞(S) = ‖Mi(∇uH)‖L∞(S). (6.12)

Appendix

Here we will show that the solutions wi of the cell problem (5.8) satisfying
∫
Y
wi(x, y)dy = 0 are in

C(Ω, H1
per(Y )) under the continuity assumption (5.1). To that end, it suffices to show that as h→ 0

‖∇ywi(x+ h, ·)−∇ywi(x, ·)‖L2(Y ) → 0.

Since wi(x+ h, y) solves equation (5.8) A(x, y) replaced by A(x+ h, y), we have that

div (A(x+ h, y)(∇ywi(x+ h, y) + ei)) = div (A(x, y)(∇ywi(x, y) + ei)) = 0.

Rewriting the above equation we obtain

div [(A(x+ h, y)−A(x, y))](∇ywi(x+ h, y) + ei) = div (A(x, y)(∇ywi(x, y)−∇ywi(x+ h, y)).

23



Define the difference mapping δh(F ) = F (x+ h, y)− F (x, y). Then for any ψ ∈ H1
per(Y ), we have

−
∫
Y

(A(x, y)∇yδh(wi)(x, y),∇ψ)dx =

∫
Y

(δh(A)(x, y)(∇ywi(x+ h, y) + ei),∇ψ). (6.1)

Then plugging ψ(x, y) = δh(wi)(x, y) ∈ H1
per(Y ) in (6.1) and using the uniform ellipticity of the

coefficients, we have

λ‖δh(wi)(x, ·)‖2L2(Y ) ≤
∫
Y

(δh(A)(x, y)[∇ywi(x+ h, y) + ei],∇δh(wi)(x, y))dy

≤
(∫

Y

|δh(A)(x, y)[∇ywi(x+ h, y) + ei]|2
)1/2

‖δh(w)(x, ·)‖L2(Y )

The last inequality implies that

‖δh(wi)(x, ·)‖L2(Y ) ≤ Λ/λ

N∑
i=1

(∫
Y

|χi(x+ h, y)− χi(x, y)|2|∇ywi(x+ h, y) + ei|2dy
)1/2

By Meyer’s higher regularity result, ∇ywi(x+h, ·) ∈ Lp(Y ) for some p > 2. Moreover, the Lp norm
is bounded from above by a constant C independent of x, and h. After applying Holder’s inequality
we get

‖δh(wi)(x, ·)‖L2(Y ) ≤
CΛ

λ

N∑
i=1

(∫
Y

|χi(x+ h, y)− χi(x, y)|2dy
)1/2

Applying (5.1), the right hand side approaches 0 as h→ 0 and the proof is complete.
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