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COMPLETENESS OF THE BETHE ANSATZ

ON WEYL ALCOVES

E. EMSIZ

Abstract. We prove the completeness of the Bethe ansatz eigenfunctions
of the Laplacian on a Weyl alcove with repulsive boundary condition at the
walls. For the root system of type A this amounts to the result of Dorlas of
the completeness of the Bethe ansatz eigenfunctions of the quantum Bose gas
on the circle with repulsive delta-function interaction.

1. Introduction

In a celebrated paper Lieb and Liniger [16] introduced the quantum Bose gas
on the circle with repulsive delta-function interaction and using the Bethe ansatz
method showed that it is exactly solvable. C. N Yang and C. P. Yang [21] proved
that the corresponding Bethe ansatz equations are controlled by a strictly convex
function. Fundamental progress was made by Korepin [14], who proved Gaudin’s
[7, 8] compact determinantal formula for the L2-norms of the Bethe ansatz eigen-
functions and Dorlas [4], who proved the completeness and orthogonality of these
functions using a lattice version of the quantum inverse scattering methods [15].

A crucial insight by Gaudin [7, 8] was that the quantum Bose gas on the line
with a delta-function potential has a natural generalization in the context of the
root system of semi-simple complex Lie algebras. Gutkin and Sutherland [10, 9]
pushed these generalization further by introducing affine root system version. The
quantum Hamiltonian now has a potential expressible as a weighted sum of delta-
functions at the associated affine root hyperplanes. In [5, 6] the affine Weyl group
invariant quantum eigenvalue problem for these systems in the repulsive regime
was studied using representation theory of the trigonometric Cherednik algebra
and Dunkl operators. From this perspective the quantum Bose gas of quantum
particles with repulsive delta-potential on the circle essentially corresponds to the
affine root system of type A. A large part of [5, 6] deals with extending many of
the above properties of the quantum Bose gas to the root system versions ([6] deals
with quantum spin-particle systems).

In this paper we continue with the study of the general root system versions. The
main result is the completeness of the Bethe ansatz eigenfunctions in the sense that
they span a dense subspace of the Hilbert space L2(A) of quadratically integrable
functions with respect to the standard Euclidean measure on a Weyl alcove A. The
question of orthogonality and norm formulae for the root system versions turns out
to be much harder to crack and for general root systems we only have conjectural
statements.
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The paper is organized as follows. In the following sections we introduce the
quantum integrable systems and summarize the main results of [5, 6] on the quan-
tum spectral eigenvalue problem. The completeness will be deduced from a con-
tinuity argument of Dorlas [4] at zero coupling, which we recall in Section 3. An
important part is played by making sense (in Section 5) of the formal quantum
Hamiltonians as positive self-adjoint operators on L2(A). Section 4 is preparatory
and deals with the non-interacting case and the necessary Sobolev space theory
to define the forms to make sense of the aforementioned formal Hamiltonians as
positive self-adjoint operators on L2(A).

2. Completeness

We will freely use concepts and facts on root systems, see e.g. [12] for a detailed
exposition. Let V be an Euclidean space of dimension n and R a finite, irreducible
crystallographic root system spanning V . We denote 〈·, ·〉 for the inner product on
V and ‖ · ‖ for the corresponding norm. The co-root of a root α ∈ R is 2α/‖α‖2.
We fix a positive system R+ and denote the corresponding basis of simple roots by
I = {α1, . . . , αn}. We let α0 = −ϕ, where ϕ denotes the highest root of R+. The
corresponding Weyl alcove

A = {v ∈ V |0 < 〈α, v〉 < 1, ∀α ∈ R+} (1)

is bounded by the walls

V0 = {v ∈ V | 〈α0, v〉+ 1 = 0}, (2)

Vi = {v ∈ V | 〈αi, v〉 = 0}, i = 1, . . . , n (3)

The space of repulsive coupling constants K is the set of all kα ∈ (0,∞), α ∈ R
such that kα = kβ whenever ‖α‖ = ‖β‖. We identify K naturally with (0,∞) (if R
has one root lenght) or (0,∞)2 (respectively two root lenghts).

For any k ∈ K we will consider the following spectral problem for the Laplacian
in the alcove A with repulsive boundary condition at the walls, i.e.

−∆f = Ef on A, (4)

(∂α∨

i
f)(v) = kαi

f(v), v ∈ Vi ∩ A, i = 0, 1, . . . , n, (5)

(note that α∨
i points inward to A) where ∆ refers to the Laplacian and ∂v to the

partial derivative in the direction of v.
Let si : V → V , i = 0, 1, . . . , n denote the orthogonal reflection in the wall Vi:

s0(v) = v − (〈α0, v〉+ 1)α∨
0 ,

si(v) = v − 〈αi, v〉α
∨
i , i = 1, 2 . . . , n

The reflections s1, . . . , sn generate the Weyl group W associated with R while
s0, s1, . . . , sn generate the affine Weyl group W a. A second important presentation
of W a is given by W a = W ⋉ Q∨, with Q∨ the co-root lattice generated by α∨,
α ∈ R, acting by translations on V .

It was shown in [5, Theorem 2.6],[6] that the Bethe ansatz function

φkλ(v) =
1

#W

∑

w∈W

ck(wλ)e
i〈wλ,v〉, v ∈ A, (6)
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solves the boundary value problem (4), (5) with eigenvalue E = ‖λ‖2 if

ck(λ) =
∏

α∈R+

〈λ, α∨〉 − ikα
〈λ, α∨〉

(7)

and the spectral parameter λ ∈ V satisfies the Bethe ansatz equations (BAE)

ei〈λ,α
∨

j 〉 =
∏

β∈R+

(
〈λ, β∨〉+ ikβ
〈λ, β∨〉 − ikβ

)〈α∨

j ,β〉

, j = 1, 2, . . . , n. (8)

The cone of dominant weights is denoted by

P+ = {λ ∈ V | 〈λ, α∨〉 ∈ Z≥0, ∀α ∈ R+}.

while P++ = ρ+ P+ is the cone of strictly dominant weights (ρ is the half sum of
positive roots). The function Sk : P++ × V → R defined by

Sk(µ, v) =
1

2
‖v‖2 − 2π〈v, µ〉+

1

2

∑

α∈R

‖α‖2
∫ 〈v,α∨〉

0

arctan

(
t

kα

)
dt (9)

is strictly convex and assumes a global minimum at µ̂k ∈ V . Moreover it is known
[5, Propositions 2.9 and 2.10] that µ̂k solves the BAE (8) and lies in the fundamental
Weyl chamber

V+ = {v ∈ V | 〈v, α∨〉 > 0 ∀α ∈ R+}. (10)

The main results of this paper states that the Bethe anstaz eigenfunctions are
complete in the Hilbert space L2(A) = L2(A, dv) of quadratically integrable func-
tions on A with respect to the Euclidean measure dv:

Theorem 1. The Bethe ansatz eigenfunctions φkiµ̂k
, µ ∈ P++ span a dense sub-

space of L2(A).

One sees easily that φkµ̂k
and φkη̂k

are orthogonal if ‖µ̂k‖ 6= ‖η̂k‖ (see e.g. (16)).
Full orthogonality is to the knowledge of the author only conjectural for general R,
as well as the following L2-norm formula conjecture:

1

|A|

∫

A

∣∣φkµ̂k
(v)

∣∣2 dv =
|ck(µ̂k)|

2
detBk

µ̂k

#W
, ∀µ ∈ P++, (11)

Here Bk
v : V × V → R is the Hessian of Sk(µ, ·) at v ∈ V (see also [5, (9.3)]) and

|A| =
∫
A
dv.

An interesting consequence of (11) would be limk→0 detB
k
ρ̂k

= #W , an identity

very similar to the limit formula [11, (3.5.14)] for the Heckman-Opdam hypergeo-
metric functions associated to R.

As alluded to in the introduction, for R of type A the norm formulae and or-
thogonality conjectures were proved by Korepin and Dorlas, respectively. A new
proof of the orthogonality in this case was recently obtained by van Diejen [3] using
an integrable lattice dicretization of the quantum Bose-gas on the circle. The norm
formulae (11) were also very recently checked [1] for all R with rank less or equal
to 3, thus including the important test case of R of type G2.

The upgrade from type A to other classical root systems amounts to adding
particular reflection terms to the physical model, see e.g. [7, 8, 2] (and [5, 6] for
more references). For the exceptional root systems there is not such a convincing
interpretation as a physical model (however, see [2] for the exceptional root system
R of type G2).
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3. Continuity

Following Dorlas [4] we will deduce the completeness from a continuity argument
at zero coupling:

Theorem 2 ([4]). Let {Ht}t∈[0,∞) be a family of positive self-adjoint operators act-
ing on a Hilbert space H. Assume that t 7→ Ht is monotonically nondecreasing and
right-continuous in the strong-resolvent sense and that H0 has compact resolvent.
Suppose that there exists a set of linearly independent eigenfunctions {φtn}n∈N for
Ht, parameterized by a discrete set N , which depends continuously on t ∈ [0,∞),
and which is complete at t = 0. Then the linear subspace spanned by the φtn (n ∈ N)
is dense in H for all t ∈ [0,∞).

In [5, 6] the eigenvalue value problem (4), (5) was interpreted as theW a-invariant
spectral problem of the following formal quantum Hamiltonian

Hk = −∆+
∑

α∈R,m∈Z

kαδ(〈α, ·〉 +m) (12)

and was studied with the aid of trigonometric Cherednik algebra and Dunkl oper-
ators. Here W a acts on the space of C-valued functions f as follows,

(wf)(v) = f(w−1v), (w ∈W a, v ∈ V ). (13)

We will show that for the W a-invariant theory the formal Hk can be interpreted
as self-adjoint operators on the fundamental domain A for the action of W a on V ,
and moreover they will be the operators Hk in Theorem 2 (see Section 5 for the
exact statement). The functions φtn, n ∈ N will be φkµ̂k

, µ ∈ P++. As for the case

k ≡ 0 (free boundary value problem), note that the plane wave

φ0λ(v) =
1

#W

∑

w∈W

eiwλ(v), v ∈ A, (14)

solves (4), (5) iff λ = µ̂0 = 2π(µ−ρ), µ ∈ P++. The continuity of the eigenfunctions,
one of the conditions of Theorem 2 is guaranteed by:

Proposition 3. Let µ ∈ P++. Then k 7→ φkµ̂k
defines a continuous map from

K ∪ {0} to L2(A).

Since (v, k) 7→ Sk(µ, v) is differentiable in k ∈ K, v ∈ V the implicit function
theorem shows that k 7→ µ̂k is smooth from K to V+, and therefore k 7→ φkµ̂k

is

continuous from K to L2(A). The problematic point is continuity in the boundary
point k ≡ 0. We will actually not use any differentiability, Proposition 3 will be
proved by a purely topological argument, based on the following lemma (which we
formulate in greater generality than strictly necessary since the proof is not more
difficult).

Lemma 4. Let X and Y be locally compact Hausdorff spaces with Y first countable.
Let f be a continuous real-valued function on X × Y such that f(·, y) has a unique
global minimum at γy for y ∈ Y . Define the map γ : Y → X by y 7→ γy. Assume
also there is a compact D ⊂ X such that γ(Y ) ⊂ D. Then γ is continuous.

Proof. Assume γ is not continuous in a point η ∈ Y . We will show that this leads
to a contradiction. There is a neighborhood N of γη with compact closure and a
sequence y1, y2, . . . in Y with yj → η and γyj

∈ X\N for all j, and where X\N
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is the complement of N in X . Defining m0 = minx∈D∩(X\N)(f(x, η) − f(γη, η)),
we have m0 > 0 by definition of γη and compactness of D. Choose an ε such
that 0 < ε < m0/4. Choose a neighborhood U of η with compact closure such
that |f(x, η)− f(x, y)| ≤ ε for y ∈ U and x ∈ D. Hence for y ∈ U we have
f(γy, η) − f(γy, y) ≤ ε. Furthermore by the definition of γy we have f(γy, y) ≤
f(γη, y), and continuity of f in y implies that there is a neighborhood U ′ of η
such that f(γη, y) ≤ f(γη, η) + ε for y ∈ U ′, thus f(γy, y) ≤ f(γη, η) + ε for
y ∈ U ′. Therefore f(γy, η)− f(γη, η) ≤ 2ε < m0/2 for y ∈ U ∩U ′, which leads to a
contradiction for y = yj and j large by the definition of m0. �

Proof of Proposition 3. Let X = V , Y = K ∪ {0} and f(v, k) = Sk(µ, v), where
S0(µ, v) =

1
2‖v‖

2 − 2π〈v, µ〉 + π
∑

α∈R+ |〈v, α〉|. Then S0(µ, v) is continuous (but
not differentiable), strictly convex in v and has a unique global minimum that is
obtained at µ̂0 = µ − ρ. Lemma 4 with [5, Propositions 2.10] yields that k 7→ µ̂k

is continuous on K ∪ {0}, and in particular limk→0 µ̂k = µ̂0 = 2π(µ − ρ). By
Section 9 of [5] µ̂k ∈ V is determined by the equation µ̂k + σk

µ̂k
= 2πµ where

σk
λ = 2

∑
α∈R+ arctan (〈λ, α∨〉/kα)α. Taking the inproduct of this with a v ∈ V+

gives arctan(〈µ̂k, α
∨〉/kα) → π/2 as k → 0, and whence 〈µ̂k, α

∨〉/kα → +∞ as
k → 0. In particular ck(µ̂k) is continuos in k ∈ K ∪ {0}, which together with (6)
yields the proposition. �

In the following section we will make sense of H0 = −∆ as a self-adjoint positive
operatorH0. The form to make sense of (12) as a self-adjoint operator on L2(A) will
be defined in the final section. It will be a perturbation of the form corresponding
to H0. For this we will show in the following section that the form domain of the
form corresponding to H0 is the Sobolev space of once weak differentiable functions
on A while the form itself is equal to the Sobolev inner product.

4. The Laplacian on the Weyl alcove

The domain of any operator H will be denoted by D(H) and its form and form
domain by qH and Q(H), respectively.

One checks easily that a function f ∈ D0 = {f|A|f ∈ C∞(V )W
a

} satisfies

(∂α∨

i
f)(v) = 0, v ∈ Vi ∩ A, i = 0, . . . , n (15)

By Stokes’ theorem we have for suitable f, g,
∫

A

((∆f)g − f∆g) =

n∑

j=0

1

‖α∨
j ‖

∫

Vj∩A

(f∂α∨

j
g − (∂α∨

j
f)g). (16)

Whence −∆ with domain D0 is symmetric on L2(A), and moreover also positive
by another application of Stokes’ theorem. Furthermore:

Proposition 5. (−∆, D0) is essentially self-adjoint and D0 is an operator core for
the unique positive self-adjoint extension (H0, D(H0)). Moreover the φ0µ ∈ D0 ⊂

D(H0), µ ∈ 2πP+ form a complete set of orthogonal functions and H0φ
0
µ = ‖µ‖2φ0µ.

Furthermore H0 has compact resolvent.

Proof. The first statement follows from the second one and [18, Theorem X.39].
We have φ0µ ∈ D0 because (14) extends directly to a W a = W ⋉ Q∨-invariant

function in C(V )W
a

. Orthogonality of the φ0µ is shown by an explicit calculation

and H0φ
0
µ = −∆φ0µ = ‖µ‖2φ0µ. Density of the φ0µ follows from an elementary
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application of the Stone-Weierstrass theorem. The last statement follows from [19,
Theorem XIII.64]. �

For a f ∈ L2(A) and η ∈ V one says that ∂ηf ∈ L2(A) weakly provided that
there is a g ∈ L2(A) such that ∂ηf = g as distributions on A. It is a standard
result in Sobolev space theory that W 1,2 = {f ∈ L2(A) | ∂ηf ∈ L2(A), ∀η ∈ V } is
a Hilbert space with inner product

(f, g)W 1,2 =

∫

A

f(v)g(v)dv +

n∑

j=1

∫

A

(∂ηj
f)(v)(∂ηj

g)(v)dv, (17)

where {η1, . . . , ηn} denotes an orthonormal basis for V ((17) is in particular inde-
pendent of the choice of orthonormal basis). Stokes’ theorem with (15) yields that
h0(f, g) = (f, g)W 1,2 for f, g ∈ D0 ⊂ Q0. Making use of the geometry of the affine
hyperplane arrangement associated with the root system R we can prove for the
symmetric domain A:

Proposition 6. The form domain Q0 of h0 is equal to the Sobolev space W 1,2 of
once weak differentiable functions on A and h0 = (·, ·)W 1,2 .

Proof. Since D0 is an operator core for (H0, D(H0)) (Proposition 5) and h0 =
(·, ·)W 1,2 onD0 it suffices to show thatD0 is a dense subspace ofW

1,2 in the Sobolev
topology for the first statement. The second statement then follows because D0

is a form core for (h0, Q0). Since C∞(A) =
{
f|A | f ∈ C∞(V )

}
is dense in W 1,2

(see e.g. [20, Theorem I.3.6]), it suffices to show that every φ ∈ C∞(A) can be
approximated in W 1,2 by functions from D0. Fix therefore a φ ∈ C∞(A). Denote
the unique W a-invariant extension of φ to V by u, thus u ∈ C(V )W

a

(see (13)).
We will use a regularization procedure. For a r > 0 and v ∈ V let B̄(v, r) =

{v′ ∈ V |‖v′ − v‖ ≤ r}. Choose a j ∈ C∞
c (V )W with j ≥ 0 and support in

B̄(0, 1), and
∫
V
j(v)dv = 1. For ε > 0 define jε ∈ C∞

c (V )W by jε(v) = j(v/ε)/εn.

Consider the regularization uε ∈ C∞(V ) of u, uε(v) =
∫
V
jε(v − v′)u(v′)dv′ =∫

V
jε(v

′)u(v − v′)dv′. Since u ∈ L1
loc(V, dv)

Wa

we have uε ∈ C∞(V )W
a

and in
particular uε|A ∈ D0. We shall show that uε|A → φ in the Sobolev norm as εց 0.

For any η ∈ V consider the function in uη ∈ L1
loc(V, dv) defined uniquely by

uη = ∂ηu on Vreg. We claim that ∂ηuε = (uη)ε for all ε > 0. For t > 0 consider
the difference-quotient function gt,η(v) = (u(v + tη) − u(v))/t for v ∈ V . Then
gt,η is continuous on V and Q∨-periodic. It is easily seen that for every v ∈ V
and 0 < t < diam(A) the line segment between v and v + tη lies in at most
#W/2 alcoves. Since u|C ∈ C∞(C) for all alcoves C = wA (w ∈ W a), multiple

applications of the mean value theorem (but at most #W/2 times) together with
the W a-invariance and continuity of u yields the bound #WMη/2 for |gt,η| on V
for t ∈ (0, diam(A)) and where Mη denotes the supremum of ∂ηu on A. Whence
|jεgt,η(v − ·)| is bounded by (#WMη)/2 supV j/(ε

n) (and has support in B̄(0, ε))
for all v ∈ V . Since limt→0 gt,η = uη pointwise on Vreg, Lebesgue’s dominated
convergence theorem (integrating over B̄(0, ε)) yields then indeed ∂ηuε = (uη)ε for
all ε > 0.

Together with uε → u uniformly on compact subsets of A, which follows from
u|A ∈ C(A) and an elementary uniform continuity argument, it follows that ∂ηuε →
∂ηu point-wise on A. Note that if a locally integrable function is bounded by
a M ≥ 0, then so does its regularization. Applying this observation to uη and
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using ∂ηuε = (uη)ε shows that |∂η(uε − u)| is bounded by 2Mη uniformly on A. A
simple application of Lebesgue’s dominated convergence theorem now gives ‖∂ηuε−
∂ηu‖L2(A) → 0 as ε → 0. Furthermore ‖uε − u‖L2(A) → 0 as ε → 0 since uε → u

uniformly on A and whence uε|A → u|A = φ in the Sobolev norm, concluding the
proof. �

In the following final section we will finish the proof of Theorem 1 on the com-
pleteness of the Bethe ansatz eigenfunctions on the Weyl alcove A.

5. Proof of the completeness

We denote the restriction of the Euclidean measure on V to ∂A also by dv. The
following non-trivial result is a special case of [20, Theorem I.8.7],

Theorem 7 (Trace operator). There exist a continuous linear operator

B :W 1,2 → L2(∂A, dv) (18)

such that Bφ = φ|∂A for φ ∈W 1,2 ∩ C1(A), where C1(A) = {f|A|f ∈ C1(V )}.

We now are able to define the form to make sense of (12) as a positive self-adjoint
operator.

Definition 8. We denote by δk the following form with domain W 1,2,

δk(f, g) =

n∑

j=0

kaj

‖a∨j ‖

∫

A∩Vj

Bf(v)Bg(v) dv

and by hk the form h0 + δk with domain W 1,2 (= Q0 by Proposition 6).

By continuity of B there is a c > 0 such that

δ1(f, f) ≤ c ((f, f)W 1,2 + (f, f)L2(A)), ∀f ∈W 1,2 (19)

For root system of type A our δk differs from Dorlas’ (see [4, (2.7)]) in the sense
that his δk has no integration over an affine wall, which is explained by the fact
that we work in the center-of-mass coordinates.

We write k ≤ k′ if kα ≤ k′α for all α ∈ R. Following Dorlas [4] we are now
in position to make sense of the formal Hamiltonian (12) as a positive self-adjoint
operator.

Proposition 9. (i) There is a unique positive self-adjoint operator Hk on L2(A)
with form (hk,W

1,2). Furthermore D0 is a form core for hk.
(ii) The Hk are non-decreasing in k, i.e. Hk ≤ Hk′ if k ≤ k′.
(iii) k 7→ Hk is right-continuous in k ∈ K ∪ {0} in the strong-resolvent sense.
(iv) Let µ ∈ P++. Then φkµ̂k

∈ D(Hk) and Hkφ
k
µ̂k

= ‖µ̂k‖
2φkµ̂k

Proof. The uniqueness of Hk follows because a self-adjoint operator is uniquely
defined by its form by the first representation theorem [13, Theorem VI.2.1]. For
the existence we use induction on kmax = max{kα|α ∈ R}, starting from k ≡ 0
using Proposition 5. Assume therefore that Hk0 is defined for some k0 ≥ 0 with
the properties mentioned in (i). Let β be the form δk−k0 . Thus hk = hk0 + β is
a perturbation of hk0 by β. Then it follows immediately from the non-decreasing
of the forms hk and (19) that β(f, f) ≤ c(k − k0)max(hk0(f, f) + (f, f)) for all f ∈
W 1,2. The KLMN theorem [18, Theorem X.17], [13, Theorem VI.3.9] now yield the
existence of the operators Hk for those k ∈ K satisfying k0 ≤ k < k0+1/c. Whence
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by induction they are defined for all k ∈ K, yielding (i). Statement (ii) follows from
the non-decreasing of the hk. Statement (iii) follows from [13, Theorem VI.2.1(iii)]
and hk(φ

k
µ̂k
, ψ) = (−∆φkµ̂k

, ψ)L2(A) for all ψ ∈ D0, which itself follows from the

definition of hk, symmetry of hk and (16). As for (iv), let k1 ≥ k2 ≥ · · · ≥ k0 be
a sequence in K ∪ {0} s.t. kj → k0. Then hk1

≥ hk2
≥ · · · ≥ 0 as forms on W 1,2.

Now hk0 (φ, φ) = infk>k0 hk(φ, φ), ∀φ ∈ D0, yielding hk0 = limj→∞ hkj
= infj∈N hkj

by the first part of [17, Theorem S16] and (iv) follows by the second part of [17,
Theorem S16]. �

Proof of Theorem 1. Denote the space of R-valued polynomials on V over R by
P (V ). To any p ∈ P (V ) one can associate in a natural way a constant coefficient
differential operator ∂p. Since ∂pφ

k
λ = p(λ)φkλ for p ∈ P (V )W (see (13)) and

P (V )W separates the orbits V/W it follows that the φkµ̂k
, µ ∈ P++ must be linearly

independent. The theorem now follows from Theorem 2 applied to (Htk)t∈[0,∞),

(φtkµ̂tk
)µ∈P++ and using Propositions 3, 5 and 9. �
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