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1. Introduction

In the present paper we consider the initial value problem

wtt =

(
β ∗

∂F

∂wx

)

x

+

(
β ∗

∂F

∂wy

)

y

, (x, y) ∈ R
2, t > 0, (1.1)

w(x, y, 0) = ϕ(x, y), wt(x, y, 0) = ψ(x, y), (1.2)

where (1.1) models anti-plane shear motions in nonlinear nonlocal elasticity. In (1.1)-

(1.2), w = w(x, y, t), F is a nonlinear function of |∇w|2 ≡ (w2
x+w2

y) with F (0) = 0, the

subscripts denote partial derivatives and

(β ∗ u)(x, y) =

∫

R2

β(x− x′, y − y′)u(x′, y′)dx′dy′

denotes convolution of β and u. The kernel β(x, y) is assumed to be an integrable

function whose Fourier transform, β̂(ξ1, ξ2), satisfies

0 ≤ β̂(ξ) ≤ C(1 + |ξ|2)−r/2, for all ξ = (ξ1, ξ2), (1.3)

where C is a positive constant and r ≥ 2. The aim of this paper is to establish the

well-posedness of the initial value problem (1.1)-(1.2), as well as the global existence

and blow-up of solutions for a wide class of the kernel functions β(x, y). The number r

in (1.3) is closely related to the smoothness of β and, consequently, as r gets larger the

regularizing effect of the nonlocal behavior increases. This situation is clearly observed

through a comparison of Theorem 3.7 and Theorem 3.8.

Although the model requires the nonlinearity to be of the form F (w2
x + w2

y), it is

possible to extend our results to F (wx, wy)-type nonlinearities. Similarly, in the model

the kernel β is a function of the modulus |(x, y)|, but we do not require this restriction

on β in our work. Basically, the approach presented here extends the techniques used for

the one-dimensional nonlinear nonlocal Boussinesq-type wave equations in the previous

studies [1, 2, 3] to the two-dimensional wave equation given by (1.1). It is worthwhile

observing that when β is taken as the Dirac measure in (1.1), one recovers the quasilinear

wave equation for anti-plane shear motions of the conventional theory of elasticity.

The plan of the paper is as follows: In Section 2 we give a brief formulation of

the anti-plane shearing problem of nonlocal elasticity. In Section 3 we present a local

existence theory for solutions of the Cauchy problem (1.1)-(1.2) for given initial data in

suitable Sobolev spaces. In Section 4 we prove global existence of solutions of (1.1)-(1.2)

assuming some positivity condition on the nonlinear function F together with enough

smoothness on the initial data. Finally, in Section 5 we discuss finite time blow-up of

solutions.

Throughout the paper, û(ξ) = F(u)(ξ) =
∫
R2 e

−iz·ξu(z)dz and F−1(û)(z) =
1

(2π)2

∫
R2 e

iz·ξû(ξ)dξ denote the Fourier transform and inverse Fourier transform,

respectively, where z = (x, y), ξ = (ξ1, ξ2), dz = dxdy, and dξ = dξ1dξ2. Furthermore,

Hs(R2) denotes the L2 Sobolev space on R
2. For the Hs norm we use the Fourier

transform representation ‖u‖2s =
∫
R2(1 + |ξ|2)s|û(ξ)|2dξ . Also, ‖u‖

∞
and ‖u‖
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indicate the L∞ and L2 norms, respectively, and 〈u, v〉 refers to the inner product of u

and v in L2(R2).

2. The Model

In this section we discuss how equation (1.1) can be derived to describe the propagation

of a finite amplitude transverse wave in a nonlocally elastic medium. Before stating

our derivation, we need to introduce the concept of nonlocal elasticity. One of the

major drawbacks in the conventional theory of elasticity is that it does not include any

intrinsic length scale and consequently does not take into account the long range forces

that become increasingly important at small scales. As a result, the conventional theory

of elasticity is incapable of predicting, for instance, (i) the dispersive nature of harmonic

waves in crystal lattices and (ii) the boundedness of the stress field near the tip of a

crack. In order to overcome such deficiencies various generalizations of the conventional

theory of elasticity have been proposed. One such generalization is the theory of nonlocal

elasticity which has been developed by Kröner [4], Eringen and Edelen [5], Kunin [6],

Rogula [7], Eringen [8, 9] over the last several decades (For more recent studies on the

subject of generalized theories of elasticity, see, for instance, [10, 11, 12, 13, 14, 15]

and references therein). What distinguishes the theory of nonlocal elasticity from the

conventional theory of elasticity is that the stress at a point depends on the strain field

at every point in the body. Although there has been a considerable amount of research

done on small scale effects within the context of the theory of nonlocal elasticity, they

are mostly restricted to linear models. Recently, in [1, 2, 3] various Cauchy problems

based on a one-dimensional nonlinear model of nonlocal elasticity have been studied.

Here, we show how the approach in those studies is extended to the dynamic anti-plane

shearing problem of nonlinear nonlocal elasticity.

Consider a homogeneous nonlocally elastic medium. Identify a material point X

of the medium by its rectangular Cartesian coordinates in a reference configuration:

X = (X1, X2, X3). We assume that the reference configuration is unstressed. Let

x(X, t) = (x1(X, t), x2(X, t), x3(X, t)) denote the position of the same point at time t.

Then the displacement and the deformation gradient are given by u(X, t) = x(X, t)−X

and A(X, t) = Grad x(X, t), respectively. We suppose that a (local) strain energy

density function F (A) per unit volume of the undeformed reference configuration exists,

i.e., the material is (locally) hyperelastic and that it sustains a nontrivial anti-plane shear

motion. In the conventional theory of elasticity, a constitutive equation of the form

σ = σ(A) ≡ ∂F (A)/∂A holds for a hyperelastic material (see equation (4.3.7) of [16]),

where σ is the nominal stress tensor (note that some authors use its transpose referred

to as the first Piola-Kirchhoff stress tensor). In the theory of nonlocal elasticity the

(nonlocal) stress tensor S is related to the (local) stress tensor σ through the constitutive

relation S = S(X, t) ≡
∫
β(|X−Y|)σ(A(Y, t))dY where β(|X−Y|) is a kernel function

that weights the contribution of the local stresses to the nonlocal stresses. In the absence

of body forces, the (Lagrangean) equation of motion (see equation (3.4.4) of [16]) is



Global existence and blow-up for a two-dimensional nonlocal equation 4

given by ρ0ẍ = Div S where ρ0 is the mass density of the medium and a superposed dot

indicates the material time derivative. The only difference between the equations of the

conventional theory of elasticity and those of the nonlocal model presented here is due

to the constitutive equations.

Now we consider an anti-plane shear motion of the form

x1 = X1, x2 = X2, x3 = X3 + w(X1, X2, t) (2.1)

for a nonlocally elastic material, where the out-of-plane displacement w is the only non-

zero component of displacement, i.e. u1 = u2 ≡ 0 and u3 ≡ w(X1, X2, t). We henceforth

replace the arguments X1 and X2 of the displacement w with x and y, respectively, and

denote partial differentiations with subscript letters. A lengthy computation shows that

for isotropic materials the strain energy density function F is a function of w2
x + w2

y

alone: F = F (w2
x + w2

y). Furthermore, the equation of motion reduces to the scalar

partial differential equation ρ0wtt = (β ∗ σ13)x + (β ∗ σ23)y where σ13 and σ23 are the

(local) shear stresses arising due to the anti-plane shear motion and they are given

by σ13 = ∂F/∂wx and σ23 = ∂F/∂wy. The computations are identical to those in

the conventional formulation of nonlinear elasticity, provided we replace the nonlocal

stress tensor with the local stress of conventional theory of elasticity [17]. The nonlocal

behavior is represented by the convolution integral. Thus, without loss of generality,

if we make a suitable non-dimensionalization of the equation of motion (see [2] for the

non-dimensionalization in one-dimensional case) and use the same symbols to avoid a

proliferation of notation, or simply take the mass density to be 1, we get (1.1). Equation

(1.1) is consistent with that of the conventional formulation of nonlinear elasticity. In

other words, when β is taken as the Dirac measure to eliminate the nonlocal effect,

(1.1) reduces to the quasilinear wave equation governing anti-plane shear motions in

the conventional theory of nonlinear elasticity (see for instance equation (7.10) of [17]

or equation (2.2) of [18]). A list of the most commonly used one-dimensional kernel

functions that satisfy the one-dimensional version of the condition given in (1.3) is

presented in [2]. We now present three examples of two-dimensional kernel functions

used in the literature.

(i) The Gaussian kernel [19]: β(x, y) = (2π)−1e−(x2+y2)/2. We have β̂(ξ1, ξ2) =

e−(ξ2
1
+ξ2

2
)/2. This is a highly regularizing kernel as can be observed by the fact

that we can take any r in (1.3).

(ii) The modified Bessel function kernel [19]: β(x, y) = (2π)−1K0(
√
x2 + y2) where

K0 is the modified Bessel function of the second kind of order zero. Since

β̂(ξ1, ξ2) = (1+ ξ21 + ξ22)
−1, for this special case we have r = 2 in (1.3). Note that β

is Green’s function for the operator (1−∆) where ∆ denotes the two-dimensional

Laplacian. In this case (1.1) becomes

wtt −∆wtt =

(
∂F

∂wx

)

x

+

(
∂F

∂wy

)

y

.
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Letting F (s) = 1
2
s+G(s) we obtain the more familiar form

wtt −∆w −∆wtt =

(
∂G

∂wx

)

x

+

(
∂G

∂wy

)

y

.

(iii) The bi-Helmholtz type kernel [20]:

β(x, y) =
1

2π(c21 − c22)
[K0(

√
x2 + y2/c1)−K0(

√
x2 + y2/c2)]

where c1 and c2 are real and positive constants. Since β̂(ξ1, ξ2) = [1+ γ1(ξ
2
1 + ξ22) +

γ2(ξ
2
1 + ξ22)

2]−1 where γ1 = c21 + c22 and γ2 = c21c
2
2 we have r = 4. As above, β is

Green’s function for the operator (1− γ1∆+ γ2∆
2). Then (1.1) becomes

wtt −∆w − γ1∆wtt + γ2∆
2wtt =

(
∂G

∂wx

)

x

+

(
∂G

∂wy

)

y

.

In the remainder of this paper we discuss the question of well-posedness of the Cauchy

problem (1.1)-(1.2).

3. Local Existence and Uniqueness of Solutions

In the present section, we prove existence and uniqueness of solutions over a small time

interval. Local well-posedness is established by converting the initial value problem

(1.1)-(1.2) into a system of Banach space-valued ordinary differential equations. Thus

(1.1)-(1.2) is equivalent to the system

wt = v, w(0) = ϕ, (3.1)

vt = Kw, v(0) = ψ (3.2)

where the operator K is defined as

Kw =

(
β ∗

∂F

∂wx

)

x

+

(
β ∗

∂F

∂wy

)

y

. (3.3)

The Banach space Xs will be defined as

Xs = {w ∈ Hs(R2); wx, wy ∈ L∞(R2)},

endowed with the norm

‖w‖s,∞ = ‖w‖s + ‖wx‖∞ + ‖wy‖∞. (3.4)

The following two lemmas [21] are useful in the proof.

Lemma 3.1 (Sobolev Embedding Theorem) If s >
n

2
+ k , then Hs(Rn) ⊂ Ck(Rn) ∩

L∞(Rn). In particular when n = 2, ‖ |∇u| ‖∞ ≤ C‖u‖s for s > 2.

Lemma 3.2 Let s ≥ 0 and let u1, u2 ∈ Hs ∩ L∞. Then u1u2 ∈ Hs and

‖u1u2‖s ≤ C(‖u1‖s‖u2‖∞ + ‖u1‖∞‖u2‖s).

The two lemmas below [22, 23] will be used to control the nonlinear terms.
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Lemma 3.3 Let s ≥ 0, f ∈ C [s]+1(R) with f(0) = 0. Then for any u ∈ Hs ∩ L∞, we

have f(u) ∈ Hs ∩ L∞. Moreover there is some constant A(M) depending on M such

that for all u ∈ Hs ∩ L∞ with ‖u‖∞ ≤M

‖f(u)‖s ≤ A(M)‖u‖s .

Lemma 3.4 Let s ≥ 0, f ∈ C [s]+1(R). Then for any M > 0 there is some constant

B(M) such that for all u1, u2 ∈ Hs ∩ L∞ with ‖u1‖∞ ≤ M , ‖u2‖∞ ≤ M and

‖u1‖s ≤M , ‖u2‖s ≤M we have

‖f(u1)− f(u2)‖s ≤ B(M)‖u1 − u2‖s .

In our case the nonlinearities are of the form

∂F

∂wx
(|∇w|2) = 2wxF

′(|∇w|2),
∂F

∂wy
(|∇w|2) = 2wyF

′(|∇w|2)

where F ′ denotes the derivative of F . It follows from repeated applications of Lemma

3.2 that for the above terms Lemmas 3.3 and 3.4 take the following forms:

Lemma 3.5 Let s ≥ 1, F ∈ C [s]+1(R). Then for any w ∈ Xs, we have

∂F

∂wx

(|∇w|2) ∈ Hs−1,
∂F

∂wy

(|∇w|2) ∈ Hs−1.

Moreover there is some constant A(M) depending on M such that for all w ∈ Xs with

‖ |∇w| ‖∞ ≤M

‖
∂F

∂wx
(|∇w|2)‖s−1 ≤ A(M)‖w‖s,

‖
∂F

∂wy
(|∇w|2)‖s−1 ≤ A(M)‖w‖s .

Lemma 3.6 Let s ≥ 1, F ∈ C [s]+1(R). Then for any M > 0 there is some constant

B(M) such that for all w1, w2 ∈ Xs with ‖w1‖s,∞ ≤M , ‖w2‖s,∞ ≤M we have

‖
∂F

∂wx

(|∇w1|
2)−

∂F

∂wx

(|∇w2|
2)‖s−1 ≤ B(M)‖w1 − w2‖s,

‖
∂F

∂wy
(|∇w1|

2)−
∂F

∂wy
(|∇w2|

2)‖s−1 ≤ B(M)‖w1 − w2‖s .

When s > 2 we have the following local well posedness result.

Theorem 3.7 Suppose s > 2, r ≥ 2 and ϕ, ψ ∈ Hs(R2). Then there is some

T > 0 such that the Cauchy problem (1.1)-(1.2) is well posed with solution w(x, y, t)

in C2([0, T ], Hs(R2)) .

Proof. Let w ∈ Hs(R2). For s > 2, by the Sobolev Embedding Theorem we have

|∇w| ∈ L∞(R2). Thus Xs = Hs(R2) and the norm ‖w‖s,∞ can be replaced by the

equivalent Hs norm ‖w‖s. Since (1.1)-(1.2) is equivalent to (3.1)-(3.2), we will use

the standard well posedness result for systems of ordinary differential equations [24].
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Obviously, all we need is to show that the operator K of (3.3) is locally Lipschitz on

Xs. We first show that K maps Xs into Xs. We estimate the convolution as

‖β ∗ u‖s = ‖(1 + ξ2)s/2β̂(ξ)û(ξ)‖ ≤ C‖(1 + ξ2)(s−r)/2û(ξ)‖ = C‖u‖s−r,

where we have used inequality (1.3). By Lemma 3.5 for ‖ |∇w| ‖∞ ≤M

‖

(
β ∗

∂F

∂wx

)

x

‖s ≤ ‖β ∗
∂F

∂wx
‖s+1 ≤ C‖

∂F

∂wx
‖s+1−r

≤ CA(M)‖w‖s+2−r ≤ CA(M)‖w‖s

where we have used r ≥ 2. The same holds for the term
(
β ∗ ∂F

∂wy

)
y
and

‖Kw‖s ≤ CA(M)‖w‖s+2−r ≤ CA(M)‖w‖s. (3.5)

Similarly, for w1, w2 ∈ Xs with ‖w1‖s ≤M and ‖w2‖s ≤M , by Lemma 3.6

‖

(
β ∗

∂F

∂wx
(|∇w1|

2)

)

x

−

(
β ∗

∂F

∂wx
(|∇w2|

2)

)

x

‖s ≤ CB(M)‖w1 − w2‖s+2−r

≤ CB(M)‖w1 − w2‖s.

As above, the same holds for the term
(
β ∗ ∂F

∂wy

)
y
. So, K is locally Lipschitz on Xs and

thus the local well posedness of the Cauchy problem is established.

When r > 3 in (1.3), the extra regularizing effect of β allows us to improve the

result in Theorem 3.7 to the case of s ≥ 1.

Theorem 3.8 Suppose s ≥ 1 , r > 3, and ϕ, ψ ∈ Xs. Then there is some

T > 0 such that the Cauchy problem (1.1)-(1.2) is well posed with solution w(x, y, t) in

C2([0, T ], Xs) .

Proof. Similar to the proof of Theorem 3.7 it suffices to show that the map K given

in (3.3) is locally Lipschitz on Xs. Recall that ‖Kw‖s,∞ = ‖Kw‖s + ‖(Kw)x‖∞ +

‖(Kw)y‖∞. The term ‖Kw‖s can be estimated by ‖w‖s as above. For ǫ = r− 3 > 0 we

have

‖(Kw)x‖∞ ≤ C‖(Kw)x‖1+ǫ ≤ C‖Kw‖2+ǫ ≤ C‖Kw‖s+1+ǫ

≤ CA(M)‖w‖s+3+ǫ−r = CA(M)‖w‖s. (3.6)

where we have used (3.5) and the Sobolev Embedding Theorem. The same holds for

(Kw)y and a similar estimate as in the proof of Theorem 3.7 shows that K is locally

Lipschitz on Xs.

The solution of (1.1)-(1.2) can be extended to a maximal interval [0, Tmax) where

finite Tmax is characterized by the blow up condition

lim sup
t→T−

max

(‖w(t)‖s,∞ + ‖wt(t)‖s,∞) = ∞.

Obviously Tmax = ∞, i.e. there is a global solution if and only if for any T <∞

lim sup
t→T−

(‖w(t)‖s,∞ + ‖wt(t)‖s,∞) <∞.

The lemma below characterizes the type of blow-up; namely blow-up occurs in the

L∞-norm of |∇w|.
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Lemma 3.9 Suppose that the conditions of Theorem 3.7 or Theorem 3.8 hold. Then

there is a global solution of the Cauchy problem (1.1)-(1.2) if and only if for any T > 0

lim sup
t→T−

(‖wx(t)‖∞ + ‖wy(t)‖∞) <∞.

Proof. Since

‖wx(t)‖∞ + ‖wy(t)‖∞ ≤ ‖w(t)‖s,∞,

it suffices to prove that if the solution exists for t ∈ [0, T ) and ‖wx(t)‖∞+‖wy(t)‖∞ ≤M

for all 0 ≤ t < T then both ‖w(t)‖s,∞ and ‖wt(t)‖s,∞ stay bounded. Integrating equation

(1.1) twice and calculating the resulting double integral as an iterated integral, we obtain

w(t) = ϕ+ tψ +

∫ t

0

(t− τ)(Kw)(τ)dτ, (3.7)

wt(t) = ψ +

∫ t

0

(Kw)(τ)dτ. (3.8)

But, by (3.5), ‖(Kw)(τ)‖s ≤ CA(M)‖w(τ)‖s+2−r ≤ CA(M)‖w(τ)‖s where the constant

A(M) depends only on M . Hence

‖w(t)‖s + ‖wt(t)‖s ≤ ‖ϕ‖s + (1 + T )‖ψ‖s + (1 + T )CA(M)

∫ t

0

‖w(τ)‖sdτ,

and Gronwall’s Lemma gives

‖w(t)‖s + ‖wt(t)‖s ≤ (‖ϕ‖s + (1 + T )‖ψ‖s)e
(1+T )CA(M)T (3.9)

for all t ∈ [0, T ). We now estimate ‖wtx(t)‖∞. The estimate for ‖wty(t)‖∞ follows

similarly. In the case of Theorem 3.7 (where s > 2), by the Sobolev Embedding

Theorem,

‖wtx(t)‖∞ ≤ C‖wt(t)‖s

so that (3.9) applies. In the case of Theorem 3.8 (where r > 3), from (3.8) and (3.6)

‖wtx(t)‖∞ ≤ ‖ψx‖∞ + T‖(Kw)x(t)‖∞ ≤ ‖ψx‖∞ + CA(M)T‖w(t)‖s

and again (3.9) applies.

4. Conservation of Energy and Global Existence

In the present section we will prove that locally well defined solutions can be extended

to the entire time.

In the study of global existence of solutions the conservation of energy plays a key

role. First, time invariance of the energy functional will be shown. To this end, we

define the linear operator R as Rpu = F−1
(
(β̂(ξ))−

p

2 û(ξ)
)

where F−1 denotes the

inverse Fourier transform and β̂(ξ) is defined in (1.3). Then R−2u = β ∗ u. Multiplying

by R2, (1.1) can be rewritten as

R2wtt =

(
∂F

∂wx

)

x

+

(
∂F

∂wy

)

y

. (4.1)

Here we have used the fact that convolution commutes with derivatives in the

distribution sense, i.e. (β ∗ u)x = β ∗ ux.
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Lemma 4.1 Suppose that the conditions of Theorem 3.7 or Theorem 3.8 hold and the

solution of the Cauchy problem (1.1)-(1.2) exists in C2([0, T ) , Xs). If Rψ ∈ L2(R2),

then Rwt(t) ∈ L2(R2) for all t ∈ [0, T ). Moreover, if Rϕ ∈ L2(R2), then Rw(t) ∈ L2(R2)

for all t ∈ [0, T ).

Proof. Formally, from (3.8) we have

Rwt(t) = Rψ +

∫ t

0

(RKw)(τ)dτ . (4.2)

Note that

RKw =

(
α ∗

∂F

∂wx

)

x

+

(
α ∗

∂F

∂wy

)

y

,

where α̂(ξ) = (β̂(ξ))1/2. Then similar to the derivation of (3.5) (replacing β by α and

hence r by r/2) we get

‖(RKw)(τ)‖s+ r

2
−2 ≤ C‖w(τ)‖s.

Since either (s > 2 and r ≥ 2) or (s ≥ 1 and r > 3), in both cases we have s+ r
2
−2 > 0.

Thus the right-hand side of (4.2) belongs to L2(R2) and the conclusion follows. The

second statement follows similarly from (3.7).

Lemma 4.2 Suppose that the solution of the Cauchy problem (1.1)-(1.2) exists on some

interval [0, T ). If Rψ ∈ L2(R2) and the function F (|∇ϕ|2) belongs to L1(R2), then for

any t ∈ [0, T ) the energy

E(t) =
1

2
‖Rwt(t)‖

2 +

∫

R2

F (|∇w(t)|2)dxdy (4.3)

is constant in [0, T ).

Proof. By Lemma 4.1, Rwt(t) ∈ L2(R2). Multiplying (4.1) by wt, integrating in x and

y, and using Parseval’s identity we get

0 =
d

dt

∫

R2

1

2
(β̂(ξ))−1|ŵt(ξ, t)|

2dξ +

∫

R2

F ′(|∇w(t)|2)
∂

∂t
(|∇w(t)|2)dxdy

=
d

dt

∫

R2

(
1

2
(Rwt(t))

2 + F (|∇w(t)|2)

)
dxdy

which implies the conservation of energy.

The main result of this section is the following theorem.

Theorem 4.3 Let s ≥ 1 and r > 4. Let ϕ, ψ ∈ Xs, Rψ ∈ L2(R2) and F (|∇ϕ|2) ∈

L1(R2). If there is some k > 0 so that F (u) ≥ −ku for all u ≥ 0, then the Cauchy

problem (1.1)-(1.2) has a global solution in C2([0,∞), Xs).

Proof. By Theorem 3.8 the Cauchy problem is locally well-posed. Assume w ∈

C2([0, T ), Xs) for some T > 0. Since F (u) ≥ −ku, for all t ∈ [0, T ) we have

‖Rwt(t)‖
2 = 2E(0)− 2

∫

R2

F (|∇w(t)|2)dxdy,

≤ 2E(0) + 2k

∫

R2

|∇w(t)|2dxdy, (4.4)
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where E(0) is the initial energy. On the other hand we have

‖Rwt(t)‖
2 =

∫

R2

(β̂(ξ))−1|ŵt(ξ, t)|
2dξ,

≥ C−1

∫

R2

(1 + |ξ|2)
r

2 |ŵt(ξ, t)|
2dξ,

= C−1‖wt(t)‖
2
r

2

, (4.5)

where (1.3) is used. Combining (4.4) and (4.5)

d

dt
‖w(t)‖2r

2

≤ 2‖w(t)‖ r

2
‖wt(t)‖ r

2

≤ ‖w(t)‖2r
2

+ ‖wt(t)‖
2
r

2

≤ ‖w(t)‖2r
2

+ C‖Rwt(t)‖
2

≤ ‖w(t)‖2r
2

+ 2C(E(0) + k‖wx(t)‖
2 + k‖wy(t)‖

2)

≤ 2CE(0) + (1 + 4Ck)‖w(t)‖2r
2

,

where ‖wx(t)‖ ≤ ‖w(t)‖1 ≤ ‖w(t)‖ r

2
and ‖wy(t)‖ ≤ ‖w(t)‖1 ≤ ‖w(t)‖ r

2
are used.

Gronwall’s lemma implies that ‖w (t)‖ r

2

stays bounded in [0, T ). As r > 4 we have
r
2
− 1 > 1 and the Sobolev Embedding Theorem implies

‖wx(t)‖∞ ≤ ‖wx(t)‖ r

2
−1 ≤ ‖w(t)‖ r

2
.

We conclude that ‖wx(t)‖∞ and similarly ‖wy(t)‖∞ also stay bounded in [0, T ). By

Lemma 3.9, this implies a global solution.

5. Blow up

In this section a blow result for (1.1)- (1.2) will be presented. The following lemma [25]

will be used to prove blow up of solutions in finite time.

Lemma 5.1 Suppose that H(t), t ≥ 0, is a positive, twice differentiable function

satisfying H′′H − (1 + ν)(H′)2 ≥ 0 where ν > 0. If H(0) > 0 and H′(0) > 0, then

H(t) → ∞ as t→ t1 for some t1 ≤ H(0)/νH′(0).

Theorem 5.2 Suppose that the solution, w, of the Cauchy problem (1.1)-(1.2) exists,

Rϕ, Rψ ∈ L2(R2) and F (|∇ϕ|2) ∈ L1(R2). If there exists a positive number ν such

that

uF ′(u) ≤ (1 + 2ν)F (u) for all u ≥ 0,

and

E(0) =
1

2
‖Rψ‖2 +

∫

R2

F (|∇ϕ|2)dxdy < 0,

then the solution, w, of the Cauchy problem (1.1)-(1.2) blows up in finite time.
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Proof. We assume that the global solution to (1.1)-(1.2) exists. Then, by Lemma 4.1,

Rw(t), Rwt(t) ∈ L2(R2) for all t > 0. Let H(t) = ‖Rw(t)‖2 + b(t + t0)
2 where b and t0

are positive constants to be determined later. Then we have

H′ = 2〈Rwt, Rw〉+ 2b(t+ t0)

H′′ = 2‖Rwt‖
2 + 2〈Rwtt, Rw〉+ 2b.

Note that H′(0) = 2〈Rϕ,Rψ〉 + 2bt0 > 0 for sufficiently large t0. Using the inequality

uF ′(u) ≤ (1 + 2ν)F (u) together with (4.4) and (4.5) we have

〈Rwtt, Rw〉 = 〈R2wtt, w〉

= − 2

∫

R2

|∇w|2F ′(|∇w|2)dxdy

≥ − 2(1 + 2ν)

∫

R2

F (|∇w|2)dxdy

= (1 + 2ν)
(
‖Rwt‖

2 − 2E(0)
)
,

so that

H′′ ≥ 4(1 + ν)‖Rwt‖
2 − 4(1 + 2ν)E(0) + 2b.

On the other hand, using 2ab ≤ a2 + b2 and Cauchy-Schwarz inequalities we have

(H′)
2
= 4 [〈Rw,Rwt〉+ b(t+ t0)]

2

≤ 4
(
‖Rw‖2 ‖Rwt‖

2 + 2b(t+ t0)‖Rw‖ ‖Rwt‖+ b2(t+ t0)
2
)

≤ 4
(
‖Rw‖2 ‖Rwt‖

2 + b‖Rw‖2 + b‖Rwt‖
2(t+ t0)

2 + b2(t + t0)
2
)
.

Thus

H′′H− (1 + ν)(H′)2

≥
(
4(1 + ν)‖Rwt‖

2 − 4(1 + 2ν)E(0) + 2b
) (

‖Rw‖2 + b(t + t0)
2
)

− 4(1 + ν)
(
‖Rw‖2 ‖Rwt‖

2 + b‖Rw‖2 + b‖Rwt‖
2(t+ t0)

2 + b2(t+ t0)
2
)

= −2(1 + 2ν)(b+ 2E(0))H.

Now if we choose b ≤ −2E(0), this gives

H′′(t)H(t)− (1 + ν) (H′(t))
2
≥ 0.

According to the Blow-up Lemma 5.1, this implies that H(t), and thus ‖Rw(t)‖2 blows

up in finite time.

Finally, we conclude with a short discussion on the condition E(0) < 0. If F (u) ≥ 0

for all u ≥ 0, then by Theorem 4.3, there is a global solution. If F (u) is negative on some

interval I, we can choose ϕ with support in I so that
∫
R2 F (|∇ϕ|

2)dxdy < 0. Hence,

when ψ = 0 or Rψ is sufficiently small we get E(0) < 0. This also shows that blow up

may occur even for small initial data.
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