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Abstract—We consider theN -user broadcast erasure channel
where feedback from the users is fed back to the transmitter in
the form of ACK messages. We provide a generic outer bound
to the capacity of this system and propose a coding algorithm
that achieves this bound for an arbitrary number of users
and symmetric channel conditions, assuming that instantaneous
feedback is known to all users. Removing this assumption results
in a rate region which differs from the outer bound by a
factor O(N2/L), where L is packet length. For the case of non-
symmetric channels, we present a modification of the previous
algorithm whose achievable region is identical to the outerbound
for N ≤ 3, when instant feedback is known to all users, and
differs from the bound by O(N2/L) when each user knows only
its own ACK. The proposed algorithms do not require any prior
knowledge of channel statistics.

Index Terms—Broadcast erasure channels, feedback-based
coding, capacity achieving algorithms.

I. I NTRODUCTION

Broadcast channels have been extensively studied by the
information theory community since their introduction in
[1]. Although their capacity remains unknown in the general
case, special cases have been solved, including the important
category of “degraded” channels [2]. Another class of channels
that has received significant attention is erasure channels,
where either the receiver receives the input symbol unaltered
or the input symbol is erased (equivalently, dropped) at the
receiver. The latter class is usually employed as a model for
lossy packet networks.

Combining the above classes, a broadcast erasure channel
(BEC) is a suitable abstraction for wireless communications
modeling since it captures the essentially broadcast nature of
the medium as well as the potential for packet loss (due to fad-
ing, packet collision etc). Since this channel is not necessarily
degraded, the computation of its feedback capacity region is
an open problem. Numerous variations of this channel, under
different assumptions, have been studied, a brief summary of
which follows.

For multicast traffic, an outer bound to the capacity region
of erasure channels is derived in [3], in the form of a suitably
defined minimum cut, and it is proved that the bound can be
achieved by linear coding at intermediate nodes. The broadcast
nature is captured by requiring each node to transmit the
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same signal on all its outgoing links, while it is assumed
that the destinations have complete knowledge of any erasures
that occurred onall source-destination paths. In a sense, [3]
is the “wireless” counterpart to the classical network coding
paradigm of [4], since it carries all results of [4] (which
were based on the assumption of error-free channels) into the
wireless regime.

The concept of combining packets for efficient transmission
based on receiver feedback is also used in [5], where broadcast
traffic is assumed and a rate-optimal, zero-delay, offline algo-
rithm is presented forN = 3. Online heuristics that attempt to
minimize the decoding delay are also presented. Reference [6]
expands on this work by presenting an online algorithm that
solves at each slot a (NP-hard) set packing problem in order
to decide which packets to combine. This algorithm also aims
in minimizing delay.

Multiple unicast flows, which are traditionally difficult to
handle within the network coding paradigm, are studied in
[7] for a network where each source is connected to a relay
as well as to all destinations, other than its own, and all
connections are modeled as BECs. A capacity outer bound
is presented for arbitraryN and is shown to be achievable for
N = 3 and almost achievable forN = 4, 5. The capacity-
achieving algorithm operates in two stages with the relay
having knowledge of the destination message side information
at the end of the first stage but not afterward (i.e. once the
second stage starts, the relay does not receive feedback from
the destinations).

A similar setting is studied in [8], where ACK-based packet
combining is proposed and emphasis is placed on the overhead
and complexity requirements of the proposed scheme. An
actual implementation of the use of packet XORing in an
intermediate layer between the IP and 802.11 MAC layers
is presented and evaluated in [9], while [10] proposes a
replacement for the 802.11 retransmission scheme based on
exploiting knowledge of previously received packets.

This paper expands upon earlier work in [11] (which studied
the caseN = 2) and is sufficiently different from the afore-
mentioned work in that, although it also uses the idea of packet
mixing (similar to the network coding sense), it provides
explicit performance guarantees. Specifically, an outer bound
to the feedback capacity region for multiple unicast flows (one
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for each user) is computed and two online algorithms are
presented that achieve this bound for the following settings,
respectively: an arbitrary number of usersN with symmetric
channels (this concept will be defined later), and 3 users with
arbitrary channel statistics.

The algorithms do not require any knowledge of channel
parameters (such as erasure probabilities) or future events
so that they can be applied to any BEC. They use receiver
feedback to combine packets intended for different users into
a single packet which is then transmitted. The combining
scheme (i.e. choosing which packets to combine and how)
relies on a set of virtual queues, maintained in the transmit-
ter, which are updated based on per-slot available receiver
ACK/NACKs. This queue-based coding concept has also been
used in [12], albeit for broadcast traffic with stochastic arrivals
where the stability region of the proposed algorithm becomes
asymptotically optimal as the erasure probability goes to 0,
whereas we consider systems with an arbitrarily fixed number
of packets per unicast stream where the capacity is achieved
for arbitrary values of erasure probability.

The paper is structured as follows. Section II describes the
exact model under investigation and provides the necessary
definitions in order to derive the capacity outer bound in
Section III. The first coding algorithm is presented in Sec-
tion IV, which also contains a discussion of the intuition
behind the algorithm, its correctness and optimal performance
for symmetric channels. The incorporation of overhead and
the corresponding reduction in the achievable region are also
examined. A modification of the algorithm that achieves capac-
ity for 3 users under arbitrary channel conditions is presented
in Section V, while Section VI concludes the paper. Due to
space restrictions, the proofs of all stated results are omitted
and presented in [13] instead.

II. SYSTEM MODEL AND DEFINITIONS

The system model is a direct extension toN users of the
corresponding model in [11] but is nonetheless repeated for
completeness. Consider a time slotted system where messages
(packets) of lengthL bits are transmitted in each slot. We
normalize to unity the actual time required to transmit a single
bit so that the time interval[(l−1)L lL), for l = 1, 2, . . . , cor-
responds to slotl. The system consists of a single transmitter
and a setN

△

= {1, 2, . . . , N} of receivers, while there exists
at the transmitter a distinct stream of unicast packets for each
receiver, with the packets destined for receiveri comprising set
Ki. The channel is modeled as memoryless broadcast erasure
so that each broadcast packet is either received unaltered by
a user or is dropped (i.e. the user does not receive it), in
which case an erasure occurs for the user. This is equivalentto
considering that the user receives the special symbolE, which
is distinct from any transmitted symbol. Hence, each user
knows whether an erasure has occurred or not by examining
its received symbol.

DefineZi,l
△

= I[useri receivesE in slot l], whereI[·] de-
notes an indicator function, and consider the random vec-
tor Zl = (Z1,l, Z2,l, . . . , ZN,l). The sequence{Zl}∞l=1 is

assumed to consist of iid vectors (we denote withZ =
(Z1, . . . , ZN) the random vector with distribution equal to
that of Zl), although, for a fixed slot, arbitrary correlation
between erasures in different users is allowed. For any index
set I ⊆ N , we define the probability that an erasure occurs
to all users inI as

Pr (Zi = 1, ∀ i ∈ I)
△

= εI , (1)

where, by convention, it holdsε∅ = 1. For simplicity, we
write εi instead ofε{i} and assumeεi < 1 to avoid trivial
cases.

According to the introduced notation, when the transmitter,
at the beginning of slotl, broadcasts symbolXl, each useri
receives symbolYi,l given by

Yi,l = Zi,lE + (1− Zi,l)Xl, (2)

where we denoteY l
△

= (Yi,l)i∈N . At the end of each slotl, all
users inform the transmitter whether the symbol was received
or not, which is equivalent to each useri sending the value
of Zi,l through an error-free control channel. In information-
theoretic terms [14], the broadcast channel is described by
the input alphabetX , the output alphabetsY1,Y2, . . . ,YN for
users1, 2 . . . , N , respectively, and the probability transition
function p(Y l|Xl). Due to the memoryless property, the
transition probability function is independent ofl, so that it
can be written asp(Y |X). In the rest of the paper, we set
X = Fq, with Fq a suitable field of sizeq, so that, by definition
of erasure channel, it holdsYi = X ∪ {E} for all i ∈ N .

A channel code(2nR1 , . . . , 2nRN , n) for the broadcast chan-
nel with feedback consists of the following components:

• message setsWi of size 2nRi for each useri ∈ N .
DenoteW = (W1, . . . ,WN ) ∈ W1 × . . .×WN .

• an encoder that at slotl transmits symbolXl based on the
value ofW and all previously gathered feedbackY

l−1 △

=
(Y 1, . . . ,Y l−1). X1 is a function ofW only.

• N decoders, one for each useri ∈ N , represented by the
functionsgi : Yn

i → Wi.

A decoding error occurs with probabilityPe =

Pr (∪i∈N {gi(Y n
i ) 6= Wi}), where Y n

i

△

= (Yi,1, . . . , Yi,n).
A rate R = (R1, . . . , RN ) is achievable if there exists a
sequence of channel codes(2nR1 , . . . , 2nRN , n) such that
Pe → 0 as n → ∞. Finally, the capacity region of this
channel is defined as the closure of the set of achievable
rates.

The following definition, introduced in [2], will be useful
in deriving the outer bound for the capacity of the broadcast
erasure channel.

Definition 1: A broadcast channel(X , (Yi)i∈N , p(Y |X))
with receiver setN is physically degraded if there exists a
permutationπ on N such that the sequenceX → Yπ(1) →
. . . → Yπ(N) forms a Markov chain.
A generalization toN users of the 2-user proof in [15]
provides the following remarkable result.

Lemma 1:Feedback does not increase the capacity region
of a physically degraded broadcast channel.



We now have all necessary tools to compute the actual capacity
outer bound.

III. C APACITY OUTER BOUND

The derivation of the capacity outer bound is based on a
method similar to the approaches in [16]–[18]. We initially
state a general result on the capacity of broadcast erasure
channelswithout feedback[19].

Lemma 2:The capacity region (measured in information
bits per transmitted symbol) of a broadcast erasure channel
with receiver setN and no feedback is

Cnf =

{

R ≥ 0 :
∑

i∈N

Ri

1− εi
≤ L

}

, (3)

which implies that any achievable rate is achieved through
simple timesharing between the users.

We denote withC the channel under consideration and, for
an arbitrary permutationπ on N , introduce a new, hypotheti-
cal, broadcast channel̂Cπ with the same input/output alphabets
asC and an erasure indicator function of

Ẑπ(i),l =

i
∏

j=1

Zπ(j),l. (4)

In other words, a userπ(i) in Ĉπ erases a symbol if and only if
all usersπ(j), with j ≤ i, erase the symbol in channelC. This
occurs with probabilitŷεπ(i)

△

= ε∪i
j=1

{π(j)}. The following two
results are proved in [13].

Lemma 3:ChannelĈπ is physically degraded.
Lemma 4:Denote with Cf , Ĉπ,f the feedback capacity

regions of channelsC, Ĉπ , respectively. It holdsCf ⊆ Ĉπ,f .
Notice that Lemma 4 already provides an outer bound to

Cf . In order to derive this bound, we note that the previous
results imply that the feedback capacity region of the phys-
ically degraded channel̂Cπ is identical, due to Lemma 1,
to the capacity region of̂Cπ without feedback. The latter is
described, in general form, in Lemma 2 whence we deduce
the following result.

Lemma 5:The feedback capacity region of̂Cπ is given by

Ĉπ,f =

{

R ≥ 0 :
∑

i∈N

Rπ(i)

1− ε̂π(i)
≤ L

}

. (5)

The above analysis was based on a particular permutation
π. Considering allN ! permutations onN provides a tighter
general outer bound.

Theorem 1:The following set inclusion is true

Cf ⊆ Cout
△

= ∩π∈P Ĉπ,f , (6)

whereP is the set of all possible permutations onN .

IV. CODING ALGORITHM

In this section, we present a coding algorithm named
CODE1, show its correctness, and analyze its performance for
symmetric channels, i.e. channels which satisfy the condition
εI = εJ whenever|I| = |J |, for anyI,J ⊆ N . To indicate

this special setting, we introduce the notationǫ|I|
△

= εI
(i.e. the subscript ofǫ indicates the cardinality of the erasure
set). In the following, we assume that each user knows the
size |Ki| of all streams and instant feedback is available to all
users. The first assumption can be easily satisfied in practice
while the second one will be removed in a later section.

Before the algorithm’s description, a brief discussion of the
underlying rationale will be useful. Since each useri must
decode exactly|Ki| packets, one way of achieving this is by
sending linear combinations, over the fieldFq, of appropriate
packets so that useri eventually receives|Ki| linearly indepen-
dent combinations of the packets inKi. Specifically, all stream
packets are viewed as elements ofFq, while each transmitted
symbol (or packet)s has the form

s =
∑

p∈∪i∈NKi

as(p)p, (7)

whereas(p) are suitable coefficients inFq. If the symbols
can also be written as

s =
∑

p∈Ki

bs(p)p+ cs, (8)

wherebs
△

= (bs(p), p ∈ Ki), cs are known to useri, thens is
considered to be a “token” fori. Additionally, if s is received
by i and thebs coefficients ofs, along with thebs′ coefficients
of all previously received (byi) tokenss′, form a linearly
independent set of vectors overFq, thens is considered to be
an “innovative token” fori. In words, an innovative token for
i is any packets that allowsi to effectively construct a new
equation (with the packets inKi as unknowns, sincebs, cs
are known), that is linearly independent w.r.t. all previously
constructed equations byi. Hence, each useri must receive
|Ki| innovative tokens in order to decode its packets. Note
that it is quite possible, and actually very desirable, for the
same packet to be a token (better yet, an innovative token) for
multiple users.

In order to avoid inefficiency and, hopefully, achieve the
outer bound of Section III, it is crucial that, under certain
circumstances, a symbol (i.e. a linear combination of packets)
that is erased by some users, but is received by at least
one other user, is stored in an appropriate queue so that it
can be combined in the future with other erased symbols to
provide tokens for multiple users (and thus compensate for the
loss). The crux of the algorithm is in the careful bookkeeping
required to handle these cases.

A. Description of algorithmCODE1

The transmitter maintains a virtual network of queuesQS ,
indexed by the non-empty subsetsS of N (see Fig. 1 for an
illustration for 4 users). The queues are initialized with the
stream packets as follows

QS =

{

Ki if S = {i},
∅ otherwise.



Additionally, with each queueQS , indicesT i
S are maintained

for all i ∈ S and are initialized as

T i
S =

{

|Ki| if S = {i},
0 otherwise.

It will become apparent from the algorithm’s description
that index T i

S represents the number of innovative tokens
(i.e. packets of the form in (8)) that useri must receive
successfully fromQS in order to decode its packets1 (due
to the performed initialization, this statement is trivially true
for all S with |S| = 1). These indices are dynamically
updated during the algorithm’s execution based on the received
feedback, as will be explained soon. Finally, each receiver
i ∈ N maintains its own set of queuesRi

S , for all non-empty
S ⊆ N with i ∈ S, where it stores the innovative tokens it
receives fromQS .2 We assume for now that all users know
which queue the packet they receive comes from. All queues
Ri

S are initially empty.
Denote withQn the set of all queuesQS with |S| = n.

The algorithm operates inN phases so that in phasen, with
1 ≤ n ≤ N , only transmissions of linear combinations of
packets in one of the queues inQn occur. Specifically, at
phasen, the transmitter orders the setQn according to a
predetermined rule, known to all users (say, according to
lexicographic order, which corresponds to the top-to-bottom
ordering shown in Fig. 1). The transmitter then examines the
first (according to this order) queueQS and transmits a symbol
(or packet)s that is a linear combination of all packets in
QS , i.e. s =

∑

p∈QS
as(p)p. We slightly abuse parlance and

say that “s is transmitted fromQS”, although it is clear that
s is not actually stored inQS . The coefficientsas(p) ∈ Fq

can be produced either via a pseudo-random number generator
or through structured codes. The exact generation method for
as(p) is unimportant as long as the following requirements are
met:

• the generation procedure is known to all users, so that
they can always reproduce the values ofas(p) even whey
they don’t receive the packets. This implies that the
receivers must also know the size of all queuesQS ,
S ⊆ N , at all times.

• the set of coefficient vectors(as(p) : p ∈ QS), for all
packets (i.e. linear combinations)s transmitted fromQS ,
is a linearly independent set of vectors overFq.

If the coefficientsas(p) are randomly generated, the second
requirement need only be satisfied with probability arbitrarily
close to 1 for sufficiently large field sizeq.

1it will be seen that the transmitted combination of packets from QS can
never become a token for any useri ∈ N − S, so that the transmitter does
not need to maintain indices for them.

2it will be seen in a later Section that, if instant feedback isnot available
to all users, the feedback information is sent to the users after all information
packets have been sent. In this case, any information packets received by user
i are initially placed in a single queue. Once the complete feedback is known,
the packets of this queue are moved to the appropriate queuesRi

S
so that

the decoding procedure (i.e. the construction of the|Ki| linearly independent
equations) can begin.
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Fig. 1. Transmitter virtual queues required for 4 users and some possible
index transitions.

Depending on the received feedback for the packets trans-
mitted from queueQS , the following actions, collectively re-
ferred to asACTFB1, are taken (all 4 cases must be examined)

1) if no user inN receivess, it is retransmitted.
2) for each useri ∈ S that receivess and satisfiesT i

S > 0,
s is added to queueRi

S andT i
S is decreased by 1.

3) if s has been erased by at least one useri ∈ S and has
been received byexactly the users in some setG, with
∅ 6= G ⊆ N − S, the following 2 steps are performed

• packets is added to queueQS∪G (no packets are
removed fromQS).

• for each useri ∈ S that eraseds and satisfiesT i
S >

0, T i
S is reduced by 1 andT i

S∪G is increased by 1.

4) if the setG of users that receives is a subset ofS such
that T i

G = 0 for all i ∈ G, s is retransmitted.

Fig. 1 presents the allowable index transitions from queues
Q{1}, Q{1,3} that occur in step 3 ofACTFB1 (the other
transitions are not shown to avoid graphical clutter; dashed
lines correspond to step 2 ofACTFB1). Transmission of linear
combinations of packets fromQS continues for as long as
there exists at least onei ∈ S with T i

S > 0. When it holds
T i
S = 0 for all i ∈ S, the transmitter moves to the next queue

QS′ in the ordering ofQn and repeats the above procedure
until it has visited all queues inQn. When this occurs, phase
n is complete and the algorithm moves to phasen+1. CODE1
terminates at the end of phaseN .

B. Properties and correctness ofCODE1

The second statement in the following Lemma, which
is proved rigorously in [13] although it can be intuitively
ascertained through induction on|S|, is the crucial property
of CODE1 and follows from its construction.

Lemma 6:Any packets that is stored in queueQS with
|S| ≥ 2 is a linear combination of all packets in queueQIs

, for



some non-emptyIs ⊂ S, that has been received byexactlyall
users inS−Is. Hence, any packet in queueQS is a token for
all i ∈ S (and only thesei ∈ S), and any linear combination
of all packets inQS is an innovative token for alli ∈ S with
T i
S > 0.
The above Lemma gives a very intuitive explanation to

the algorithm’s operation. Specifically, step 2 ofCODE1 is
equivalent to saying that whenever useri receives a useful
token (meaning thatT i

S > 0 so that there remain innovative
tokens to receive) fromQS , this (innovative) token should be
added toRi

S . If this is not the case and there exist users,
comprising setG ⊆ N − S, who receive this packet (step 3),
then the packet has become a token for users inS ∪ G and
should be placed in queueQS∪G . This allows the token to
be simultaneously received by multiple users in the future and
thus compensate for the current loss. Additionally, since useri
can now recover this token more efficiently fromQS∪G instead
of QS , the indicesT i

S , T i
S∪G should be modified accordingly

to account for the token transition. Step 4 merely states that
the packet is retransmitted when it is only received by users
who have already recovered all tokens intended for them.

Finally, since for any slott that someT i
S is reduced by 1,

either some otherT i
S∪G is increased by 1 or (exclusive or)

some packet is added to queueRi
S in the same slot, it follows

that the following quantity is constant during the execution of
CODE1.

∑

S:i∈S

|Ri
S(t)|+

∑

S:i∈S

T i
S(t) = const = |Ki|, ∀ i ∈ N , (9)

where the last equality follows from the initialization of
CODE1. Since the algorithm terminates when it holdsT i

S = 0
for all non-emptyS ⊆ N and alli ∈ S, we conclude that at the
end of the terminating slottf it holds

∑

S:i∈S |R
i
S(tf )| = |Ki|

for all i ∈ N . Hence, each user has recovered|Ki| tokens
which, by choosing a sufficiently large field sizeq (which
also implies a sufficiently largeL), can be made linearly
independent with probability arbitrarily close to 1. Thus,all
users can decode their packets with a vanishing probabilityof
error andCODE1 operates correctly. Notice that this result
holds for arbitrary channels, so that, in principle,CODE1
is universally applicable. In addition, no prior knowledgeof
channel parameters is required for its execution.

C. Performance ofCODE1 for symmetric channels

The complete analysis of the performance ofCODE1 is quite
lengthy with full details being given in [13]. We present here
the starting point of the analysis along with the main results.
We assume without loss of generality that|K1| ≥ . . . ≥ |KN |
and|KN | is sufficiently large to invoke the strong law of large
numbers. We denote the eventsES

△

= {Zi = 1, ∀ i ∈ S} and
RG

△

= {Zi = 0, ∀ i ∈ G}, which imply (c stands for set
complement and⊎ for disjoint union)

Rc
G =

⊎

H6=∅:H⊆G

(EH ∩RG−H) . (10)

For completeness, we defineE∅ = R∅ = Ω (the sample
space). Combining the identityES = (ES ∩RG)⊎

(

ES ∩Rc
G

)

with (10) yields

Pr(ES) = Pr(ES ∩RG) +
∑

H6=∅:H⊆G

Pr(ES∪H ∩RG−H).

(11)
Noting that, for symmetric channels, all relevant probabil-

ities depend only on the cardinality of the corresponding set,
and introducing the notationpe,ρ

△

= Pr(ES ∩RG) for any sets
S,G with |S| = e, |G| = ρ, allows us to rewrite (11) as

pe,ρ = ǫe −

ρ
∑

l=1

(

ρ

l

)

pe+l,ρ−l, (12)

where we used the fact that there are
(

ρ
l

)

distinct setsH ⊆ G
with cardinality l. Denote withkiS the value ofT i

S at the
beginning of phasen = |S| (i.e. before any transmissions
from queues inQn take place). Due to symmetry,kiS depends
only on |S|. Hence, denotingkil = kiS for anyS with |S| = l
and i ∈ S, the construction ofCODE1 implies the following
recursive relation (which can be interpreted as conservation of
innovative tokens) forl ≥ 2

kil =

l−1
∑

m=1

(

l − 1

m− 1

)

kim
1− ǫN−m+1

pN−l+1,l−m, ∀ i ∈ N ,

(13)
along with the initial conditionki1 = |Ki|. The number of slots
T ∗
n required to complete phasen, i.e. recover all innovative

tokens from the queues ofQn, is given by

T ∗
n =

∑

S:|S|=n

1

1− ǫN−n+1

(

max
i∈S

kiS

)

. (14)

After some tedious algebra, which involves the explicit
solution of the recursion in (13), the number of slots required
for the entire execution ofCODE1 is computed as

T ∗∗ =

N
∑

n=1

T ∗
n =

N
∑

n=1

|Kn|

1− ǫn
. (15)

Hence, each useri achieves a rateRi = |Ki|/T ∗∗, which
combined with Theorem 1 yields the following result [13].

Theorem 2:For symmetric channels, the capacity region
outer boundCout defined in Theorem 1 is given by (units
are information bits per transmitted symbol)

Cout =

{

R ≥ 0 :
∑

i∈N

Rπ∗(i)

1− ǫi
≤ L

}

, (16)

whereπ∗(i) is the order permutation, i.e.Rπ∗(i) ≥ Rπ∗(j) for
i < j. Furthermore,Cout is achieved byCODE1.

D. Taking the overhead into account

The previous analysis rests on the assumption that complete
feedback is available to all users. To remove this assumption
(so that each user need only know its own feedback), the
feedback information must be conveyed to the users by the



transmitter at the expense of channel capacity (i.e. the incorpo-
ration of overhead) and increased complexity at the receivers.
The following procedure is proposed, under the assumption
that the users can execute the coefficient-generator algorithm
and reproduce the coefficient values if needed.

A single overhead bith is reserved in each packet of length
L. This bit is 0, unless step 4 ofCODE1 occurred in the
transmission of the (immediately) previous packet, in which
case it is set to 1. Essentially, bith is the indicator bit of
step 4 for the previously transmitted packet. The transmitter
now appliesCODE1 normally (taking feedback into account
according toACTFB1), and keeps a feedback log as follows:

• if the transmitted packet is erased by all users, nothing
is written in the log.

• for each transmitted packet withh = 0 that is received
by at least one user, the transmitter writes in the log an
N -bit group, where group biti is set to 1 or 0, depending
on whether useri received the packet or not, respectively.

• for each transmitted packet withh = 1 that is received
by at least one user, the transmitter creates theN -bit
group as in the caseh = 0, but writes nothing in the
log until it eventually transmits a packet withh = 0.
When this occurs, theN -bit group corresponding to the
last transmitted packet withh = 1 is written in the log
(after which theN -bit group corresponding to the current
packet withh = 0 is also written in the log, due to the
previous rule). This scheme is necessary in order to avoid
arbitrarily large log sizes.

The receivers store all their received packets in a single queue,
since they can do nothing more at this point until they know
the complete feedback.

WhenCODE1 terminates, the transmitter transmits the entire
feedback log until all users have received it. Once the users
have the feedback log, they can essentially “replay” the
execution ofCODE1. Specifically, since the order in which
the queuesQS ∈ Qn are visited is known, and the user
can deduce, from the feedback log, the values ofT i

S for
all i ∈ S, S ⊆ N (so that the phase boundaries are
distinguishable), the users always know which queue the
received packet comes from. This allows them, with some
extra bookkeeping [13], to createRi

S and recover all available
innovative tokens. It is easy to see that the number of packets
required to transmit the feedback log to all users is at most
(2N/L)·

∑N

n=1

∑

S:|S|=n

(

maxi∈S kiS
)

. This number is upper

bounded by(2N2/L)
∑N

i=1|Ki|, and since these packets must
be received by all users, the number of additional slots required
for the log transmission is 2N2

L(1−ǫ1)

∑N

i=1|Ki|. The analogue of
Theorem 2 is the following.

Theorem 3:Under the overhead scheme described above,
CODE1 achieves the following rate region for symmetric
channels

C =

{

R ≥ 0 :
∑

i∈N

Rπ∗(i)

(

1

1− ǫi
+

2N2

L(1− ǫ1)

)

≤ L− 1

}

,

(17)

where π∗(i) is the order permutation.C approximatesCout
very closely asL ≫ 2N2/(1− ǫ1).

V. THE 3-RECEIVER CASE FOR ARBITRARY CHANNELS

Although CODE1 achieves the capacity outer bound of
Theorem 1 for symmetric channels, for sufficiently largeL,
this is not always true for arbitrary channels, i.e. there exist
ratesR ∈ Cout that arenot achievable byCODE1. This is
easily verified in the following scenario: consider the case
of equal rates, i.e.Ri = R for all i ∈ {1, 2, 3} (which
implies that |Ki| = K for all i), and assume that it holds
ε1 = ε2 = ε3 and ε{1,2} > ε{1,3} > ε{2,3}. Considering all
possible permutations on{1, 2, 3} and applying Theorem 1
yields the following bound

Ceq,out =
{

R1 : R

(

1

1− ε1
+

1

1− ε{1,2}
+

1

1− ε{1,2,3}

)

≤ L

}

.

(18)

The number of slots̃T ∗∗ required for the application ofCODE1
in this setting is computed in [13] as

T̃ ∗∗ = K ·max

[

1

1− ε1
+

1

1− ε{1,2}
+

1

1− ε{1,2,3}
,

1− ε{2,3}

(1− ε2)(1− ε{1,3})
+

1

1− ε{1,2}
+

1

1− ε{1,2,3}
, (·)

]

.

(19)

The third term appearing in (19) is written as(·) since it does
not influence the fact that the second term is strictly largerthan
the first (since it holdsε1 = ε2 and1− ε{2,3} > 1− ε{1,3}).
This implies that the rate (in information bits per transmitted
symbol)R = KL/T̃ ∗∗ achieved byCODE1 is strictly smaller
than the bound in (18), which demonstrates the suboptimality
of CODE1.

A more intuitive explanation for the suboptimal per-
formance of CODE1 under asymmetric channels for the
3-receiver case can also be given by the following ar-
gument (note that, forN = 3, the network corre-
sponding to Fig. 1 contains only queues for setsS ∈
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}). Assume that
in phase 2 ofCODE1, the order in which the queues are visited
is {1, 2}, {1, 3}, {2, 3}. When the transmitter sends linear
combinations of packets fromQ{1,2}, it is quite possible that
the indicesT 1

{1,2}, T 2
{1,2} do not become zero simultaneously.

Say it happens thatT 1
{1,2} = 0 and T 2

{1,2} > 0. By con-
struction,CODE1 will continue to transmit linear combinations
fromQ{1,2} until T 2

{1,2} also becomes0. However, this creates
a source of inefficiency, as implied by step 4.

Specifically, if a transmitted packets is only received by
1, step 4 will forces to be retransmitted until either 2 or 3
receive it, in a sense “wasting” this slot. We claim that there
exists potential for improvement at this point, by combining
the packets inQ{1,2} with the packets inQ{1,2,3}. A linear
combination of packets in these queues creates a token for



both 1 and 2. Hence, even if the packet is received only
by 1, the slot is not wasted, since 1 recovers an innovative
token (provided thatT 1

{1,2,3} > 0). Unfortunately, the previous
reasoning implies that the rule of always combining packets
from a single queue must be discarded if the objective is to
achieve capacity. ForN > 3, it is not even clear what structure
a capacity achieving algorithm should have. However, for
N = 3, we present the following algorithm, namedCODE2,
which achieves capacity for arbitrary channels.
CODE2 operates in phases as follows. Phase 1 ofCODE2

is identical to phase 1 ofCODE1, with the transmitter acting
according to the rules inACTFB1 (note that step 4 cannot
occur in this phase ofCODE2). In phase 2 ofCODE2, the
transmitter orders the queuesQS in Q2 according to an
arbitrary rule and transmits linear combinations fromQS until
at least oneuseri ∈ S recovers all innovative tokens fromQS

(i.e. T i
S = 0). When this occurs, the transmitter moves to the

next queue inQ2. Again, the rules inACTFB1 are applied.
When all queues inQ2 have been visited, eachQS ∈ Q2

has at most one surviving index (meaning somei ∈ S with
T i
S > 0). For convenience, we denote this epoch withts and

define the survival numbersu(i) of index i ∈ {1, 2, 3} as
su(i)

△

= |{S : |S| = 2, T i
S(ts) > 0}|, where T i

S(ts) is
the value of the index at timets. In words, su(i) is equal
to the number of queues inQ2 which contain unrecovered
innovative tokens for useri at time ts. By definition, it holds
0 ≤ su(i) ≤ 2 for all i ∈ {1, 2, 3}. The transmitter now
distinguishes cases as follows

• if it holds su(i) = 0 for all i ∈ {1, 2, 3}, CODE2 reverts
to CODE1, starting at phase 3.

• if it holds su(i) = 1 for all i ∈ {1, 2, 3}, CODE2 reverts
to CODE1, starting at phase 2. It can be shown [13]
that, for sufficiently large|Ki|3i=1, the probability of this
event is arbitrarily small, so that the capacity region is
unaffected by any actions taken henceforth.

• otherwise, there exists at least one useri∗ such that
su(i∗) = 0. In fact, simple enumeration reveals that all
possible configurations forsu(i) fall in exactly one of
the following 4 categories:

1) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such
that su(i∗) = 0, su(j∗) = 1, su(k∗) = 2.

2) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such
that su(i∗) = 0, su(j∗) = su(k∗) = 1.

3) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such
that su(i∗) = su(j∗) = 0 andsu(k∗) = 2.

4) there exist distinct usersi∗, j∗, k∗ ∈ {1, 2, 3} such
that su(i∗) = su(j∗) = 0 andsu(k∗) = 1.

To provide some concrete examples, Fig. 2 contains
4 possible configurations (each belonging, from left to
right, to one of the above categories), where circles are
used to denote surviving indices. The values(i∗, j∗, k∗)
for each configuration are(3, 2, 1), (2, 1, 3), (3, 2, 1),
(3, 2, 1), respectively. Clearly, each category contains
multiple configurations (obtainable via permutations on
{1, 2, 3}) that satisfy the above conditions. The config-

21 21 21

1 3

2 332

1 3

32

1 3

21

2 3

1 3

Fig. 2. Possible states of innovative token indices for the queues inQ2 at
epochts.

urations that appear in Fig. 2 correspond to a single
permutation; the other permutations are handled similarly,
as described next.

The transmitter now constructs the setQsu = {Q{i∗,j} :

su(i∗) = 0, T j

{i∗,j} > 0} consisting of all queues inQ2 that
contain a surviving indexj and an indexi∗ with su(i∗) = 0.
Referring to Fig. 2, the constructed setQsu for each category
is, respectively,{Q{2,3}, Q{1,3}}, {Q{1,2}}, {Q{1,2}, Q{1,3}},
{Q{1,2}}. Relative order withinQsu is unimportant. A sub-
phase, called 2.1, is now initiated, in which the following
actions are performed:

• the transmitter visits each queueQ{i∗,j} in Qsu and
transmits a packets which is a linear combination of all
packets in queuesQ{i∗,j} and Q{1,2,3}. Depending on
the received feedback, the following actions, collectively
referred to asACTFB2, are taken

1) if j receivess, T j

{i∗,j} is decreased by 1.

2) if i∗ receivess and it holds T i∗

{1,2,3} > 0, T i∗

{1,2,3}
is decreased by 1.

3) if j dropss andk ∈ {1, 2, 3}−{i∗, j} receives it,s
is added toQ{1,2,3}, T j

{i∗,j} is decreased by 1 and

T j

{1,2,3} is increased by 1.
4) if s is dropped by all users or is received only by

i∗ when it holdsT i∗

{1,2,3} = 0, s is retransmitted.

Notice that ACTFB2 is similar to ACTFB1, with the
addition of step 2). The above procedure is repeated until
it holds T j

{i∗,j} = 0, at which point the next queue in
Qsu is visited. The above procedure is repeated until all
queues inQsu have been visited.

• once all queues inQsu have been processed, the trans-
mitter computes the new values ofsu(i) for i ∈ {1, 2, 3}
and constructsQsu from scratch. IfQsu = ∅, CODE2
reverts toCODE1 starting at phase 3, otherwise it repeats
the above procedure verbatim for the newQsu. It is easy
to verify that at most 2 iterations of this procedure will
be performed until it holdsQsu = ∅.

As a final comment, step 4 ofACTFB2 is similar to step 4
of ACTFB1 so one could argue thatCODE2 still performs
inefficiently. However, by construction ofQsu, it is easy to
verify that if, during the combination ofQ{i∗,j} ∈ Qsu with
Q{1,2,3}, T i∗

{1,2,3} becomes0 beforeT j

{i∗,j} does, theni∗ has



recovered all innovative tokens (i.e. it holdsT i∗

S = 0 for all
S ⊆ N ). Hence,i∗ cannot gain any more innovative tokens
by combiningQ{i∗,j} with Q{1,2,3} and no efficiency is lost.

To provide a concrete justification for the last statement,
consider the application of subphase 2.1 to the leftmost
configuration in Fig. 2. It holdsQsu = {Q{1,3}, Q{2,3}} and
the transmitter starts combiningQ{1,3} with Q{1,2,3} until
T 2
{2,3} becomes0. If it happens thatT 3

{1,2,3} becomes0 before
T 2
{2,3}, then 3 has indeed recovered all innovative tokens so

that, even if step 4 occurs, no efficiency gain is possible.
The same conclusion is reached by examining the 3 other
categories shown in Fig. 2. Hence, at the end of subphase
2.1, it holdsT i

S = 0 for all i ∈ S with |S| = 2 andCODE2
reverts toCODE1 starting at phase 3. Reference [13] contains
the proof of the following important result, which ensures the
correctness ofCODE2 (i.e. guarantees that each useri will
receive|Ki| innovative packets)

Lemma 7:Assume that, at the beginning of subphase 2.1,
it holds T i

{i,j} = 0, T j

{i,j} > 0. During subphase 2.1, any
transmitted packets that is a linear combination of all packets
in queuesQ{i,j}, Q{1,2,3} is also an innovative token forj, i,
as long as it holdsT j

{i,j} > 0, T i
{1,2,3} > 0, respectively.

The analysis of the performance ofCODE2 is relatively
straightforward (essentially being a repetition of the analysis
of CODE1, with a careful calculation of the number of indices
moved during the combination of the queues inQ2 with
Q{1,2,3}) but lengthy so we only present the final result [13].

Theorem 4:CODE2 achieves the capacity outer bound of
Ĉout, assuming complete feedback is known to all users.
The assumption of complete feedback known to all users can
be removed by overhead mechanisms essentially identical to
the one described in Section IV-D, with a similar reduction
in the achievable region. This issue will not be pursued any
further.

VI. CONCLUSIONS

This paper presented 2 coding algorithms,CODE2 and
CODE1, that achieve the feedback capacity ofN -user broad-
cast erasure channels with multiple unicast streams for the
following cases 1) arbitrary channels, forN ≤ 3, and 2)
symmetric channels and arbitraryN , respectively. The main
characteristic of the algorithms is the introduction of virtual
queues to store packets, depending on received feedback, and
the appropriate mixing of the packets to allow for simultaneous
reception of innovative packets by multiple users, while none
of them requires knowledge of channel statistics. Since only
an outer bound to the capacity region is known forN ≥ 4
and arbitrary channels, future research may involve the search
for capacity achieving algorithms forN ≥ 4. It is expected
that such algorithms cannot be constructed through minor
modifications ofCODE1 and may possibly require complete
knowledge of channel statistics. If this is the case, adaptive al-
gorithms that essentially “learn” the relevant statisticsmay be
pursued. Suboptimal algorithms with guaranteed performance
bounds in the spirit of [12] may also be of interest.
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