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DEGENERATE SELF-SIMILAR MEASURES, SPECTRAL ASYMPTOTICS
AND SMALL DEVIATIONS OF GAUSSIAN PROCESSES

A.I. Nazarov1, I.A. Sheipak2

1 Introduction

The problem of small ball behavior for the norms of Gaussian processes is intensively studied
in recent years. The simplest and most explored case is that of L2-norm. Let us consider a
Gaussian process X(t), 0 ≤ t ≤ 1, with zero mean and the covariance function GX(t, s) =
EX(t)X(s), s, t ∈ [0, 1]. Let µ be a measure on [0, 1]. Set

‖X‖µ = ‖X‖L2(0,1;µ) = (

1∫

0

X2(t) µ(dt))1/2

(the index µ will be omitted if µ is the Lebesgue measure). The problem is to evaluate the
asymptotics of P{‖X‖µ ≤ ε} as ε → 0. Note that the case of absolutely continuous measure
µ(dt) = ψ(t)dt, ψ ∈ L1(0, 1), can be easily reduced to the case of the Lebesgue measure ψ ≡ 1
if we replace X by the Gaussian process X

√
ψ. In general case we can assume µ([0, 1]) = 1 by

rescaling. The advance of this topic starting from well-known work [1], is reviewed in [2] and
[3]. References on later works can be found on the site [4].

By the well-known Karhunen–Loéve expansion we have the distributional equality

‖X‖2µ
d
=

∞∑

j=1

λjξ
2
j , (1.1)

where ξj, j ∈ N, are independent standard normal r.v.’s and λj > 0, j ∈ N,
∑
n

λn <∞, are the

eigenvalues of the integral equation

λy(t) =

1∫

0

GX(s, t)y(s)µ(ds), 0 ≤ t ≤ 1. (1.2)

Thus, we are led to the equivalent problem of studying the asymptotic behavior as ε → 0 of

P

{∑∞

j=1 λjξ
2
j ≤ ε2

}
. The answer heavily depends on available information on the eigenvalues

sequence λj . Since the explicit formulas for these eigenvalues are known only for a limited
number of processes (see [5], [6], [3]), the study of spectral asymptotics for integral operator
(1.2) is of great importance.

If GX is the Green function of a boundary value problem (BVP) for ordinary differential
operator then the sharp spectral asymptotics can be obtained by classical method traced back
to Birkhoff, see [7]. This approach developed in [8], [9], allowed to calculate the small ball
asymptotics up to a constant for Gaussian processes of the mentioned class. Moreover, if
eigenfunctions of (1.2) can be expressed via elementary or special functions then the sharp
constants can be obtained by complex variable methods, as it was done in [10], see also [11]–
[13], [9].

In a more general situation, we cannot expect to obtain the sharp asymptotics. Thus, we
have to consider only logarithmic asymptotics (i.e. the asymptotics of lnP{‖X‖µ ≤ ε} as
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ε→ 0). It was shown in [14] that for this goal it suffices, under some assumption, to know the
main term of eigenvalues asymptotics (this result was considerably generalized in recent work
[15]). This enables to apply quite general result established in [16]. In this way the explicit
logarithmic asymptotics was obtained for a wide class of processes including fractional Brownian
motion, fractional Ornstein–Uhlenbeck process, the integrated versions of these processes as well
as multiparameter generalization (for example, fractional Levi field). Thereby the absolutely
continuous measures with arbitrary summable nonnegative densities were considered. In [17]
the spectral asymptotics for operators with tensor product structure were obtained. This
enables to develop logarithmic asymptotics of L2-small ball deviations for corresponding class
of Gaussian fields.

The next class of problems deals with µ singular with respect to Lebesgue measure (it was
shown in [16] that if a measure contains absolutely continuous component then its singular
part does not influence on the main term of asymptotics). All the results here concerned self-
similar measures. Namely, it was shown in [18], [19] that for GX being the Green function
for the simplest operator Lu ≡ −u′′, in so-called non-arithmetic case the eigenvalues of (1.2)
have the pure power asymptotics while in arithmetic case the asymptotics of λj is more
complicated; besides power term it can contain a periodic function of ln(j). This function is
conjectured to be non-constant in all non-trivial cases, but this problem is still open. Only in
simplest case of “Cantor ladder” this conjecture was proved in [20], [21].

The results of [18], [19] were generalized later in two directions: in [20]–[22] the more
general (non-sign-definite) weight functions were considered while in [23] the Green functions of
ordinary differential operators of arbitrary order were examined. The logarithmic asymptotics
was obtained in [23] for corresponding processes as well.

Finally, in the recent paper [24] the discrete degenerate self-similar weights were explored.
It turns out that if GX is the Green function for the operator Lu ≡ −u′′ then the eigenvalues of
(1.2) in this case have exponential asymptotics. Note that method applied in preceding papers
and based on renewal equation fails in the case of degenerate self-similarity. For this reason
the techniques of eigenvalues estimation was improved in [24].

In our paper we extend the result of [24] to the case where GX is the Green function of
a boundary problem for ordinary differential operator of arbitrary even order with the main
term (−1)ℓy(2ℓ). For simplicity we offer up the generality of weights and consider only discrete
measure µ with degenerate self-similarity. As a corollary, using the result of [15, Theorem 2]
we establish logarithmic small ball asymptotics in L2-norm for corresponding class of Gaussian
process. Let us recall that this class is rather wide, it contains in particular s-times integrated
Brownian motion and s-times integrated Ornstein–Uhlenbeck process.

The paper is organized as follows. Section 2 contains auxiliary information on degenerate
self-similar measures. In Section 3 the result of [24] is extended to the differential operators of
high order. Then, in Section 4, we derive the logarithmic small ball asymptotics for processes
of the class considered and give some examples. In Appendix (Section 5) a variant of the Weyl
theorem used in the proof is given.

Let us recall some notation. A function G(s, t) is called the Green function of BVP for a
differential operator L if it satisfies the equation LG = δ(s − t) in the sense of distributions
and satisfies the boundary conditions. The existence of the Green function is equivalent to the
invertibility of operator L with given boundary conditions, and G(s, t) is a kernel of the integral
operator L−1.

W ℓ
2 (0, 1) is the Hilbert space of functions y having continuous derivatives up to (ℓ − 1)-th

order with y(ℓ−1) absolutely continuous on [0, 1] and y(ℓ) ∈ L2(0, 1).
o

W ℓ
2(0, 1) is the subspace

of functions y ∈ W ℓ
2 (0, 1) satisfying zero boundary conditions y(0) = y(1) = · · · = y(ℓ−1)(0) =



y(ℓ−1)(1) = 0.
The principles of self-adjoint operators and quadratic forms theory used in the paper can

be found in the monograph [25].
Various constants are denoted by c. We point their dependence on parameters by c(. . .) if

it is necessary.

2 Degenerate self-similar measures

Let us recall that general concept of self-similar measure was introduced in [26]. The con-
struction of self-similar measure on interval described in [19], see also [23], enables to construct
measures with positive Hausdorff dimension of support. Let us note, that the primitive of such
measure is always a continuous function, which is self-similar in the sense of [20], [22]. On
the other hand, a function f , self-similar in the mentioned sense, need not be continuous (the
criteria of its continuity are established in [27, Sec. 3]). Moreover, under some assumptions on
self-similarity parameters (see below) the derivative of f in the sense of distributions is a dis-
crete measure. This measure is not self-similar in the Hutchinson sense, so we call it degenerate
self-similar.

Let 0 = α1 < α2 < . . . < αn < αn+1 = 1, n ≥ 2, be a partition of the segment [0, 1]. Define
quantities ak > 0, k = 1, . . . , n, by the formula ak = αk+1−αk. Consider also a Boolean vector
(ek) and (for the moment arbitrary) vectors of real numbers (dk) and (βk), k = 1, . . . , n.

Now we define a family of affine transformations

Sk(t) = akt+ αk, ek = 0; Sk(t) = αk+1 − akt, ek = 1.

Thus, Sk moves [0, 1] to [αk, αk+1] (turning it over when ek = 1).

Definition 2.1. The affine operator S given by the formula

S[f ](t) =
n∑

k=1

(
dk · f(S−1

k (t)) + βk
)
· χ]αk ,αk+1[(t), (2.1)

(here χE stands for the indicator of a set E) is called the similarity operator.

Thus, the graph of S(f) on the interval ]αk, αk+1[ is a shifted and shrinked copy of the graph
of f on ]0, 1[.

Proposition 2.1. (see [27, Lemma 2.1] 3) Operator S is contractive in L∞]0, 1[ iff

max
1≤k≤n

|dk| < 1. (2.2)

It follows immediately from Proposition 2.1 that under assumption (2.2) there exists a
unique function f ∈ L∞]0, 1[ satisfying the equation S(f) = f . This function is called self-
similar with parameters (αk), (ek), (dk) and (βk), k = 1, 2, . . . , n.

Let us suppose now that exactly one of quantities dk, k = 1, . . . , n, differs from zero. We
denote by m the corresponding index, 1 ≤ m ≤ n. It is obvious that in this case only mth
element of (ek) is relevant, and condition (2.2) becomes |dm| < 1.

3In [27] only the transformations Sk without overturn the interval were considered, but this fact doesn’t
influence on proof.



Lemma 2.1. Under above conditions the self-similar function f is piecewise constant, has
bounded variation and possesses at most countable number of values. All discontinuity points
are of the first type.

Proof. Let us consider the sequence f0 ≡ 0, fj = S(fj−1). By Proposition 2.1, it converges
uniformly to f .

It is evident, that f1 is a constant on all intervals ]αk, αk+1[, k = 1, . . . , n. Further, since only
one of dks differs from zero, the function f2 is piecewise constant on the interval ]αm, αm+1[=
Sm(]0, 1[) and coincides with f1 out of this interval. Analogously, fj+1 is piecewise constant
on the interval Sj

m(]0, 1[) and coincides with fj out of this interval. Moreover, the following
evident equality is valid:

Var
Sj
m(]0,1[)

fj+1 = dm · Var
Sj−1
m (]0,1[)

fj . (2.3)

Thus, the limit function f is piecewise constant and has finite number of values out of any
interval Sj

m(]0, 1[), j ∈ N. These intervals generate a sequence contracting to a point x̂, which
is singular for f in a sense. However, by (2.3) f is continuous at x̂. The boundedness of Var

]0,1[
f

also follows from (2.3). The proof is complete.

Straightforward calculation shows that

x̂ =
αm+em

1− (−1)emam
. (2.4)

In particular, (2.4) implies that x̂ = 0 iff m = 1 and e1 = 0. Similarly, x̂ = 1 iff m = n and
en = 0.

Now, we exclude from consideration the trivial cases. Namely, we assume that f has jumps
at all points αk, k = 2, . . . , n. Further, we define f at discontinuity points as left-continuous
function and define degenerately self-similar discrete signed measure µ by the formula µ([a, b]) =
f(b+ 0)− f(a), 0 ≤ a ≤ b ≤ 1.

Theorem 2.1. (see also [28]) The signed measure µ is a probability measure iff the following
conditions are valid:

1. d1e1 + β1 = 0, dn(1− en) + βn = 1;

2. 0 < (−1)emdm < 1;

3. βk < βk+1, k = 1, . . . , n− 1;

4. βm−1 < dmβn + βm < βm+1

(for m = 1, only right inequality in item 4 holds; for m = n, only left inequality holds).

Proof. Item 1 is necessary and sufficient to satisfy the equalities f(0) = 0, f(1) = 1, in other
words, µ([0, 1]) = 1. Further, consider the sequence fj introduced in Lemma 2.1. Obviously,
item 3 is necessary for f1 to increase at discontinuity points. Condition 2 is necessary for
nondecreasing of f2

∣∣
Sm(]0,1[)

. Next, if conditions 1-3 hold then condition 4 is necessary for f2 to

increase while crossing points αm and αm+1. Finally, items 2-4 provide the monotonicity of all
functions fj , j ∈ N, and thus, the monotonicity of f .

Remark 2.1. Evidently, the Hausdorff dimension of µ support is equal to zero. Therefore, the
spectral dimension of µ (see [29], [23, Sec. 5]) is also equal to zero. Note that in [24], [28]
the primitive f of µ is called the self-similar function of zero spectral order.



The figure illustrates the graph of function f with self-similar parameters: n = 3; α1 = 0,
α2 = 0.3, α3 = 0.8, α4 = 1; β1 = 0, β2 = 1/3, β3 = 1; m = 2, d2 = 1/3, e2 = 0. Formula (2.4)
gives x̂ = 0.6.
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3 Spectral asymptotics of boundary value problems as-

sociated with degenerate self-similar measures

Let us consider a self-adjoint, positive definite operator L generated by the differential expres-
sion

Ly ≡ (−1)ℓy(2ℓ) +
(
Pℓ−1y

(ℓ−1)
)(ℓ−1)

+ · · ·+ P0y (3.1)

with suitable boundary conditions. Here Pi ∈ L1(0, 1), i = 0, . . . , ℓ− 1.
We are interested in the eigenvalues asymptotic behavior of the BVP

λLy = µy (+ boundary conditions), (3.2)

where µ is a probability measure constructed in Section 2.
If GX is the Green function for operator L then (3.2) is equivalent to (1.2). We denote

λ
(Lµ)
j the eigenvalues of (3.2) enumerated in decreasing order and repeated according to their

multiplicity.
Recall (see, e.g., [25, Sec. 10.2]), that the counting function of eigenvalues of (3.2) can be

expressed in terms of quadratic form QL of the operator L as follows:

NLµ(λ) ≡ #{j : λ(Lµ)
j > λ} = sup dim{H ⊂ D(QL) : λQL(y, y) <

1∫

0

|y(t)|2µ(dt) on H}.

(3.3)
Now we can formulate the main result of this section.



Theorem 3.1. Given degenerate self-similar probability measure µ, we have

NLµ(λ) ∼ (n− 1)
ln( 1

λ
)

ln(q)
, λ→ +0, (3.4)

where q = 1

dm·a2ℓ−1
m

> 1.

Remark 3.1. For the operator Ly = −y′′ with the Dirichlet boundary conditions this theo-
rem was proved in [24]. Moreover, more precise result on spectrum structure of operator Lµ

was obtained in this case. However, this result is not sufficient to receive sharp small ball
asymptotics.

Proof. First, we consider a particular case of operator L, without lower-order terms and with
the Dirichlet boundary conditions:

λLy ≡ λ(−1)ℓy(2ℓ) = µy, y(0) = y(1) = · · · = y(ℓ−1)(0) = y(ℓ−1)(1) = 0. (3.5)

Denote by H the energy space of the operator L:

H =
o

W
ℓ
2(0, 1); [y, y]H = QL(y, y) =

1∫

0

|y(ℓ)|2.

We define two subspaces in H:

H1 := {y ∈ H : y(t) ≡ 0 if t ∈ [αm, αm+1], y(αk) = 0, k = 2, . . . , n};
H2 := {y ∈ H : y(t) ≡ 0 if t 6∈ [αm, αm+1]}.

Let [γ1, γ2] be any subsegment in ]αm, αm+1[ containing supp(µ)∩ ]αm, αm+1[. For instance,
one can take

γ1 = αm + ama1+em(n−1); γ2 = αm+1 − aman−em(n−1).

We also need a subspace Ĥ ⊂ H consisting of the order 2ℓ polynomial splines with n + 3
interpolation points αk, k = 1, . . . , n+ 1, γ1 and γ2, satisfying the following conditions:

1. These splines vanish in [γ1, γ2].
2. They have continuous derivatives up to the (ℓ− 1)-th order at αm, αm+1, γ1, γ2, and up

to the (2ℓ− 2)-th order at other interpolation points.

It is easy to see that dim Ĥ = n− 1 + ∆ where

∆ = 2(ℓ− 1) as m 6= 1, n; ∆ = ℓ− 1 as m = 1 or m = n.

It is also easy to check that H = H1 ⊕ (H2 ∔ Ĥ).

In turn, we decompose space Ĥ into the orthogonal sum of subspaces Ĥ = Ĥ1 ⊕ Ĥ2 where

Ĥ1 = {y ∈ Ĥ : y(αk) = 0, k = 2, . . . , n}.

It is easily seen that
dim Ĥ1 = ∆; dim Ĥ2 = n− 1. (3.6)

The quadratic form
∫ 1

0
|y(t)|2µ(dt) defines on H a compact self-adjoint operator A. Its

eigenvalues certainly coincide with λ
(Lµ)
j .

Denote by B and C the restrictions of A on subspaces H2 and Ĥ2, respectively (obviously,

by construction of µ the restrictions of this operator on H1 and Ĥ1 are trivial). Then, under



decomposition H = H1 ⊕ (H2 ∔ (Ĥ1 ⊕ Ĥ2)), the problem (3.2) can be rewritten in matrices as
follows:

λ




I 0 0 0
0 I P∗

1 P∗
2

0 P1 I 0
0 P2 0 I







u
x
y
z


 =




0 0 0 0
0 B 0 0
0 0 0 0
0 0 0 C







u
x
y
z


 , (3.7)

where u ∈ H1, x ∈ H2, y ∈ Ĥ1, z ∈ Ĥ2, while Pi are orthoprojectors H2 → Ĥi, i = 1, 2.
Formula (3.7) shows that, to obtain asymptotics of NA(λ), we need to consider the problem

(3.2) only in the space H2 ∔ Ĥ2.

Let z ∈ H2. Setting y(t) = z(Sm(t)) ∈ H, by the homogeneity we have

[z, z]H = a−(2ℓ−1)
m [y, y]H,

while the self-similarity of µ gives

[Bz, z]H =

∫ αm+1

αm

|z(t)|2µ(dt) = dm

∫ 1

0

|y(t)|2µ(dt) = [Ay, y]H.

Hence (3.3) implies for λ > 0
NB(λ) = NA(qλ). (3.8)

Lemma 3.1. Let λ ∈ R be such that the operator C − λI is invertible in Ĥ2. Then

NA(λ) ≥ N
B̃
(λ) +NC(λ), (3.9)

where B̃ = B − λ2P∗
2 (C − λI)−1P2.

Proof. Let X = x + y + z, x ∈ H2, y ∈ Ĥ1, z ∈ Ĥ2. From decomposition (3.7), we derive by
straightforward calculation

[AX,X ]H − λ[X,X ]H = [B̃x, x]H − λ[x+ y, x+ y]H + [Cw,w]H − λ[w,w]H,

where w = z − (C − λI)−1P2x. The statement immediately follows from this relation.

Now we note that for any z ∈ Ĥ2,

[Cz, z]H =

∫ 1

0

|z(t)|2µ(dt) =
n∑

k=2

ζk · |z(αk)|2,

where ζk = µ({αk}). Since measure µ is assumed to be nontrivial, ζk > 0 for all k = 2 . . . , n.
This implies rank(C) = n − 1. By (3.6) this gives the invertibility of operator C, that in turn
implies

NC(λ) ≡ n− 1; ‖B − B̃‖ ≤ cλ2

for sufficiently small λ. In view of these formulas the inequality (3.9) provides the following
relation for arbitrary ε > 0 and λ < λ0(ε):

NA(λ) ≥ NB(λ+ cλ2) + n− 1 ≥ NB((1 + ε)λ) + n− 1.

On the another hand, relations (3.7) and (3.6) give an upper estimate:

NA(λ) ≤ NB(λ) + n− 1 + ∆.



Combining these estimates we derive, subject to (3.8),

NA(q(1 + ε)λ) + n− 1 ≤ NA(λ) ≤ NA(qλ) + n− 1 + ∆,

as λ < λ0(ε). Iterating these inequalities we obtain two-sided estimate for NA(λ):

(n− 1)
ln( 1

λ
)

ln(q(1 + ε))
− c(ε) ≤ NA(λ) ≤ (n− 1 + ∆)

ln( 1
λ
)

ln(q)
+ c(ε). (3.10)

Now we note that the primitive of µ is a fixed point not only for the similarity operator
S but also for any its power. If one consider the original problem with replacing S by SM ,
the problem (3.5) doesn’t change but parameters q and n replace by qM and M(n − 1) + 1,
respectively. Therefore, the estimate (3.10) takes the form

M(n− 1)
ln( 1

λ
)

ln(qM(1 + ε))
− c(ε) ≤ NA(λ) ≤ (M(n− 1) + ∆)

ln( 1
λ
)

ln(qM)
+ c(ε),

or

(n− 1)
ln( 1

λ
)

ln(q(1 + ε))
− c(ε) ≤ NA(λ) ≤ (n− 1 +

∆

M
)
ln( 1

λ
)

ln(q)
+ c(ε). (3.11)

By the arbitrariness of ε and M this immediately provides (3.4).

Now we consider a general case. Integrating by parts we check that the quadratic form QL

can be written as follows:

QL(y, y) =

1∫

0

[
∣∣y(ℓ)

∣∣2 +
ℓ−1∑

i=0

Pi

∣∣y(i)
∣∣2
]
dt + Q0(y, y),

o

W ℓ
2 (0, 1) ⊂ D(QL) ⊂W ℓ

2(0, 1),

(3.12)

where the quadratic form Q0(y, y) contains boundary terms at the endpoints zero and one.
Consider auxiliary quadratic form Q

L̃
with the same formal expression as QL and the same

domain as QL:

Q
L̃
(y, y) = QL(y, y); D(Q

L̃
) = D(QL) =

o

W ℓ
2 (0, 1).

The difference of the operators L and L̃ is a finite-dimensional operator, and therefore

NLµ(λ) ∼ N
L̃µ
(λ), λ→ +0.

Further, integrating by parts we can estimate the lower order terms in (3.12):

∣∣Q
L̃
(y, y)−QL(y, y)

∣∣ ≤ c ·
1∫

0

[
∣∣y(ℓ−1)y(ℓ)

∣∣+
ℓ−1∑

i=0

∣∣y(i)
∣∣2
]
dt.

This estimate shows that Q
L̃
defines a metric which is a compact perturbation of the metric

in H. It was shown in the first part of the proof that the counting function NA(λ) has the
asymptotics (3.4) and thus satisfies the relation (5.4). By Lemma 5.1 we obtain

N
L̃µ
(λ) = NA1(λ) ∼ NA(λ) = NLµ(λ), λ→ +0,

and the proof is complete.



4 Small ball asymptotics. Examples

To obtain the small ball asymptotics we use the following proposition:

Proposition 4.1. ([15, Theorem 2]) Let the counting function of the sequence (λj), j ∈ N, has
the asymptotics N (λ) ∼ ϕ(λ), as λ→ +0, where ϕ is slowly varying at zero, i.e.

lim
t→+0

ϕ(ct)

ϕ(t)
= 1 for any c > 0.

Then, as r → +0

lnP

{
∞∑

j=1

λjξ
2
j ≤ r

}
∼ − 1

2

1∫

1
u

ϕ(z)
dz

z
, (4.1)

where u = u(r) is chosen satisfies

ϕ( 1
u
)

2u
∼ r, r → +0. (4.2)

Substituting in (4.2) ϕ(λ) = C · ln( 1
λ
) we obtain

r ∼ C

2
ln(u) ⇐⇒ u ∼ C ln(1

r
)

2r
.

Therefore the replacement in (4.1) r by ε2 gives

lnP

{
∞∑

j=1

λjξ
2
j ≤ ε2

}
∼ − C ln2(u)

4
∼ −C ln2

(1
ε

)
, ε → +0. (4.3)

As the example of formula (4.1) application, let us consider a number of well-known Gaussian
processes on [0, 1]:
1) Wiener process W (t);
2) Brownian bridge B(t) = W (t)− tW (1);

3) centered Winer process W (t) = W (t)−
∫ 1

0
W (s) ds;

4) centered Brownian bridge B(t) = B(t)−
∫ 1

0
B(s) ds;

5) “elongated” Brownian bridge W (u)(t) = W (t)− utW (1), u < 1 ([30, 4.4.20]).

6) generalized Slepian process Ŵ [c] = W (t+ c)−W (t), c ≥ 1 ([31]).

It easy to check that the covariances of these processes are the Green functions for the
operator Ly = −y′′ with various boundary conditions.

Processes closely related to mentioned above are
7) stationary Ornstein–Uhlenbeck process U (α), α > 0;

8) Ornstein–Uhlenbeck process starting at zero U
(α)
0 , α 6= 0;

9) the Bogolyubov process B(α), α > 0 ([32], [33]).

The covariances of these processes,

GU (α)(s, t) =
1

2α
exp(−α|s− t|);

G
U

(α)
0

(s, t) =
1

2α

(
exp(−α|s− t|)− exp(−α(s+ t))

)
;

GB(α)(s, t) =
1

2α

exp(α|s− t|) + exp(α− α|s− t|)
exp(α)− 1

are the Green functions for the operator Ly = −y′′ + α2y with various boundary conditions.



Proposition 4.2. Let µ be a degenerate self-similar measure described in Section 2. Let X be
one of the Gaussian processes listed in 1)-9). Then

lnP{||X||µ ≤ ε} ∼ −(n− 1)
ln2(1

ε
)

ln( 1
dm·am

)
, ε→ +0.

Proof. The statement is a consequence of Theorem 3.1 (with ℓ = 1) and formula (4.3).

Now we consider s-times integrated processes (here any βj equals either zero or one, 0 ≤
t ≤ 1):

Xs(t) ≡ X [β1, ..., βs]
s (t) = (−1)β1+ ...+βs

t∫

βs

. . .

t1∫

β1︸ ︷︷ ︸
s

X(s) ds dt1 . . . .

By [8, Theorem 2.1], for X being one of the Gaussian processes 1)-6), the covariance of the
process Xs is the Green function for the operator Ly = (−1)s+1y(2s+2) with suitable boundary
conditions (depending on endpoints of integration βj). Analogously, for X being one of the
Gaussian processes 7)-9), the covariance of the process Xs is the Green function for the operator
Ly = (−1)s(−y(2s+2) + α2y(2s)) with suitable boundary conditions.

Proposition 4.3. Let µ be a degenerate self-similar measure described in Section 2. Let X be
one of the listed Gaussian processes. Then

lnP{||Xs||µ ≤ ε} ∼ −(n− 1)
ln2(1

ε
)

ln
(

1
dm·a2s+1

m

) , ε→ +0. (4.4)

Proof. The statement follows from Theorem 3.1 (with ℓ = s+ 1) and formula (4.3).

Remark 4.1. We list some more well-known Gaussian process for which Proposition 4.3 can
be applied:
10) “bridged” (conditional) integrated Wiener process ([34], see also [8, Proposition 5.3])

Bs(t) = (Ws(t)
∣∣ Wj(1) = 0, 0 ≤ j ≤ s);

11) s-times centered-integrated Wiener process (see [9, Sec. 4]), derived from W (t) by alternate
operations of centering and integration;
12) s-times centered-integrated Brownian bridge (see [9, Sec. 3]);
13) the Matern process M(s+1) (see [35], [36]) with covariance

GM(s+1)(s, t) =
1

22s+1s!
exp(−|s− t|)

s∑

k=0

(s+ k)!

k!(s− k)!
(2|s− t|)s−k.

5 Appendix

The next Lemma is a variant of classical Weyl theorem ([37]; see also [38, Lemma 1.17]). A
function f is called uniformly continuous in logarithmic scale on a set E ⊂ R+, if the function
f̃ = ln ◦ f ◦ exp is uniformly continuous on corresponding set.



Lemma 5.1. Let A be infinite-dimensional compact self-adjoint positive operator in a Hilbert
space H.

1. Let the eigenvalues of A satisfy the relation

λ
(A)
j ∼ ψ(j), j → ∞, (5.1)

where ψ is a function uniformly continuous in logarithmic scale on [1,+∞[. Then the asymp-
totics (5.1) does not change under compact perturbation of the metric in H.

Namely, let Q be a compact self-adjoint positive operator in H such that minλ(Q) > −1.
Define a new scalar product in H by the formula [u, v]1 = [u+Qu, v]H. Then

λ
(A)
j ∼ λ

(A1)
j , j → ∞, (5.2)

where a positive compact operator A1 is given by relation

[A1u, v]1 = [Au, v]H. (5.3)

2. Let the eigenvalues counting function of A satisfy the relation

NA(λ) ∼ Ψ(1/λ), λ→ +0, (5.4)

where Ψ is a function uniformly continuous in logarithmic scale on [1,+∞[. Then the asymp-
totics (5.4) does not change under compact perturbations of the metric in H, i.e.

NA(λ) ∼ NA1(λ), λ→ +0, (5.5)

where A1 is given by (5.3).

Remark 5.1. For the power-type asymptotics both statements of Lemma are equivalent. The
statement 1 works also for “slow” (sub-power) eigenvalues decreasing while 2 works in super-
power case.

Remark 5.2. The second part of Lemma can be easily extracted from [39, Theorem 3.2].
However, the techniques of [39] is rather complicated because a more general case of non-self-
adjoint operators is considered. So, for the reader convenience we give a simple variational
proof of both statements.

Proof. By compactness of Q, for a given δ, we can find a finite-dimensional subspace Hδ,
dimH⊥

δ =M(δ), such that

∣∣[Qu, u]H
∣∣ ≤ δ[u, u]H, u ∈ Hδ.

If u ∈ Hδ, then

[Au, u]H < λ[u, u]H =⇒ [A1u, u]1 <
λ

1− δ
[u, u]1;

[Au, u]H > λ[u, u]H =⇒ [A1u, u]1 >
λ

1 + δ
[u, u]1.

According to the variational principle, see, e.g., [38, (1.25)–(1.26)], we have

λ
(A1)
j ≥

λ
(A)
j+Mδ

1 + δ
; NA1(λ) ≤ NA(λ(1− δ)) +Mδ. (5.6)



Let the relation (5.1) hold. Then, dividing the first inequality in (5.6) by ψ(j) we obtain

λ
(A1)
j

ψ(j)
≥ 1

1 + δ
·

λ
(A)
j+Mδ

ψ(j +Mδ)
· exp

(
ψ̃
(
ln(j) + ln(1 + Mδ

j
)
)
− ψ̃(ln(j))

)
.

Passage to the bottom limit gives

lim inf
j→∞

λ
(A1)
j

ψ(j)
≥ 1

1 + δ
.

Changing A and A1 in (5.6) and taking δ → 0, we arrive at (5.2).

Now let (5.4) hold. Then, dividing the second inequality in (5.6) by Ψ(1/λ) we obtain

NA1(λ)

Ψ(1/λ)
≤ NA(λ(1− δ))

Ψ(1/λ(1− δ))
· exp

(
Ψ̃
(
ln(1/λ) + ln(1/(1− δ))

)
− Ψ̃(ln(1/λ))

)
+

Mδ

Ψ(1/λ)
.

Passage to the top limit gives

lim sup
λ→+0

NA1(λ)

Ψ(1/λ)
≤ 1 + ε,

where ε→ +0 as δ → +0.
Changing A and A1 in (5.6) and taking δ → 0, we arrive at (5.5).

We are grateful to A.A. Vladimirov for important advice.
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