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A NOTE ON TRACE SCALING ACTIONS AND

FUNDAMENTAL GROUPS OF C∗-ALGEBRAS

NORIO NAWATA

Abstract. Using Effros-Handelman-Shen theorem and Elliott’s clas-
sification theorem of AF algebras, we show that there exists a unital
simple AF algebra A with unique trace such that A⊗K admits no trace
scaling action of the fundamental group of A.

1. Introduction

Let M be a factor of type II1 with a normalized trace τ . Murray and
von Neumann introduced the fundamental group F(M) of M in [13]. They
showed that if M is hyperfinite, then F(M) = R

×

+. Since then there has
been many works on the computation of the fundamental groups. Voiculescu
[23] showed that F(L(F∞)) of the group factor of the free group F∞ con-
tains the positive rationals and Radulescu proved that F(L(F∞)) = R

×

+ in
[20]. Connes [3] showed that if G is an ICC group with property (T), then
F(L(G)) is a countable group. Popa showed that any countable subgroup
of R×

+ can be realized as the fundamental group of some factor of type II1
in [17]. Furthermore Popa and Vaes [18] exhibited a large family S of sub-
groups of R×

+, containing R
×

+ itself, all of its countable subgroups, as well
as uncountable subgroups with any Hausdorff dimension in (0, 1), such that
for each G ∈ S there exist many free ergodic measure preserving actions of
F∞ for which the associated II1 factor M has the fundamental group equal
to G. In our previous paper [15] (see also [14]), we introduced the funda-
mental group F(A) of a simple unital C∗-algebra A with a normalized trace
τ based on the computation of Picard groups by Kodaka [10], [11] and [12].
The fundamental group F(A) is defined as the set of the numbers τ ⊗Tr(p)
for some projection p ∈ Mn(A) such that pMn(A)p is isomorphic to A. We
computed the fundamental groups of several C∗-algebras and showed that
any countable subgroup of R×

+ can be realized as the fundamental group of
a separable simple unital C∗-algebra with unique trace [16].

The fundamental group of a II1-factor M is equal to the set of trace-
scaling constants for automorphisms of M ⊗B(H). We have a similar fact,
that is, the fundamental group of a C∗-algebra A is equal to the set of trace-
scaling constants for automorphisms of A ⊗ K [15] (see also [14]). It is of
interest to know whether A ⊗ K admits a trace scaling action of F(A). In
the case where M is a factor of type II1, the existence of a trace scaling
(continuous) R

×

+-action on M ⊗ B(H) is equivalent to the existence of a
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type III1 factor having a core isomorphic to M ⊗ B(H) by the continuous
decomposition of type III1 factors. (See [22] and [4].) Hence this question is
important in the theory of von Neumann algebras. Radulescu showed that
L(F∞)⊗B(H) admits a trace scaling action of R×

+ in [21]. Therefore there
exists a type III1 factor having a core isomorphic to L(F∞) ⊗ B(H). Popa
and Vaes [19] showed that there exists a II1 factor M such that F(M) = R

×

+

and M ⊗B(H) admits no trace scaling (continuous) action of R×

+.
In this paper we consider trace scaling actions on certain AF algebras.

If A is a UHF algebra, then A ⊗ K admits a trace scaling action of F(A).
Using Effros-Handelman-Shen theorem and Elliott’s classification theorem
of AF algebra, we show that there exists a unital simple AF algebra A

with unique trace such that A⊗K admits no trace scaling action of F(A).
Note that there exist remarkable works of the classification of trace scaling
automorphisms in [1], [7] and [8]. But we do not consider the classification
of trace scaling actions in this paper.

2. Examples

We recall some definitions in [15]. Let A be a unital simple C∗-algebra
with a unique normalized trace τ and Tr the usual unnormalized trace on
Mn(C). Put

F(A) := {τ⊗Tr(p) ∈ R
×

+ | p is a projection in Mn(A) such that pMn(A)p ∼= A}.

Then F(A) is a multiplicative subgroup of R
×

+ by Theorem 3.1. in [15].
For an additive subgroup E of R containing 1, we define the positive inner
multiplier group IM+(E) of E by

IM+(E) = {t ∈ R
×

+ |t ∈ E, t−1 ∈ E, and tE = E}.
Then we have F(A) ⊂ IM+(τ∗(K0(A))) by Proposition 3.7 in [15]. This
obstruction enables us to compute fundamental groups easily. For x ∈ (A⊗
K)+, set τ̂(x) = sup{τ ⊗ Tr(y) : y ∈ ∪nMn(A), y ≤ x}. Define M+

τ = {x ≥
0 : τ̂(x) < ∞} and Mτ = spanM+

τ . Then τ̂ is a densely defined (with the
domain Mτ ) lower semi-continuous trace on A ⊗ K. Since the normalize
trace on A is unique, the lower semi-continuous densely defined trace on
A⊗ K is unique up to constant multiple. We define the set of trace-scaling
constants for automorphisms:

S(A) := {λ ∈ R
×

+ | τ̂ ◦ α = λτ̂ for some α ∈ Aut(A⊗K(H)) }.
Then F(A) = S(A) by Proposition 3.28 in [15]. Therefore it is of interest
to know whether A⊗K admits a trace scaling action of F(A).

It is clear that if the fundamental group of A is singly generated, A⊗ K

admits a trace scaling action of F(A). See [15] and [16] for such examples.
We shall show some examples of AF algebras A such that A⊗ K admits a
trace scaling action of F(A).

Example 2.1. Consider a UHF algebra M2∞3∞ . Then the fundamental
group of M2∞3∞ is a multiplicative subgroup generated by 2 and 3. Hence
F(M2∞3∞) is isomorphic to Z

2 as a group. Since M2∞3∞ ⊗K is isomorphic
toM2∞⊗K⊗M3∞⊗K, there exists a trace scaling Z

2-action onM2∞3∞⊗K.
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In general, if A is a UHF algebra, then F(A) is a free abelian group (see
[15]) and A⊗K admits a trace scaling action of F(A).

Example 2.2. Let A be a unital simple AF algebra such that K0(A) =

Z+Z
√
3, K0(A)+ = (Z+Z

√
3)∩R+ and [1]0 = 1. Then F(A) = {(2+

√
3)n :

n ∈ Z} (see [15]). Consider B = M5∞ ⊗ A. Then it is easily seen that
τ∗(K0(B)) = Z[1

5
] + Z[1

5
]
√
3. We shall show that IM+(τ∗(K0(B))) is gener-

ated by 5 and 2 +
√
3. Since τ∗(K0(B)) is a subring of R, IM+(τ∗(K0(B)))

is a group of positive invertible elements. Define a map N of Z[1
5
] +Z[1

5
]
√
3

to Z[1
5
] by N(a + b

√
3) = a2 − 3b2 for any a, b ∈ Z[1

5
]. If a + b

√
3 is an

invertible element in Z[1
5
]+Z[1

5
]
√
3, then there exists an integer n such that

N(a+ b
√
3) = 5n. Therefore elementary computations based on elementary

number theory show that IM+(τ∗(K0(B))) is generated by 5 and 2 +
√
3.

(See, for example, [9].) Hence we see that F(B) = {5n(2+
√
3)m : n,m ∈ Z}

and B ⊗K admits a trace scaling action.

We shall show that there exists a unital simple AF algebra A with unique
trace such that A⊗K admits no trace scaling action of F(A). Define

E = {(j + k
√
3

56i
,

(

x

y

)

) ∈ R×Z
2 | i, j, k, x, y ∈ Z, x ≡ j mod 9, y ≡ k mod 3}

E+ = {(r,
(

x

y

)

) ∈ E : r > 0} ∪ {(0,
(

0
0

)

)} and [u]0 = (1,

(

1
0

)

).

Then there exists a simple AF -algebra A with a unique normalized trace τ
such that (K0(A),K0(A)+, [1A]0) = (E,E+, u) by Effros-Handelman-Shen
theorem [5].

Lemma 2.3. With notation as above the fundamental group of A is equal
to the multiplicative group generated by 5 and 2 +

√
3.

Proof. Since τ∗(K0(A)) is equal to Z[1
5
] + Z[1

5
]
√
3, F(A) is a subgroup of

{5n(2 +
√
3)m : n,m ∈ Z} by an argument in Example 2.2. Define an

additive homomorphism φ : E → E by

φ((r,

(

x

y

)

)) = (5r,

(

5 9
6 11

)(

x

y

)

).

Elementary computations show that φ is a well-defined order isomorphism

of E with φ(u) = (5,

(

5
6

)

). There exist a natural number n and a pro-

jection p in Mn(A) such that [p]0 = (5,

(

5
6

)

) and τ ⊗ Tr(p) = 5. Since

(K0(pMn(A)p),K0(pMn(A)p)+, [p]0) = (E,E+, (5,

(

5
6

)

)), there exists an

isomorphism f : A → pMn(A)p with f∗ = φ by Elliott’s classification theo-
rem of AF algebra [6]. Therefore 5 ∈ F(A). Define an additive homomor-
phism ψ : E → E by

ψ((r,

(

x

y

)

)) = ((2 +
√
3)r,

(

2 3
1 2

)(

x

y

)

).
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A same argument shows 2 +
√
3 ∈ F(A). Consequently F(A) is the multi-

plicative group generated by 5 and 2 +
√
3. �

We shall consider the order automorphisms of (E,E+).

Lemma 2.4. Let φ be an order automorphism of (E,E+). Then there exist
integers a, b, c, d and a positive invertible element λ in Z[1

5
] + Z[1

5
]
√
3 such

that ad− bc = ±1 and

φ((r,

(

x

y

)

)) = (λr,

(

a b

c d

)(

x

y

)

).

Moreover if λ = 5, then
(

a b

c d

)

≡
(

5 0
0 2

)

,

(

5 0
3 2

)

,

(

5 0
6 2

)

mod 9

and if λ = 2 +
√
3, then

(

a b

c d

)

≡
(

2 3
1 2

)

,

(

2 3
4 2

)

,

(

2 3
7 2

)

mod 9.

Proof. We denote by (φ1((r,

(

x

y

)

)), φ2((r,

(

x

y

)

))) the element φ((r,

(

x

y

)

))

for any (r,

(

x

y

)

) ∈ E. Consider a subgroup F generated by (0,

(

9
0

)

)

and (0,

(

0
3

)

). Then F is an φ-invariant subgroup because φ is an or-

der isomorphism. Hence there exist integers m1, m2, m3 and m4 such

that m1m3 − m2m4 = ±1 and φ2((0,

(

x

y

)

)) =

(

m1 3m2
m3

3
m4

)(

x

y

)

for any (0,

(

x

y

)

) ∈ F . Furthermore we see that there exists a pos-

itive invertible element λ in Z[1
5
] + Z[1

5
]
√
3 such that φ1((r,

(

x

y

)

)) =

λr. Since 56iφ(( 9

56i
,

(

0
0

)

)) = φ((9,

(

0
0

)

)) for any i ∈ Z, we see that

φ((9,

(

0
0

)

)) = (9λ,

(

0
0

)

). This observation and easy computations show

that φ((1,

(

1
0

)

)) = (λ,

(

m1 3m2
m3

3
m4

)(

1
0

)

) and m3

3
∈ Z. In a similar

way, we see that φ((
√
3,

(

0
1

)

)) = (λ,

(

m1 3m2
m3

3
m4

)(

0
1

)

). It is easily

seen that φ is determined by the values of φ((1,

(

1
0

)

)), φ((
√
3,

(

0
1

)

)),

φ((0,

(

9
0

)

)) and φ((0,

(

0
3

)

)). Therefore there exist integers a, b, c, d and

a positive invertible element λ in Z[1
5
] +Z[1

5
]
√
3 such that ad− bc = ±1 and

φ((r,

(

x

y

)

)) = (λr,

(

a b

c d

)(

x

y

)

).

Let λ = 5, then a ≡ 5 mod 9, b ≡ 0 mod 9, c ≡ 0 mod 3 and d ≡ 5 mod 3
by the definition of E. If ad − bc = 1, then d ≡ 55 mod 9, −b ≡ 0 mod 9,
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−c ≡ 0 mod 3 and a ≡ 55 mod 3 because φ is an isomorphism. Therefore
elementary computations show

(

a b

c d

)

≡
(

5 0
0 2

)

,

(

5 0
3 2

)

,

(

5 0
6 2

)

mod 9.

If ad − bc = −1, then then −d ≡ 55 mod 9, b ≡ 0 mod 9, c ≡ 0 mod 3 and
−a ≡ 55 mod 3. There does not exist a integer a such that a ≡ 5 mod 9 and
−a ≡ 55 mod 3. Therefore we reach a conclusion in the case λ = 5. In the
case λ = 2 +

√
3, a similar argument proves the lemma. �

Theorem 2.5. There exists a unital simple AF algebra A with unique trace
such that A⊗K admits no trace scaling action of F(A).

Proof. Let

E = {(j + k
√
3

56i
,

(

x

y

)

) ∈ R×Z
2 | i, j, k, x, y ∈ Z, x ≡ j mod 9, y ≡ k mod 3}

E+ = {(r,
(

x

y

)

) ∈ E : r > 0} ∪ {(0,
(

0
0

)

)} and [u]0 = (1,

(

1
0

)

).

Then there exists a simple AF algebra A with a unique normalized trace τ
such that (K0(A),K0(A)+, [1A]0) = (E,E+, u) by Effros-Handelman-Shen

theorem [5]. By Lemma 2.3, F(A) = {5n(2 +
√
3)m : n,m ∈ Z}. Let α be

an automorphism of A⊗K such that τ̂ ◦ α = 5τ̂ and β an automorphism of
A⊗K such that τ̂ ◦α = (2+

√
3)τ̂ . Then α∗ and β∗ are order isomorphisms

of (K0(A),K0(A)+). Lemma 2.4 and elementary computations show that
α∗◦β∗ 6= β∗◦α∗. Therefore A⊗K admits no trace scaling action of F(A). �

Remark 2.6. Let A be a unital simple C∗-algebra with a unique normalized
trace τ . We denote by Pic(A) the Picard group of A (see [2]). Assume that
the normalized trace on A separates equivalence classes of projections. Then
we have the following exact sequence [15] (see also [10]).

1 −−−−→ Out(A)
ρA−−−−→ Pic(A)

T−−−−→ F(A) −−−−→ 1.

If A ⊗ K admits a trace scaling action of F(A), then Pic(A) is isomorphic
to a semidirect product of Out(A) with F(A). Example 2.1 and Example
2.2 are such examples. We do not know whether there exists a simple C∗-
algebra A with a unique normalized trace τ such that the normalized trace
on A separates equivalence classes of projections and A⊗K admits no trace
scaling action of F(A).
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