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Abstract

We study the asymptotic behavior of the emptiness formation probability for large spin
strings in a translation invariant quasifree nonequilibrium steady state of the isotropic
XY chain. Besides the overall exponential decay, we prove that, out of equilibrium, the
exponent of the subleading power law contribution to the asymptotics is nonvanishing
and strictly positive due to the singularities in the density of the steady state.

Keywords Nonequilibrium steady state, emptiness formation probability, Toeplitz theory
Mathematics Subject Classifications (2000) 46L60, 47B35, 82C10, 82C23

1 Introduction

In this note, I propose to enlarge upon the study started in Aschbacher [6] of the asymptotic
behavior of a special and important correlator, the so-called emptiness formation probability
(EFP). Written down in the framework of a spin system over the two-sided discrete line, the
EFP observable is given by

An =
n∏
i=1

pi, (1)
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2 W. H. Aschbacher

where pi denotes the projection p := (1 − σ3)/2 at site i onto the spin down configuration of
the spin σ3 in the 3-direction. For a given state ω of the spin system, the probability that a
ferromagnetic string of length n is formed in this state is thus expressed by

P(n) = ω(An). (2)

Due to the existence of the Jordan-Wigner transformation which maps, in a certain sense,
spins onto fermions, the EFP has been heavily studied for states of the XY chain whose
formal Hamiltonian is given in Remark 3 below. As a matter of fact, this model becomes a
gas of independent fermions under the Jordan-Wigner transformation, and it is thus ideally
suited for rigorous analysis.1

The large n behavior of the EFP in the XY chain has already been analyzed for the cases
where the state ω is a ground state or a thermal equilibrium state at positive temperature. In
both cases, the EFP can be written as the determinant of the section of a Toeplitz operator
with scalar symbol. Since the higher order asymptotics of a Toeplitz determinant is highly
sensitive to the regularity of the symbol of the Toeplitz operator, the asymptotic behavior of
the ground state EFP is qualitatively different in the so-called critical and noncritical regimes
corresponding to certain values of the anisotropy and the exterior magnetic field of the XY
chain.2 It has been found in Shiroishi et al. [16] that the EFP decays like a Gaussian in
one of the critical regimes.3 In a second critical regime and in all noncritical regimes, the
EFP decays exponentially.4 These results have been derived by using well-known theorems
of Szegő, Widom, and Fisher-Hartwig, and the yet unproven Basor-Tracy conjecture and
some of its extensions, see Widom [19] and Böttcher and Silbermann [11, 12]. On the
other hand, in thermal equilibrium at positive temperature, the EFP can again be shown to
decay exponentially by using a theorem of Szegő, see for example Shiroishi et al. [16] and
Franchini and Abanov [13].

In contrast, for the case where ω is the nonequilibrium steady state (NESS) constructed
in Aschbacher and Pillet [9],5 the EFP can still be written as a Toeplitz determinant, but
now, the symbol is, in general, no longer scalar. Due to the lack of control of higher order
determinant asymptotics in Toeplitz theory with nontrivial irregular block symbols, I started
off by studying bounds on the leading asymptotic order for a class of general block Toeplitz
determinants in Aschbacher [6]. It turned out that suitable basic spectral information on the
density of the state is sufficient to derive a bound on the rate of the exponential decay of
the EFP in general translation invariant fermionic quasifree states. This bound proved to
be exact not only for the decay rates of the EFP in the ground states and the equilibrium
states at positive temperature treated in Abanov and Franchini [1, 13] and Shiroishi et al.

1Low-dimensional magnetic systems are also heavily studied experimentally, see for example Sologubenko
et al. [17].

2I.e., in (15) below, the parameters γ and λ, respectively.
3With some additional explicit numerical prefactor and some power law prefactor, see Shiroishi et al. [16]

and references therein.
4In contrast to the noncritical regime, there is an additional power law prefactor in the second critical regime

whose exponent differs from the one in the first critical regime, see Abanov and Franchini [1, 13].
5And in Araki and Ho [5] for γ = λ = 0.
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[16], but it will also do so for the nonequilibrium situation treated here exhibiting the so-
called left mover-right mover structure already found in Aschbacher [7] and Aschbacher and
Barbaroux [8] for nonequilibrium expectations of different correlation observables.6 Hence,
given this exponential decay in leading order which parallels qualitatively the behavior in
thermal equilibrium at positive temperature, one may wonder whether there is some char-
acteristic signature of the nonequilibrium left at some lower order of the EFP asymptotics. It
turns out, and this is the main result of this note, that, in contradistinction to the leading order
contribution, the subleading power law contribution to the large n asymptotics of the EFP in
Fisher-Hartwig theory is sensitive to the singularity of the symbol of the underlying Toeplitz
operator, and it has a strictly positive exponent if and only if the system is truly out of equi-
librium. This may be interpreted as the manifestation, in subleading order, of the long-range
nature of the underlying formal effective Hamiltonian of the NESS.7 This connection is not
made precise here, though, but it is left to be studied in greater detail elsewhere.

Section 2 contains the setting and Section 3 the main assertion. The reader not familiar
with quasifree states on CAR algebras and/or with Toeplitz theory may consult the Appendix
where definitions and basic facts are collected.

2 Nonequilibrium setting

In this section, I shortly summarize the setting for the system out of equilibrium used in
Aschbacher and Pillet [9]. In contradistinction to the presentation there, I will skip the formu-
lation of the two-sided XY chain as a spin system and rather focus directly on the underlying
C∗-dynamical system structure in terms of Bogoliubov automorphisms on a selfdual CAR
algebra as introduced by Araki [4].8

For some N ∈ {0} ∪ N, the nonequilibrium configuration is set up by cutting the finite
piece

ZS := {x ∈ Z | −N ≤ x ≤ N} (3)

out of the two-sided discrete line Z. This piece will play the role of the confined sample,
whereas the remaining parts,

ZL := {x ∈ Z |x ≤ −(N + 1)}, (4)
ZR := {x ∈ Z |x ≥ N + 1}, (5)

will act as infinitely extended thermal reservoirs at different temperatures to which the sample
will be suitably coupled.

6This has already been noted in Aschbacher [6].
7See Remark 3 in Aschbacher and Pillet [9]. This effective Hamiltonian is to be understood on a formal level

only. It has been shown by Matsui and Ogata [14] that there exists no dynamics on the Pauli spin algebra w.r.t.
which this NESS is a KMS state.

8For an introduction to the algebraic approach to open quantum systems, see also for example Aschbacher
et al. [10].
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We first specify the observables contained in the system to be considered.

Definition 1 (Observables) Let F(h) denote the fermionic Fock space built over the one-
particle Hilbert space of wave functions on the discrete line,

h := `2(Z). (6)

With the help of the usual creation and annihilation operators a∗(f), a(f) ∈ L(F(h)) for any
f ∈ h,9 the complex linear mapping B : h⊕2 → L(F(h)) is defined, for F := [f1, f2] ∈ h⊕2, by

B(F ) := a∗(f1) + a(f̄2). (7)

Moreover, the antiunitary involution J : h⊕2 → h⊕2 is given, for all f1, f2 ∈ h, by

J [f1, f2] := [f̄2, f̄1]. (8)

The observables are described by the selfdual CAR algebra over h⊕2 with involution J
generated by the operators B(F ) ∈ L(F(h)) for all F ∈ h⊕2. I denote this algebra by
A := A(h⊕2, J).10

The time evolution is generated as follows.

Definition 2 (Dynamics) Let λ ∈ R, and let u ∈ L(h) be the translation operator defined by
(uf)(x) := f(x − 1) for all f ∈ h and all x ∈ Z. The coupled and the decoupled one-particle
Hamiltonians h, h0 ∈ L(h) are defined by

h := Re(u) + λ, (9)
h0 := h− (vL + vR), (10)

respectively, where the decoupling operators vL, vR ∈ L0(h) have the form

vL := Re
(
u−(N+1)p0u

N
)
, (11)

vR := Re
(
uNp0u

−(N+1)
)
, (12)

and the projection p0 ∈ L0(h) is given by p0f := (δ0, f)δ0 for all f ∈ h.11 For all t ∈ R,
the coupled and the decoupled time evolutions are the Bogoliubov ∗-automorphisms τ t, τ t0 ∈
Aut(A) defined on the generators B(F ) ∈ A with F ∈ h⊕2 by

τ t(B(F )) := B(eit(h⊕−h)F ), (13)
τ t0(B(F )) := B(eit(h0⊕−h0)F ). (14)

9The bounded operators on the Hilbert space H are denoted by L(H).
10The concept of a selfdual CAR algebra has been introduced and developed by Araki [2, 3]. Here, it is just

a convenient way of working with the linear combination (7).
11I write L0(H) for the finite rank operators on the Hilbert space H. Moreover, δx ∈ h for x ∈ Z denotes the

Kronecker function. Finally, for an operator A ∈ L(H), the real part is Re(A) := (A+A∗)/2.
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Remark 3 As mentioned above, this model has its origin in the XY spin chain whose formal
Hamiltonian is given by

H = −1

4

∑
x∈Z

{
(1 + γ)σ

(x)
1 σ

(x+1)
1 + (1− γ)σ

(x)
2 σ

(x+1)
2 + 2λσ

(x)
3

}
, (15)

where γ ∈ (−1, 1) denotes the anisotropy, λ ∈ R the external magnetic field, and the Pauli
basis of C2×2 reads

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (16)

The Hamiltonian h from (9) corresponds to the isotropic XY chain, i.e. to the case where
γ = 0.

The left and right reservoirs carry the inverse temperatures βL and βR, respectively. Pour
fixer les idées, we assume w.l.o.g. that they satisfy

0 < βL ≤ βR <∞. (17)

We next specify the state in which the system is prepared initially. It consists of a KMS state
at the corresponding temperature for each reservoir, and, w.l.o.g., of the chaotic state for the
sample. For the definition of quasifree states, see Appendix A.

Definition 4 (Initial state) The initial state ω0 ∈ Q(A) is the quasifree state specified by the
density S0 ∈ L(h⊕2) of the form

S0 := s0,− ⊕ s0,+, (18)

where the operators s0,± ∈ L(h) are defined by

s0,± := (1 + e±k0)−1, (19)

and k0 ∈ L(h ' hL ⊕ hS ⊕ hR) is given by

k0 := βLhL ⊕ 0⊕ βRhR. (20)

Here, for α = L,S, R, I used the definitions hα := `2(Zα) and hα := i∗αhiα, where iα : hα → h
is the natural injection defined, for any f ∈ hα, by iα({f(y)}y∈Zα)(x) := f(x) if x ∈ Zα, and
zero otherwise.

The following definition is due to Ruelle [15].

Definition 5 (NESS) A NESS associated with the C∗-dynamical system (A, τ) having the
initial state ω0 ∈ E(A) is a weak-∗ limit point for T →∞ of the net{

1

T

∫ T

0

dt ω0 ◦ τ t
∣∣∣ T > 0

}
. (21)
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In the model specified by the Definitions 1, 2, and 4, we get the following NESS using the
scattering approach of Ruelle [15].

Theorem 6 (XY NESS) There exists a unique quasifree NESS ω ∈ Q(A) w.r.t. the initial
state ω0 ∈ Q(A) and the coupled dynamics τ t ∈ Aut(A) whose density S ∈ L(H) reads

S = s− ⊕ s+, (22)

where the operators ŝ± ∈ L(ĥ) act in momentum space ĥ := L2(T) as multiplication by

ŝ±(eik) :=
1

2
(1± %±(eik)), (23)

and the functions %± : T→ (−1, 1) are defined by

%±(eik) := tanh
[
1
2
(β ± sign(sin k)δ)(λ+ cos k)

]
. (24)

Here, we set β := (βR + βL)/2 and δ := (βR − βL)/2, and the sign function sign : R → {±1}
is defined by sign(x) := 1 if x ≥ 0, and sign(x) := −1 if x < 0.

Proof. See Aschbacher and Pillet [9]. �

The main object of our study is the following.

Definition 7 (NESS EFP) Let n ∈ N. The EFP observable An ∈ A is defined by

An :=
2n∏
i=1

B(Fi), (25)

where, for all i ∈ N, the form factors Fi ∈ h⊕2 are given by

F2i−1 := ui ⊕ uiG1, (26)
F2i := ui ⊕ uiG2, (27)

and the initial form factors G1, G2 ∈ h⊕2 look like

G1 := JG2 := [0, δ0]. (28)

Moreover, the expectation value P : N → [0, 1] of the EFP observable An ∈ A in the NESS
ω ∈ E(A) is denoted by12

P(n) := ω(An). (29)
12As for the name EFP, note that An =

∏n
i=1 aia

∗
i , and that, for Bn :=

∏n
i=1 ai, we have

0 ≤ P(n) = ω(BnB
∗
n) ≤ ‖Bn‖2 ≤

n∏
i=1

‖δi‖2 = 1.
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The next assertion states the main structural property of the EFP correlation function.
For the basic facts of Toeplitz theory, see Appendix B.2.

Proposition 8 (EFP determinantal structure) The NESS EFP P : N → [0, 1] is given by
the determinant of the finite section of the Toeplitz operator T [ŝ−] ∈ L(`2(N)),

P(n) = det(Tn[ŝ−]). (30)

Proof. Proceeding as in Aschbacher and Barbaroux [8], we have that, on one hand, the
skew-symmetric EFP correlation matrix Ωn ∈ R2n×2n, defined, for i, j = 1, ..., 2n, by

Ωn,ij =


ω(B(Fi)B(Fj)), if i < j,

0, if i = j,

−ω(B(Fj)B(Fi)), if i > j,

(31)

where Fi ∈ h⊕2 for i ∈ N are the form factors from Definition 7, relates to the EFP as

P(n) = pf(Ωn), (32)

and, on the other hand, that it has the Toeplitz structure

Ωn = Tn[aP]. (33)

Here, aP ∈ L∞2×2(T) is the block symbol of the Toeplitz operator T [aP] ∈ L(`22(N)) which I
computed in Aschbacher [6] to be of the form aP = (ŝ − p)σ1, where ŝ = ŝ− ⊕ ŝ+ is the
density of the NESS ω ∈ Q(A) in momentum space and p = (1 − σ3)/2. Theorem 6 then
implies that, in the present case, the symbol has the form

aP =

[
0 ŝ−

ŝ+ − 1 0

]
. (34)

Hence, there exists an R ∈ O(2n) with det(R) = (−1)n(n−1)/2 s.t., using Lemma 19, we can
reduce the block Toeplitz Pfaffian to a scalar Toeplitz determinant,

P(n) = pf(Tn[aP])

= (−1)
n(n−1)

2 pf

([
0 Tn[ŝ−]

Tn[ŝ+ − 1] 0

])
= det(Tn[ŝ−]), (35)

where I used the fact that Tn[ŝ+ − 1] = −Tn[ŝ−]t.13 This is the assertion. �

13O(2n) stands for the orthogonal matrices in R2n×2n.
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Figure 1: The symbol ŝ−(eik) with k ∈ (−π, π] for β = 3
2
, δ = 1, and λ = 1

10
.

3 Subleading order in the NESS EFP asymptotics

Due to Proposition 8, the study of the large n behavior of the EFP correlation function boils
down to the analysis of a large truncated Toeplitz operator whose symbol is scalar and has
the form given in Theorem 6,

ŝ−(eik) =
1

2

(
1− tanh

[
1
2
(β − sign(sin k)δ)(λ+ cos k)

])
, (36)

see Figure 1. In a true nonequilibrium situation, i.e. for δ > 0, the r.h.s. of (36) is no
longer continuous. Hence, as described in the introduction, we want to study the asymptotic
behavior of the EFP NESS with the help of the so-called Fisher-Hartwig theory whose main
content is summarized in Theorem 26 of Appendix B.3. We first introduce the so-called pure
jump symbols. For notation and definitions, see Appendix B.1.

Definition 9 (Pure jump) Let the argument function arg : C \ {0} → R be defined by z =:
|z| ei arg(z) and arg(z) ∈ (−π, π] for all z ∈ C \ {0}. For β0 ∈ C and t0 ∈ T, the pure jump
symbol ϕβ0,t0 ∈ PC0(T) is defined, for all t ∈ T, by

ϕβ0,t0(t) := e
iβ0 arg

(
− t
t0

)
. (37)

Remark 10 Note that ϕβ0,t0 ∈ PC0(T) has at most one jump discontinuity at the point t0,
namely

ϕβ0,t0(t0 ± 0) = e∓iπβ0 . (38)
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Figure 2: The regularized symbol bP(eik) with k ∈ (−π, π] for β = 3
2
, δ = 1, and λ = 1

10
.

Moreover, the so-called jump phases are defined as follows.

Definition 11 (Jump phases) Let a ∈ PC0(T) with Λa = {tj ∈ T | j = 1, ...,m}, and let
a(tj ± 0) 6= 0 for j = 1, ...,m. The numbers βj ∈ C for j = 1, ...,m, called the pure jump
phases, are defined by

a(tj − 0)

a(tj + 0)
= e2πiβj . (39)

Next, we define a regularized symbol which will be extracted from ŝ− below.

Definition 12 (Regularized symbol) Let t1 := 1 and t2 := −1. The regularized symbol
bP ∈ C(T) is defined by

bP(eik) :=

(
τL(t1)

τR(t1)

τR(t2)

τL(t2)

) k
2π


√

τR(t1)
τL(t1)

τL(eik), if 0 ≤ k ≤ π,√
τL(t1)
τR(t1)

τR(eik), if −π < k < 0,
(40)

where, for α = L,R, the function τα : T→ (0, 1) has the form

τα(eik) :=
1

2

(
1− tanh

[
1
2
βα(λ+ cos k)

])
, (41)

see Figure 2.

Using the pure jump phases and the regularized symbol, we can recast ŝ− into the fol-
lowing form.
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Lemma 13 (Restricted Fisher-Hartwig form) The NESS EFP symbol ŝ− ∈ L∞(T) has the
following properties.

(a) ŝ− ∈ PC0(T)

(b) Λŝ−= {t1, t2}

(c) The jump phases of ŝ− at the points t1 and t2 are given by

β1 = − i

2π
log

(
τR(t1)

τL(t1)

)
, (42)

β2 = − i

2π
log

(
τL(t2)

τR(t2)

)
. (43)

(d) The symbol ŝ− ∈ L∞(T) can be written as

ŝ− = bPϕβ1,t1ϕβ2,t2 . (44)

Proof. The assertions (a) and (b) immediately follow from the form of the symbol ŝ− ∈ L∞(T)
given in (36). Moreover, using the choice

βj =
1

2π
arg

(
ŝ−(tj − 0)

ŝ−(tj + 0)

)
− i

2π
log

(
ŝ−(tj − 0)

ŝ−(tj + 0)

)
, (45)

where the argument function is given in Definition 9, we get the pure jump phases (42) and
(43) in assertion (c). As for assertion (d), writing, for k ∈ (−π, π],

ϕβ1,t1(e
ik) =

(
τR(t1)

τL(t1)

) k+sign(−k)π
2π

, (46)

ϕβ2,t2(e
ik) =

(
τL(t2)

τR(t2)

) k
2π

, (47)

with the sign function defined after (24), we get equality (44) in L∞(T) involving the regular-
ized symbol bP ∈ C(T). �

In order to be able to apply the Fisher-Hartwig theory to the symbol ŝ−, we have to make
sure that the regularized symbol bP ∈ C(T) is indeed sufficiently regular.

Lemma 14 (Fisher-Hartwig regularity) The regularized symbol bP ∈ C(T) has the follow-
ing properties.

(a) bP(t) 6= 0 for all t ∈ T

(b) ind(bP) = 0
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(c) bP ∈ B1
1(T)

Proof. It follows from (40) that bP(t) > 0 for all t ∈ T which implies assertions (a) and (b).
As for assertion (c), we use the fact given in Lemma 27 (b) of Appendix B.3 that bP ∈ C1(T).
This allows us to bound the integrand in (65) in the Definition 21 of the Besov space B1

1(T)
as ∫ π

−π

dk

k2
‖∆2

kbP‖L1(T) =

∫ π

−π

dk

k2

∫ π

−π
dθ |bP(ei(θ+k))− 2bP (eiθ) + bP(ei(θ−k))|

≤
∫ π

−π

dk

|k|

∫ π

−π
dθ

∫ 1

0

dt |b′P(ei(θ+tk))− b′P(ei(θ−tk))|. (48)

Since, due to Lemma 27 (a)–(c), b′P is continuous and differentiable at all but finitely many
points having a bounded derivative ‖b′′P‖L∞(T) <∞, we have b′P ∈ AC(T), and, thus, it follows
from the fundamental theorem of calculus that b′P ∈ Lip(T) with Lipschitz constant ‖b′′P‖L∞(T).
Using the Lipschitz continuity on the r.h.s. of (48), we get∫ π

−π

dk

k2
‖∆2

kbP‖L1(T) ≤ 4π2‖b′′P‖L∞(T) <∞. (49)

Hence, we arrive at assertion (c). �

We are now ready to formulate the main result of this note.

Theorem 15 (NESS EFP asymptotics) For n → ∞, the NESS EFP behaves asymptoti-
cally as

P(n) ∼ G(bP)nnQPF (ŝ−), (50)

where the base of the exponential factor is given by

G(bP) = exp

(
1

2

∑
α=L,R

∫ π

−π

dk

2π
log(τα(eik))

)
, (51)

satisfying 0 < G(bP) < 1 for all inverse temperatures in the range 0 < βL ≤ βR < ∞.
Furthermore, the exponent of the power law factor has the form

QP =
1

4π2

∑
j=1,2

(
log

(
τR(tj)

τL(tj)

))2
. (52)

Thus, QP > 0 if and only if βL 6= βR.

Proof. Due to (44) of Lemma 13, the nonequilibrium symbol ŝ− has the form ŝ− = bPϕβ1,t1ϕβ2,t2,
where t1 6= t2 and, w.r.t. to the form (72) of the restricted Fisher-Hartwig symbol, we have
α1 = α2 = 0, and Re(β1) = Re(β2) = 0 from (42) and (43) in Lemma 13. Hence, assumptions
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(a) and (b) of Theorem 26 from Appendix B.3 are satisfied. Moreover, due to Lemma 14,
assumptions (c)–(d) of Theorem 26 are also satisfied by the regularized symbol. Then, (50)
follows from (73) in Theorem 26, and it remains to derive the exponential, the power law, and
the constant factors in (50) with the help of (74)–(76). As for G(bP), we get (51) from (74)
and (40) in Definition 12. Moreover, plugging (42) and (43) into (75), we find (52). Finally,
using (76), the last factor on the r.h.s. of (50) has the form

F (ŝ−) = E(bP) 22β1β2
∏
j=1,2

(
bP,+(tj)

bP,−(tj)

)βj ∏
j=1,2

G(1 + βj)G(1− βj), (53)

where E(bP), bP,±(tj), and G(1± βj) are given in (77), (78), and (80), respectively. �

Remark 16 In Aschbacher [6], I derived a bound on the decay rate of the exponential decay
for the NESS EFP in the more general anisotropic XY chain. As noted there and discussed in
the present introduction, Theorem 15 yields that this bound is exact for the special isotropic
case at hand.14

A Fermionic quasifree states

Let A be the selfdual CAR algebra from Definition 1. We denote by E(A) the set of states on
the C∗ algebra A.15

Definition 17 (Density) The density of a state ω ∈ E(A) is defined to be the operator S ∈
L(h⊕2) with 0 ≤ S∗ = S ≤ 1 and JSJ = 1− S satisfying, for all F,G ∈ h⊕2,

ω(B∗(F )B(G)) = (F, SG). (54)

A special class of states are the important fermionic quasifree states.

Definition 18 (Quasifree state) A state ω ∈ E(A) is called quasifree if it vanishes on the
odd polynomials in the generators, and if it is a Pfaffian on the even polynomials in the
generators, i.e. if, for all F1, ..., F2n ∈ h⊕2 and for any n ∈ N, we have

ω(B(F1)...B(F2n)) = pf(Ωn), (55)

where the skew-symmetric matrix Ωn ∈ C2n×2n
ss is defined, for i, j = 1, ..., 2n, by

Ωn,ij :=


ω(B(Fi)B(Fj)), if i < j,

0, if i = j,

−ω(B(Fj)B(Fi)), if i > j.

(56)

14This can also be seen by directly using Szegő’s first limit theorem, see for example Böttcher and Silber-
mann [11, p.139].

15I.e. the normalized positive linear functionals on A.
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Here, the Pfaffian pf : C2n×2n
ss → C is defined, on all skew-symmetric matrices A ∈ C2n×2n

ss :=
{A ∈ C2n×2n |At = −A},16 by

pf(A) :=
∑
π

sign(π)
n∏
j=1

Aπ(2j−1),π(2j), (57)

where the sum is running over all pairings of the set {1, 2, ..., 2n}, i.e. over all the (2n)!/(2nn!)
permutations π in the permutation group of 2n elements which satisfy π(2j − 1) < π(2j + 1)
and π(2j − 1) < π(2j), see Figure 3. The set of quasifree states is denoted by Q(A).

s s s s s s������
π = (123456)

− s s s s s s������
π = (123546)

+ s s s s s s��# ��
π = (123645)

− s s s s s s������
π = (132456)

+ . . .

Figure 3: Some of the pairings for n = 3. The total number of intersections I relates to the
signature as sign(π) = (−1)I .

The following lemma has been used in Section 2.

Lemma 19 (Pfaffian) The Pfaffian has the following properties.

(a) Let X, Y ∈ C2n×2n with Y t = −Y . Then,

pf(XYXt) = det(X) pf(Y ). (58)

(b) Let X ∈ Cn×n. Then,

pf

([
0 X
−Xt 0

])
= (−1)

n(n−1)
2 det(X). (59)

Proof. See for example Stembridge [18]. �

B Toeplitz theory

The material of this section is taken from Böttcher and Silbermann [11, 12].

16At is the transposition of the matrix A ∈ Cn×n.
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B.1 Function classes

Let T := {t ∈ C | |t| = 1} stand for the unit circle. We denote by C(T) the continuous
functions, by Cm(T) the m times continuously differentiable functions, and by Lp(T) with
1 ≤ p ≤ ∞ the usual Lebesgue spaces. Moreover, AC(T) and Lip(T) stand for the abso-
lutely continuous and the Lipschitz continuous functions on T. Finally, we need the following
function class.

Definition 20 (Piecewise continuous) The set of piecewise continuous functions is de-
fined by

PC(T) := {a ∈ L∞(T) |The limits limε→0+ a(ei(k±ε)) exist for all k ∈ (−π, π]}. (60)

For a ∈ PC(T) and any t ∈ T of the form t = eik with k ∈ (−π, π], we use the notation

a(t± 0) := lim
ε→0+

a(ei(k±ε)). (61)

Moreover, the set of jumps of a ∈ PC(T) is defined by

Λa := {t ∈ T | a(t− 0) 6= a(t+ 0)}. (62)

Finally, the set of piecewise continuous functions with finitely many jumps is defined by

PC0(T) := {a ∈ PC(T) | card(Λa) <∞}. (63)

In order to be able to make use of the Fisher-Hartwig theory from Appendix B.3, we also
need to introduce the following function class.

Definition 21 (Besov space) Let 1 ≤ p < ∞ and k ∈ (−π, π]. The operator ∆k : Lp(T) →
Lp(T) is defined, on all f ∈ Lp(T), and for all θ ∈ (−π, π], by

(∆kf)(eiθ) := f(ei(θ+k))− f(eiθ). (64)

Moreover, for any n ∈ N, we recursively set ∆n
k := ∆k∆

n−1
k . For α > 0 and 1 ≤ p < ∞, the

Besov class is defined by

Bα
p (T) :=

{
f ∈ Lp(T)

∣∣∣ ∫ π

−π
dk |k|−(1+αp) ‖∆n

kf‖
p
Lp(T) <∞

}
, (65)

where n ∈ N is s.t. n > α.17

Finally, we need the following definition.

Definition 22 (Index) Let a ∈ C(T) with a(t) 6= 0 for all t ∈ T, and let c : T → R with
c ∈ C(T \ {1}) be s.t. a = |a| eic. The index (or winding number) of a is defined by

ind(a) :=
c(1− 0)− c(1 + 0)

2π
. (66)

17Note that the definition does not depend on the choice of such an n.
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B.2 Toeplitz operators

For M ∈ N, we denote by `2M(N) the space of all square-summable CM -valued sequences.18

Moreover, we set

L∞M×M(T) := {f : T→ CM×M | fij ∈ L∞(T) for all i, j = 1, ...,M}. (67)

We then have the following classical result.

Theorem 23 (Toeplitz) Let {ax}x∈Z ⊂ CM×M . The linear operator A : dom (A) ⊆ `2M(N) →
`2M(N) defined on all f ∈ dom (A) with maximal domain dom (A) by

Af :=

{
∞∑
j=1

ai−j fj

}∞
i=1

, (68)

is a bounded operator on `2M(N) if and only if there exists an a ∈ L∞M×M(T) s.t., for all x ∈ Z,
it holds

ax =

∫ π

−π

dk

2π
a(eik) e−ikx. (69)

Proof. See Böttcher and Silbermann [11, p.186]. �

We then make the following definition.

Definition 24 (Symbol) Under the assumptions of Theorem 23, we write the Toeplitz oper-
ator as T [a] := A ∈ L(`2M(N)). It has the matrix form

T [a] =


a0 a−1 a−2 ...
a1 a0 a−1 ...
a2 a1 a0 ...
... ... ... ...

 . (70)

The function a ∈ L∞M×M(T) is called the symbol of T [a]. If M = 1, the symbol a ∈ L∞(T) =
L∞1×1(T) and the Toeplitz operator T [a] are called scalar, whereas for M > 1 they are called
block.

Finally, the Toeplitz operators are truncated as follows.

Definition 25 (Finite section) Let n ∈ N. The projection Pn ∈ L(`2M(N)) is defined, on all
f := {x1, ..., xn, xn+1, ...} ∈ `2M(N), by

Pnf = {x1, ..., xn, 0, 0, ...}. (71)

Moreover, the truncated Toeplitz matrices Tn[a] ∈ CMn×Mn are defined by

Tn[a] := PnT [a]Pn�ran (Pn) .

18W.r.t. the Euclidean norm on CM .
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B.3 Fisher-Hartwig symbols

The following theorem summarizes the main results on the asymptotic behavior of Toeplitz
determinants with Fisher-Hartwig symbols.

Theorem 26 (Fisher-Hartwig) Let a ∈ L∞(T) be a restricted Fisher-Hartwig symbol, i.e.,
for all t ∈ T, the symbol has the form

a(t) = b(t)
m∏
j=1

|t− tj|2αjϕβj ,tj(t), (72)

and it satisfies the following assumptions:

(a) t1, ..., tm ∈ T are pairwise distinct points

(b) αj, βj ∈ C with |Re(αj)| < 1
2

and |Re(βj)| < 1
2

for all j = 1, ...,m

(c) b ∈ L∞(T) ∩B1
1(T)

(d) b(t) 6= 0 for all t ∈ T

(e) ind(b) = 0

Then, for n→∞, the Toeplitz determinant has the asymptotic approximation

det(Tn[a]) ∼ G(b)nnQF (a), (73)

where the exponential factor and the power law factor are determined by

G(b) := exp[(log b)0] , (74)

Q :=
m∑
j=1

(
α2
j − β2

j

)
. (75)

Here, fx for x ∈ Z denotes the x-th Fourier coefficient of the function f ∈ L1(T). Moreover,
the constant F (a) is given by

F (a) := E(b)
m∏
j=1

b+(tj)
−(αj−βj)b−(tj)

−(αj+βj)
m∏
j=1

Gαj ,βj

∏
1≤i 6=j≤m

(
1− ti

tj

)−(αi−βi)(αj+βj)
, (76)
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where we define19

E(b) := exp

(
∞∑
l=1

l(log b)l(log b)−l

)
, (77)

b±(tj) := exp

(
∞∑
l=1

(log b)±lt
±l
j

)
, (78)

Gαj ,βj :=
G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
. (79)

Finally, the function G : C→ C is the entire Barnes G-function defined by

G(z + 1) := (2π)z/2e−z(z+1)/2−γEz2/2
∞∏
n=1

[(
1 +

z

n

)
e−z+z

2/(2n)
]
, (80)

where γE is Euler’s constant.

Proof. See Böttcher and Silbermann [12, p.582]. �

C Regularized symbol

Since we have to care about the behavior in the neighborhood of the discontinuities, we write
the derivatives of the regularized symbol explicitly.

Lemma 27 (Regularity) Let T± := {t ∈ T | Im(t) 6= 0, sign(Im(t)) = ±1}, and set bP,T± :=
bP�T±. Then, the regularized symbol bP ∈ C(T) from Definition 12 has the following proper-
ties.

(a) bP,T± ∈ C∞(T±)

(b) bP ∈ C1(T)

(c) The left and right derivatives D±b′P(t) exist for all t ∈ T, but, for j = 1, 2, we have

D−b
′
P(tj) 6= D+b

′
P(tj). (81)

Moreover, the second derivative is essentially bounded,

‖b′′P‖L∞(T) <∞. (82)

19Under the assumptions on b, there exists a logarithm log b ∈ W (T) ∩ B1/2
2 (T), where W (T) denotes the

Wiener algebra, see Böttcher and Silbermann [11, p.123]. Therefore, G(b), E(b), and b±(tj) for j = 1, ...,m are
well-defined, and the factors on the r.h.s. of (73) are independent of the choice of log b.
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Proof. Assertion (a) follows from the very form of (40). As for assertion (b), we find that the
one-sided derivatives of bP at the points t1 and t2 coincide, and, for j = 1, 2, are given by the
expression

D±bP(tj) =
1

2π

√
τR(tj)τL(tj) log

(
τL(t1)τR(t2)

τR(t1)τL(t2)

)
. (83)

Here, for any f : T→ C, I used the notation

D±f(t1) := lim
ε→0+

1

±ε
(f(e±iε)− f(t1)), (84)

D±f(t2) := lim
ε→0+

1

±ε
(f(ei(∓π±ε))− f(t2)). (85)

Combining (83) with the derivative of bP,T±, we get

b′P(eik) =

(
τL(t1)τR(t2)

τR(t1)τL(t2)

) k
2π

·

·


√

τR(t1)
τL(t1)

τL(eik)
(

1
2π

log
(
τL(t1)τR(t2)
τR(t1)τL(t2)

)
+ βLτ̃L(eik) sin k

)
, if 0 ≤ k ≤ π,√

τL(t1)
τR(t1)

τR(eik)
(

1
2π

log
(
τL(t1)τR(t2)
τR(t1)τL(t2)

)
+ βRτ̃R(eik) sin k

)
, if −π < k < 0,

(86)

where, for α = L,R, we set τ̃α(eik) := 1
2
(1 + tanh[1

2
βα(λ+ cos k)]). Hence, it follows from (86)

that b′P ∈ C(T). Finally, computing b′′P,T± and the left and right derivatives of b′P at the points
t1 and t2,

D+b
′
P(t1) =

√
τR(t1)τL(t1)

([
1

2π
log

(
τL(t1)τR(t2)

τR(t1)τL(t2)

)]2
+ βLτ̃L(t1)

)
, (87)

D−b
′
P(t1) =

√
τR(t1)τL(t1)

([
1

2π
log

(
τL(t1)τR(t2)

τR(t1)τL(t2)

)]2
+ βRτ̃R(t1)

)
, (88)

D+b
′
P(t2) =

√
τR(t2)τL(t2)

([
1

2π
log

(
τL(t1)τR(t2)

τR(t1)τL(t2)

)]2
− βRτ̃R(t2)

)
, (89)

D−b
′
P(t2) =

√
τR(t2)τL(t2)

([
1

2π
log

(
τL(t1)τR(t2)

τR(t1)τL(t2)

)]2
− βLτ̃L(t2)

)
, (90)

we find, on one hand, that, for j = 1, 2,

D−b
′
P(tj)−D+b

′
P(tj) =

√
τR(tj)τL(tj) [βRτ̃R(tj)− βLτ̃L(tj)] , (91)

and, on the other hand, we get b′′P�T±∈ C(T±). Hence, we arrive at assertion (c). �
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