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SOME REMARKS ON BIG COHEN-MACAULAY ALGEBRAS VIA

CLOSURE OPERATIONS

MOHSEN ASGHARZADEH AND RAJSEKHAR BHATTACHARYYA

Abstract. In this note we present some remarks on big Cohen-Macaulay algebras.

Our methods for doing this are inspired by the notion of dagger closure and by ideas of

Northcott on dropping of the Noetherian assumption of certain homological properties.

1. Introduction

The perfect closure of a reduced ring A of prime characteristic p is defined by adjoining

to A all higher p-power roots of all elements of A and denote it by A∞. Following [9],

a ring R is called F-coherent if R∞ is a coherent ring. We denote the polynomial grade

of an ideal a on M by p. gradeA(a,M) (see below for definition). First we show that the

Frobenius map is flat over a coherent regular ring which is of prime characteristic. Let R

be a Noetherian local F-coherent domain which is either excellent or homomorphic image

of a Gorenstein local ring. Then by applying some basic properties of tight closure theory,

we show in Theorem 3.3 that ht(a) = p. gradeR∞(a, R∞) for every ideal a of R∞. We

close Section 3 by showing that coherent big Cohen-Macaulay algebras are balanced big

Cohen-Macaulay.

Let I be an ideal of a Noetherian local domain R and R+ be its integral closure in an

algebraic closure of its fraction field. Recall from [6], an element x ∈ R is in I†, dagger

closure of I, if there are elements ǫn ∈ R+ of arbitrarily small order such that ǫnx ∈ IR+.

By the main result of [6], tight closure of an ideal coincides with the dagger closure, where

R is complete and of prime characteristic p. In this Section 4 we extend that notion to

the submodules of finitely generated modules over R to prove that if a complete local

domain is contained in an almost Cohen-Macaulay domain then there exists a balanced

big Cohen-Macaulay module over it (see Corollary 4.6).

2. Preliminary Notations

Let A be an algebra equipped with a map v : A → R ∪ {∞} satisfying (1) v(ab) =

v(a)+v(b) for all a, b ∈ A; (2) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ A and (3) v(a) = ∞
if and only if a = 0. If moreover v(a) ≥ 0 for every a ∈ T and v(a) > 0 for every non-unit

a ∈ A, then we say that v is normalized.
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2 ASGHARZADEH AND BHATTACHARYYA

Lemma 2.1. (see [1, Proposition 3.2]) Let A be an algebra equipped with a normalized

value map and let a be a proper and finitely generated ideal of A. Then
⋂∞

n=1 a
n = 0.

Let A be a commutative ring of prime characteristic p. By A0 we mean the complement

of the set of all minimal primes of A. Let I be an ideal of A. By I [q] we mean the ideal

generated by q = pe-th powers of all elements of I. Then the tight closure I∗ of I is the

set of x ∈ A such that there exists c ∈ A0 such that cxq ∈ I [q] for q ≫ 0. Recall that a

ring is coherent if each of its finitely generated ideals are finitely presented. Also recall

that a ring is called regular if each of its finitely generated ideals are of finite projective

dimension.

Lemma 2.2. Let A be a coherent regular ring of prime characteristic. The following

holds.

(i) The Frobenius map is flat.

(ii) If A is equipped with a normalized value map, then all finitely generated ideals of

A are tightly closed.

Proof. (i): By F (A), we mean A as a group equipped with A-module structure via the

Frobenius map. We show that TorAi (A/a, F (A)) = 0 for all i > 0 and all finitely generated

ideals a ⊂ A. Note that A/a has a free resolution (F•, d•) consisting of finitely generated

modules, since A is coherent. Such a resolution is bounded, because A is regular. Then

(F•, d•)⊗AF (A) = (F•, d
p
•). Also, recall that Koszul depth is unique up to radical. In view

of [3, Theorem 9.1.6], which is a beautiful theorem of Buchsbaum-Eisenbud-Northcott, we

find that (F•, d
p
•) is exact and so TorAi (A/a, F (A)) = 0.

(ii): On perfect rings Frobenius map is bijective and so flat. By using this, [9, Lemma

4.1] yields the claim for a perfect coherent domain that is separable with respect to the

proper and finitely generated ideals. In view of (i), the claim follows by the proof of [9,

Lemma 4.1]. �

It is noteworthy to remark that the finitely generated assumption of the previous result

is really needed.

Example 2.3. Let (R,m) be a Noetherian regular local ring of prime characteristic p which

is not a field. Let R∞ be its perfect closure. It defines by adjoining to R all higher p-power

roots of all elements of R. This is well-known that R∞ is coherent and regular. Also, R∞

is equipped with a normalized value map. Consider the ideal a := {x ∈ R∞ : v(x) > 1/p}.
Here, we show that a∗ 6= a. To this end, let x ∈ R∞ be such that v(x) = 1/p. Such an

element exists. Take c ∈ R∞ with v(c) > 0. Clearly, v(c1/qx) > 1/p and so c1/qx ∈ a.

Thus cxq =
∏

q c
1/qx ∈ a[q] for q ≫ 0. Therefore, x ∈ a∗ \ a.
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3. Cohen-Macaulayness of Minimal Perfect Algebra

The perfect closure of a reduced ring A of prime characteristic p is defined by adjoining

to A all higher p-power roots of all elements of A and denote it by A∞. Following [9], a

ring R is called F-coherent if R∞ is a coherent ring.

Lemma 3.1. Let R be a Noetherian local F-coherent domain which is either excellent or

homomorphic image of a Gorenstein local ring. Then R∞ is big Cohen-Macaulay.

Proof. This is proved in [9, Theorem 3.10] when R is homomorphic image of a Gorenstein

ring. Assume that R is excellent. For each n, set Rn := {x ∈ R∞|xpn ∈ R}. The

assignment x 7→ xp
n
shows that R ≃ Rn and so Rn is excellent. We recall that over

excellent domains one can use the colon capturing property of tight closure theory. Let

x := x1, . . . , xd be a system of parameters for R, where d := dimR and let r ∈ R∞

be such that rxi+1 =
∑i

j=1 rjxj for some rj ∈ R∞. Then r, rj ∈ Rn for n ≫ 0. So

r ∈ ((x1, . . . , xi)Rn :Rn xi+1). Putting these along with Lemma 2.2,

((x1, . . . , xi)R
∞ :R∞ xi+1) =

⋃

n((x1, . . . , xi)Rn :Rn xi+1)

⊆ ⋃

n((x1, . . . , xi)Rn)
∗

⊆ ((x1, . . . , xi)R
∞)∗

= (x1, . . . , xi)R
∞,

which yields the claim. �

Let a be an ideal of a ring A and M be an A-module. A finite sequence x := x1, . . . , xr

of elements of A is called M -sequence if xi is a nonzero-divisor on M/(x1, . . . , xi−1)M for

i = 1, . . . , r and M/xM 6= 0. The classical grade of a on M , denoted by c. gradeA(a,M),

is defined by the supremum length of maximal M-sequences in a. The polynomial grade

of a on M is defined by

p. gradeA(a,M) := lim
m→∞

c. gradeA[t1,...,tm](aA[t1, . . . , tm], A[t1, . . . , tm]⊗A M).

In what follows we will use the following well-known properties of polynomial grade.

Lemma 3.2. (see e.g. [2]) Let a be an ideal of a ring A and M an A-module. The

following holds.

(i) If a is finitely generated, then

p. gradeA(a,M) = inf{p. gradeAp
(pAp,Mp)|p ∈ V(a) ∩ SuppAM}.

(ii) Let Σ be the family of all finitely generated subideals b of a. Then

p. gradeA(a,M) = sup{p. gradeA(b,M) : b ∈ Σ}.

(iii) We have p. gradeA(a,M) ≤ htM (a).

Now, we are ready to prove:
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Theorem 3.3. Let R be a Noetherian local F-coherent domain which is either excellent

or homomorphic image of a Gorenstein local ring. Then ht(a) = p. gradeR∞(a, R∞) for

all ideal a of R∞.

Proof. Let x := x1, . . . , xd be a system of parameters for R, where d := dimR. By Lemma

3.1, x is regular sequence on R∞. So

d ≤ p. grade(xR∞, R∞) ≤ p. grade(mR∞ , R∞) ≤ ht(mR∞) = d,

which shows that p. grade(mR∞ , R∞) = ht(mR∞) for the maximal ideal mR∞ of R∞. Now

assume that a is finitely generated and let P be a prime ideal of R∞ such that P ⊇ a. Set

p := P ∩ R. Take x ∈ (Rp)
∞. Then xp

n ∈ Rp for some n, where p is the characteristic of

R. Thus xp
n
= a/b for some a ∈ R and b ∈ R\p. Look at a1/p

n

b1/pn
as an element of R∞

P . The

assignment x 7→ a1/p
n

b1/p
n defines a well-define map between (Rp)

∞ and R∞
P which is in fact

an isomorphism. By [5, Theorem 2.4.2], Rp is F-coherent. Clearly, Rp is either excellent

or homomorphic image of a Gorenstein local ring. By the case of maximal ideals,

p. grade(PR∞
P , R∞

P ) = p. grade(m(Rp)∞ , (Rp)
∞) = ht(p) = ht(P ).

This along with Lemma 3.2 yields that

p. grade(a, R∞) = inf{p. grade(PR∞
P , R∞

P )|P ∈ V(a)}
= inf{ht(P )|P ∈ V(a)}
= ht(a),

which shows that p. grade(a, R∞) = ht(a) for every finitely generated ideal a of R∞.

Finally we assume that a is a general ideal of R∞ and let Σ be the family of all finitely

generated subideals b of a. We bring the following claim:

Claim: One has ht(a) = sup{ht(b) : b ∈ Σ}.
To see this, let P ∈ Spec(R∞) be such that ht(P ) = ht(a) and set p := P ∩ R. As we

saw in the above lines, R∞
P = (Rp)

∞. Set n := ht(p) = ht(P ). Due to [3, Theorem A.2],

there exists a sequence x := x1, . . . , xn of elements of p such that ht(x1, . . . , xi)R = i for

all 1 ≤ i ≤ n. Since R is catenary, x is part of a system of parameters for R. By Lemma

3.1, x is regular sequence on R∞. So

ht(P ) ≥ ht(xR∞) ≥ p. grade(xR∞, R∞) = n = ht(p) = ht(P ),

which shows that ht(xR∞) = ht(a). This completes the proof of the claim.

By the case of finitely generated ideals, p. grade(b, R∞) = ht(b) for all b ∈ Σ. In light

of Lemma 3.2 and the claim we see that

p. grade(a, R∞) = sup{p. grade(b, R∞) : b ∈ Σ}
= sup{ht(b) : b ∈ Σ}
= ht(a),

which is precisely what we wish to prove. �
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Let M be an A-module. Recall that a prime ideal p is weakly associated to M if p is

minimal over (0 :A m) for some m ∈ M .

Corollary 3.4. Adopt the assumption of Theorem 3.3 and let a be an ideal of R∞ that

generated by ht(a) elements. Then all of the weak associated prime ideals of R∞/a have

the same height.

Proof. See [2, Corollary 4.6] and its proof. �

Remark 3.5. (i): Concerning the proof of Theorem 3.3, we address the following question

which is true for several classes of commutative rings such as valuation domains. Let A

be a commutative ring and a an ideal of A. Let Σ be the family of all finitely generated

subideals b of a. Is ht(a) = sup{ht(b) : b ∈ Σ}?
(ii): Let A be a ring with the property that p. gradeA(m;A) = ht(m) for all maximal

ideals m of A. One might ask whether p. gradeA(a;A) = ht(a) holds for all ideals a of A.

In view of [2, Example 3.11], this is not the case.

We close this section by the following result.

Proposition 3.6. Let A be a quasilocal coherent big Cohen-Macaulay algebra over local

ring R. Then A is balanced big Cohen-Macaulay.

Proof. There exists a system of parameters x = x1, . . . , xd of R which is an A-sequence. Let

y = y1, . . . , yd be a system of parameters A. Denote the Koszul grade of a finitely generated

ideal a by K. gradeA(a;−). Note that
√
xA =

√

yA. This yields that K. gradeA(yA;A) =

K. gradeA(xA;A) = d. In view of [1, Lemma 5.1], we see that K. gradeA((y1, . . . , yi)A;A) =

i, since A is coherent. By usual induction argument it turns out that y is an A-sequence.

�

4. Dagger Closure and Big Cohen-Macaulay Ring

In this section we extend the notion of dagger closure to the submodules of a finitely

generated module over a Noetherian local domain (R,m) and we present Corollary 4.6.

Definition 4.1. Let A be a local algebra with a normalized valuation v : A → R ∪ {∞}
and M be an A-module. Consider a submodule N ⊂ M . We say x ∈ Nv

M if for every

ǫ > 0, there exists a ∈ A such that v(a) < ǫ and ax ∈ N .

Definition 4.2. Let A be an algebra over a Noetherian local domain (R,m). Assume

that A is equipped with a normalized value map v : A → R. Recall from [8] that A is

called almost Cohen-Macaulay if each element of ((x1, . . . , xi−1)A :A xi)/(x1, . . . , xi−1)A

is annihilated by elements of sufficiently small order with respect to v for all system of

parameters x1, . . . , xd of A.

Proposition 4.3. Let M , M ′ be modules over a local algebra A with a normalized valua-

tion v : A → R∪{∞}. Consider the arbitrary submodules N , W of M . Then the following

are true:
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(i) Nv
M is a submodule of M containing N .

(ii) (Nv
M )vM = Nv

M .

(iii) If N ⊂ W ⊂ M , then Nv
M ⊂ W v

M .

(iv) Let f : M → M ′ be a homomorphism. Then f(Nv
M) ⊂ f(N)vM ′.

(v) If Nv
M = N , then 0vM/N = 0.

In addition to, if A is almost Cohen-Macaulay then following is true:

(vi) Let x1, . . . , xk+1 be a partial system of parameters for A, and let J = (x1, . . . , xk)A.

Suppose that there exists a surjective homomorphism f : M → A/J such that

f(u) = x̄k+1, where x̄ is the image of x in A/J . Then (Au)vM ∩ ker f ⊂ (Ju)vM .

Proof. (i) Clearly N ⊂ Nv
M . For x, y ∈ Nv

M , take ǫ > 0 and choose a, b ∈ A such

that v(a), v(b) < ǫ/2 and ax, by ∈ N . Thus we have v(ab) < ǫ and ab(x+ y) ∈ N .

Thus x + y ∈ Nv
M . Consider x ∈ Nv

M and b ∈ A. Since there exists a ∈ A such

that v(a) < ǫ and ax ∈ N and since N is a submodule, we find a(bx) ∈ N and

bx ∈ Nv
M . Thus it is easy to see that Nv

M is a submodule containing N .

(ii) Take x ∈ (Nv
M )vM . For ǫ > 0 and choose a ∈ A such that v(a) < ǫ/2 and

ax ∈ (Nv
M ). Similarly, for ǫ > 0 and choose b ∈ A such that v(b) < ǫ/2 and

(ba)x ∈ N . Thus we find ba ∈ A with v(ba) < ǫ such that (ba)x ∈ N . So

x ∈ (Nv
M ), which yields the claim.

(iii) This is easy and we leave it to reader.

(iv) Consider x ∈ Nv
M , thus for every ǫ > 0, there exists a ∈ A such that v(a) < ǫ and

ax ∈ N . This implies f(ax) = af(x) is in f(N) where a ∈ A is of arbitrarily small

positive order. So f(x) ∈ f(N)vM ′ .

(v) Consider x̄ ∈ 0vM/N which is the image of x in M/N . This implies that ax ∈ N for

the element a ∈ A of arbitrarily small positive order. So x ∈ Nv
M = N and x̄ ∈ 0.

(vi) Take x ∈ (Au)vM ∩ ker f . For every ǫ > 0 there exists a ∈ A of v(a) < ǫ/2 such

that ax = bu ∈ Au and af(x) = 0 = bf(u) = bx̄k+1. This implies bxk+1 ∈ J i.e.

b ∈ (J : xk+1). Since A is almost Cohen-Macaulay, for every ǫ > 0 there exists

c ∈ A of v(c) < ǫ/2 such that cb ∈ J . Thus for ǫ > 0 there exists ac ∈ A of

v(ac) < ǫ and (ac)x = cbu ∈ Ju. So x ∈ (Ju)vM .

�

Definition 4.4. Let (R,m) be a Noetherian local domain and let A be a local domain

containing R with a normalized valuation v : A → R ∪ {∞}. For any finitely generated

R-module M and for its submodule N we define submodule Nv

M such that x ∈ Nv

M if

x⊗ 1 ∈ im(N ⊗A → M ⊗A)vM⊗A.

Proposition 4.5. Let (R,m) be a Noetherian local domain and let A be a local domain

containing R with a normalized valuation v : A → R ∪ {∞}. Let M , M ′ be finitely

generated R-modules. Consider the submodules N , W of M . Then the following are true:

(i) Nv

M is a submodule of M containing N .
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(ii) (Nv

M )vM = Nv

M .

(iii) If N ⊂ W ⊂ M , then Nv

M ⊂ W v

M .

(iv) Let f : M → M ′ be a homomorphism. Then f(Nv

M) ⊂ f(N)vM ′.

(v) If Nv

M = N , then 0vM/N = 0.

(vi) We have 0vR = 0 and mv

R = m.

In addition to, if A is almost Cohen-Macaulay, then following is true:

(vii) Let x1, . . . , xk+1 be a partial system of parameters for R, and let J = (x1, . . . , xk)R.

Suppose that there exists a surjective homomorphism f : M → R/J such that

f(u) = x̄k+1, where x̄ is the image of x in R/J . Then (Ru)vM ∩ ker f ⊂ (Ju)vM .

Proof. (i) Clearly N ⊂ Nv

M . To prove Nv

M is a submodule, let x, y ∈ Nv

M and r ∈ R.

Then

x⊗ 1, y ⊗ 1 ∈ im(N ⊗A → M ⊗A)vM⊗A.

Thus (x+y)⊗1, rx⊗1 ∈ im(N⊗A → M⊗A)vM⊗A. These yield that x+y, rx ∈ Nv

M .

(ii) Let x ∈ (Nv

M )vM . This implies x⊗ 1 ∈ im(Nv

M ⊗ A → M ⊗A)vM⊗A. Equivalently,

for ǫ > 0 there exists a ∈ A such that v(a) < ǫ/2 and x ⊗ a =
∑l

i=1 xi ⊗ ai

where xi ∈ Nv

M and ai ∈ A. Choose ci ∈ A such that for every i, v(ci) < ǫ/2l and

xi⊗ci ∈ im(N⊗A → M⊗A). Take c =
∏l

i=1 ci. Thus x⊗ac ∈ im(N⊗A → M⊗A)

and x ∈ (Nv

M ).

(iii) This is trivial.

(iv) Let x ∈ Nv

M and this gives x⊗a =
∑l

i=1 xi⊗ai for element a ∈ A of arbitrarily small

order, where ai ∈ A and xi ∈ N . Applying f⊗1A, we get f(x)⊗a =
∑l

i=1 f(xi)⊗ai

and thus we conclude.

(v) Denote the image of x ∈ M in M/N by x̄. If x̄ ∈ 0vM/N then x̄ ⊗ a ∈ 0 and this

implies x⊗ a ∈ im(N ⊗A → M ⊗A) for element a ∈ A of arbitrarily small order.

Thus x ∈ Nv

M = N and x̄ ∈ 0.

(vi) Clearly, 0vA = 0. So 0vR = 0. Suppose on the contrary that s ∈ mv for some unit

element s. It turns out that sc ∈ mA for every element c of arbitrarily small order,

i.e., mA contain elements of arbitrarily small order, since s is a unit. This provides

a contradiction, because v(mA) > 0.

(vii) Take x ∈ (Ru)vM ∩ker f . For every ǫ > 0 there exists a ∈ A of v(a) < ǫ/2 such that

x⊗a =
∑n

i=1 riu⊗ai. Since f(x) = 0, f(x)⊗a = xk+1(
∑n

i=1 riai)+JA = 0. This

implies
∑n

i=1 riai ∈ (JA : xk+1A) ⊂ (JA)v . So there exists c ∈ A with v(c) < ǫ/2

such that c
∑n

i=1 riai ∈ JA. Thus

x⊗ ac = u⊗ c

n
∑

i=1

riai ∈ im(Ru⊗ JA → M ⊗A)

and this gives x⊗ ac ∈ im(Ju⊗A → M ⊗A) with v(ac) < ǫ. So we conclude.

�
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Corollary 4.6. (see also [1, Theorem 5.10]) For a complete Noetherian local domain,

if it is contained in an almost Cohen-Macaulay domain, then there exists a balanced big

Cohen-Macaulay module over it.

Proof. From above proposition we find that if a complete Noetherian local domain is

contained in an almost Cohen-Macaulay domain then there exists a closure operation

which satisfies [4, Axiom 1.1]. Then by [4, Theorem 3.16] we conclude. �

We end this paper by the following remark.

Remark 4.7. (i) One thing in Definition 4.4 is that it depends not only the value map

but also the ring A. Thus we fixed A and v throughout the work. However, by

Izumi’s theorem [7], the notion of almost closure does not depend on the choice of

value map over minimal perfect closure of complete domains.

(ii) Let A be a perfect domain and a a nonzero radical ideal of A. Then av = A. To

this end, let x be a nonzero element of a. It remains to note that v(x1/n) = v(x)/n

and x1/n ∈ a.

(iii) Let A be a coherent ring with a normalized valuation and let I be a finitely

generated ideal A. Then Iv = I. Indeed, in order to show that we assume 0v = 0

in A/I. Take x ∈ Iv. This implies ax ∈ I for a ∈ A with arbitrarily small positive

order. If the image of x in A/I is x̄ then ax̄ = 0 in A/I for a ∈ A with arbitrarily

small positive order. But this means x̄ ∈ 0v = 0 in A/I. So x ∈ I. This proves

the first claim. In view of [5, Theorem 2.4.1], A/I is coherent. So it is sufficient to

prove that 0v = 0 in coherent local ring A. Take 0 6= x ∈ 0v. Consider (0 : x) = I ′

which is finitely generated, see [5, Theorem 2.3.2]. It turns out that v(I ′) > 0

which is a contradiction.

(iv) A result similar as Corollary 4.6 is known by M. Tousi and his collaborators.

Acknowledgement . We would like to thank K. Shimomoto for his commands on the earlier

version of this paper.
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